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Preface

Education is an admirable thing, but it is well to remember from time to
time that nothing worth knowing can be taught.

Oscar Wilde, “The Critic as Artist,” 1890.

Analysis is a profound subject; it is neither easy to understand nor summarize. However, Real
Analysis can be discovered by solving problems. This book aims to give independent students the
opportunity to discover Real Analysis by themselves through problem solving.

The depth and complexity of the theory of Analysis can be appreciated by taking a glimpse at its
developmental history. Although Analysis was conceived in the 17th century during the Scientific
Revolution, it has taken nearly two hundred years to establish its theoretical basis. Kepler, Galileo,
Descartes, Fermat, Newton and Leibniz were among those who contributed to its genesis. Deep
conceptual changes in Analysis were brought about in the 19th century by Cauchy and Weierstrass.
Furthermore, modern concepts such as open and closed sets were introduced in the 1900s.

Today nearly every undergraduate mathematics program requires at least one semester of Real
Analysis. Often, students consider this course to be the most challenging or even intimidating of all
their mathematics major requirements. The primary goal of this book is to alleviate those concerns
by systematically solving the problems related to the core concepts of most analysis courses. In
doing so, we hope that learning analysis becomes less taxing and thereby more satisfying.

The wide variety of exercises presented in this book range from the computational to the more
conceptual and vary in difficulty. They cover the following subjects: Set Theory, Real Numbers,
Sequences, Limits of Functions, Continuity, Differentiability, Integration, Series, Metric Spaces,
Sequences and Series of Functions and Fundamentals of Topology. Prerequisites for accessing this
book are a robust understanding of Calculus and Linear Algebra. While we define the concepts
and cite theorems used in each chapter, it is best to use this book alongside standard analysis
books such as: Principles of Mathematical Analysis by W. Rudin, Understanding Analysis by S.
Abbott, Elementary Classical Analysis by J. E. Marsden and M. J. Hoffman, and Elements of
Real Analysis by D. A. Sprecher. A list of analysis texts is provided at the end of the book.

Although A Problem Book in Real Analysis is intended mainly for undergraduate mathematics
students, it can also be used by teachers to enhance their lectures or as an aid in preparing exams.
The proper way to use this book is for students to first attempt to solve its problems without
looking at solutions. Furthermore, students should try to produce solutions which are different
from those presented in this book. It is through the search for a solution that one learns most
mathematics.

Knowledge accumulated from many analysis books we have studied in the past has surely
influenced the solutions we have given here. Giving proper credit to all the contributors is a difficult
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task that we have not undertaken; however, they are all appreciated. We also thank Claremont
students Aaron J. Arvey, Vincent E. Selhorst-Jones and Martijn van Schaardenburg for their help
with LaTeX. The source for the photographs and quotes given at the beginning of each chapter in
this book are from the archive at http://www-history.mcs.st-andrews.ac.uk/

Perhaps Oscar Wilde is correct in saying “nothing worth knowing can be taught.” Regardless,
teachers can show that there are paths to knowledge. This book is intended to reveal such a path
to understanding Real Analysis. A Problem Book in Real Analysis is not simply a collection of
problems; it intends to stimulate its readers to independent thought in discovering Analysis.

Asuman Güven Aksoy
Mohamed Amine Khamsi
May 2009



Chapter 1

Elementary Logic and Set Theory

Reserve your right to think, for even to think wrongly is better than not to
think at all.

Hypatia of Alexandria (370–415)

• If x belongs to a class A, we write x ∈ A and read as “x is an element of A.” Otherwise, we
write x �∈ A.

• If A and B are sets, then A ⊆ B (“A is a subset of B” or “A is contained in B”) means that
each element of A is also an element of B. Sometimes we write B ⊇ A (“B contains A”)
instead of A ⊆ B.

• We say two sets A and B are equal , written A = B, if A ⊆ B and B ⊆ A.

• Any statement S has a negation ∼S (“not S”) defined by

∼S is true if S is false and ∼S is false if S is true.

• Let P (x) denote a property P of the object x. We write ∃ for the quantifier “there exists.”
The expression

∃ x ∈ X : P (x)

means that “there exists (at least) one object x in the class X which has the property P .”
The symbol ∃ is called the existential quantifier.
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2 CHAPTER 1. ELEMENTARY LOGIC AND SET THEORY

• We use the symbol ∀ for the quantifier “for all.” The expression

∀x ∈ X : P (x)

has the meaning “for each object x in the class X, x has property P .” The symbol ∀ is called
the universal quantifier (or sometimes the general quantifier).

• We use the symbol := to mean “is defined by.” We take x := y to mean that the object or
symbol x is defined by the expression y .

• Note that for negation of a statement we have:

(i) ∼∼A := ∼(∼A) = A

(ii) ∼(A and B) = (∼A) or (∼B)

(iii) ∼(A or B) = (∼A) and (∼B)

(iv) ∼(∀x ∈ X : P (x)) = (∃x ∈ X :∼P (x))

(v) ∼(∃x ∈ X : P (x)) = (∀x ∈ X :∼P (x)).

• Let A and B be statements. A implies B will be denoted by A ⇒ B. If A implies B, we take
this to mean that if we wish to prove B, it suffices to prove A (A is a sufficient condition for
B).

• The equivalence A ⇔ B (“A and B are equivalent” or “A if and only if B,” often written A
iff B) of the statements A and B is defined by

(A ⇔ B) := (A ⇒ B) and (B ⇒ A).

A is a necessary and sufficient condition for B, or vice versa.

• The statement ∼B ⇒∼A is called the contrapositive of the statement A ⇒ B. In standard
logic practices, any statement is considered equivalent to its contrapositive. It is often easier
to prove a statement’s contrapositive instead of directly proving the statement itself.

• To prove A ⇒ B by contradiction, one supposes B is false (that ∼B is true). Then, also
assuming that A is true, one reaches a conclusion C which is already known to be false. This
contradiction shows that if A is true ∼B cannot be true, and hence B is true if A is true.

• Given two sets A and B, we define A ∪B (“the union of A with B”) as the set

A ∪B := {x : x ∈ A or x ∈ B or both}.

When speaking about unions, if we say x ∈ A or x ∈ B it also includes the possibility that x
is in both A and B.

• We define A ∩B (“the intersection of A with B”) as the set

A ∩B := {x : x ∈ A and x ∈ B}.
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• Let A and B be subsets of X. Then

A \B := {x ∈ X : x ∈ A and x /∈ B}

is the relative complement of B in A. When the set X is clear from the context we write also

Ac := X \A

and call Ac the complement of A.

• If X is a set, then so is its power set P(X). The elements of P(X) are the subsets of X.
Sometimes the power set is written 2X for a reason which is made clear in Problem 2.8.

• Let f : X → Y be a function, then

im(f) := {y ∈ Y ; ∃x ∈ X : y = f(x)}

is called the image of f. We say f is surjective (or onto) if im(f) = Y , injective (or one-to-one)
if f(x) = f(y) implies x = y for all x, y ∈ X, and f is bijective if f is both injective and
surjective.

• If X and Y are sets, the Cartesian product X × Y of X and Y is the set of all ordered pairs
(x, y) with x ∈ X and y ∈ Y .

• Let X be a set and A = {Ai : i ∈ I} be a family of sets and I is an index set. Intersection
and union of this family are given by⋂

i∈I

Ai = {x ∈ X;∀i ∈ I : x ∈ Ai}

and ⋃
i∈I

Ai = {x ∈ X;∃i ∈ I : x ∈ Ai}.

• Let f : X → Y be a function, and A ⊂ X and B ⊂ Y are subsets. Image of A under f, f(A)
defined as

f(A) = {f(x) ∈ Y : x ∈ A}.

• Inverse image of B under f (or pre-image of B), f−1(B) defined as

f−1(B) = {x ∈ X : f(x) ∈ B}.

Note that we can form f−1(B) for a set B ⊂ Y even though f might not be one-to-one or
onto.

• We will use standard notation, N for the set natural numbers, Z for the set of integers , Q for
the set rational numbers , and R for the set real numbers . We have the natural containments:

N ⊂ Z ⊂ Q ⊂ R.

• Two sets A and B have the same cardinality if there is a bijection from A to B. In this case
we write A ∼ B. We say A is countable if N ∼ A. An infinite set that is not countable is
called an uncountable set.

CHAPTER 1. ELEMENTARY LOGIC AND SET THEORY



4 CHAPTER 1. ELEMENTARY LOGIC AND SET THEORY

• Schröder–Bernstein Theorem: Assume that there exists one-to-one function f : A → B
and another one-to-one function g : B → A. Then there exists a one-to-one, onto function
h : A → B and hence A ∼ B.

Problem 1.1 Consider the four statements

(a) ∃x ∈ R ∀y ∈ R x+ y > 0;
(b) ∀x ∈ R ∃y ∈ R x+ y > 0;
(c) ∀x ∈ R ∀y ∈ R x+ y > 0;
(d) ∃x ∈ R ∀y ∈ R y2 > x.

1. Are the statements a, b, c, d true or false?

2. Find their negations.

Problem 1.2 Let f : R → R. Find the negations of the following statements:

1. For any x ∈ R f(x) ≤ 1.

2. The function f is increasing.

3. The function f is increasing and positive.

4. There exists x ∈ R+ such that f(x) ≤ 0.

5. There exists x ∈ R such that for any y ∈ R, if x < y then f(x) > f(y).

Problem 1.3 Replace . . . by the appropriate quantifier: ⇔,⇐, or ⇒.

1. x ∈ R x2 = 4 . . . . . . x = 2;

2. z ∈ C z = z . . . . . . z ∈ R;

3. x ∈ R x = π . . . . . . e2ix = 1.

Problem 1.4 Find the negation of: “Anyone living in Los Angeles who has blue eyes will win
the Lottery and will take their retirement before the age of 50.”
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Problem 1.5 Find the negation of the following statements:

1. Any rectangular triangle has a right angle.

2. In all the stables, the horses are black.

3. For any integer x ∈ Z, there exists an integer y ∈ Z such that, for any z ∈ Z, the inequality
z < x implies z < x+ 1.

4. ∀ε > 0 ∃α > 0 / |x− 7/5| < α ⇒ |5x− 7| < ε.

Problem 1.6 Show that ∀ε > 0 ∃N ∈ N such that

(n ≥ N ⇒ 2 − ε <
2n+ 1
n+ 2

< 2 + ε).

Problem 1.7 Let f, g be two functions defined from R into R. Translate using quantifiers the
following statements:

1. f is bounded above;

2. f is bounded;

3. f is even;

4. f is odd;

5. f is never equal to 0;

6. f is periodic;

7. f is increasing;

8. f is strictly increasing;

9. f is not the 0 function;

10. f does not have the same value at two different points;

11. f is less than g;

12. f is not less than g.

Problem 1.8 For two sets A and B show that the following statements are equivalent:

a) A ⊆ B

b) A ∪B = B

c) A ∩B = A

CHAPTER 1. ELEMENTARY LOGIC AND SET THEORY



6 CHAPTER 1. ELEMENTARY LOGIC AND SET THEORY

Problem 1.9 Establish the following set theoretic relations:

a) A ∪B = B ∪A, A ∩B = B ∩A (Commutativity)

b) A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∩ C) = (A ∩B) ∩ C (Associativity)

c) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) and A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (Distributivity)

d) A ⊆ B ⇔ Bc ⊆ Ac

e) A\B = A ∩Bc

f) (A ∪B)c = Ac ∩Bc and (A ∩B)c = Ac ∪Bc (De Morgan’s laws)

Problem 1.10 Suppose the collection B is given by B =
{[

1, 1 + 1
n

]
: n ∈ N

}
. Find

⋃
B∈B B

and
⋂

B∈B B.

Problem 1.11 Let A be a set and let P(A) denote the set of all subsets of A (i.e., the power
set of A). Prove that A and P(A) do not have the same cardinality. (The term cardinality is
used in mathematics to refer to the size of a set.)

Problem 1.12 If A and B are sets, then show that

a) P(A) ∪ P(B) ⊆ P(A ∪B)

b) P(A) ∩ P(B) = P(A ∩B)

Problem 1.13 Prove that for each nonempty set A, the function

f : P(A) −→ {χB}B∈P(A),

B �−→ χB

is bijective. Here the characteristic function χB of B is defined as

χB : A −→ {0, 1},
x �−→

{
1 if x ∈ B,
0 if x ∈ Bc.

Problem 1.14 Give a necessary and sufficient condition for

A×B = B ×A.
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Problem 1.15 If A,B,C are sets, show that

a) A×B = ∅ ⇔ A = ∅ or B = ∅.

b) (A ∪B) × C = (A× C) ∪ (B × C).

c) (A ∩B) × C = (A× C) ∩ (B × C).

Problem 1.16 For an arbitrary function f : X −→ Y , prove that the following relations hold:

a) f(
⋃

i∈I Ai) =
⋃

i∈I f(Ai).

b) f(
⋂

i∈I Ai) ⊆ ⋂i∈I f(Ai).

c) Give a counterexample to show that f(
⋂

i∈I Ai) =
⋂

i∈I f(Ai) is not always true.

Problem 1.17 Suppose f : A → B and g : B → C are functions, show that

a) If both f and g are one-to-one, then g ◦ f is one-to-one.

b) If both f and g are onto, then g ◦ f is onto.

c) If both f and g are bijection, then g ◦ f is bijection.

Problem 1.18 For a function f : X −→ Y , show that the following statements are equivalent:

a) f is one-to-one.

b) f (A ∩B) = f (A) ∩ f (B) holds for all A,B ∈ P (X).

Problem 1.19 For an arbitrary function f : X −→ Y , prove the following identities:

a) f−1
(⋃

i∈I Bi

)
=
⋃

i∈I f
−1 (Bi).

b) f−1
(⋂

i∈I Bi

)
=
⋂

i∈I f
−1 (Bi).

c) f−1 (Bc) =
[
f−1 (B)

]c.
Problem 1.20 Show that

1. N ∼ E.

2. N ∼ Z.

3. (−1, 1) ∼ R.

Problem 1.21 Show that any nonempty subset of a countable set is finite or countable.

CHAPTER 1. ELEMENTARY LOGIC AND SET THEORY



8 CHAPTER 1. ELEMENTARY LOGIC AND SET THEORY

Problem 1.22 Let A be an infinite set. Show that A is countable if and only if there exists
f : A → N which is 1-to-1. Use this to prove that Z, N × N, Nr, for any r ≥ 1, and Q are
countable.

Problem 1.23 Show that the countable union of finite or countable sets is countable.

Problem 1.24 An algebraic number is a root of a polynomial, whose coefficients are rational.
Show that the set of all algebraic numbers is countable.

Problem 1.25 Show that the set R is uncountable.

Problem 1.26 The power set of N, i.e., P(N), is not countable as well as the sets R, and
{0, 1}N the set of all the sequences which takes values 0 or 1. Use this to show that the set of
all irrationals is not countable.

Problem 1.27 Let A and B be two nonempty sets. Assume there exist f : A → B and
g : B → A which are 1-to-1 (or injective). Then there exists a bijection h : A → B.
This conclusion is known as the Schröder–Bernstein theorem.
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Solutions

Solution 1.1

1. (a) is false. Since its negation ∀x ∈ R ∃y ∈ R x + y ≤ 0 is true. Because if x ∈ R, there
exists y ∈ R such that x + y ≤ 0. For example, we may take y = −(x + 1) which gives
x+ y = x− x− 1 = −1 ≤ 0.

2. (b) is true. Indeed for x ∈ R, one can take y = −x + 1 which gives x + y = 1 > 0. The
negation of (b) is ∃x ∈ R ∀y ∈ R x+ y ≤ 0.

3. (c) : ∀x ∈ R ∀y ∈ R x+ y > 0 is false. Indeed one may take x = −1, y = 0. The negation
of (c) is ∃x ∈ R ∃y ∈ R x+ y ≤ 0.

4. (d) is true. Indeed one may take x = −1. The negation is: ∀x ∈ R ∃y ∈ R y2 ≤ x.

Solution 1.2

1. This statement may be rewritten as: (For every x ∈ R) (f(x) ≤ 1). The negation of “( For
every x ∈ R)” is “There exists x ∈ R” and the negation of “(f(x) ≤ 1)” is “f(x) > 1.” Hence
the negation of the statement is: “There exists x ∈ R, f(x) > 1.”

2. First let us rewrite the statement “The function f is increasing”: “for any real numbers
(x1, x2), if x1 ≤ x2 then f(x1) ≤ f(x2).” This may be rewritten as: “(for any real numbers
x1 and x2) (x1 ≤ x2 implies f(x1) ≤ f(x2)).” The negation of the first part is: “(there
exists a pair of real numbers (x1, x2))” and the negation of the second part is: “(x1 ≤ x2 and
f(x1) > f(x2))”. Hence the negation of the complete statement is: “There exist x1 ∈ R and
x2 ∈ R such that x1 ≤ x2 and f(x1) > f(x2).”

3. The negation is: the function f is not increasing or is not positive. We already did describe
the statement “the function f is not increasing.” Let us focus on “the function f is not
positive.” We get: “there exists x ∈ R, f(x) < 0.” Therefore the negation of the complete
statement is: “there exist x1 ∈ R and x2 ∈ R such that x1 < x2 and f(x1) ≥ f(x2), or there
exists x ∈ R, f(x) < 0.”

4. This statement may be rewritten as follows: “(there exists x ∈ R+) (f(x) ≤ 0).” The negation
of the first part is: “(for any x ∈ R+),” and for the second part:“(f(x) > 0).” Hence the
negation of the complete statement is: “for any x ∈ R+, f(x) > 0.”

5. This statement may be rewritten as follows: “(∃x ∈ R)(∀y ∈ R)(x < y ⇒ f(x) > f(y)).”
The negation of the first part is: “(∀x ∈ R),” for the second part: “(∃y ∈ R),” and for the
third part: “(x < y and f(x) ≤ f(y)).” Hence the negation of the complete statement is:
“∀x ∈ R, ∃y ∈ R, x < y and f(x) ≤ f(y).”

CHAPTER 1. ELEMENTARY LOGIC AND SET THEORY
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Solution 1.3

1. ⇐
2. ⇔
3. ⇒

Solution 1.4

“There exists one person living in Los Angeles who has blue eyes who will not win the Lottery or
will retire after the age of 50.”

Solution 1.5

1. A triangle with no right angle, is not rectangular.

2. There exists a stable in which there exists at least one horse who is not black.

3. If we rewrite the statement in mathematical language:

∀x ∈ Z ∃y ∈ Z ∀z ∈ Z (z < x ⇔ z < x+ 1),

the negation is
∃x ∈ Z ∀y ∈ Z ∃z ∈ Z (z < x and z ≥ x+ 1).

4. ∃ε > 0 ∀α > 0 (|x− 7/5| < α and |5x− 7| ≥ ε).

Solution 1.6

First note that for n ∈ N,
2n+ 1
n+ 2

≤ 2 since 2n+ 1 ≤ 2(n+ 2). Let ε > 0, we have

∀n ∈ N
2n+ 1
n+ 2

< 2 + ε;

let us find a condition on n such that the inequality

2 − ε <
2n+ 1
n+ 2

is true. We have

2 − ε <
2n+ 1
n+ 2

⇔ (2 − ε)(n+ 2) < 2n+ 1

⇔ 3 < ε(n+ 2)

⇔ n >
3
ε

− 2.
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Here ε is given, let us pick N ∈ N such that N >
3
ε

− 2. Hence, for any n ≥ N we have

n ≥ N >
3
ε

− 2. Consequently 2 − ε <
2n+ 1
n+ 2

. As a conclusion, for any ε > 0, we found N ∈ N

such that for any n ≥ N we have 2 − ε <
2n+ 1
n+ 2

and
2n+ 1
n+ 2

< 2 + ε.

Solution 1.7

1. ∃M ∈ R ∀x ∈ R f(x) ≤ M ;

2. ∃M ∈ R ∃m ∈ R ∀x ∈ R m ≤ f(x) ≤ M ;

3. ∀x ∈ R f(x) = f(−x);
4. ∀x ∈ R f(x) = −f(−x);
5. ∀x ∈ R f(x) �= 0;

6. ∃a ∈ R∗ ∀x ∈ R f(x+ a) = f(x);

7. ∀(x, y) ∈ R2 (x ≤ y ⇒ f(x) ≤ f(y));

8. ∀(x, y) ∈ R2 (x ≤ y ⇒ f(x) > f(y));

9. ∃x ∈ R f(x) �= 0;

10. ∀(x, y) ∈ R2 (x �= y ⇒ f(x) �= f(y));

11. ∀x ∈ R f(x) ≤ g(x);

12. ∃x ∈ R f(x) > g(x).

Solution 1.8

(a ⇒ b)
Suppose A ⊆ B. Let x ∈ A ∪ B, then x ∈ A or x ∈ B. If x ∈ A, then since A ⊆ B, we have
x ∈ B. Thus, for any x ∈ A ∪ B, x ∈ B, so A ∪ B ⊆ B. Let x ∈ B, then x ∈ A ∪ B so
B ⊆ A ∪B, and hence A ∪B = B.

(b ⇒ c)
Let x ∈ A ∩B ⇒ x ∈ A so A ∩B ⊆ A. Let x ∈ A ⇒ x ∈ A ∪B = B so x ∈ B and therefore
x ∈ A ∩B so A ⊆ A ∩B. Thus A ∩B = A.

(c ⇒ a)
Let x ∈ A, then by hypothesis x ∈ A ∩ B, which in turn implies that x ∈ B as well. Thus
A ⊆ B.

CHAPTER 1. ELEMENTARY LOGIC AND SET THEORY
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Solution 1.9

a) Follows directly from definitions.

b) Follows directly from definitions.

c) To establish this equality, note the following:

x ∈ A ∪ (B ∩ C) ⇔ x ∈ A or x ∈ B ∩ C
⇔ x ∈ A or (x ∈ B and x ∈ C)
⇔ (x ∈ A or x ∈ B) and (x ∈ A or x ∈ C)
⇔ x ∈ A ∪B and x ∈ A ∪ C
⇔ x ∈ (A ∪B) ∩ (A ∪ C).

Similarly,

x ∈ A ∩ (B ∪ C) ⇔ x ∈ A and x ∈ B ∪ C
⇔ x ∈ A and (x ∈ B or x ∈ C)
⇔ (x ∈ A and x ∈ B) or (x ∈ A and x ∈ C)
⇔ x ∈ A ∩B or x ∈ A ∩ C
⇔ x ∈ (A ∩B) ∪ (A ∩ C).

d) Let A ⊆ B, then x ∈ Bc ⇒ x �∈ B and so x �∈ A (i.e., x ∈ Ac), therefore, Bc ⊆ Ac. Conversely,
if Bc ⊆ Ac is true, then by the preceding case, A = (Ac)c ⊆ (Bc)c = B.

e) Note that

x ∈ A\B ⇔ x ∈ A and x �∈ B

⇔ x ∈ A and x ∈ Bc

⇔ x ∈ A ∩Bc.

f) Note that

x ∈ (A ∩B)c ⇔ x �∈ A ∩B
⇔ x �∈ A or x �∈ B

⇔ x ∈ Ac or x ∈ Bc

⇔ x ∈ Ac ∪Bc.

Similarly,

x ∈ (A ∪B)c ⇔ x �∈ A ∪B
⇔ x �∈ A and x �∈ B

⇔ x ∈ Ac and x ∈ Bc

⇔ x ∈ Ac ∩Bc.
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Solution 1.10

Clearly,
⋃

B∈B B = [1, 2] and
⋂

B∈B B = {1}.

Solution 1.11

This is a proof by contradiction. Suppose they have the same cardinality, then there exists a
bijection

T : A → P(A).

Let K = {x ∈ A : x �∈ T (x)}. Since T is onto, there exists y ∈ A such that T (y) = K. If y ∈ K,
then by the definition of K we can conclude y �∈ T (y) = K, so y �∈ K. Similarly, if y �∈ K, y �∈ T (y)
so we conclude that y ∈ K. In both cases we have reached a contradiction.

Solution 1.12

a)

X ∈ P(A) ∪ P(B) ⇒ X ⊆ A or X ⊆ B

⇒ X ⊆ A ∪B
⇒ X ∈ P(A ∪B).

b)

X ∈ P(A) ∩ P(B) ⇔ X ⊆ A and X ⊆ B

⇔ X ⊆ A ∩B
⇔ X ∈ P(A ∩B).

Solution 1.13

Clearly, for any B ∈ P(A), f(B) = χB. Note that f is one-to-one and onto.

Solution 1.14

Clearly, A×B = B ×A ⇔ A = B.

Solution 1.15

a) Without loss of generality, let A �= ∅ then if

B �= ∅ ⇔ (∃x ∈ A and ∃y ∈ B)
⇔ (x, y) ∈ A×B

⇔ A×B �= ∅.

CHAPTER 1. ELEMENTARY LOGIC AND SET THEORY
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b) Suppose (x, y) ∈ (A ∪ B) × C then y ∈ C and x ∈ A or x ∈ B. So (x, y) ∈ A × C or
(x, y) ∈ B × C, thus (x, y) ∈ (A × C) ∪ (B × C) and (A ∪ B) × C ⊆ (A × C) ∪ (B × C).
Conversely, if (x, y) ∈ (A×C)∪(B×C), then (x, y) ∈ A×C or (x, y) ∈ B×C, which means that
y ∈ C and x ∈ A or x ∈ B; therefore, (x, y) ∈ (A∪B)×C and (A×C)∪(B×C) ⊆ (A∪B)×C.

c) Suppose (x, y) ∈ (A ∩ B) × C then y ∈ C and x ∈ A and x ∈ B. So (x, y) ∈ A × C and
(x, y) ∈ B×C, thus (x, y) ∈ (A×C)∩(B×C) and (A∩B)×C ⊆ (A×C)∩(B×C). Conversely,
if (x, y) ∈ (A×C)∩ (B×C), then (x, y) ∈ A×C and (x, y) ∈ B×C, which means that y ∈ C
and x ∈ A and x ∈ B; therefore, (x, y) ∈ (A∩B) ×C and (A×C) ∩ (B ×C) ⊆ (A∩B) ×C.

Solution 1.16

a) Note the following:

y ∈ f

(⋃
i∈I

Ai

)
⇔ ∃x ∈

⋃
i∈I

Ai with y = f(x)

⇔ ∃i ∈ I with x ∈ Ai and y = f(x)
⇔ ∃i ∈ I with y ∈ f(Ai)

⇔ y ∈
⋃
i∈I

f(Ai).

b) Since
⋂

i∈I Ai ⊆ Ai we have f(
⋂

i∈I Ai) ⊆ f(Ai) for each i. We obtain that

f

(⋂
i∈I

Ai

)
⊆
⋂
i∈I

f(Ai).

c) Let A1 = {0} and A2 = {1} and X = Y = {0, 1}. Define f : X −→ Y by f(0) = f(1) = 0,
then f(A1) = {0} = f(A2). Therefore, f(A1) ∩ f(A2) = {0}, while A1 ∩ A2 = ∅ and
f(A1 ∩A2) = ∅.

Solution 1.17

a) Let f : A → B and g : B → C are given functions. Let x1, x2 ∈ A with x1 �= x2, since f is
1-1, we know that f(x1) �= f(x2). So now we have two distinct points f(x1) and f(x2) in B.
Since g is 1-1, we also have g(f(x1)) �= g(f(x2)). This is same as (g ◦ f)(x1) �= (g ◦ f)(x2).

b) Suppose c ∈ C , since g is onto, we know that there is a b ∈ B with g(b) = c. Furthermore
since f is also onto, there is some a ∈ A with f(a) = b. But this means

(g ◦ f)(a) = g(f(a)) = g(b) = c

so we have the required a ∈ A.
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c) Since both f and g are bijective, they are both 1-1 and onto. So g ◦ f is 1-1 by part a) above
and g ◦ f is onto by part b) above. Therefore g ◦ f is 1-1 and onto, in other words g ◦ f is a
bijection.

Solution 1.18

(a ⇒ b) If y ∈ f (A)∩f (B), then ∃a ∈ A and b ∈ B such that y = f (a) = f (b). Since f is one-to-one
we know a = b ∈ A ∩ B and therefore, y ∈ f (A ∩B). Thus f (A) ∩ f (B) ⊆ f (A ∩B), but
from the problem above f (A ∩B) ⊆ f (A) ∩ f (B).

(b ⇒ a) If b holds, notice that if A and B were disjoint subsets of X, we then have f (A) ∩ f (B) = ∅.
Now let f (a) = f (b). Then let A = {a} and B = {b}. Thus f(A ∩ B) = f(A) ∩ f(B) =
f(a) ∩ f(b) = f(a) ∩ f(a) = f(a) �= ∅. So A ∩B �= ∅, and therefore, a = b.

Solution 1.19

a)

x ∈ f−1

(⋃
i∈I

Bi

)
⇔ f (x) ∈

⋃
i∈I

Bi

⇔ ∃i ∈ I such that f (x) ∈ Bi

⇔ ∃i ∈ I such that x ∈ f−1 (Bi)

⇔ x ∈
⋃
i∈I

f−1 (Bi) .

b)

x ∈ f−1

(⋂
i∈I

Bi

)
⇔ f (x) ∈

⋂
i∈I

Bi

⇔ f (x) ∈ Bi ∀i ∈ I

⇔ x ∈ f−1 (Bi) ∀i ∈ I

⇔ x ∈
⋂
i∈I

f−1 (Bi) .

c)

x ∈ f−1 (Bc) ⇔ f (x) ∈ Bc

⇔ f (x) �∈ B

⇔ x �∈ f−1 (B)
⇔ x ∈ [f−1 (B)

]c
.

CHAPTER 1. ELEMENTARY LOGIC AND SET THEORY
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Solution 1.20

1. Let f : N → E given by f(n) = 2n. Clearly this map is one-to-one and onto.

2. This can be shown by defining a bijection f : N → Z as

f(n) =
{ 1−n

2 ifn is odd,
n
2 ifn is even.

3. Using calculus one can show that the function

f : (−1, 1) → R

defined by
f(x) =

x

x2 − 1

is one-to-one and onto. In fact, (a, b) ∼ R for any interval (a, b).

Solution 1.21

Let A be a countable set and B ⊂ A. Without loss of generality assume B not empty and not
finite. Let us prove that B is countable. Since A is countable, there exists a bijection f : A → N.
Consider the restriction of f to B, denoted by fB : B → N. fB is a bijection from B into
f(B) ⊂ N. Clearly f(B) is not empty and is not finite. Let us prove that f(B) is in bijection
with N. Indeed set b0 = min f(B). Then define b1 = min f(B) \ {b0}. Once bn is built, we define
bn+1 = min f(B) \ {b0, b1, . . . , bn}. By induction, we build the set {bn, n ∈ N} ⊂ f(B) where
bn < bn+1, for n ∈ N. Assume f(B) \ {bn, n ∈ N} �= ∅. Let b ∈ f(B) \ {bn, n ∈ N}. Then we have
bn < b for any n ∈ N. This is a contradiction since any increasing sequence of elements in N is not
bounded above. So f(B) = {bn, n ∈ N}. Define g : f(B) → N by g(bn) = n, for any n ∈ N. g is a
bijection. Clearly g ◦ fB : B → N is a bijection.

Solution 1.22

It is clear that if A is countable, then there exists a bijection f : A → N which is also 1-to-1. So
assume there exists f : A → N which is 1-to-1. Let us prove that A is countable. Since A is infinite
and f is 1-to-1, then f(A) is infinite. In the previous problem, we showed that f(A) is countable.
Since f restricted to A into f(A) is a bijection, then one can construct a bijection from A into N,
i.e. A is countable. Let us complete the proof by showing that Z, Nr, for any r ≥ 1, and Q are
countable. Note that N × N = Nr for r = 2. The map f : Z → N defined by

f(n) =
{

2n+ 1 if n ∈ N,
−2n if n �∈ N,

is 1-to-1. The first part shows that Z is countable. In order to show that Nr, for r ≥ 1, is countable,
consider the set of prime numbers P. We know that P is infinite. So for any r ≥ 1, consider any
subset Pr of P with r elements. And write Pr = {p1, . . . , pr}. Define the map f : Nr → N by

f(n1, . . . , nr) = pn1
1 × · · · × pnr

r .
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The elementary number theory shows that f is 1-to-1. Hence the first part shows that Nr is
countable. Finally define f : Q → N by

f
( n
m

)
= 2sign(n) × 3|n| × 5m.

It is easy to check that f is 1-to-1. Hence Q is countable.

Solution 1.23

Let {Ai}i∈I be a family of subsets of a set X such that Ai is finite or countable for any i ∈ I
and I is countable. Without loss of generality assume I = N. Set A = ∪

n∈N

An. Let us prove

that A is countable. Without loss of generality, assume A is not finite. For any a ∈ A, set
na = min{n ∈ N; a ∈ An}. Since An is finite or countable, for any n ∈ N, there exists fn : An → N

which is 1-to-1. Define f : A → N by f(a) = fna(a). Then it is easy to check that f is 1-to-1. This
proves that A is countable.

Solution 1.24

Let Pn[x] be the set of polynomial functions with rational coefficients. Obviously there is a
bijection from Pn[x] into Qn. Since Q is countable, there exists a bijection f : Q → N. Hence
the map F : Qn → Nn defined by F (r1, . . . , rn) = (f(r1), . . . , f(rn)) is a bijection. Since Nn is
countable, we conclude that Qn is countable and consequently Pn[x] is countable. The set

Rn =
⋃

P∈Pn[x]

{x ∈ R;P (x) = 0}

is countable since it is a countable union of finite sets. Note that Rn is infinite since Q ⊂ Rn, for
any n ≥ 1. Since the set of algebraic numbers A(R) is given by

A(R) =
⋃
n≥1

Rn,

then it is countable being a countable union of countable sets.

Solution 1.25

First notice that (0, 1) ∼ R, because the function defined by

f : (0, 1) → R

defined by

f(x) = tan
(
πx− 1

2

)
is one-to-one and onto. Next we claim that (0, 1) is uncountable. The proof of this claim uses a
diagonalization argument due to Cantor. Suppose to the contrary that (0, 1) is countable. Then
all real numbers in (0, 1) can be written as an exhaustive list x1, x2, x3, . . . , xk, . . . where each xk

is given as a decimal expansion. There are certain real numbers in (0, 1) that have two decimal
expansions. For example, 1

10 has the two representations

0.10000 · · · and 0.09999 · · · .

CHAPTER 1. ELEMENTARY LOGIC AND SET THEORY
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We can give preference to one of the representations, but it is not necessary to do so as can be seen
in the following argument. Suppose all the real numbers in (0, 1) are given by the following list:

x1 = 0.a11a12a13a14 · · ·
x2 = 0.a21a22a23a24 · · ·
x3 = 0.a31a32a33a34 · · ·
x4 = 0.a41a42a43a44 · · ·

· · ·
xk = 0.ak1ak2ak3ak4 · · ·

· · ·
Our goal is to write down another real number y in (0, 1) which does not appear in the above list.
Now let b1 be a digit different from 0, a11, and 9; b2 be a digit different from 0, a22, and 9; b3 be a
digit different from 0, a33, and 9; etc. Consider a number y with decimal representation

y = 0.b1b2b3b4 · · ·

clearly y ∈ (0, 1), furthermore y is not one of the numbers with two decimal representations, since
bn �= 0, 9. Moreover y �= xk for any k because the kth digit in the decimal representation for y
and xk are different. Therefore there is no list of all real numbers in (0, 1), and thus (0, 1) is not
countable. Since (0, 1) ∼ R, R is uncountable too.

Solution 1.26

We have seen that for any set X, there does not exist an onto map from X into the power set P(X).
Hence P(N) is an infinite set which is not in bijection with N. Hence P(N) is not countable. First
let us prove that {0, 1}N is not countable. Assume not, then there exists a bijection f : N → {0, 1}N.
Set ε = (εn) ∈ {0, 1}N defined by εn = 1 − f(n)n, where f(n)n is the nth term in the sequence
f(n) ∈ {0, 1}N. Obviously ε �= f(n), for any n ∈ N. Hence ε does not belong to the range of f
contradicting the onto behavior of f . Hence {0, 1}N is not countable. In order to prove that R is
not countable, we find a subset of R which is not countable. Indeed, consider the set

C =

{ ∞∑
n=0

εn

3n
; (εn) ∈ {0, 1}N

}
.

C is the Cantor triadic set. It is clear that C is a subset of [0, 1] ⊂ R, and it is in bijection with
{0, 1}N. Hence C is not countable. Hence R is not countable. Since R is not countable and Q is
countable, R \ Q is not countable since the union of two countable sets is countable. Clearly the
set R \ Q is the set of all irrationals.

Solution 1.27

Let us first prove that if there exists a 1-to-1 map f : A → B with B ⊂ A, then there exists a
bijection h : A → B. Indeed set B0 = A \ B, and Bn+1 = f(Bn). Note that the family {Bn} is
pairwise disjoint, i.e., Bn ∩ Bm = ∅, for any n �= m. Indeed we have B0 ∩ B = ∅ and Bn ⊂ B for
all n ≥ 1. Hence B0 ∩ Bn = ∅ for any n ≥ 1. Since f is 1-to-1, we get fm(B0) ∩ fm(Bn) = ∅, for
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any n,m ∈ N. In other words we have Bn ∩ Bn+m = ∅, for any n,m ∈ N. This proves our claim.
It is clear that we have A \

(
∪

n≥0
Bn

)
⊂ B. Indeed, if a ∈ A \

(
∪

n≥0
Bn

)
, then a ∈ A \ B0 = B.

Define h : A → B by

h(a) =

⎧⎨⎩ f(a) if a ∈ ∪
n≥0

Bn,

a if a �∈ ∪
n≥0

Bn.

We claim that h is a bijection. Indeed, it is straightforward that h is 1-to-1 since f is 1-to-1. Let
us prove that h is onto (or surjective). Let y ∈ B. If y �∈ ∪

n≥0
Bn, then we have h(y) = y, i.e., y

is in the range of h. Assume y ∈ ∪
n≥0

Bn. Then there exists n ≥ 1 such that y ∈ Bn. Note that

y �∈ B0 because y ∈ B. Since Bn = f(Bn−1), then there exists a ∈ Bn−1 such that f(a) = y.
But f(a) = h(a). Hence y is in the range of h. This completes the proof that h is a bijection. In
the general case, we do not assume B ⊂ A, but we do assume the existence of f : A → B and
g : B → A which are 1-to-1. Clearly g ◦ f : A → g(B) is 1-to-1, and g(B) ⊂ A. The first part of
our proof shows the existence of a bijection hA : A → g(B). Note that the restriction of g from B
into g(B) is a bijection. The map g−1 ◦ hA : A → B is a bijection.
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Chapter 2

Real Numbers

Ah, but my Computations, People say,
Have Squared the Year to human Compass, eh?
If so, by striking from the Calendar
Unborn Tomorrow, and dead Yesterday

Omar Khayyam (1048–1123)

• Mathematical induction is a method of proof used to establish that a given statement is true
for all natural numbers. Let S(n) be a statement about the positive integer n. If

1. S(1) is true and

2. for all k ≥ 1, the truth of S(k) implies the truth of S(k + 1),

then S(n) is true for all n ≥ 1.
Verifying S(1) is true is called the basis step. The assumption that S(k) is true for some k ≥ 1
is called the induction hypothesis. Using the induction hypothesis to prove S(k + 1) is true
is called the induction step. There are variants of mathematical induction used in practice,
for example if one wants to prove a statement not for all natural numbers but only for all
numbers greater than or equal to a certain number b, then

1. Show S(b) is true.

2. Assume S(m) is true for m ≥ b and show that truth of S(m) implies the truth of
S(m+ 1).

Another generalization, called strong induction, says that in the inductive step we may assume
not only the statement holds for S(k+1) but also that it is true for S(m) for all m ≤ k+1. In
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strong induction it is not necessary to list the basis step, it is clearly true that the statement
holds for all previous cases. The inductive step of a strong induction in this case corresponds
to the basis step in ordinary induction.

• Let A be a nonempty subset of R. The number b is called an upper bound for A if for all
x ∈ A, we have x ≤ b. A number b is called a least upper bound of A if, first, b is an upper
bound for A and, second, b is less than or equal to every upper bound for A. The supremum
of A (also called least upper bound of A) is denoted by sup(A), supA or lub(A).
If A ⊂ R is not bounded above , we say that supA is infinite and write supA = +∞.

• A lower bound for a set A ⊂ R is a number b such that b ≤ x for all x ∈ A. Also b is called
a greatest lower bound if and only if it is a lower bound and for any lower bound c of A,
c ≤ b. The infimum of A (also called greatest lower bound of A) is denoted by inf(A), inf A
or glb(A). If A ⊂ R is not bounded below, we set inf A = −∞.

• Well-Ordering Property : If A is a nonempty subset of N, then there is a smallest element in
A, i.e., there is an a ∈ A such that a ≤ x for every x ∈ A.

• Archimedean Property : If x ∈ Q, then there is an integer n with x < n.

• For each n ∈ N, let In be a nonempty closed interval in R. The family {In : n ∈ N} is called
a nest of intervals if the following conditions hold:

– In+1 ⊂ In for all n ∈ N.
– For each ε > 0, there is some n ∈ N such that |In| < ε.

Problem 2.1 Prove that
√

2 is not rational.

Problem 2.2 Show that two real numbers x and y are equal if and only if ∀ε > 0 it follows
that |x− y| < ε.

Problem 2.3 Use the induction argument to prove that

1 + 2 + · · · + n =
n(n+ 1)

2

for all natural numbers n ≥ 1.

Problem 2.4 Use the induction argument to prove that

12 + 22 + · · · + n2 =
2n3 + 3n2 + n

6

for all natural numbers n ≥ 1.
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Problem 2.5 Use the induction argument to prove that n3 +5n is divisible by 6 for all natural
numbers n ≥ 1.

Problem 2.6 Use induction to prove that if 1 + x > 0, then (1 + x)n ≥ 1 + nx for all natural
numbers n ≥ 0. This is known as Bernoulli’s inequality.

Problem 2.7 Consider the Fibonacci numbers {Fn} defined by

F1 = 1 , F2 = 1 , and Fn+2 = Fn+1 + Fn .

Show that

Fn =
(1 +

√
5)n − (1 − √

5)n

2n
√

5
, n = 1, 2, . . . .

Problem 2.8 Show by induction that if X is a finite set with n elements, then P(X), the power
set of X (i.e., the set of subsets of X), has 2n elements.

Problem 2.9 Let A be a nonempty subset of R bounded above. Set

B = {−a; a ∈ A} .

Show that B is bounded below and

inf B = − supA .

Problem 2.10 Let S and T be nonempty bounded subsets of R with S ⊂ T . Prove that

inf T ≤ inf S ≤ supS ≤ supT .

Problem 2.11 Let x ∈ R be positive, i.e., x ≥ 0. Show that there exists a ∈ R such that
a2 = x.

Problem 2.12 Let x and y be two real numbers such that x < y. Show that there exists a
rational number r such that x < r < y. (In this case we say Q is dense in R.)Use this result to
conclude that any open nonempty interval (a, b) contains infinitely many rationals.

CHAPTER 2. REAL NUMBERS
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Problem 2.13 Let x and y be two positive real numbers such that x < y. Show that there
exists a rational number r such that x < r2 < y, without using the square-root function.

Problem 2.14 Let ω ∈ R be an irrational positive number. Set

A = {m+ nω : m+ nω > 0 and m, n ∈ Z} .

Show that inf A = 0.

Problem 2.15 Show that the Cantor set

C =
{

{en}; en = 0 or 1
}

= {0, 1} × {0, 1} × · · ·

is uncountable.

Problem 2.16 If x ≥ 0 and y ≥ 0, show that

√
xy ≤ x+ y

2
.

When do we have equality?

Problem 2.17 Let x, y, a, and b be positive real numbers not equal to 0. Assume that
x

y
<
a

b
.

Show that
x

y
<
x+ a

y + b
<
a

b
.

Problem 2.18 Let x and y be two real numbers. Show that

|x+ y|
1 + |x+ y| ≤ |x|

1 + |x| +
|y|

1 + |y| .
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Problem 2.19 Let r ∈ Q ∩ (0, 1). Write r =
a

b
where a ≥ 1 and b ≥ 1 are coprime natural

numbers. Show that there exists a natural number n ≥ 1 such that

1
n+ 1

≤ a

b
<

1
n
.

Use this to show that there exist natural numbers n1, . . . , nk such that

r =
a

b
=

1
n1

+ · · · +
1
nk

.

Problem 2.20 Let x and y be two different real numbers. Show that there exist a neighborhood
X of x and a neighborhood Y of y such that X ∩ Y = ∅.

Problem 2.21 Show that (a, b) is a neighborhood of any point x ∈ (a, b).

Problem 2.22 (Young Inequality) Prove that for p ∈ (1,∞), we have xy ≤ 1
px

p + 1
qy

q for
x, y ∈ R+ := {x ∈ R : x ≥ 0}, where q := p

p−1 is the Hölder conjugate of p determined by
1
p + 1

q = 1.

Problem 2.23 (Arithmetic and Geometric Means) Prove that for n ∈ N\{0} and xj ∈ R+

for 1 ≤ j ≤ n, one has that

n

√√√√ n∏
j=1

xj ≤ 1
n

n∑
j=1

xj .

Problem 2.24 (Hölder Inequality) For p ∈ (1,∞) and x = (x1, x2, . . . , xn) ∈ Rn, define

|x|p :=

⎛⎝ n∑
j=1

|xi|p
⎞⎠ 1

p

.

Show that
n∑

j=1

|xjyj | ≤ |x|p|y|q for x, y ∈ Rn.

Note that in the case of p = q = 2, this reduces to the Cauchy–Schwartz Inequality.

Problem 2.25 (Minkowski Inequality) Show that for all p ∈ (1,∞), one has |x + y|p ≤
|x|p + |y|p where x, y ∈ Rn.
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Problem 2.26 (The Nested Intersection Property) Let {In} be a decreasing sequence of
nonempty closed intervals in R, i.e., In+1 ⊂ In for all n ≥ 1. Show that

⋂
n≥1

In is a nonempty

closed interval. When is this intersection a single point?

Problem 2.27 (The Interval Intersection Property) Let {Iα}α∈Γ be a family of nonempty
closed intervals in R, such that Iα ∩ Iβ �= ∅ for any α, β ∈ Γ. Show that

⋂
α∈Γ

Iα is a nonempty

closed interval.
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Solutions

Solution 2.1

Assume not. Let r ∈ Q such that r =
√

2 or r2 = 2. Without loss of generality, we may assume
r ≥ 0. And since r2 = 2, we have r > 0. Since r is rational, there exist two natural numbers n ≥ 1
and m ≥ 1 such that

r =
n

m
.

Moreover one may assume that n and m are relatively prime, i.e., the only common divisor is 1.
Since r2 = 2, we get ( n

m

)2
=

n2

m2 = 2

which implies 2m2 = n2. Therefore, n2 is even, so it is a multiple of 2. Assume that n is not even,
then n = 2k + 1 for some natural number k. Hence n2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1. In
other words, if n is not even, then n2 will not be even. Therefore, n is also even. Set n = 2k for
some natural number k. Then n2 = 4k2 and since n2 = 2m2, we deduce that m2 = 2k2. The same
previous argument will imply that m is also even. So both n and m are even so both are multiples
of 2. This is a contradiction with our assumption that both are relatively prime. Therefore, such
a rational number r does not exist which completes the proof of our statement.

Solution 2.2

This is an if and only if statement, and we need to prove the implications in both directions.
(⇒): If x = y, then |x− y| = 0 and thus |x− y| < ε no matter what ε > 0 is chosen.
:(⇐) We give a proof by contradiction. Assume x �= y, then ε0 = |x − y| > 0. However, the
statements

|x− y| = ε0 and |x− y| < ε0

cannot be both true, our assumption is wrong, thus x = y.

Solution 2.3

First note that

1 =
1(1 + 1)

2
which implies that the desired identity holds for n = 1. Assume that it holds for n, and let us prove
that it also holds for n+ 1. We have

1 + 2 + · · · + (n+ 1) = 1 + 2 + · · · + n+ (n+ 1) .

Using our assumption we get

1 + 2 + · · · + (n+ 1) =
n(n+ 1)

2
+ (n+ 1) .

Since
n(n+ 1)

2
+ (n+ 1) =

n(n+ 1) + 2(n+ 1)
2

=
(n+ 1)(n+ 2)

2
,
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we conclude that the identity is also valid for n+1. By induction we clearly showed that the above
identity is valid for any natural number n ≥ 1.

Solution 2.4

Since
12 =

2 + 3 + 1
6

,

the above identity holds in the case n = 1. Assume that the identity holds for n and let us prove
that it also holds for n+ 1. Since

12 + 22 + · · · + (n+ 1)2 = 12 + 22 + · · · + n2 + (n+ 1)2 ,

the induction assumption implies

12 + 22 + · · · + (n+ 1)2 =
2n3 + 3n2 + n

6
+ (n+ 1)2 .

Algebraic manipulations imply

2n3 + 3n2 + n

6
+ (n+ 1)2 =

2n3 + 3n2 + n+ 6(n+ 1)2

6

=
2n3 + 3n2 + n+ 3(n+ 1)2 + 3(n+ 1)2

6

=
2n3 + 6n2 + 7n+ 3 + 3(n+ 1)2

6
.

On the other hand, we have

2(n+ 1)3 + 3(n+ 1)2 + (n+ 1)
6

=
2n3 + 6n2 + 6n+ 2 + 3(n+ 1)2 + (n+ 1)

6

=
2n3 + 6n2 + 7n+ 3 + 3(n+ 1)2

6

which implies

12 + 22 + · · · + (n+ 1)2 =
2(n+ 1)3 + 3(n+ 1)2 + (n+ 1)

6
.

So our identity is also valid for n+ 1. By induction we clearly showed that the identity is valid for
any natural number n ≥ 1.

Solution 2.5

First take n = 1. Then n3 + 5n = 6 which is a multiple of 6. Assume that n3 + 5n is divisible by
6 and let us prove that (n+ 1)3 + 5(n+ 1) is divisible by 6. But

(n+ 1)3 + 5(n+ 1) = n3 + 3n2 + 3n+ 1 + 5n+ 5 = n3 + 5n+ 3(n2 + n) + 6 .

Next note that n2 + n is always even or a multiple of 2. Indeed if n is even, then n2 is also even
and therefore n2 + n is even. Now assume n is odd, then n2 is also odd. Since the sum of two odd



29

numbers is even we get that n2 + n is even. Hence 3(n2 + n) is a multiple of 6. Our induction
assumption implies that n3 + 5n is a multiple of 6. So n3 + 5n + 3(n2 + n) + 6 is a multiple of 6
which implies (n + 1)3 + 5(n + 1) is a multiple of 6. This completes our proof by induction, i.e.,
n3 + 5n is divisible by 6 (or multiple of 6) for all natural numbers n ≥ 1.

Solution 2.6

It is clear that for n = 0, both sides of the inequality are equal to 1. Now assume that we have
(1 + x)n ≥ 1 + nx and let us prove that (1 + x)n+1 ≥ 1 + (n+ 1)x. We have

(1 + x)n+1 = (1 + x)n(1 + x) ≥ (1 + nx)(1 + x)

and (1+x)n ≥ 1+nx. Since (1+nx)(1+x) = 1+nx+x+nx2 = 1+(n+1)x+nx2 and nx2 ≥ 0,
we get

(1 + x)n+1 ≥ 1 + (n+ 1)x+ nx2 ≥ 1 + (n+ 1)x.

Hence the inequality is also true for n+ 1. Therefore, by induction we have (1 + x)n ≥ 1 + nx for
all natural numbers n ≥ 0.

Solution 2.7

The classical induction argument will not work here. The main reason is that in order to reach
Fn+2 one will need to make assumptions about Fn+1 and Fn. Therefore, we will use a strong
induction argument. Indeed, first it is obvious that

F1 = F2 =
(1 +

√
5)1 − (1 − √

5)1

21
√

5
.

Next assume that

Fk =
(1 +

√
5)k − (1 − √

5)k

2k
√

5
, k = 1, 2, . . . , n

and let us prove that

Fn+1 =
(1 +

√
5)n+1 − (1 − √

5)n+1

2n+1
√

5
.

By the definition of the Fibonacci numbers, we have

Fn+1 = Fn + Fn−1 .

Our induction assumption implies

Fn+1 =
(1 +

√
5)n − (1 − √

5)n

2n
√

5
+

(1 +
√

5)n−1 − (1 − √
5)n−1

2n−1
√

5
.

Algebraic manipulations will imply

Fn+1 =
(1 +

√
5)n − (1 − √

5)n + 2(1 +
√

5)n−1 − 2(1 − √
5)n−1

2n
√

5

or

Fn+1 =
2(1 +

√
5)n + 4(1 +

√
5)n−1 − 2(1 − √

5)n − 4(1 − √
5)n−1

2n+1
√

5
.
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Note that {
(1 +

√
5)2 = 6 + 2

√
5 = 2(1 +

√
5) + 4

(1 − √
5)2 = 6 − 2

√
5 = 2(1 − √

5) + 4 .

This easily implies {
(1 +

√
5)n+1 = 2(1 +

√
5)n + 4(1 +

√
5)n−1

(1 − √
5)n+1 = 2(1 − √

5)n + 4(1 − √
5)n−1 .

From the above equations we get

Fn+1 =
(1 +

√
5)n+1 − (1 − √

5)n+1

2n+1
√

5
.

The induction argument then concludes that

Fn =
(1 +

√
5)n − (1 − √

5)n

2n
√

5
, n = 1, 2, . . . .

Note that the number

Φ = lim
n→∞

Fn+1

Fn
=

1 +
√

5
2

is known as the golden ratio and is one of the roots of the quadratic equation x2 = x+ 1.

Solution 2.8

Note that when n = 0, the set X is the empty set. In this case we have

P(X) = {∅}
with one element. Since 20 = 1, the statement is true when n = 0. Assume that whenever a set
X has n elements, then P(X) has 2n elements. Now let us prove that whenever a set X has n+ 1
elements, then P(X) has 2n+1 elements. Indeed, let X be a set with n + 1 elements. Fix a ∈ X
and set Y = X \ {a}. Then Y has n elements. Clearly, we have

P(X) = P(Y ) ∪ Pa(Y )

where
Pa(Y ) =

{
M ∪ {a}; M ∈ P(Y )

}
.

The map Ta : P(Y ) → Pa(Y ) defined by

T (M) = M ∪ {a}
is a bijection. Hence P(Y ) and Pa(Y ) have the same number of elements. Since Y has n elements,
our assumption implies that P(Y ) has 2n elements. Note that P(Y ) and Pa(Y ) have no common
point, i.e.,

P(Y ) ∩ Pa(Y ) = ∅,
so

number of elements of P(X) = number of elements of P(Y ) + number of elements of Pa(Y )

or
number of elements of P(X) = 2n + 2n = 2 · 2n = 2n+1 .
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This proves our claim. So by induction we conclude that whenever a set X has n elements, then
P(X) has 2n elements, for any natural number n ≥ 0.

Solution 2.9

Since A is bounded above, there exists m ∈ R such that

∀ a ∈ A a ≤ m .

Hence
∀ a ∈ A −m ≤ −a

which implies
∀ b ∈ B −m ≤ b .

So B is bounded below. Therefore inf B exists. Let us now complete the proof by showing that
inf B = − supA. By definition of supA, we know that

∀ a ∈ A a ≤ supA .

So
∀ a ∈ A − supA ≤ −a

or
∀ b ∈ B − supA ≤ b .

The definition of inf B implies − supA ≤ inf B. Next we have

∀ b ∈ B inf B ≤ b

which implies
∀ b ∈ B − b ≤ − inf B

or
∀ a ∈ A a ≤ − inf B

since A = {−b; b ∈ B}. By the definition of supA we get supA ≤ − inf B. Combining this
conclusion with − supA ≤ inf B, we deduce that

inf B = − supA .

Note that a similar proof will show that if A is bounded below, then B, defined as above, will be
bounded above. Moreover we will have

supB = − inf A .

In fact the above proof may be generalized to get the following result: if we set k ·A = {k ·a; a ∈ A},
for any k ∈ R, then ⎧⎪⎪⎨⎪⎪⎩

sup(k ·A) = k supA provided k ≥ 0,
inf(k ·A) = k inf A provided k ≥ 0,
sup(k ·A) = −k inf A provided k ≤ 0,
inf(k ·A) = −k supA provided k ≤ 0.
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Solution 2.10

It is always the case that inf S ≤ supS for any bounded nonempty subset of R. So we need only
to prove that inf T ≤ inf S and supS ≤ supT . Let x ∈ S. Then x ∈ T since S ⊂ T . So inf T ≤ x
by definition of inf T . This implies that inf T is a lower bound for S because x was taken arbitrary
in S. Since inf S is the greatest lower bound we get

inf T ≤ inf S .

Similarly one can easily show that supS ≤ supT .

Solution 2.11

Without loss of generality assume x > 0. Set

A = {a ∈ R; a2 ≤ x} .
Obviously we have 0 ∈ A which means that A is not empty. Next note that A is bounded above.
Indeed, let n ≥ 1 be a natural number such that x ≤ n. We claim that n is an upper bound of A.
Indeed let a ∈ A and assume n < a. In particular, we have 0 < a which implies n2 < a2. Since
a ∈ A then we have a2 ≤ x which implies n2 < x. But n ≤ n2 which implies n < x, contradiction.
So we must have a ≤ n for any a ∈ A. Since A is bounded above, then supA exists. Set y = supA.
Let us prove that y2 = x which will complete the proof of our problem. Since 0 ∈ A, we get y ≥ 0.

Assume that y2 < x. So the real number
2y + 1
x− y2 is well defined. Let n ≥ 1 be a natural number

such that
2y + 1
x− y2 ≤ n ,

which implies
2y + 1
n

≤ x− y2 ,

or
2y + 1
n

+ y2 ≤ x .

Since n ≥ 1 we know that
1
n2 ≤ 1

n
which implies

y2 +
2y
n

+
1
n2 ≤ y2 +

2y + 1
n

≤ x ,

or (
y +

1
n

)2

≤ x .

Hence y +
1
n

∈ A, contradicting the fact that y is an upper bound of A. So we must have x ≤ y2.

Assume that y2 �= x. So we have x < y2. In particular we have y > 0. Let n ≥ 1 be a natural
number such that

2y
y2 − x

≤ n .

Similar calculations as above will yield

x ≤
(
y − 1

n

)2

.
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Since y = supA, there exists a ∈ A such that y − 1
n
< a. Since

1
y
<

2y
y2 − x

,

we get y − 1
n
> 0. So

(
y − 1

n

)2

< a2 which implies x < a2 contradicting the fact that a ∈ A. So

we must have y2 = x.

Solution 2.12

We have y − x > 0. Since R is Archimedean, there exists a positive integer N ≥ 1 such that

N >
2

y − x
.

So N(y − x) > 2 or Nx+ 2 < Ny. Again because R is Archimedean, there exists a unique integer
n such that

n ≤ Nx < n+ 1 .

We claim that n+ 1 ∈ (Nx,Ny). Indeed we have

Nx < n+ 1 ≤ Nx+ 1 < Nx+ 2 < Ny ,

and since Nx < n+1, we have our conclusion. N ≥ 1 implies that x <
n+ 1
N

< y. Take r =
n+ 1
N

which completes the proof of the first statement. Next assume that the nonempty interval (a, b)
has finitely many rationals. Then

r∗ = min{r ∈ Q, a < r < b}
exists and is in (a, b), i.e., a < r∗ < b. Using the previous statement, we know that there exists a
rational number q such that a < q < r∗. Obviously we have q ∈ (a, b) contradicting the definition
of r∗. So the set {r ∈ Q, a < r < b} is infinite.

Solution 2.13

Set A = {r ∈ Q , 0 ≤ r and x < r2}. Since A is not empty and bounded below, it has an infimum.
Let m = inf A. Clearly 0 ≤ m. We claim that m2 ≤ x. Assume not. Then x < m2 which implies
m > 0. Let

ε = min
(
m2 − x

2m
,m

)
.

It is clear that ε > 0. Then we have 2mε ≤ m2 − x which implies

x ≤ m2 − 2mε < m2 − 2mε+ ε2 = (m− ε)2 .

Since m − ε < m, there exists a rational number r ∈ Q such that m − ε < r < m. Note
that r is positive because ε ≤ m. This obviously implies (m − ε)2 < r2. In particular we have
x < (m − ε)2 < r2. So r ∈ A which contradicts m = inf A. Hence our claim is valid, that is,
m2 ≤ x. This implies m2 < y. Let

δ = min
(
y −m2

2m+ 1
, 1
)
.
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Note that δ > 0. Since δ(2m+ 1) ≤ y −m2, and δ ≤ 1, we get

(m+ δ)2 = m2 + 2δm+ δ2 ≤ m2 + 2δm+ δ = m2 + δ(2m+ 1) ≤ y .

Hence, (m+ δ)2 ≤ y. Using the characterization of the inf A, we know that there exists r ∈ A such
that m < r < m+ δ. So we have r2 < (m+ δ)2 ≤ y and since r ∈ A we get

x < r2 < y

which completes the proof of our statement.

Solution 2.14

Since all the elements of A are positive, inf A exists and is positive, i.e., inf A ≥ 0. Assume that
α = inf A > 0. Let us first note that α ∈ A. Assume not, i.e., α �∈ A. Then, there exists x ∈ A
such that α ≤ x < 2α. Since α �∈ A, then we have α < x < 2α. Again by definition of the inf A,
there exists y ∈ A such that α ≤ y < x. Using the same argument as before, we get

α < y < x < 2α .

So x−y < 2α−α = α. Since x−y ∈ A, we have a contradiction with the definition of α. Therefore
α ∈ A. Note that A ∩ (nα, (n + 1)α) = ∅, for any natural number n ≥ 1. Assume not, i.e., there
exists a natural number n ≥ 1 such that A∩ (nα, (n+ 1)α) �= ∅. Let x ∈ A∩ (nα, (n+ 1)α). Then
x−nα < α and x−nα ∈ A because of the algebraic properties satisfied by the elements of A. This
will generate another contradiction with the definition of α. Therefore

A = {nα;n = 1, . . . } .

In particular we have ω = n0α, and 1 = m0α for some natural numbers n0 ≥ 1 and m0 ≥ 1. This
obviously will imply

ω

1
=

n0α

m0α
=

n0

m0

or that ω is rational. This is the final contradiction which forces α = 0.

Solution 2.15

Assume not, i.e., C is countable. Hence there exists a map f : N → C which is one-to-one and
onto. Define {xn} as follows:

xn = 1 − f(n)n

where f(n)n is the nth element of the sequence f(n) in C. Clearly {xn} is in C. Also note that
f(n) �= {xn} for any n ∈ N. This contradicts the onto property of f .

Solution 2.16

We have
x+ y − 2

√
xy = (

√
x− √

y)2.

Hence
x+ y − 2

√
xy ≥ 0
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which obviously implies x+ y ≥ 2
√
xy or the desired inequality. Moreover we have

√
xy =

x+ y

2

if and only if x+y = 2
√
xy or (

√
x−√

y)2 = 0. This will imply
√
x =

√
y or x = y. So the equality

holds if and only if x = y.

Solution 2.17

First, let us prove the inequality
x

y
<
x+ a

y + b
.

We have x(y + b) − y(x + a) = xb − ya = y(x
y b − a) = yb(x

y − a
b ) < 0 because of the assumed

inequality and all the numbers involved are positive. So x(y + b) < y(x+ a) or

x

y
<
x+ a

y + b
.

The other inequality follows from the same ideas.

Solution 2.18

Note that the fractions involved are always defined since the denominator cannot be 0. First
assume |x+ y| ≤ |x|.

Now, since |x+y| ≤ |x|, we get |x+y|+|x||x+y| ≤ |x|+|x||x+y|. So |x+y|(1+|x|) ≤ |x|(1+|x+y|)
which obviously implies

|x+ y|
1 + |x+ y| ≤ |x|

1 + |x| .

Since
|y|

1 + |y| is positive, we get

|x+ y|
1 + |x+ y| ≤ |x|

1 + |x| +
|y|

1 + |y| .

If |x+ y| ≤ |y|, a similar proof will give us the above inequality. Now let us assume max{|x|, |y|} ≤
|x+ y|. The triangle inequality gives |x+ y| ≤ |x| + |y|. So

|x+ y|
1 + |x+ y| ≤ |x|

1 + |x+ y| +
|y|

1 + |x+ y| .

Since max{|x|, |y|} ≤ |x+ y|, then we have

|x|
1 + |x+ y| +

|y|
1 + |x+ y| ≤ |x|

1 + |x| +
|y|

1 + |y| .

Hence |x+ y|
1 + |x+ y| ≤ |x|

1 + |x| +
|y|

1 + |y| ,

which completes the proof of the desired inequality.

CHAPTER 2. REAL NUMBERS



36 CHAPTER 2. REAL NUMBERS

Solution 2.19

Using the Archimedean property of the reals, we know that there exists a unique integer m such
that

m ≤ b

a
< m+ 1 .

Since
b

a
> 1, we get m ≥ 1. Easy algebra manipulations give

1
m+ 1

<
a

b
≤ 1
m
.

If
b

a
=

1
m

, then we must have m > 1. In this case take n = m− 1. Otherwise take n = m to get

1
n+ 1

≤ a

b
<

1
n
.

To prove the second part we will use the strong induction argument. If a = 1, then the conclusion
is obvious. Assume the conclusion is true for a = 1, . . . , k and let us prove that the conclusion is
also true for a = k + 1. Let b ≥ 1 be a natural number coprime with k + 1 such that k + 1 < b.
Then, the first part implies the existence of a natural number n ≥ 1 such that

1
n+ 1

≤ k + 1
b

<
1
n
.

If
1

n+ 1
=
k + 1
b

, then we have nothing to prove. Otherwise assume
1

n+ 1
<
k + 1
b

. Then

0 <
k + 1
b

− 1
n+ 1

<
1
n

− 1
n+ 1

< 1 .

Set
r∗ =

k + 1
b

− 1
n+ 1

=
a∗

b∗
∈ Q ,

where a∗ and b∗ are natural coprime numbers. Obviously we have a∗ ≤ (k + 1)(n + 1) − b. Since
(k + 1)

b
<

1
n

, then (k+1)n < b or (k+1)(n+1)−b < k+1. This implies a∗ < k+1. Our induction
assumption implies

a∗

b∗
=

1
n1

+ · · · +
1
nl

for some natural numbers n1, . . . , nl. Hence

k + 1
b

=
1

n+ 1
+

1
n1

+ · · · +
1
nl
.

Therefore, by induction we have proved our initial claim.

Solution 2.20

Since x �= y, then we have

ε =
|x− y|

3
> 0 .
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Set
X = (x− ε, x+ ε) and Y = (y − ε, y + ε) .

Let us check that X ∩ Y = ∅. Assume not. And let z ∈ X ∩ Y . So

|z − x| < ε and |z − y| < ε .

Hence
|x− y| = |x− z + z − y| ≤ |x− z| + |z − y| < ε+ ε =

2|x− y|
3

< |x− y| .
This contradiction proves our claim.

Solution 2.21

Let x ∈ (a, b). Since x �= a and x �= b, we have

ε =
1
3

min(|x− a|, |b− x|) > 0 .

Let us show that (x− ε, x+ ε) ⊂ (a, b). Indeed, we have

x+ ε = x+
1
3

min(|x− a|, |b− x|) < x+ |x− b| = x+ b− x = b

because x < b. Similarly we have

x− ε = x− 1
3

min(|x− a|, |b− x|) > x− |x− a| = x− (x− a) = a .

These two inequalities obviously imply

(x− ε, x+ ε) ⊂ (a, b),

which implies that (a, b) is a neighborhood of any point x ∈ (a, b).

Solution 2.22

Suppose x, y ∈ (0,∞). From the concavity of the logarithim function and the fact that 1
p + 1

q = 1,

this implies that log
(

xp

p + yq

q

)
≥ 1

p log xp + 1
q log yq = log x+ log y = log xy. Since the exponential

function is increasing and elog x = x for all x, the claimed inequality follows.

Solution 2.23

We use induction to prove. For n = 1, the above inequality is true. Suppose it is true for some
n ≥ 1. Then

n+1

√√√√n+1∏
j=1

xj ≤
⎛⎝ 1
n

n∑
j=1

xj

⎞⎠ n
n+1

(xn+1)
1

n+1 .

To the right-hand side of this inequality, apply the Young Inequality (previous problem) with

x =

⎛⎝ 1
n

n∑
j=1

xj

⎞⎠ n
n+1

, y = (xn+1)
1

n+1 , and p = 1 + 1
n . Then
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xy ≤ 1
p
xp +

1
q
yq =

1
n+ 1

n∑
j=1

xj +
1

n+ 1
(xn+1) =

1
n+ 1

n+1∑
j=1

xj .

Solution 2.24

Without loss of generality, take x �= 0 and y �= 0. From the Young Inequality,

|xj |
|x|p · |yj |

|y|q ≤ 1
p

· |xj |p
|x|pp +

1
q

· |yj |q
|y|qq , for 1 ≤ j ≤ n.

Summing this inequality over j yields∑n
j=1 |xjyj |
|x|p|y|q ≤ 1

p
+

1
q

= 1

and therefore the desired inequality follows.

Solution 2.25

Applying the triangle inequality, we get

|x+ y|pp =
n∑

j=1

|xj + yj |p−1 · |xj + yj | ≤
n∑

j=1

|xj + yj |p−1 · |xj | +
n∑

j=1

|xj + yj |p−1 · |yj |.

Thus the Hölder Inequality implies

|x+ y|pp ≤ |x|p
⎛⎝ n∑

j=1

|xj + yj |p
⎞⎠ 1

q

+ |y|p
⎛⎝ n∑

j=1

|xj + yj |p
⎞⎠ 1

q

= (|x|p + |y|p) |x+ y|
p
q
p .

If x+ y = 0, then the inequality is true. Otherwise, divide both sides of the inequality by |x+ y|
p
q
p

to get |x+ y|p− p
q

p ≤ |x|p + |y|p. Since p− p
q = 1, the claim follows.

Solution 2.26

Set In = [an, bn]. Then our assumption on {In} implies

an ≤ an+1 ≤ bn+1 ≤ bn

for all n ≥ 1. Since In ⊂ I1, both {an} and {bn} are bounded. Set

a∞ = sup{an;n ≥ 1} and b∞ = inf{bn;n ≥ 1} .

From the inequalities an ≤ an+1 ≤ bn+1 ≤ bn, for all n ≥ 1, we get

an ≤ a∞ ≤ b∞ ≤ bn

for all n ≥ 1. Indeed, for any n,m ≥ 1, we have an ≤ bm. This follows from the fact that {an} is
increasing and {bn} is decreasing. By definition of the supremum and infimum, we get a∞ ≤ b∞.
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The inequalities an ≤ a∞ and b∞ ≤ bn follow easily. Next let us complete the proof by showing
that ⋂

n≥1

In = [a∞, b∞] .

From the above inequalities we have [a∞, b∞] ⊂ [an, bn] = In for all n ≥ 1. Hence we are only left
to prove

⋂
n≥1

In ⊆ [a∞, b∞]. So let x ∈ In for all n ≥ 1. Let us prove that x ∈ [a∞, b∞]. Since

x ∈ In, we get an ≤ x ≤ bn for all n ≥ 1. By definition of the supremum and infimum, we get
a∞ ≤ x ≤ b∞, or x ∈ [a∞, b∞]. Clearly the intersection is a single point if a∞ = b∞. This happens
if and only if bn − an goes to 0 as n goes to ∞.

Solution 2.27

Let us set Iα = [aα, bα]. First let us show that the condition satisfied by the intervals implies
aα ≤ bβ for any α, β ∈ Γ. Indeed, fix α, β ∈ Γ, then consider x ∈ Iα ∩ Iβ because Iα ∩ Iβ �= ∅.
Hence aα ≤ x ≤ bβ which implies the desired inequality. This will force the sets {aα} and {bα} to
be bounded. Set

a∞ = sup{aα;α ∈ Γ} and b∞ = inf{bα;α ∈ Γ} .
Following the same argument in the previous problem one will easily check that

⋂
α∈Γ

Iα = [a∞, b∞].
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Chapter 3

Sequences

Mathematicians have tried in vain to this day to discover some order in
the sequence of prime numbers, and we have reason to believe that it is a
mystery into which the human mind will never penetrate.

Leonhard Euler (1707–1783)

• A sequence is a function whose domain is the set N of natural numbers.

• A sequence {xn} is said to converge to a real number x, provided that for each ε > 0 there
exists an integer N such that n ≥ N implies that |xn − x| < ε.
In this case we also say that {xn} converges to x, or x is the limit of {xn}, and we write
xn → x, or lim

n⇒∞xn = x. If {xn} does not converge, it is said to diverge.

• A sequence {xn} is said to be bounded if the range {xn : n ∈ N} is a bounded set, that is, if
there exists M ≥ 0 such that |xn| ≤ M for all n ∈ N.

• Bolzano–Weierstrass Theorem: Every bounded sequence has a convergent subsequence.

• Let {xn}∞
n=1 be a sequence and for each n ∈ N, set

yn = sup{xk : k ≥ n }.

The limit superior of {xn}, denoted by lim sup{xn} or lim{xn}, is defined by

lim{xn} = inf{yn : n ∈ N} = inf{x : x = sup{xk : k ≥ n} for some n ∈ N}
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provided that the quantity on the right exists. Likewise we define the limit inferior by

lim{xn} = sup{x : x = inf{xk : k ≥ n} for some n ∈ N}.
It is well known that if {xn} is a sequence, then {xn} has a limit if and only if the limit
superior and the limit inferior exist and are equal.

• A sequence {xn} of real numbers is said to be a Cauchy sequence if for every ε > 0, there is
an integer N such that

|xn − xm| < ε if n ≥ N and m ≥ N.

• Let {xn}∞
n=1 be a sequence and let {nk}∞

k=1 be any sequence of natural numbers such that
n1 < n2 < n3 < . . . . The sequence {xnk

}∞
k=1 is called a subsequence of {xn}∞

n=1 .

Problem 3.1 Show that each bounded sequence of real numbers has a convergent subsequence.

Problem 3.2 Show that if {xn} converges to l, then {|xn|} converges to |l|. What about the
converse?

Problem 3.3 Let C be a real number such that |C| < 1. Show that lim
n→∞Cn = 0.

Problem 3.4 Let {xn} be a sequence such that {x2n}, {x2n+1}, and {x3n} are convergent.
Show that {xn} is convergent.

Problem 3.5 Let S be a nonempty subset of R which is bounded above. Set s = supS. Show
that there exists a sequence {xn} in S which converges to s.

Problem 3.6 Let {xn} and {yn} be two real sequences such that

(a) xn ≤ yn for all n;

(b) {xn} is increasing;

(c) {yn} is decreasing.

Show that {xn} and {yn} are convergent and

lim
n→∞xn ≤ lim

n→∞ yn .

When do we have equality of the limits?
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Problem 3.7 Show that {xn} defined by

xn = 1 +
1
2

+ · · · +
1
n

is divergent.

Problem 3.8 Show that {xn} defined by

xn = 1 +
1
2

+ · · · +
1
n

− ln(n)

is convergent.

Problem 3.9 Show that the sequence {xn} defined by

xn =
∫ n

1

cos(t)
t2

dt

is Cauchy.

Problem 3.10 Let {xn} be a sequence such that there exist A > 0 and C ∈ (0, 1) for which

|xn+1 − xn| ≤ ACn

for any n ≥ 1. Show that {xn} is Cauchy. Is this conclusion still valid if we assume only

lim
n→∞ |xn+1 − xn| = 0?

Problem 3.11 Show that if a subsequence {xnk
} of a Cauchy sequence {xn} is convergent,

then {xn} is convergent.

Problem 3.12 Discuss the convergence or divergence of

xn =
n2

√
n6 + 1

+
n2

√
n6 + 2

+ · · · +
n2

√
n6 + n

.

Problem 3.13 Discuss the convergence or divergence of

xn =
[α] + [2α] + · · · + [nα]

n2 ,

where [x] denotes the greatest integer less than or equal to the real number x, and α is an
arbitrary real number.

CHAPTER 3. SEQUENCES
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Problem 3.14 Discuss the convergence or divergence of

xn =
αn − βn

αn + βn

where α and β are real numbers such that |α| �= |β|.

Problem 3.15 (Cesaro Average) Let {xn} be a real sequence which converges to l. Show
that the sequence

yn =
x1 + x2 + · · · + xn

n

also converges to l. What about the converse? As an application of this, show that if {xn} is
such that lim

n→∞xn+1 − xn = l, then

lim
n→∞

xn

n
= l .

Problem 3.16 Let {xn} be a real sequence with xn �= 0. Assume that

lim
n→∞

xn+1

xn
= l .

Show that

(a) if |l| < 1, then lim
n→∞xn = 0;

(b) and if |l| > 1, then {xn} is divergent.

What happens when |l| = 1? As an application decide on convergence or divergence of

xn =
αn

nk
and yn =

αn

n!
.

Problem 3.17 Given x ≥ 1, show that

lim
n→∞

(
2 n
√
x− 1

)n
= x2 .

Problem 3.18 Show that

lim
n→∞

(
2 n
√
n− 1

)n

n2 = 1 .
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Problem 3.19 Let {xn} defined by

x1 = 1 and xn+1 =
1
2

(
xn +

2
xn

)
.

Show that {xn} is convergent and find its limit.

Problem 3.20 Let {xn} be a sequence defined by

x1 = 1 , and xn+1 =

√
x2

n +
1
2n

.

Show that {xn} is convergent.

Problem 3.21 For any n ∈ N set In =
∫ π/2

0
cosn(t)dt, known as Wallis integrals .

1. Show that (n+ 2)In+2 = (n+ 1)In. Then use it to find explicitly I2n and I2n+1.

2. Show that lim
n→∞

In+1

In
= 1.

3. Show that {(n+ 1)InIn+1} is a constant sequence. Then conclude that

lim
n→∞ In

√
2n =

√
π.

Problem 3.22 Consider the sequence

xn =
n!√
n

( e
n

)n
, n = 1, . . . .

1. Show that {ln(xn)} is convergent. Use this to show that {xn} is convergent.

2. Use Wallis integrals to find the limit of {xn}.

3. Use 1. and 2. to prove the Stirling formula

n! ≈
(n
e

)n √
2πn

when n → ∞.

Problem 3.23 Find the limit superior and limit inferior of the sequence {xn}, where

• xn = 1 + (−1)n + 1
2n

• xn = 2n

CHAPTER 3. SEQUENCES
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Problem 3.24 Let {xn} be a bounded sequence. Prove there exists a subsequence of {xn}
which converges to lim inf

n→∞ xn. Show that the same conclusion holds for lim sup
n→∞

xn.

Problem 3.25 Let {xn} be a sequence and let {xnk
} be any of its subsequences. Show that

lim inf
n→∞ xn ≤ lim inf

nk→∞ xnk
≤ lim sup

nk→∞
xnk

≤ lim inf
n→∞ xn.

In particular, if {xnk
} is convergent, then

lim inf
n→∞ xn ≤ lim

nk→∞xnk
≤ lim sup

n→∞
xn.

Is the converse true? That is, for any l between lim inf
n→∞ xn and lim sup

n→∞
xn, there exists a subse-

quence {xnk
} which converges to l.

Problem 3.26 If (xn) and (yn) are bounded real sequences, show that

lim sup
n→∞

(xn + yn) ≤ lim sup
n→∞

xn + lim sup
n→∞

yn.

Do we have equality?

Problem 3.27 If xn > 0, n = 1, 2, . . . , show that

lim inf
n→∞

xn+1

xn
≤ lim inf

n→∞
n
√
xn ≤ lim sup

n→∞
n
√
xn ≤ lim sup

n→∞
xn+1

xn
.

Deduce that if lim
n→∞

xn+1

xn
exists, then limn→∞ n

√
xn exists. What happened to the converse?
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Solutions

Solution 3.1

Let (xn : n ∈ N) be a bounded sequence, say |xn| ≤ M for all n.

Let I0 = [−M,M ], a0 = −M, and b0 = M , so that I0 = [a0, b0] and I0 contains infinitely many
of the xn (in fact, all of them).

We construct inductively a sequence of intervals Ik = [ak, bk] such that Ik contains infinitely
many of the xn and bk − ak = 2M/2k. This certainly holds for k = 0.

Suppose it holds for some value of k. Then at least one of the intervals [ak, (ak + bk)/2] and
[(ak + bk)/2, bk] contains infinitely many of the xn. If the former, then let ak+1 = ak, bk+1 = (ak +
bk)/2. Otherwise, let ak+1 = (ak + bk)/2, bk+1 = bk. In either case, the interval Ik+1 = [ak+1, bk+1]
contains infinitely many of the xn, and

bk+1 − ak+1 =
1
2
(bk − ak) =

(
1
2

)k+1

× 2M.

This completes the inductive construction.

Clearly a0 ≤ a1 ≤ a2 ≤ · · · ≤ b2 ≤ b1 ≤ b0. Thus (an) is an increasing bounded sequence, so by
completeness has a limit, say x. Moreover since each bk is an upper bound for (an) and x is the
supremum, x ≤ bk for each k. Thus ak ≤ x ≤ bk for every k. In other words, x ∈ Ik for every k.

We now construct inductively a subsequence (xnk
) of (xn) such that xnk

∈ Ik for every k. Let
xn0 = x0. Assuming xnk

has been chosen, let nk+1 be the least n > nk such that xn ∈ Ik+1. Then
(xnk

) is a subsequence of (xn), and xnk
∈ Ik for every k.

Since xnk
and x both lie in the same interval Ik of length 2M/2k, it follows that

|xnk
− x| ≤

(
1
2

)k

× 2M

and so |xnk
− x| → 0 as n → ∞. Thus (xnk

) is a convergent subsequence of (xn), as required.

Solution 3.2

Note that for any real numbers x, y ∈ R, we have∣∣∣|x| − |y|
∣∣∣ ≤ |x− y| .

Since {xn} converges to l, then for any ε > 0, there exists n0 ≥ 1 such that for any n ≥ n0, we have

|xn − l| < ε .

Hence ∣∣∣|xn| − |l|
∣∣∣ < ε

CHAPTER 3. SEQUENCES
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for any n ≥ n0. This obviously implies the desired conclusion. For the converse, take xn = (−1)n,
for n = 0, . . . . Then we have |xn| = 1 which means that {|xn|} converges to 1. But {xn} does not
converge. Note that if l = 0, then the converse is true.

Solution 3.3

If C = 0, then the conclusion is obvious. Assume first 0 < C < 1. Then the sequence {Cn}
is decreasing and bounded below by 0. So it has a limit L. Let us prove that L = 0. We have
Cn+1 = CCn so by passing to the limit we get L = CL which implies L = 0. If −1 < −C < 0, then
we use (−C)n = (−1)nCn and the fact that the product of a bounded sequence with a sequence
which converges to 0 also converges to 0 to get lim

n→∞(−C)n = 0. Therefore, for any −1 < C < 1,
we have lim

n→∞Cn = 0.

Solution 3.4

If {xn} is convergent, then all subsequences of {xn} are convergent and converge to the same limit.
Therefore, let us show that the three subsequences converge to the same limit. Write

lim
n→∞x2n = α1, lim

n→∞x2n+1 = α2, and lim
n→∞x3n = α3 .

The sequence {x6n} is a subsequence of both sequences {x2n} and {x3n}. Hence {x6n} converges
and forces the following:

lim
n→∞x6n = lim

n→∞x2n = lim
n→∞x3n

or α1 = α3. On the other hand, the sequence {x6n+3} is a subsequence of both sequences {x2n+1}
and {x3n}. Hence {x6n+3} converges and forces the following:

lim
n→∞x6n+3 = lim

n→∞x2n+1 = lim
n→∞x3n

or α2 = α3. Hence α1 = α2 = α3. Let us write

lim
n→∞x2n = lim

n→∞x2n+1 = l

and let us prove that lim
n→∞xn = l. Let ε > 0. There exist N0 ≥ 1 and N1 ≥ 1 such that

{ |x2n − l| < ε for all n ≥ N0,
|x2n+1 − l| < ε for all n ≥ N1.

Set N = max{2N0, 2N1 + 1}. Let n ≥ N . If n = 2k, then we have k ≥ N0 since n ≥ N ≥ 2N0.
Using the above inequalities we get |x2k − l| < ε or |xn − l| < ε. A similar argument when n is odd
will yield the same inequality. Therefore

|xn − l| < ε

for any n ≥ N . This completes the proof of our statement.
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Solution 3.5

By the characterization of the supremum, we know that for any ε > 0 there exists x ∈ S such that

s− ε < x ≤ s .

So for any n ≥ 1, there exists xn ∈ S such that

s− 1
n
< xn ≤ s .

Since
{

1
n

}
goes to 0, given ε > 0, there exists n0 ≥ 1 such that for any n ≥ n0 we have

1
n
< ε. So

for any n ≥ n0 we have

s− ε < s− 1
n
< xn ≤ s < s+ ε ,

which implies
|xn − s| < ε ,

which translates into lim
n→∞xn = s.

Solution 3.6

Since {yn} is decreasing, we have yn ≤ y1 for n ≥ 1. So for any n ≥ 1 we have xn ≤ yn ≤ y1. This
implies that {xn} is bounded above. Since it is increasing it converges. Similar argument shows
that {yn} is bounded below and therefore converges as well. From (a) we get the desired inequality
on the limits. In order to have the equality of the limits we must have lim

n→∞ yn − xn = 0. This
result is useful when dealing with nested intervals in R and alternating real series.

Solution 3.7

We have
x2n − xn =

1
n+ 1

+
1

n+ 2
+ · · · +

1
2n

for any n ≥ 1. So
1

n+ n
+

1
n+ n

+ · · · +
1
2n

≤ x2n − xn

or
1
2

≤ x2n − xn. This clearly implies that {xn} fails to be Cauchy. Therefore it diverges.

Solution 3.8

Though real functions will be handled in the next chapters, here we will use the integral definition
of the logarithm function. In particular, we have

ln(x) =
∫ x

1

1
t
dt .

In this case if 0 < a < b, then we have

b− a

b
≤
∫ b

a

1
t
dt ≤ b− a

a
.
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Since

ln(n) =
∫ n

1

1
t
dt =

n−1∑
k=1

∫ k+1

k

1
t
dt ,

we get

ln(n) ≤
n−1∑
k=1

k + 1 − k

k
= 1 +

1
2

+ · · · +
1

n− 1
.

Hence
xn = 1 +

1
2

+ · · · +
1
n

− ln(n) = 1 +
1
2

+ · · · +
1

n− 1
− ln(n) +

1
n
> 0 .

On the other hand, we have

xn+1 − xn =
1

n+ 1
− ln(n+ 1) + ln(n) =

1
n+ 1

−
∫ n+1

n

1
t
dt < 0 .

These two inequalities imply that {xn} is decreasing and bounded below by 0. Therefore {xn} is
convergent. Its limit is known as the Euler constant.

Solution 3.9

For any natural integers n < m we have∣∣∣∣∫ m

n

cos(t)
t2

dt

∣∣∣∣ ≤ ∫ m

n

| cos(t)|
t2

dt ≤
∫ m

n

1
t2
dt =

[
−1
t

]m

n

=
1
m

− 1
n
.

Since lim
n→∞

1
n

= 0, then for any ε > 0, there exists n0 ≥ 1 such that for any n ≥ n0 we have
1
n
< ε.

So for n,m ≥ n0, n ≤ m, we have

|xn − xm| =
∣∣∣∣∫ m

n

cos(t)
t2

dt

∣∣∣∣ ≤ 1
m

− 1
n
< ε ,

which shows that {xn} is a Cauchy sequence.

Solution 3.10

Let n ≥ 1 and h ≥ 1. We have

|xn+h − xn| =

∣∣∣∣∣
h−1∑
k=0

xn+k+1 − xn+k

∣∣∣∣∣ ≤
h−1∑
k=0

|xn+k+1 − xn+k| .

Our assumption on {xn} implies

|xn+h − xn| ≤
h−1∑
k=0

ACn+k = ACn 1 − Ch

1 − C
< A

Cn

1 − C
.

Since 0 < C < 1, lim
n→∞Cn = 0. Hence

lim
n→∞A

Cn

1 − C
= 0 .
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This will force {xn} to be Cauchy. The second part of the statement is not true. Indeed, take
xn =

√
n. Then we have

lim
n→∞

√
n+ 1 − √

n = lim
n→∞

1√
n+ 1 +

√
n

= 0 .

But the sequence {xn} is divergent.

Solution 3.11

Set lim
nk→∞xnk

= L. Let us show that {xn} converges to L. Let ε > 0. Since {xn} is Cauchy, there

exists n0 ≥ 1 such that for any n,m ≥ n0 we have

|xn − xm| < ε

2
.

Since lim
nk→∞xnk

= L, there exists k0 ≥ 1 such that for any k ≥ k0 we have

|xnk
− L| < ε

2
.

For k big enough to have nk ≥ n0 we get

|xn − L| ≤ |xn − xnk
| + |xnk

− L| < ε

2
+
ε

2
= ε

for any n ≥ n0. This completes the proof.

Solution 3.12

Note that for any k = 1, . . . , n, we have

n2
√
n6 + n

≤ n2
√
n6 + k

≤ n2
√
n6

=
1
n

which implies

n
n2

√
n6 + n

≤ xn ≤ n
1
n

or
n3

√
n6 + n

≤ xn ≤ 1 .

Because
n3

√
n6 + n

=
n3

n3

√
1 +

1
n2

=
1√

1 +
1
n2

and lim
n→∞

1
n2 = 0, then lim

n→∞
n3

√
n6 + n

= 1. The Squeeze Theorem forces the conclusion

lim
n→∞

n2
√
n6 + 1

+
n2

√
n6 + 2

+ · · · +
n2

√
n6 + n

= 1 .

CHAPTER 3. SEQUENCES



52 CHAPTER 3. SEQUENCES

Solution 3.13

By definition of the greatest integer function [·], we have

[x] ≤ x < [x] + 1

for any real number x. This will easily imply x− 1 < [x] ≤ x. So

(α− 1) + (2α− 1) + · · · + (nα− 1)
n2 <

[α] + [2α] + · · · + [nα]
n2 ≤ α+ 2α+ · · · + nα

n2

or
(1 + 2 + · · · + n)α− n

n2 <
[α] + [2α] + · · · + [nα]

n2 ≤ (1 + 2 + · · · + n)α
n2 .

The algebraic identity 1 + 2 + · · · +m =
m(m+ 1)

2
for any natural number m ≥ 1 gives

n(n+ 1)
2

α− n

n2 <
[α] + [2α] + · · · + [nα]

n2 ≤
n(n+ 1)

2
α

n2

or
(n+ 1)α

2n
− 1
n
<

[α] + [2α] + · · · + [nα]
n2 ≤ (n+ 1)α

2n
.

Since

lim
n→∞

(n+ 1)α
2n

− 1
n

=
α

2
and lim

n→∞
(n+ 1)α

2n
=
α

2
,

the Squeeze Theorem implies lim
n→∞xn =

α

2
.

Solution 3.14

We have two cases, either |α| < |β| or |α| > |β|. Assume first that |α| < |β|. Set r = α
β . Then

algebraic manipulation gives

xn =
rn − 1
rn + 1

.

Since |r| < 1, then lim
n→∞ rn = 0, and we have lim

n→∞xn = −1. Finally, if |α| > |β|, then we use

αn − βn

αn + βn
= −β

n − αn

βn + αn

and the same argument given before will imply

lim
n→∞xn = − lim

n→∞
βn − αn

βn + αn
= 1 .

Solution 3.15

Let ε > 0. Since lim
n→∞xn = l, there exists N0 ≥ 1 such that for any n ≥ N0 we have

|xn − l| < ε

2
.
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On the other hand, we have

yn − l =
x1 + x2 + · · · + xn

n
− l =

(x1 − l) + (x2 − l) + · · · + (xn − l)
n

or
yn − l =

(x1 − l) + (x2 − l) + · · · + (xN0−1 − l)
n

+
(xN0 − l) + · · · + (xn − l)

n

for any n ≥ N0. Since

lim
n→∞

(x1 − l) + (x2 − l) + · · · + (xN0−1 − l)
n

= 0.

Then, there exists N1 ≥ 1 such that∣∣∣∣(x1 − l) + (x2 − l) + · · · + (xN0−1 − l)
n

∣∣∣∣ < ε

2

for any n ≥ N1. Set N max{N0, N1}, then for any n ≥ N we have

|yn − l| ≤
∣∣∣∣(x1 − l) + (x2 − l) + · · · + (xN0−1 − l)

n

∣∣∣∣+ ∣∣∣∣(xN0 − l) + · · · + (xn − l)
n

∣∣∣∣
or

|yn − l| ≤
∣∣∣∣(x1 − l) + (x2 − l) + · · · + (xN0−1 − l)

n

∣∣∣∣+ |xN0 − l| + · · · + |xn − l|
n

which implies

|yn − l| < ε

2
+
n−N0

n

ε

2
< ε .

This completes the proof of our statement. For the converse take xn = (−1)n. Then we have

yn =

⎧⎪⎨⎪⎩
− 1
n

if n is odd,

0 if n is even.

Obviously this will imply that lim
n→∞ yn = 0 while {xn} is well known to be divergent. Finally, let

{xn} be a sequence such that lim
n→∞xn+1 − xn = l. Set

yn =
(x2 − x1) + (x3 − x2) + · · · + (xn+1 − xn)

n
.

Then from the first part we have lim
n→∞ yn = l. But

yn =
xn+1 − x1

n

which implies xn+1 = nyn + x1. Hence

xn

n
=
n− 1
n

yn−1 +
x1

n
.

Since
lim

n→∞
n− 1
n

= 1 , lim
n→∞ yn = l , and lim

n→∞
x1

n
= 0
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we get
lim

n→∞
xn

n
= l .

Solution 3.16

Assume first that |l| < 1. Let ε =
1 − |l|

2
. Then we have ε > 0. Since

lim
n→∞

xn+1

xn
= l

we get

lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ = |l| .

Thus there exists N0 ≥ 1 such that for any n ≥ N0∣∣∣∣ |xn+1|
|xn| − |l|

∣∣∣∣ < ε

which implies

|l| − ε <
|xn+1|
|xn| < |l| + ε

for any n ≥ N0. By definition of ε we get

|xn+1|
|xn| <

|l| + 1
2

< 1 .

In particular, we have for any n ≥ N0

|xn+1| <
( |l| + 1

2

)n−N0+1

|xN0 |.

Since lim
n→∞

( |l| + 1
2

)n−N0+1

= 0, we get lim
n→∞ |xn| = 0 which obviously implies lim

n→∞xn = 0. This

completes the proof of the first part. Now assume |l| > 1. Since again

lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ = |l| ,

the same proof as above gives the existence of N0 ≥ 1 such that( |l| + 1
2

)n−N0+1

|xN0 | < |xn+1|

for any n ≥ N0. And since lim
n→∞

( |l| + 1
2

)n−N0+1

= ∞, we get lim
n→∞ |xn| = ∞. Hence the sequence

{xn} is not bounded and therefore is divergent. Finally if we assume |l| = 1, then it is possible
that {xn} may be convergent or divergent. For example, take xn = nα, then we have l = 1. But
the sequence only converges if α ≤ 0, otherwise it diverges. For the sequences

xn =
αn

nk
and yn =

αn

n!
,
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we have
xn+1

xn
= α

(
n

n+ 1

)k

and
yn+1

yn
= α

n!
(n+ 1)!

= α
1

n+ 1
.

Hence
lim

n→∞
xn+1

xn
= α and lim

n→∞
yn+1

yn
= 0 .

In particular, we have ⎧⎪⎨⎪⎩
lim

n→∞xn = 0 if |α| < 1,

{xn} is divergent if |α| > 1.

And if |α| = 1, then the sequence in question is
{

1
nk

}
or
{

(−1)n

nk

}
which is easy to conclude. For

the sequence {yn} we have lim
n→∞ yn = 0 regardless of the value of α.

Solution 3.17

Without loss of generality, we may assume 1 < x. First note that

0 <
(

n
√
x− 1

)2
= n

√
x2 − 2 n

√
x+ 1 ,

which implies 2 n
√
x− 1 < n

√
x2. Hence(

2 n
√
x− 1

)n
<
(

n
√
x2
)n

= x2 .

On the other hand, we have

(
2 n
√
x− 1

)n
= x2

(
2 n
√
x− 1

n
√
x2

)n

= x2
(

2
n
√
x

− 1
n
√
x2

)n

= x2

(
1 −
(

1 − 1
n
√
x

)2
)n

.

Since (1 − h)n ≥ 1 − nh, for any h ≥ 0 and n ≥ 1 we get(
1 −
(

1 − 1
n
√
x

)2
)n

≥ 1 − n

(
1 − 1

n
√
x

)2

,

and
x =

(
n
√
x− 1 + 1

)n ≥ 1 + n
(

n
√
x− 1

)
> n
(

n
√
x− 1

)
,

which implies (
n
√
x− 1

)2
<
x2

n2 .

Hence (
2 n
√
x− 1

)n ≥ x2

(
1 − n

(
1 − 1

n
√
x

)2
)

= x2
(

1 − n
( n
√
x− 1)2
n
√
x2

)
,

or (
2 n
√
x− 1

)n
> x2

(
1 − x2

n
n
√
x2

)
.
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Putting all the inequalities together we get

x2
(

1 − x2

n
n
√
x2

)
<
(
2 n
√
x− 1

)n
< x2 .

The Squeeze Theorem will then imply

lim
n→∞

(
2 n
√
x− 1

)n
= x2 ,

since

lim
n→∞x2

(
1 − x2

n
n
√
x2

)
= x2 .

Solution 3.18

In the previous problem we showed

x2

⎛⎜⎝1 − n

(
n
√
x− 1

)2

n
√
x2

⎞⎟⎠ <
(
2 n
√
x− 1

)n
< x2 ,

for any x > 1 and n ≥ 1. Take x = n, we get

n2

⎛⎜⎝1 − n

(
n
√
n− 1

)2

n
√
n2

⎞⎟⎠ ≤
(
2 n
√
n− 1

)n ≤ n2 ,

which implies

1 − n

(
n
√
n− 1

)2

n
√
n2

≤
(
2 n
√
n− 1

)n

n2 ≤ 1 .

In order to complete the proof of our statement we only need to show

lim
n→∞n

(
n
√
n− 1

)2

n
√
n2

= 0 .

Note that for x ∈ [0, 1] we have 0 ≤ ex − 1 ≤ 3x. Hence

0 ≤ n
√
n− 1 = e

ln(n)
n − 1 ≤ 3

ln(n)
n

,

because ln(n) ≤ n for n ≥ 1. So

0 ≤ n
(

n
√
n− 1

)2 ≤ n9
ln(n)2

n2 = 9
ln2(n)
n

.

Since lim
n→∞

ln2(n)
n

= 0, we conclude that

lim
n→∞n

(
n
√
n− 1

)2
= 0 ,
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which yields

lim
n→∞n

(
n
√
n− 1

)2

n
√
n2

= 0 .

Solution 3.19

Let us first show by induction that 0 ≤ xn and 1 ≤ x2
n ≤ 2. Obviously we have 0 ≤ 1 and

1 ≤ 12 ≤ 2. Assume that 0 ≤ xn and 1 ≤ x2
n ≤ 2. Then by the definition of xn+1 we obtain easily

0 ≤ xn+1. On the other hand, we have

x2
n+1 =

1
4

(
x2

n + 4 +
4
x2

n

)
=

1
4

(
x2

n +
4
x2

n

)
+ 1 .

Since (2 − xn)2 = 4 − 4x2
n + x4

n ≥ 0 we get
x4

n + 4
4x2

n

≤ 1 or
1
4

(
x2

n +
4
x2

n

)
≤ 1. This will imply

x2
n+1 ≤ 1 + 1 = 2. So the induction argument gives the desired conclusion that is xn ≥ 0 and

1 ≤ x2
n ≤ 2, for any n ≥ 1. On the other hand, algebraic manipulations give

xn+1 − xn =
1
2

(
xn +

2
xn

)
− xn =

2 − x2
n

2xn

which implies xn+1 − xn ≥ 0 for any n ≥ 1. Hence {xn} is an increasing bounded sequence. So it
converges. Set lim

n→∞xn = l. Then we have l ≥ 0 and 1 ≤ l2 ≤ 2. Since {xn+1} also converges to l,
we get

l =
1
2

(
l +

2
l

)
=
l2 + 2

2l
,

or 2l2 = l2 + 2, which gives l2 = 2 or l =
√

2. Note that the sequence {xn} is formed of rational
numbers and its limit is irrational. One may generalize this problem to the sequence

x1 = 1 and xn+1 =
1
2

(
xn +

α

xn

)
and show that {xn} converges to

√
α provided α ≥ 0.

Solution 3.20

Obviously the sequence {xn} is positive and since xn+1 =
√
x2

n + 1
2n ≥√x2

n = xn in other words,
the sequence {xn} is increasing. So in particular we have xn ≥ x1 = 1 for any n ≥ 1. Since

xn+1 − xn =

√
x2

n +
1
2n

− xn =

1
2n√

x2
n +

1
2n

+ xn

and √
x2

n +
1
2n

+ xn ≥
√
x2

n + xn ≥
√

1 + 1 = 2
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we get

0 ≤ xn+1 − xn =

1
2n√

x2
n +

1
2n

+ xn

≤ 1
2n+1 .

On the other hand, we have

xn+h − xn = (xn+h − xn+h−1) + (xn+h−1 − xn+h−2) + · · · + (xn+1 − xn)

so

xn+h − xn ≤ 1
2n+h

+
1

2n+h−1 + · · · +
1

2n+1 =
1

2n+1

(
1

2h−1 + · · · +
1
2

+ 1
)

which implies

xn+h − xn ≤ 1
2n+1

⎛⎜⎝1 − 1
2h

1 − 1
2

⎞⎟⎠ ≤ 1
2n

.

Since { 1
2n

} converges to 0, then for any ε > 0, there exists N0 ≥ 1 such that for any n ≥ N0,

we have
1
2n

< ε which implies xn+h − xn < ε for any n ≥ N0 and any h ≥ 1. This obviously

implies that {xn} is Cauchy. Therefore, {xn} is convergent. Note that if we are able to prove that
{xn} is bounded, then we will get again the same conclusion without the complicated algebraic
calculations.

Solution 3.21

1. One can easily show that I0 = π/2 and I1 = 1. For n ≥ 2, we use the integration by parts
technique to show

In+2 =
∫ π/2

0
cosn+1(t) cos(t)dt =

[
cosn+1(t) sin(t)

]π/2

0
+ (n+ 1)

∫ π/2

0
cosn(t) sin2(t)dt,

which implies In+2 = (n+ 1)
(
In − In+2

)
or

In+2 =
n+ 1
n+ 2

In.

Hence
I2n =

2n− 1
2n

· 2n− 3
2n− 2

· · · 1
2
I0 =

2n− 1
2n

· 2n− 3
2n− 2

· · · 1
2

· π
2

=
(2n)!π

22n+1(n!)2
,

and

I2n+1 =
2n

2n+ 1
· 2n− 2
2n− 1

· · · 2
3
I1 =

2n
2n+ 1

· 2n− 2
2n− 1

· · · 2
3

=
22n(n!)2

(2n+ 1)!
·

2. Note that since 0 ≤ cosn+1(t) ≤ cosn(t), for any t ∈ [0, π/2], then In+1 ≤ In, i.e., {In} is
decreasing. In particular, we have In+2 ≤ In+1 ≤ In and since In > 0 we get

1 ≤ In+1

In+2
≤ In
In+2

=
n+ 2
n+ 1

·

Hence lim
n→∞

In+1

In
= 1.
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3. Since
(n+ 2)In+1In+2 = (n+ 1)InIn+1

we conclude that {(n+ 1)InIn+1} is a constant sequence. Hence

(n+ 1)InIn+1 = I0I1 =
π

2
,

which implies lim
n→∞ 2nI2

n = lim
n→∞ 2(n+ 1)InIn+1 = π, or

lim
n→∞ In

√
2n =

√
π.

Solution 3.22

1. Note that xn > 0 for n ≥ 1. We have

ln(xn+1) − ln(xn) = ln
(
xn+1

xn

)
= ln

(
(n+ 1)!
n!

·
√

n

n+ 1
· e · nn

(n+ 1)n+1

)
which leads to

ln(xn+1) − ln(xn) = 1 −
(
n+

1
2

)
ln
(

1 +
1
n

)
.

Note that we have
lim

n→∞n2
(

ln(xn+1) − ln(xn)
)

=
1
12

·
Indeed, using the Taylor approximation of ln(1 + x) we get

ln
(

1 +
1
n

)
=

1
n

− 1
2n2 +

1
6n3 +

εn

n3

where {εn} goes to 0 when n → ∞. Hence

ln(xn+1) − ln(xn) = 1 −
(
n+

1
2

)(
1
n

− 1
2n2 +

1
6n3 +

εn

n3

)
= − 1

6n2 +
1

4n2 − εn

n2 − εn

2n3

which implies

lim
n→∞n2

(
ln(xn+1) − ln(xn)

)
= −1

6
+

1
4

=
1
12

·
Since the series

∑
1/n2 is convergent, the limit test will force

∑
ln(xn+1) − ln(xn) to be

convergent. Hence ln(xn) is convergent which in turn will force {xn} to be convergent. Set
l = lim

n→∞xn = eL, where L = lim
n→∞ ln(xn). In particular, we have l > 0.

2. From the first part, we get

n! ≈ l
(n
e

)n √
n, when n → ∞.

Using Wallis integrals (see Problem 3.21), In =
∫ π/2

0
cosn(t)dt, we know that lim

n→∞ In
√

2n =
√
π, or

In ≈
√

π

2n
, when n → ∞.
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Since I2n =
(2n)!π

22n+1(n!)2
, we get

√
π

4n
≈ (2n)!π

22n+1(n!)2
, when n → ∞,

which implies √
π

4n
≈ l(2n)2ne−2n

√
2n

22n(lnn e−n
√
n)2

π

2
, when n → ∞.

Easy algebraic manipulations will lead to l =
√

2π.

3. Putting all the above results together we get

n! ≈
(n
e

)n √
2πn, when n → ∞.

Solution 3.23

• Notice that for any fixed n, xn = 2 + 1
2n if n is even and xn = 1

2n if n is odd. Thus
yn = sup{xn : k ≥ n } = 2 + 1

2n if n is even and 2 + 1
2n+1 if n is odd. Hence

lim sup{xn} = inf{yn : n ∈ N } = 2.

A similar calculation yields lim inf{xn} = 0.

• Because {xn} is not bounded above, the limit superior does not exist. For the limit inferior,
consider zn = inf{xk : k ≥ n}. Clearly, zn = xn = 2n, since {xn} is monotone increasing
and zn diverges to ∞. Thus supremum over {zn : n ∈ N } does not exist, therefore the limit
inferior does not exist. Note that even though the sequence {xn} is bounded below, limit
inferior does not exist.

Solution 3.24

Since
lim inf
n→∞ −xn = − lim sup

n→∞
xn,

we will only prove the existence of a subsequence which converges to lim inf
n→∞ xn. It is clear that

lim inf
n→∞ xn = l ∈ R since {xn} is bounded below. For any ε > 0 there exists N ∈ N, such that for

any n ≥ N we have
l − ε < inf{xk; k ≥ n} ≤ l.

Set ε = 1, then there exists N1 ∈ N such that for any n ≥ N1 we have

l − 1 < inf{xk; k ≥ n} ≤ l.

By induction one will construct an increasing sequence of integers {Ni} ∈ N such that for any
n ≥ Ni we have

l − 1
i
< inf{xk; k ≥ n} ≤ l.
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In particular, we have l − 1/k < xNk
≤ l, which implies {xNk

} → l.

Solution 3.25

Note that for any sequence {xn} we have lim inf
n→∞ xn ≤ lim sup

n→∞
xn. Since lim inf

n→∞ −xn = − lim sup
n→∞

xn,

we will only show that lim inf
n→∞ xn ≤ lim inf

nk→∞ xnk
. By definition we have

inf{xk; k ≥ n} ≤ inf{xnk
;nk ≥ n}, n ∈ N.

Hence
inf{xk; k ≥ n′} ≤ sup

n∈N

(
inf{xnk

;nk ≥ n}
)
, n′ ∈ N,

or
sup
n′∈N

(
inf{xk; k ≥ n′}

)
≤ sup

n∈N

(
inf{xnk

;nk ≥ n}
)

which implies lim inf
n→∞ xn ≤ lim inf

nk→∞ xnk
. Moreover if we assume that {xnk

} is convergent, then we

have
lim inf
nk→∞ xnk

= lim sup
nk→∞

xnk
= lim

nk→∞xnk
,

which implies lim inf
n→∞ xn ≤ lim

nk→∞xnk
≤ lim sup

n→∞
xn. The converse is not true. Indeed, consider the

sequence {(−1)n}. Then we have lim inf
n→∞ (−1)n = −1 and lim sup

n→∞
(−1)n = 1. On other hand there

does not exist a subsequence which converges to 0.

Solution 3.26

For any N ∈ N, we have

xn + yn ≤ sup{xk; k ≥ N} + sup{yk; k ≥ N}, n ≥ N

which implies sup{xn + yn; n ≥ N} ≤ sup{xk; k ≥ N} + sup{yk; k ≥ N}. Hence

inf
N∈N

(
sup{xn + yn; n ≥ N}

)
≤ inf

N∈N

(
sup{xn; n ≥ N}

)
+ inf

N∈N

(
sup{yn; n ≥ N}

)
,

or lim sup
n→∞

(xn + yn) ≤ lim sup
n→∞

xn + lim sup
n→∞

yn. The equality does not hold in general. Indeed, we

have lim sup
n→∞

(−1)n = 1, and lim sup
n→∞

(−1)n+1 = 1, but lim sup
n→∞

(−1)n + (−1)n+1 = 0.

Solution 3.27

Assume first that lim inf
n→∞

xn+1

xn
= l ∈ R. So for any ε > 0, there exists N ∈ N such that for any

n ≥ N , we have l − ε ≤ inf
n≥N

xn+1

xn
, which implies (l − ε)xn ≤ xn+1 for any n ≥ N . This clearly

implies (l − ε)n−NxN ≤ xn, for any n ≥ N . Hence

(l − ε)(n−N)/nx
1/n
N ≤ x1/n

n .

Since (l − ε)(n−N)/nx
1/n
N → (l − ε) when n → ∞, we get

l − ε ≤ lim inf
n→∞ x1/n

n .
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Since ε was arbitrarily positive, we get

lim inf
n→∞

xn+1

xn
≤ lim inf

n→∞
n
√
xn.

A similar proof will lead to
lim sup

n→∞
n
√
xn ≤ lim sup

n→∞
xn+1

xn
.

If {xn+1/xn} is convergent, then we have

lim inf
n→∞

xn+1

xn
= lim sup

n→∞
xn+1

xn
,

which obviously implies

lim inf
n→∞

n
√
xn = lim sup

n→∞
n
√
xn = lim

n→∞
xn+1

xn
= lim

n→∞
n
√
xn.

The converse is not true. Indeed, take xn = 2 + (−1)n, n ∈ N. It is easy to check that n
√
xn → 1

when n → ∞. But
lim inf
n→∞

xn+1

xn
=

1
3
, and lim sup

n→∞
xn+1

xn
= 3.



Chapter 4

Limits of Functions

When a variable quantity converges towards a fixed limit, it is often useful
to indicate this limit by a specific notation, which we shall do by setting the
abbreviation

lim

in front of the variable in question.

Augustin Louis Cauchy (1789–1857)

• Let f : D → R and let c be an accumulation point of D. We say that a real number L is a
limit of f at c, and write

lim
x→c

f(x) = L,

if for each ε > 0 there exists a δ > 0 such that |f(x) − L| < ε for all points x ∈ D for which
0 < |x− c| < δ.

• Monotone function: A function f : A → R is increasing on A if f(x) ≤ f(y) whenever x < y
and decreasing if f(x) ≥ f(y) whenever x < y in A. A monotone function is one that is either
increasing or decreasing.

• Bounded function: Let f : A → R be a function and B ⊆ A. We say f is bounded on B if
f(B) is bounded, where f(B) is the range of f over B, i.e., f(B) = {f(x) : x ∈ B}.
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• One-sided limits: Suppose the domain of f is an interval (a, b), then the right-hand limit of
f(x) at a written by lim

x→a+
f(x) and lim

x→a+
f(x) = L if and only if for every ε > 0 there exists a

δ > 0 such that |f(x)−L| < ε whenever x ∈ (a, b) and a < x < a+ δ. Similarly, the left-hand
limit of f at b is given by lim

x→b−
f(x) = L if and only if for every ε > 0 there exists a δ > 0

such that |f(x) − L| < ε whenever x ∈ (a, b) and b − δ < x < b. Of course, lim
x→c

f(x) = L if
and only if both one-sided limits exist and are equal to L.

• If f is an increasing function on the interval (a, b), then one-sided limits of f exist at each
point c ∈ (a, b), and

lim
x→c−

f(x) = L ≤ f(c) ≤ lim
x→c+

f(x) = M.

For decreasing functions, the above inequalities are reversed.

• Let f : (b,∞) → R, where b ∈ R. We say that L ∈ R is the limit of f as x → ∞, and we
write

lim
x→∞ f(x) = L,

provided that for each ε > 0 there exists a real number N > b such that x > N implies that
|f(x) − L| < ε.

• Let f : (b,∞) → R. We say that f tends to ∞ as x → ∞, and we write

lim
x→∞ f(x) = ∞,

provided that given any M ∈ R there exists a N > b such that x > N implies that f(x) > M .

Problem 4.1 Let f : D → R. Let x0 ∈ D such that lim
x→x0

f(x) exists. Show that lim
x→x0

|f(x)|
exists and the following identity holds:

lim
x→x0

|f(x)| =
∣∣∣ lim

x→x0
f(x)

∣∣∣ .

Problem 4.2 Consider the function

f(x) =
{

0 if x ∈ R and x is rational,
1 if x ∈ R and x is irrational.

Show that lim
x→a

f(x) does not exist for any a ∈ R.
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Problem 4.3 (Dirichlet Function) Consider the function f : [0, 1] → R defined by

f(x) =

⎧⎪⎪⎨⎪⎪⎩
1
q

if x is rational and x =
p

q
in the reducible form,

0 if x ∈ R and x is irrational.

Show that lim
x→a

f(x) = 0 for any a ∈ (0, 1).

Problem 4.4 Consider the function

f(x) =
{
x− 1 if x ∈ R is rational,
5 − x if x ∈ R is irrational.

Show that lim
x→3

f(x) exists but lim
x→a

f(x) does not exist for any a �= 3.

Problem 4.5 Let f(x) be a periodic function. Show that if lim
x→∞ f(x) exists, then f(x) is a

constant function. Deduce from this that lim
x→∞ sinx does not exist.

Problem 4.6 Evaluate the following limits:

lim
x→4

4 − x

2 − √
x

and lim
x→0

x sin
(

1
x

)
·

Problem 4.7 Evaluate the limit
lim
x→0

sin(x)√
1 − cos(x)

·

Problem 4.8 Let f be real-valued functions defined on I. Let x0 ∈ I. Show that lim
x→x0

f(x)

exists if and only if for any sequence {xn} in I which converges to x0, the sequence {f(xn)} is
convergent.
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Problem 4.9 (Squeeze Theorem) Let f , g, and h be three real-valued functions defined on
I ⊂ R. Assume that for all x ∈ I, we have

f(x) ≤ g(x) ≤ h(x)

and that for x0 ∈ I we have lim
x→x0

f(x) = lim
x→x0

h(x) = l. Prove that

lim
x→x0

g(x) = l .

Problem 4.10 Let f, g : D → R. Let x0 ∈ D such that lim
x→x0

f(x) and lim
x→x0

g(x) exist. Discuss

the existence of the limits

lim
x→x0

min{f(x), g(x)} , and lim
x→x0

max{f(x), g(x)} .

Problem 4.11 Let f : [0, 1] → R be a monotone function. Let x0 ∈ (0, 1) and assume that
lim

x→x0
f(x) exists. Show that

lim
x→x0

f(x) = f(x0) .

Problem 4.12 Let f : [a, b] → R be monotone. Prove that

(i) lim
x→x0+

f(x) and lim
x→x0− f(x) exist for any x0 ∈ (a, b);

(ii) lim
x→a+

f(x) and lim
x→b−

f(x) exist.

Problem 4.13 Let f : [a, b] → R be monotone. Prove that the set

D = {x : x ∈ [a, b] and f does not have a limit at x}

is countable. What happens at the points {x} that are not in D?

Problem 4.14 Let f : R → R such that

f(x+ y) = f(x) + f(y)

for any x, y ∈ R. Assume that lim
x→0

f(x) = f(0). Find f(x).
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Problem 4.15 We say f is asymptotic to g and write f ∼ g if f(x)
g(x) → 1 as x → ∞. We write

f = O(g) (pronounced “Big Oh”) if g(x) > 0 for sufficiently large x ∈ R and f(x)
g(x) is bounded for

sufficiently large x. We write f = o(g) (pronounced “Little Oh”) if f(x)
g(x) → 0 as x → ∞. Prove

the following:

1. x2 + x ∼ x2

2. x2 + x = O(x2)

3. e
√

log x = o(x)

4. xlog x = o(ex)

Problem 4.16 Prove that if f = o(g) and if g(x) → ∞ as x → ∞, then ef = o(eg) as x → ∞.
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Solutions

Solution 4.1

Set lim
x→x0

f(x) = l. Let us prove that lim
x→x0

|f(x)| = |l|. Let ε > 0. Then there exists δ > 0 such

that for any x ∈ D, |f(x) − l| < ε provided |x− x0| < δ. Using the inequality∣∣∣|a| − |b|
∣∣∣ ≤ |a− b|

for any real numbers a and b. Then for any x ∈ D such that |x− x0| < δ, we have∣∣∣|f(x)| − |l|
∣∣∣ ≤ |f(x) − l| < ε .

This completes the proof of our statement.

Solution 4.2

Let a ∈ R. Assume that lim
x→a

f(x) = l exists. Then for ε =
1
3
, there exists δ > 0 such that

for any x ∈ (a − δ, a + δ) we have |f(x) − l| < ε. We know that any nonempty open interval
contains a rational and an irrational number. Let x ∈ (a − δ, a + δ) be a rational number. Then
we have |f(x) − l| = |0 − l| < ε. And if x ∈ (a − δ, a + δ) is an irrational number, then we have
|f(x) − l| = |1 − l| < ε. Hence

1 = |0 − 1| ≤ |0 − l| + |1 − l| < 2ε =
2
3
.

This contradiction implies that lim
x→a

f(x) does not exist.

Solution 4.3

Let a ∈ (0, 1). Fix ε > 0. Consider the set

Aε =
{
p

q
∈ Q ∩ [0, 1];

1
q

≥ ε

}
.

The set Aε is finite. Set

δ = min
{∣∣∣∣a− p

q

∣∣∣∣ ; pq ∈ Aε and
p

q
�= a

}
.

Obviously we have δ > 0. Let x ∈ [0, 1] such that |x− a| < δ. If x is irrational, then |f(x) − 0| =
0 < ε. Now assume that x is rational and x =

p

q
is its reduced form, i.e., p and q are coprime.

Since |x− a| < δ, then
p

q
�∈ Aε. Hence

1
q
< ε which implies

|f(x) − 0| =
∣∣∣∣1q − 0

∣∣∣∣ = 1
q
< ε .

Therefore, for any x ∈ [0, 1] such that |x− a| < δ, we have |f(x) − 0| = 0 < ε. This completes the
proof of our problem.
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Solution 4.4

Note that
lim
x→3

x− 1 = 2 and lim
x→3

5 − x = 2 .

So for any ε > 0, there exist δ1 > 0 and δ2 > 0 such that{ |x− 1 − 2| < ε if x ∈ R and |x− 3| < δ1,
|5 − x− 2| < ε if x ∈ R and |x− 3| < δ2.

Set δ = min{δ1, δ2}. Then we have δ > 0. Let x ∈ R such that |x − 3| < δ. If x is rational, then
because |x− 3| < δ ≤ δ1, we get

|f(x) − 2| = |x− 1 − 2| < ε ,

and if x is irrational, then because |x− 3| < δ ≤ δ2, we get

|f(x) − 2| = |5 − x− 2| < ε .

So for any x ∈ R such that |x− 3| < δ, we have |f(x) − 2| < ε. This clearly implies lim
x→3

f(x) = 2.

Finally let a ∈ R with a �= 3. Assume that lim
x→a

f(x) = l exists. Let ε =
|3 − a|

3
. We have ε > 0.

Then there exists δ > 0 such that for any x ∈ R such that |x− a| < δ, we have |f(x) − l| < ε. Set
δ∗ = min{δ, ε}. The open interval (a − δ∗, a + δ∗) contains rational and irrational numbers. Let
x ∈ (a− δ∗, a+ δ∗) be rational. Then we have

|f(x) − l| = |x− 1 − l| < ε .

But
|a− 1 − l| ≤ |a− x| + |x− 1 − l| < δ∗ + ε < 2ε .

On the other hand, if x ∈ (a− δ∗, a+ δ∗) is irrational, then we have

|f(x) − l| = |5 − x− l| < ε .

But
|5 − a− l| ≤ |x− a| + |5 − x− l| < δ∗ + ε < 2ε .

Hence

|6 − 2a| = |5 − a− l − (a− 1 − l)| ≤ |5 − a− l| + |a− 1 − l| < 4ε =
4|3 − a|

3
,

or |3 − a| < 2|3 − a|
3

. This contradiction implies that lim
x→a

f(x) = l does not exist.

Solution 4.5

Assume that lim
x→∞ f(x) = l exists. Let us show that f(x) = l for any x ∈ R. Let T > 0 be a period

of f(x). Let a ∈ R and assume that f(a) �= l. Take ε =
|f(a) − l|

2
. Since lim

x→∞ f(x) = l, then there

exists M > 0 such that for any x > M , we have |f(x) − l| < ε. Since R is Archimedean, there
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exists n ∈ N such that n >
M − a

T
. Then we have a+ nT > M . Hence |f(a+ nT ) − l| < ε. Since

f(a+ nT ) = f(a), we get

|f(a) − l| < ε =
|f(a) − l|

2

which is a contradiction, therefore f(a) = l. Since a was arbitrary, we obtain the conclusion of our
claim. Since sin(x) is periodic and is not a constant function, this implies that it does not have a
limit as x tends to ∞.

Solution 4.6

Let us first discuss lim
x→4

4 − x

2 − √
x

. The following algebraic identity will be helpful:

a− b√
a− √

b
=

(a− b)(
√
a+

√
b)

(
√
a− √

b)(
√
a+

√
b)

=
(a− b)(

√
a+

√
b)

a− b
=

√
a+

√
b ,

whenever a �= b. Note that if x is close to 4, then we may assume that x > 0 and x �= 4. Hence we
have

4 − x

2 − √
x

= 2 +
√
x .

From this we suspect that lim
x→4

4 − x

2 − √
x

= 4. Indeed, let ε > 0. Set δ = min(2ε, 1). Let x ∈
(4 − δ, 4 + δ) and not equal 4. Then x ∈ (3, 5) and is therefore positive. Since∣∣∣∣ 4 − x

2 − √
x

− 4
∣∣∣∣ = |2 +

√
x− 4| = |√x− 2| =

∣∣∣∣ x− 4√
x+ 2

∣∣∣∣ ≤ |x− 4|
2

,

we get ∣∣∣∣ 4 − x

2 − √
x

− 4
∣∣∣∣ < δ

2
≤ 2ε

2
,

or ∣∣∣∣ 4 − x

2 − √
x

− 4
∣∣∣∣ < ε .

This completes the proof of our claim. Next we discuss lim
x→0

x sin
(

1
x

)
. The first common mistake

is to write

lim
x→0

x sin
(

1
x

)
= lim

x→0
x

[
lim
x→0

sin
(

1
x

)]
= 0

because the above identity holds if both limits exist. But we previously showed that sin(x) does
not have a limit when x → ∞ which implies the limit

lim
x→0+

sin
(

1
x

)
= lim

t→∞ sin(t)

does not exist, where t =
1
x

. In order to solve this problem note that sin(x) is always bounded and
lim
x→0

x = 0. So we are multiplying a bounded function with a function getting very small. The end
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result should be small. Hence we guess that lim
x→0

x sin
(

1
x

)
= 0. Let us prove it. Let ε > 0. Take

δ = ε and let x ∈ R such that |x− 0| < δ or |x| < δ. Then we have∣∣∣∣x sin
(

1
x

)
− 0
∣∣∣∣ = ∣∣∣∣x sin

(
1
x

)∣∣∣∣ ≤ |x| < δ = ε .

This completes the proof of our claim.

Solution 4.7

The square root in the denominator is the part complicating this limit. In order to get rid of this
problem, we will use the following trigonometric identities:

cos(θ) = 1 − 2 sin2
(
θ

2

)
and sin(θ) = 2 cos

(
θ

2

)
sin
(
θ

2

)
.

So

sin(x)√
1 − cos(x)

=
2 cos

(x
2

)
sin
(x

2

)
√

2 sin2
(x

2

) =
2 cos

(x
2

)
sin
(x

2

)
√

2
∣∣∣sin(x

2

)∣∣∣ .

First note that

lim
x→0

2 cos
(x

2

)
√

2
=

√
2 .

So let us focus on the limit lim
x→0

sin
(x

2

)
∣∣∣sin(x

2

)∣∣∣ . In order to get rid of the absolute value, we will consider

the limits to the right of 0 and to the left of 0. From the properties of the sin function we know
that for any x ∈ (0, π), then sin

(x
2

)
> 0 and if x ∈ (−π, 0), then sin

(x
2

)
< 0. Hence

lim
x→0+

sin
(x

2

)
∣∣∣sin(x

2

)∣∣∣ = lim
x→0+

sin
(x

2

)
sin
(x

2

) = 1 ,

and

lim
x→0−

sin
(x

2

)
∣∣∣sin(x

2

)∣∣∣ = lim
x→0+

sin
(x

2

)
− sin

(x
2

) = −1 .

Putting all the previous information together we get

lim
x→0+

sin(x)√
1 − cos(x)

=
√

2 and lim
x→0−

sin(x)√
1 − cos(x)

= −
√

2 .

This obviously implies that the limit lim
x→0

sin(x)√
1 − cos(x)

does not exist.
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Solution 4.8

Assume first that lim
x→x0

f(x) = p exists. Let {xn} in I be a sequence which converges to x0.

Let us show that {f(xn)} converges to p. Indeed, let ε > 0. Then there exists δ > 0 such that
|f(x)−p| < ε provided |x−x0| < δ and x ∈ I. Since {xn} converges to x0, then there exists N ≥ 1
such that for any n ≥ N we have |xn −x0| < δ. Putting everything together we get |f(xn) − p| < ε
for any n ≥ N . This proves our claim that {f(xn)} converges to p. Conversely, assume that for
any sequence {xn} in I which converges to x0, the sequence {f(xn)} is convergent. Let us show
that lim

x→x0
f(x) exists. First let us prove that there exists p ∈ R such that for any sequence {xn} in

I which converges to x0, the sequence {f(xn)} converges to p. Indeed, let {xn} and {yn} be two
sequences in I which converges to x0. Define the new sequence {zn} by

z2n = xn and z2n+1 = yn,

for all n ∈ N. It is easy to check that {zn} is in I and converges to x0. Hence our assumption implies
that {f(zn)} is convergent. Since both {f(xn)} and {f(yn)} are subsequences of {f(zn)}, they are
both convergent and they have the same limit. This proves that the limit of {f(xn)} is independent
of the sequence {xn}. Let us call this limit p. Finally we need to show that lim

x→x0
f(x) = p. Assume

not. Then there exists ε0 > 0 such that for any δ > 0 there exists xδ ∈ I such that |xδ − x0| < δ
and |f(xδ) − p| ≥ ε0. If we let δ = 1/n for n ≥ 1, we will generate a sequence {xn} in I such that

|xn − x0| < 1
n

and |f(xn) − p| ≥ ε0.

Hence {xn} converges to x0 and {f(xn)} does not converge to p. This contradiction establishes our
claim, i.e., lim

x→x0
f(x) = p.

Solution 4.9

Let ε > 0. Since lim
x→x0

f(x) = lim
x→x0

h(x) = l, there exist δ1 > 0 and δ2 > 0 such that

{ |f(x) − l| < ε if x ∈ I and |x− x0| < δ1,
|h(x) − l| < ε if x ∈ I and |x− x0| < δ2.

Set δ = min{δ1, δ2}. Hence δ > 0. Let x ∈ I such that |x − x0| < δ. Then we have |x − x0| < δ1
and |x− x0| < δ2. Hence |f(x) − l| < ε and |h(x) − l| < ε. In particular, we have{

l − ε < f(x) < l + ε,
l − ε < h(x) < l + ε.

Since f(x) ≤ g(x) ≤ h(x) for any x ∈ I, we get

l − ε < g(x) < l + ε,

or |g(x) − l| < ε. This completes the proof of our statement.



73

Solution 4.10

We will make use of the identities

max{a, b} =
a+ b+ |a− b|

2
and min{a, b} =

a+ b− |a− b|
2

,

for any a, b ∈ R. Now set
lim

x→x0
f(x) = l and lim

x→x0
g(x) = L.

Properties on the limits of functions will imply lim
x→x0

f(x)−g(x) = l−L. In Problem 5.1, we showed

that lim
x→x0

∣∣∣f(x) − g(x)
∣∣∣ = |l − L|. Hence

lim
x→x0

f(x) + g(x) + |f(x) − g(x)|
2

=
l + L+ |l − L|

2
,

or
lim

x→x0
max{f(x), g(x)} = max{l, L} .

A similar proof will give
lim

x→x0
min{f(x), g(x)} = min{l, L} .

It is obvious that one may generalize these conclusions to a finite number of functions. But the
infinite case is not true. Indeed, take

fn(x) =
{
xn if x ∈ [0, 1],
1 if x ≥ 1.

Then it is quite easy to check that lim
x→1

fn(x) = 1. But if we set f(x) = inf
n≥1

fn(x), then we have

f(x) =
{

0 if x ∈ [0, 1],
1 if x ≥ 1.

Hence
lim

x→1−
f(x) = 0 and lim

x→1+
f(x) = 1 .

Solution 4.11

Without loss of generality, we may assume that f(x) is increasing. Set lim
x→x0

f(x) = l. Let us

prove that l = f(x0). Let ε > 0. Then there exists δ > 0 such that for any x ∈ [0, 1] such that
|x0 − x| < δ, we get |f(x) − l| < ε. In particular we have{

l − ε < f(x) < l + ε if x ∈ [0, 1] and x0 < x < x0 + δ,
l − ε < f(x) < l + ε if x ∈ [0, 1] and x0 − δ < x < x0.

Since f(x) is increasing, for any x ∈ [0, 1] and x0 < x < x0 + δ, we have

f(x0) ≤ f(x) < l + ε,

which implies f(x0) < l+ ε. Similarly, we will get l− ε < f(x0). Hence |f(x0)− l| < ε. Since ε was
an arbitrary positive number, we must have f(x0) = l. This completes the proof of our statement.
Note that if one assumes that f(x) is decreasing, then one might have taken g(x) = −f(x), which
is an increasing function, and use the previous proof to obtain the desired conclusion. Of course, a
direct proof based on similar ideas will work as well.
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Solution 4.12

Without loss of generality, we may assume that f(x) is increasing. Let x0 ∈ (a, b). Set

U(x0) = inf{f(x);x ∈ (x0, b)} and L(x0) = sup{f(x);x ∈ (a, x0)} .

Note that for any x ∈ (x0, b), we have f(x0) ≤ f(x). Hence the set {f(x);x ∈ (x0, b)} is bounded
below by f(x0) which implies the existence of U(x0) and forces the inequality f(x0) ≤ U(x0).
Similarly for any x ∈ (a, x0), we have f(x) ≤ f(x0). Hence the set {f(x);x ∈ (a, x0)} is bounded
above by f(x0) which implies the existence of L(x0) and forces the inequality L(x0) ≤ f(x0). So
we have

L(x0) ≤ f(x0) ≤ U(x0) .

First we claim lim
x→x0+

f(x) = U(x0). Indeed, let ε > 0. Then by definition of U(x0), there exists

x∗ ∈ (x0, b) such that U(x0) ≤ f(x∗) < U(x0) + ε. Set δ = x∗ − x0. Then δ > 0 since x0 < x∗. Let
x ∈ (x0, x0 + δ) = (x0, x

∗), then we have

U(x0) ≤ f(x) ≤ f(x∗) < U(x0) + ε .

In particular we have |f(x) − U(x0)| < ε which completes the proof of our claim. A similar proof
will imply lim

x→x0− f(x) = L(x0). For the last part of this problem similar ideas as the ones described

above will show
lim

x→a+
f(x) = U(a) and lim

x→b−
f(x) = L(b) .

Note that L(a) and U(b) do not exist.

Solution 4.13

We have seen in the previous problems that for any x0 ∈ (a, b), then lim
x→x0+

f(x) and lim
x→x0− f(x)

exist. In particular, we have

lim
x→x0− f(x) ≤ f(x0) ≤ lim

x→x0+
f(x) .

In particular, x0 ∈ D ∩ (a, b) if and only if

lim
x→x0− f(x) < lim

x→x0+
f(x) .

So if x �∈ D, then we must have

lim
x→x0− f(x) = lim

x→x0+
f(x) = f(x0) ,

or that lim
x→x0

f(x) = f(x0). On the other hand, let ε > 0. Set

Dε =
{
x0 ∈ D ∩ (a, b) , lim

x→x0+
f(x) − lim

x→x0− f(x) > ε
}
.

We claim that Dε is finite. Indeed, let xi ∈ Dε, i = 1, . . . , n, such that x1 < x2 < . . . < xn. Then
it is easy to check that

f(a) ≤ lim
x→x1− f(x) < lim

x→x1+
f(x) ≤ . . . ≤ lim

x→xn− f(x) < lim
x→xn+

f(x) ≤ f(b) .
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This will then imply
n∑

i=1

lim
x→xi+

f(x) − lim
x→xi−

f(x) ≤ f(b) − f(a) .

Using the definition of Dε we get nε < f(b)− f(a). Since the number n is bounded above, then Dε

must be finite. Finally note
D =

⋃
n≥1

D 1
n
,

which implies that D is a countable union of finite sets. Hence D is countable. Note that if
f : R → R is monotone, then the set D = {x : x ∈ R and f does not have a limit at x} is
countable. Indeed, We have

D =
⋃
n≥1

D ∩ (−n, n) .

Since D ∩ (−n, n) is countable, then D is a countable union of countable sets. So D is countable.

Solution 4.14

The equation satisfied by f(x) is usually known as a functional equation. First note that f(nx) =
nf(x) for any n ∈ N. Indeed, we have f(1 · x) = 1 · f(x). Assume that f(nx) = nf(x). Then

f((n+ 1)x) = f(nx+ x) = f(nx) + f(x) = nf(x) + f(x) = (n+ 1)f(x) .

By induction we get the desired identity. Let r =
p

q
∈ Q. Then we have f(qrx) = f(px) = pf(x),

and since f(qrx) = qf(rx), we get f(rx) = p
qf(x) = rf(x). In particular, we have f(r) = rf(1).

Let x ∈ R. Then there exists a sequence of rational numbers {rn} such that lim
n→∞ rn = x. Since

f(x) = f(x−rn+rn) = f(x−rn)+f(rn) = f(x−rn)+rnf(1), we have f(x) = f(x−rn)+rnf(1). Now
if we take the limit as n → ∞, by the existence of lim

x→0
f(x) = f(0), we have that f(x) = f(0)+xf(1).

Note that f(x) = f(x+ 0) = f(x) + f(0) for any x ∈ R, so f(0) = 0. Therefore, we have

f(x) = xf(1) = mx .

Solution 4.15

1. lim
x→∞

x2 + x

x2 = lim
x→∞

(
1 +

1
x

)
= 1 and therefore x2 + x ∼ x2.

2. This follows from part (1).

3. We can see that e
√

log x = o(x) because e
√

log x

x = e
√

log x−log x. Now because lim
x→∞ log x → ∞

and lim
x→∞

√
log x

log x
→ 0, we have that for large x,

√
log x ≤ log x

2 . Hence, for similarly large x,

this gives e
√

log x

x ≤ 1
x [e

log x
2 ] = 1

x [
√
x] = 1√

x
and so lim

x→∞
1√
x

= 0. Thus we have showed that

e
√

log x = o(x).
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4. First note that if we set y = xlog x

ex , then log y = log xlog x − x = (log x)2 − x. Next, we claim

that lim
x→∞

(log x)2

x
= 0. This comes from applying L’Hôpital’s rule twice. Namely:

lim
x→∞

(log x)2

x
= lim

x→∞
2(log x) 1

x

1
= lim

x→∞
2 log x
x

= lim
x→∞

2/x
1

= 0.

Therefore, there must be a constant k > 0 such that x > k implies (log x)2
x < 1

2 , or equivalently,
(log x)2 < x

2 . Therefore, for x > k, we have that log y = (log x)2 − x < −x
2 , so that means

0 < y < e−x/2 = 1
ex/2 . But as x → ∞, 1

ex/2 → 0 so y → 0. That is, lim
x→∞ y = lim

x→∞
xlog x

ex
= 0,

which gives the desired result: xlog x = o(ex).

Solution 4.16

Assume g(x) > 0 since g(x) → ∞. Then since f(x) = o(g(x)) as x → ∞, there is k > 0 such that
|f(x)| < g(x)

2 for x > k. Therefore, f(x) − g(x) < −g(x)
2 for x > k and lim

x→+∞(f(x) − g(x)) → −∞.

Now notice that ef(x)

eg(x) = ef(x)−g(x), and thus ef(x)−g(x) → 0 as x → +∞. Therefore ef(x) = o(eg(x)),
as claimed.



Chapter 5

Continuity

The majority of my readers will be greatly disappointed to learn that by
this commonplace observation the secret of continuity is to be revealed.

Julius Wilhelm Richard Dedekind (1831–1916)

• Let f : D → R and let c ∈ D. We say that f is continuous at c if for every ε > 0 there exists
a δ > 0 such that |f(x)−f(c)| < ε whenever |x− c| < δ and x ∈ D. If f is continuous at each
point of a subset K ⊆ D, then f is said to be continuous on K. Moreover, if f is continuous
on its domain D, then we simply say that f is continuous.

• Let D be a nonempty subset of R and f : D → R. We say that f is uniformly continuous
on D if for every ε > 0 there exists a δ > 0 such that |x − c| < δ and x, c ∈ D imply
|f(x) − f(c)| < ε. Notice that the δ in this definition depends on ε and f , but not on the
point c or x. The geometric illustration of uniform continuity is shown in Figure 5.1.

• Let f : A ⊂ R → R be continuous and A is a closed and bounded subset of R. Then f is
uniformly continuous on A.

• Intermediate Value Theorem: If f : [a, b] → R is continuous, and if L is a real number
satisfying f(a) < L < f(b) or f(a) > L > f(b), then there is a point c ∈ (a, b) where
f(c) = L.

• A function f defined on an interval I is said to be convex if

f(αx+ (1 − α)y) ≤ αf(x) + (1 − α)f(y)

holds true for any x, y in I and 0 ≤ α ≤ 1.
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Figure 5.1

• We say f is a periodic function on R, if there is a T ∈ R such that

f(x+ T ) = f(x)

for all x ∈ R.

• For f : R → R, c ∈ R, and δ > 0, define the modulus of continuity wf (c, δ) of f by

wf (c, δ) = sup{|f(x) − f(c)| : x ∈ R, |x− c| < δ}.

Problem 5.1 Prove that if c is an isolated point in D, then f is automatically continuous at c.

Problem 5.2 Show that the value δ in the definition of continuity is not unique.
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Problem 5.3 Use the definition of continuity at a point to prove that

(a) f(x) = 3x− 5 is continuous at x = 2.

(b) f(x) = x2 is continuous at x = 3.

(c) f(x) = 1/x is continuous at x = 1/2.

Problem 5.4 Let f(x) = x sin(1/x) for x �= 0 and f(0) = 0. Prove that f is continuous at
x = 0.

Problem 5.5 Let f : D → R and let c ∈ D. Show that the following conditions are equivalent.

(i) f is continuous at c.

(ii) If {xn} is a sequence in D such that {xn} converges to c, then

lim
n→∞ f(xn) = f(c).

(This condition is called sequential continuity).

Problem 5.6 Let f(x) = 1/x for x �= 0 and f(0) = c for some c ∈ R. Show that f(x) is not
continuous at x = 0.

Problem 5.7 A function f : R → R is called Lipschitz with Lipschitz constant α > 0 if

|f(x) − f(y)| ≤ α|x− y| for all x, y ∈ R.

Give two examples of Lipschitz functions. Moreover, prove that every Lipschitz function is
continuous.

Problem 5.8 Find an example of a function that is discontinuous at every real number.

Problem 5.9 Prove the Dirichlet function f : (0, 1) → R defined as

f(x) =

{
0 if x ∈ R\Q
1
q if x ∈ Q and x = p

q in lowest terms

(a) discontinuous at every rational number in (0, 1),

(b) continuous at each irrational number in (0, 1).

CHAPTER 5. CONTINUITY
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Problem 5.10 Let f : [a, b] → R be continuous. Prove that |f | is also continuous on [a, b]. Is
the converse true? Namely, if |f | is continuous on [a, b], is f also continuous on [a, b]?

Problem 5.11 For f : R → R, c ∈ R, and δ > 0, define the modulus of continuity wf (c, δ) of f
by

wf (c, δ) = sup{|f(x) − f(c)| : x ∈ R, |x− c| < δ} and wf (c) = lim
δ→0+

wf (c, δ).

Show that f is continuous at c if and only if wf (c) = 0.

Problem 5.12 Find an example of a function f discontinuous on Q and another function g
discontinuous at only one point, but g ◦ f is nowhere continuous.

Problem 5.13 Suppose f : R → R satisfies f(x + y) = f(x) + f(y) for each x, y ∈ R. Show
that

(a) f(nx) = nf(x) for all x ∈ R, n ∈ N;

(b) f is continuous at a single point if and only if f is continuous on R;

(c) f is continuous if and only if f(x) = mx, for some m ∈ R.

Problem 5.14 Let f(x) = [x] be the greatest integer less than or equal to x and let g(x) = x−[x].
Sketch the graphs of f and g. Determine the points at which f and g are continuous.

Problem 5.15 If f, g are continuous functions defined on some subset D ⊆ R, prove the
max(f, g) and min(f, g) are continuous functions, where

max(f, g)(x) = max(f(x), g(x)) and min(f, g)(x) = min(f(x), g(x)).

Problem 5.16 Let I be a closed and bounded interval in R. Suppose f : I → R is continuous.
Show that f(I) is a closed and bounded interval in R.

Problem 5.17 Let I be a closed and bounded subset of R and f : I → R be continuous. Prove
that f assumes maximum and minimum values on I, i.e., there exist x1, x2 ∈ I such that

f(x1) ≤ f(x) ≤ f(x2)

for all x ∈ I.
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Problem 5.18 Let f, g : [0, 1] → [0,∞) be continuous functions satisfying

sup
0≤x≤1

f(x) = sup
0≤x≤1

g(x).

Prove that there exists x0 ∈ [0, 1] such that f(x0) = g(x0).

Problem 5.19 Prove that if f : R → R is continuous and periodic, then it attains its supremum
and infimum.

Problem 5.20 Let f : [0, 1] → [0, 1] be continuous. Prove that f has a fixed point. That is,
show that there is a point x0 ∈ [0, 1] such that f(x0) = x0.

Problem 5.21 Prove that f(x) = x2 is uniformly continuous on [0, 1] but not uniformly contin-
uous on R.

Problem 5.22 Prove that if I is a closed and bounded interval in R and if f : I → R is
continuous, then f is uniformly continuous on I.

Problem 5.23 Show that f : R → R is not uniformly continuous if and only if there exists an
ε > 0 and sequences xn and yn such that |xn − yn| < 1

n and |f(xn) − f(yn)| ≥ ε.

Problem 5.24 Determine which of the following functions are uniformly continuous:

(a) f(x) = lnx on (0, 1).

(b) f(x) = x sinx on [0,∞).

(c) f(x) =
√
x on [0,∞).

(d) f(x) = 1
x2+1 on (−∞,∞).

(e) f(x) = ex on [0,∞).

Problem 5.25 Suppose I ⊆ R and f : I → R is uniformly continuous. Prove that if (xn) is
a Cauchy sequence in I, then (f(xn)) is Cauchy too. (Recall that a sequence of points xn ∈ R

is said to be Cauchy if for every ε > 0 there exists an N ∈ N such that n,m ≥ N implies that
|xn − xm| < ε.)

Problem 5.26 Find a continuous function f : I → R and a Cauchy sequence (xn) such that
(f(xn)) is not Cauchy.

CHAPTER 5. CONTINUITY
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Problem 5.27 Show that if a function f : (a, b) → R is uniformly continuous, then we can
extend it to a function f̃ that is also uniformly continuous on [a, b].

Problem 5.28 Show that any function continuous and periodic on R must be uniformly con-
tinuous.

Problem 5.29 Prove that if a function f defined on an open interval I ⊆ R is convex, then f
is continuous. Must a convex function on an arbitrary interval be continuous?

Problem 5.30 A function φ : [a, b] → R is called a step function if there is a partition
a = x0 < x1 < . . . < xn = b such that φ(x) is constant on (xi−1, xi) for i = 1, 2, 3, . . . , n. Prove
that if f : [a, b] → R is continuous, then f can be uniformly approximated by step functions.
Note that we call a mapping g on [a, b] a uniform approximation of the mapping f if there is
some number ε > 0 such that |f(x) − g(x)| ≤ ε.

Problem 5.31 Show that there exists a continuous function F : [0, 1] → R whose derivative
exists and equals zero almost everywhere but which is not constant.

Problem 5.32 Throughout R+• = {x ∈ R : x > 0}.

Let f : R+• → R+• be a function, and let a ∈ R+•. Then f is feebly continuous at a if there is
a sequence (rn) ↘ 0 such that f(a+ rn) → f(a) as n → ∞.

Let (fj) be a sequence of functions from R+• to R+•, and let a ∈ R+•. Then (fj) is feebly
continuous at a if there is a sequence (rn) ↘ such that fj(a + rn) → fj(a) as n → ∞ for each
j ∈ N.

Show that each sequence of functions from R+• to R+• is feebly continuous at all but countably
many points of R+•.
Notice that the solution of the above question leads to the fact that each function from R+ to
R+ is feebly continuous at all but countably many points of R+.
This question and its solution are provided by Professor H. G. Dales from University of Leeds.
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Problem 5.33 (Banach Contraction Mapping Theorem) Let f be a function defined on
all of R , and assume that there is a constant k such that 0 < k < 1 and

|f(x) − f(y)| ≤ k|x− y|

for all x, y ∈ R. (In this case we call f a contraction mapping.)

a) Show that f is continuous on R.

b) Pick some point x0 ∈ R and construct the sequence xn+1 = f(xn) more precisely

(x0, f(x0), f(f(x0)), . . . ).

Show that the resulting sequence (xn) is a Cauchy sequence and converges to some point
x∗ in R.

c) Show that x∗ is a fixed point of f (i.e., f(x∗) = x∗).

d) Show that f has a unique fixed point.
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Solutions

Solution 5.1

Suppose c is an isolated point of D. Then there exist δ > 0 such that the δ-neighborhood of c
contains no other point in D (i.e., if |x− c| < δ and x ∈ D, then x = c). Thus, whenever |x− c| < δ
and x ∈ D, we have |f(x) − f(c)| = 0 < ε for all ε > 0.

Solution 5.2

Once one value of δ is found that fulfills the requirements of the definition, any smaller positive
value for δ will also fulfill the requirements. Suppose f is continuous at c. Then

|f(x) − f(c)| < ε if 0 < |x− c| < δ.

Choosing any δ1 such that 0 < δ1 < δ, we observe that 0 < |x − c| < δ1 < δ will also give us
|f(x) − f(c)| < ε.

Solution 5.3

(a) We must show that given any positive ε, we can find a positive δ such that

|f(x) − f(c)| = |(3x− 5) − 1| < ε if x satisfies 0 < |x− 2| < δ.

This simplifies to
|3x− 6| < ε if 0 < |x− 2| < δ,

and further simplifies to
3|x− 2| < ε if 0 < |x− 2| < δ.

A choice of δ that makes this last “if statement” true for any ε is δ = ε/3.

(b) Given any positive ε > 0, we must find a positive δ such that

|x2 − 9| < ε if 0 < |x− 3| < δ,

which we may factor to

|x− 3||x+ 3| < ε if 0 < |x− 3| < δ.

Now, if there were some constant C such that |x+3| < C, we would then have |x− 3||x+ 3| < C|x− 3|,
and thus

|x− 3||x+ 3| < C|x− 3| < ε if 0 < |x− 3| < δ

for the choice δ = ε/C. But what value of C would this work for? By Problem 5.2, we know
that if we find a δ that works, then any smaller positive δ can be used in its place. This
allows us to assume δ ≤ 1, because if δ > 1 we may use the value δ = 1 instead. Therefore,

0 < |x− 3| < δ ≤ 1 ⇒ |x+ 3| < 7.

Thus, we let C = 7. Given ε > 0, we then may choose δ = ε/7, provided ε/7 ≤ 1. More
precisely, choose δ = min(ε/7, 1).



85

(c) For all ε > 0 we must find a δ > 0 such that∣∣∣∣1x − 2
∣∣∣∣ < ε if 0 <

∣∣∣∣x− 1
2

∣∣∣∣ < δ.

Rewriting this as ∣∣∣∣1x − 2
∣∣∣∣ = ∣∣∣∣2x

(
1
2

− x

)∣∣∣∣ = ∣∣∣∣2x
∣∣∣∣ ∣∣∣∣12 − x

∣∣∣∣ ,
we wish to find C such that |2/x| < C. However, the graph of |2/x| makes it clear that
δ ≥ 1/2 will not produce such an upper bound C. Therefore, arbitrary restriction on δ must
be smaller than 1/2. We then might restrict δ ≤ 1/4 to give∣∣∣∣2x

∣∣∣∣ ∣∣∣∣x− 1
2

∣∣∣∣ < ε if 0 <
∣∣∣∣x− 1

2

∣∣∣∣ < δ ≤ 1
4
,

which yields 8 |x− 1/2| < ε, so the choice δ = ε/8 is appropriate. Therefore, given ε > 0,
we choose δ = ε/8 provided that this does not violate the δ ≤ 1/4. Thus, our more general
choice is δ = min(1/4, ε/8).

Solution 5.4

Since |f(x) − f(0)| = |x sin(1/x)| ≤ |x| for all x, given ε > 0 we may choose δ = ε. We then have
|x− 0| < δ implies |f(x) − f(0)| ≤ |x| < δ = ε.

Solution 5.5

1 Let us first prove (i)⇒ (ii). Suppose that {xn} is a sequence with lim
n→∞xn = c. We need to

show that lim
n→∞ f(xn) = f(c). Let ε > 0. We must find an integer N so that n ≥ N implies

|f(xn) − f(c)| < ε. To do this, choose δ > 0 so that |x− c| < δ implies |f(x) − f(c)| < ε. The
existence of such a δ is guaranteed by the continuity of f . Since lim

n→∞xn = c, there exists

N ≥ 1 such that n ≥ N implies |xn−c| < δ. Hence for any n ≥ N , we have |f(xn)−f(c)| < ε.
This yields the desired conclusion.

2 Next we show (ii) ⇒ (i). Suppose, to the contrary, that f is sequentially continuous but
discontinuous at c. Then there is a neighborhood V of f(c) such that no neighborhood U of
c satisfies f(U) ⊆ V . Set Un = B(c, 1/n) = {x ∈ D : |c−x| < 1/n}, for n ≥ 1. In particular,
we have that f(Un) ∩ V c �= ∅, for any n ≥ 1. Hence for n ≥ 1, choose some xn ∈ D with
|x − c| < 1/n and f(xn) �∈ V . By construction, {xn} converges to c, but {f(xn)} does not
converge to f(c). This contradicts the sequential continuity of f .

Solution 5.6

Let the sequence {xn} be defined by xn = 1/n. We then note that
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lim
n→∞

1
n

= 0, but lim
n→∞ f

(
1
n

)
= +∞.

Since the sequence {f(xn)} is not convergent, there is no way to define f at x = 0 to make f
continuous at x = 0.

Solution 5.7

1. Any constant function f(x) = k, for some k ∈ R.

2. The identity function f(x) = x.

To prove the assertion that every Lipschitz function is continuous, given c ∈ R and ε > 0, set
δ = ε/α. Then |f(x) − f(c)| < ε for all x ∈ R such that |x − c| < δ. Note that in this case δ is
independent of c ∈ R.

Solution 5.8

Define f : R → R by

f(x) =

{
1 if x ∈ Q,

0 if x ∈ R\Q.

Let c ∈ R. Assume f(x) is continuous at c. For ε = 1
2 , there exists δ > 0 such that |f(x)−f(c)| < ε

whenever |x − c| < δ. The interval (c − δ, c + δ) contains rational and irrational points. Let
r ∈ (c− δ, c+ δ) ∩ Q and r∗ ∈ (c− δ, c+ δ)\Q. Then

|f(r) − f(c) = |1 − c| < ε and |f(r∗) − f(c) = |0 − c| < ε.

This will force the inequality

1 = |1 − 0| ≤ |1 − c| + |c− 0| < 2ε = 1.

The generated contradiction implies that f(x) is not continuous at c. Alternatively, we can use
sequential continuity. Indeed, note that for any c ∈ R, there exist two sequences {rn} ∈ Q and
{r∗

n} ∈ R\Q which converge to c. Since {f(rn)} converges to 1 and {f(r∗
n)} converges to 0, f(x) is

not sequentially continuous at c. So f(x) is not continuous at c.

Solution 5.9

In Problem 4.3, we showed that lim
x→a

f(x) = 0 for any a ∈ (0, 1). Therefore

(a) if a ∈ R\Q, then f(a) = 0 which implies lim
x→a

f(x) = f(a), i.e., f(x) is continuous at a;

(b) if a ∈ Q ∩ (0, 1), then f(a) �= 0 which implies lim
x→a

f(x) �= f(a), i.e., f(x) is not continuous at
a.
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Solution 5.10

The key behind the proof of this problem is the inequality∣∣∣|x| − |y|
∣∣∣ ≤ |x− y|

for any x, y ∈ R. Indeed, since f is continuous, given x0 ∈ [a, b] and ε > 0 we may find δ > 0 such
that if x ∈ [a, b] and 0 < |x− x0| < δ, then |f(x) − f(x0)| < ε. The inequality

||f(x)| − |f(x0)|| ≤ |f(x) − f(x0)| < ε

whenever 0 < |x− x0| < δ. This implies the continuity of |f | at x0. The proposed converse of this
statement is not true, however. For example, the function

f(x) =

{
1 if x ∈ Q ∩ [a, b],
−1 if x ∈ [a, b]\Q

is discontinuous at each point in [a, b], while |f | is a constant function and therefore continuous on
[a, b].

Solution 5.11

1 First assume f is continuous at c. Then given any ε > 0, there is a δ0 > 0 such that

|x− c| < δ0 implies |f(x) − f(c)| < ε/2.

Notice also that wf (c, δ1) ≤ wf (c, δ2) whenever 0 < δ1 < δ2. Hence, if 0 < δ < δ0, then
wf (c, δ) ≤ wf (c, δ0) < ε, and consequently lim

δ→0+
wf (c, δ) = 0.

2 Conversely assume that wf (c) = 0 = lim
δ→0+

wf (c, δ). Then given ε > 0, there exists some δ0
such that wf (c, δ) < ε if δ < δ0. Consequently, if |x− c| < δ < δ0, then |f(x) − f(c)| < ε.

Solution 5.12

Let f be the Dirichlet function defined in Problem 5.9 (but extended from (0, 1) to all of R) and
set

g(x) =

{
1 if x �= 0,
0 if x = 0.

We then have that

(g ◦ f)(x) =

{
1 if x ∈ Q,

0 if x �∈ Q

which is shown to be discontinuous at all points of R in Problem 5.8.
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Solution 5.13

We begin by making the observation that f(0) = f(0 + 0) = f(0) + f(0) which implies f(0) = 0.
Hence

0 = f(0) = f(a+ (−a)) = f(a) + f(−a)
which implies f(−a) = −f(a). Since (a) is straightforward, we will only prove (b) and (c).

(b) Suppose f is continuous at a single point c. Then given ε > 0 there exists some δ > 0 such
that |x− c| < δ implies |f(x) − f(c)| < ε. Let d be any point of R and let |x− d| < δ. Then
|x− d+ c− c| < δ implies |f(x− d+ c)− f(c)| < ε. Using the given property for f , we obtain
|f(x − d) + f(c) − f(c)| = |f(x) − f(d)| < ε. It follows that f is continuous at any point of
R. The converse is clear from the definition of continuity.

(c) Assume f(x) is continuous and set m = f(1). Then we know that f(n) = nf(1) = mn
for any n ∈ Z. If x ∈ Q, then x = p/q for some (p, q) ∈ N × Z, with q �= 0. We have
f(qx) = f(p) = mp and f(qx) = qf(x) which implies f(x) =

p

q
m = mx. Since f(x) is

continuous and Q is dense in R, then we get f(x) = mx for all x ∈ R. The converse is obvious
since f(x) = mx is continuous.

Solution 5.14

The graphs of f(x) and g(x) are shown in the following figure.

Figure 5.2

Notice that if n ∈ N and n ≤ x < n+1, then f(x) = [x] = n and g(x) = x− [x] = x−n. Therefore,
0 ≤ g < 1. It is clear that f and g are continuous on (n, n+ 1) for every n ∈ Z. But since

lim
x→ n+

f(x) = n = f(n) and lim
x→ n+

g(x) = n− n = 0 = g(n)

and
lim

x→ n− f(x) = n− 1 �= f(n) and lim
x→ n+

g(x) = n− (n− 1) = 1 �= g(n)

for all n ∈ Z, we conclude that f(x) and g(x) are not continuous at any point in Z.
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Solution 5.15

The key behind the proof of these statements are the identities

max(x, y) =
1
2
(x+ y + |x− y|) and min(x, y) =

1
2
(x+ y − |x− y|)

for all x, y ∈ R. Since f ± g and |f − g| are continuous, we conclude that max(f, g) and min(f, g)
are continuous.

Solution 5.16

Suppose f(I) is not bounded. Then for each n ∈ N there exists a point xn ∈ I such that
|f(xn)| > n. Since I is closed and bounded, by the Bolzano–Weierstrass Theorem, the sequence
(xn) has a convergent subsequence (xnk

) converging to some c ∈ I. Since f is continuous at c,
then f(xnk

) → f(c). In particular, f(xnk
) must be bounded. But this contradicts the fact that

|f(xnk
)| > nk ≥ k for all k ∈ N. Therefore f(I) is bounded.

To show that f(I) is closed, take a sequence (yn) in f(I) with lim
n→∞ yn = y. We want to show

that y ∈ f(I). Since yn ∈ f(I), there exists xn ∈ I such that f(xn) = yn for all n. Since I is closed
and bounded, it follows that there is a subsequence (xnk

) converging to some point c, and we have

f(c) = lim
k→∞

f(xnk
) = lim

k→∞
ynk

= y.

Thus f(c) = y which implies y ∈ f(I).

Solution 5.17

By the previous question, we know f(I) is closed and bounded. Since any nonempty closed and
bounded subset of R has a maximum and a minimum, f(I) has a minimum y1 and a maximum y2.
But y1, y2 ∈ f(I) means that there exist x1, x2 ∈ I such that y1 = f(x1) and y2 = f(x2). It follows
that f(x1) ≤ f(x) ≤ f(x2) for all x ∈ I.

Solution 5.18

Let M = sup
0≤x≤1

f(x) = sup
0≤x≤1

g(x). Since f and g are continuous on [0, 1] and [0, 1] is closed and

bounded, there exist c, d ∈ [0, 1] such that f(c) = g(d) = M . Without loss of generality assume
c < d. Note that if c = d, we have nothing to prove. Now define the function h(x) = f(x) − g(x).
Then we have that

h(c) = f(c) − g(c) = M − g(c) ≥ 0

and
h(d) = f(d) − g(c) = f(d) −M ≤ 0.

Since h is continuous, from the Intermediate Value Theorem it has a zero x0 in the interval [c, d].
So h(x0) = f(x0) − g(x0) = 0.
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Solution 5.19

Let T > 0 be a period of f . Since f is continuous on R, it is continuous on [0, T ], i.e., there exist
c, d ∈ [0, T ] such that f(c) = infx∈[0,T ] f(x) and f(d) = supx∈[0,T ] f(x). Since f is periodic, then we
have

f(c) = inf
x∈[0,T ]

f(x) = inf
x∈R

f(x) and f(d) = sup
x∈[0,T ]

f(x) = sup
x∈R

f(x).

Solution 5.20

Assume f(0) > 0 and f(1) < 1, otherwise we have nothing to prove. Set g(x) = f(x) − x. Then
g is continuous, and we have that g(0) = f(0) − 0 > 0 and g(1) = f(1) − 1 < 0. Hence, by the
intermediate value theorem, g must equal 0 at some point x0 ∈ (0, 1), i.e., g(x0) = f(x0) − x0 = 0.

Solution 5.21

To show that f(x) is uniformly continuous on [0, 1], given ε > 0 we must choose δ = δ(ε) so that

|f(x) − f(c)| = |x2 − c2| < ε if |x− c| < δ for any x, c ∈ [0, 1].

If we set δ = ε/3, then

|f(x) − f(c)| = |x2 − c2| = |x− c||x+ c| ≤ |x− c|(1 + 1) = 2|x− c| < 2ε
3
< ε.

Next, assume that f(x) = x2 is uniformly continuous on R. Then for all ε > 0 there exists
δ = δ(ε) > 0 such that

|x− c| < δ ⇒ |f(x) − f(c)| < 1 for all x, c ∈ R.

By the Archimedean Property, choose n ∈ N sufficiently large such that n > 1/δ. Set c = n and
x = n+ δ/2. Since |x− c| < δ, then

1 < nδ < nδ +
δ2

4
= n2 + nδ +

δ2

4
− n2 = x2 − c2 = |f(x) − f(c)| < 1.

This contradiction proves that f is not uniformly continuous on R.

Solution 5.22

Suppose to the contrary that f : I → R is continuous but not uniformly continuous on I. Then
there exists ε0 > 0 such that for any δ > 0, there exist xδ, yδ ∈ I such that |xδ − yδ| < δ and
|f(xδ) − f(yδ)| ≥ ε0. In particular, there must exist points xn, yn ∈ I such that

|xn − yn| < 1/n and |f(xn) − f(yn)| ≥ ε0

for all n ≥ 1. Since the sequence (xn) is in I, which is closed and bounded, the Bolzano–Weierstrass
Theorem gives that (xn) has a subsequence (xnk

) that converges to some x ∈ I as k → ∞. Similarly,
some subsequence of the corresponding sequence (ynk

), which we shall denote (ynkj
), converges to

some y ∈ I as j → ∞. Since xnkj
→ x as j → ∞ and f is continuous, we must have f(xnkj

) →
f(x), and similarly f(ynkj

) → f(y). From our assumptions it follows that |f(x) − f(y)| ≥ ε0, so
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f(x) �= f(y). However, |xn − yn| < 1/n for all n ∈ N, so lim
n→∞xn − yn = 0 = x− y. So we must have

x = y, and thus f(x) = f(y), a contradiction. It follows that f(x) is uniformly continuous on I.

Solution 5.23

⇒:Assume f is not uniformly continuous, then there is an ε > 0 for which no δ > 0 will work in
the definition of uniform continuity. In particular, δ = 1

n will not work. Therefore there must be a
pair of numbers xn and yn such that

|xn − yn| < 1
n

but |f(xn) − f(yn)| ≥ ε.

These xn and yn form required sequences.
:⇐ By the Archimedean principle we can select an integer n so that 0 < 1

n < δ. For the corre-
sponding xn and yn one will have |f(xn) − f(yn)| ≥ ε even though |xn − yn| < 1

n < δ. Since this
can be done for every δ > 0, f cannot be uniformly continuous on R.

Solution 5.24

(a) Not uniformly continuous on (0, 1), because |f(e−n) − f(e−(n+1))| = 1 while e−n → 0 as
n → ∞.

(b) Not uniformly continuous on [0,∞), because |f(2nπ) − f(2nπ + 1/n)| → 2π as n → ∞.

(c) Uniformly continuous on [0,∞). We note that

|f(x) − f(c)| = |√x− √
c| ≤

√
|x− c| for x, c ∈ [0,∞).

Therefore, given ε > 0, choose δ = ε2, then |x− c| < δ implies |√x− √
c| < ε.

(d) Since f(x) is even and continuous on R, it is enough to show that f(x) is uniformly continuous
on [1,∞) since any continuous function on [−1, 1] is uniformly continuous. On the other hand,
we have

|f(x) − f(c)| =
∣∣∣∣ 1
x2 + 1

− 1
c2 + 1

∣∣∣∣ ≤ |x− c|

for any x, c ∈ [1,∞). Hence f(x) is Lipschitz on [1,∞) which implies that f(x) is uniformly
continuous on [1,∞).

(e) Not uniformly continuous on [0,∞) because |f(lnn) − f(ln(n+ 1))| = 1 while

| lnn− ln(n+ 1)| = ln
(

n

n+ 1

)
= ln

(
1 +

1
n

)
→ 0 as n → ∞.

Solution 5.25

Let ε > 0 and choose δ > 0 such that

|x− c| < δ and x, c ∈ I imply |f(x) − f(c)| < ε.
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Since (xn) is Cauchy, choose N ∈ N such that n,m ≥ N implies |xn − xm| < δ. Then n,m ≥ N
implies |f(xn) − f(xm)| < ε. Since ε can be chosen arbitrarily, we have that (f(xn)) is Cauchy.

Solution 5.26

Consider f : (0, 1) → R defined by f(x) = 1/x. Then f is continuous on (0, 1). If we set
(xn) = (1/n), we have xn → 0 and therefore is Cauchy, but (f(xn)) is divergent and thus is not
Cauchy.

Solution 5.27

Suppose that f is uniformly continuous on (a, b) and let (xn) be a sequence in (a, b) that converges
to a. We claim that lim

x→a
f(x) exists. Since (xn) is a Cauchy sequence, Problem 5.25 gives that

(f(xn)) is a Cauchy sequence in R. Hence (f(xn)) is convergent. The sequential characterization
of the limit of a function (see Problem 4.8) implies lim

x→a
f(x) exists. A similar argument will show

that lim
x→b

f(x) = q for some q ∈ R. We may now define the extended function f̃ : [a, b] → R by

f̃(x) =

⎧⎪⎨⎪⎩
f(x) if a < x < b,

p if x = a,

q if x = b.

Notice that f̃ is continuous on [a, b]. Since [a, b] is a closed and bounded interval, f̃ is uniformly
continuous on [a, b] by Problem 5.22.

Solution 5.28

Let T > 0 be a period of f . Problem 5.22 implies that f is uniformly continuous on any interval
[a, b]. Let us prove that f is in fact uniformly continuous on R. Let ε > 0. Then there exists
δ > 0 such that for any x, y ∈ [−T, 2T ] such that |x − y| < δ we have |f(x) − f(y)| < ε. Without
loss of generality we may assume that δ < T . Now let x, y ∈ R such that |x − y| < δ. There
exists n ∈ Z such that nT ≤ x < (n + 1)T . Then x − nT ∈ [0, T ] and y − nT ∈ [−T, 2T ]. Since
|(x− nT ) − (y − nT )| = |x− y| < δ,

|f(x− nT ) − f(y − nT )| = |f(x) − f(y)| < ε ,

which completes the proof of our claim, i.e., f is uniformly continuous on R.

Solution 5.29

Let I = (a, b) be an open interval and assume f is convex on (a, b). Let c ∈ (a, b). Suppose
a < s < c < d < t < b. From the geometric interpretation of convexity, we know that the point
(c, f(c)) lies below the line through the points (s, f(s)) and (d, f(d)). That is,

f(c) ≤ f(s) +
f(d) − f(s)

d− s
(c− s).

Now consider the line through the points (c, f(c)) and (t, f(t)). Again from convexity we have

f(d) ≤ f(c) +
f(t) − f(c)

t− c
(d− c).
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From the above inequalities we can obtain

f(s) +
f(c) − f(s)

c− s
(d− s) ≤ f(d) ≤ f(c) +

f(t) − f(c)
t− c

(d− c).

Since

lim
d→c

f(s) +
f(c) − f(s)

c− s
(d− s) = f(c) and lim

d→c
f(c) +

f(t) − f(c)
t− c

(d− c) = f(c),

the Squeeze Theorem (Problem 4.9) implies lim
d→c

f(d) = f(c). Thus, f is continuous at an arbitrary

point c ∈ (a, b). It follows that f is continuous on (a, b).
If the interval is not open, then the convex function f need not be continuous, as illustrated in the
following example:

f(x) =

{
x2 if x ∈ [0, 1),
3 if x = 1.

Solution 5.30

Since f is continuous on a closed and bounded interval, f is uniformly continuous. Hence, for all
ε > 0 there exists a δ > 0 such that |x− y| < δ implies |f(x) − f(y)| < ε. Choose δ′ < δ such that
n = (b − a)/δ′ ∈ N and divide [a, b] into n equal-length intervals such that a = x0 < x1 < . . . <
xn = b. Clearly we have xi+1 − xi = δ′, for any i. For any x ∈ [a, b], there exists a unique i such
that x ∈ [xi, xi+1]. Define φ(x) = f(xi) for xi ≤ x < xi+1. Since |xi − x| ≤ δ′ < δ, we get

|f(xi) − f(x)| = |φ(x) − f(x)| < ε,

which proves our claim.

Solution 5.31

We define the Cantor function (Devil’s Staircase function) as follows:

F (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2 , if x ∈ [13 ,

2
3 ]

1
4 , if x ∈ [19 ,

2
9 ]

3
4 , if x ∈ [79 ,

8
9 ]

...,
...

i.e., on each discarded interval in the Cantor set construction, F is a constant function. Thus F is
differentiable with F ′(x) = 0 for all points of [0, 1]\C, and because C is a zero set, F ′(x) = 0 for
almost all x.

To show F is continuous, consider x ∈ [0, 1]. If x has base 3 expansion x = (.x1x2x3 . . . )3, then
the base 2 expansion of y = F (x) is y = (.y1y2y3 . . . )2, where

yi =

⎧⎪⎨⎪⎩
0, if there exists k < i such that xk = 1,
1, if xi = 1 and there does not exist k < i such that xk = 1,
xi
2 , if xi = 0 or xi = 2 and there does not exist k < i such that xk = 1.

First notice that F (x) is well defined, because two base 3 expansions of x represent the same
number x if and only if x is an endpoint of C. Thus one of its base 3 expansions end in 2’s, the
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other in 0’s: (.x1x2 . . . xl02)3 = x = (.x1x2 . . . xl10)3. If for some (smallest) k ≤ l, xk = 1, then
(.y1y2 . . . )2 = (.x1

2
x2
2 . . .

xk−1
2 10)2. If for all k ≤ l, xk �= 1, then the two base 2 expansions for F (x)

are (.x1
2

x2
2 . . .

xl−1
2 01)2 and (.x1

2
x2
2 . . .

xl−1
2 10)2. These two base 2 expansions represent the same

number y. The same reasoning applies if one has (.x1x2 . . . xl12)3 = x = (.x1x2 . . . xl20)3. Thus,
F (x) is well defined.

To show F (x) is continuous, let ε > 0 be given. Choose k such that 1
2k ≤ ε. If |x − x0| < 1

3k ,
then there are base 3 expansions of x and x0 whose first k symbols agree. Therefore, the first k
symbols of F (x) and F (x0) agree as well, which implies that |F (x) − F (x0)| ≤ 1

2k+1 < ε.

Solution 5.32

In fact, for convenience, we shall prove the result for sequences (fj) of functions from [0, 1) to
[0, 1); this is equivalent to the stated theorem because there is a homomorphism from R+ to [0, 1).

For a function f : [0, 1) → [0, 1) we write D(f) for the set of points x ∈ [0, 1) at which the
function f is not feebly continuous, and for a sequence f = (fj) of such functions, we write D(f)
for the set of points x ∈ [0, 1) at which the sequence f is not feebly continuous, so that⋃

{D(fj) : j ∈ N} ⊂ D(f).

We first claim that it suffices to prove that, for each N ∈ N, the set D(f) is countable for each
such sequence f = (fj) for which the range, R(fj), of each function fj contains at most N points in
[0, 1). Indeed, suppose that we have proved that D(f) is countable for each such sequence f = (fj),
and let f = (fj) be any sequence of functions from [0, 1) to [0, 1). For j, n ∈ N, set

fj,n(x) =
1
n

[nfj(x)] (x ∈ [0, 1)),

where [α] is the integer part of α ∈ R+, so that |R(fn,j)| ≤ n for each j ∈ N and

fj,n(y) ≤ fj(y) < fj,n(y) +
1
n

(y ∈ [0, 1), j ∈ N).

Set fn = (fn,j : j ∈ N). By hypothesis, the set D(fn) is countable for each n ∈ N, and so

D :=
⋃

{D(fn) : n ∈ N}

is countable.
Let x ∈ [0, 1) \D, so that each sequence fn is feebly continuous at x. We define a sequence (rn)

inductively by requiring that

rn < min
{
rn−1,

1
n

}
and |fj,n(x+ rn) − fj,n(x)| < 1

n
(j ∈ Nn),

where r0 = 1, so that (rn) ↘ 0. For each n ∈ N and j ∈ Nn, we have

fj(x+ rn) < fj,n(x+ rn) +
1
n
< fj,n(x) +

2
n
< fj(x) +

2
n

and, similarly, fj(x+ rn) > fj(x) − 2/n. For each j ∈ N and n ≥ j, we have

|fj(x+ rn) − fj(x)| < 2
n
,
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and so fj(x+ rn) → fj(x) as n → ∞. This establishes the claim.

Now take a sequence f = (fj) of functions from [0, 1) to [0, 1) such that |R(fj)| ≤ k for each
j ∈ N, where k ∈ N.

For each x ∈ D(f), there exist j = j(x) ∈ N and δ(x) > 0 such that

inf{|fj(x+ t) − fj(x)| : 0 < t < δ(x)} > 0.

In particular, fj(y) �= fj(x) whenever y ∈ (x, x+ δ(x)). For each such x, choose q(x) ∈ Q ∩ (x, x+
δ(x)).

Assume toward a contradiction that D(f) is uncountable. Then there exist j0 ∈ N and q ∈ Q

and such that {
x ∈ [0, 1) : inf{|fj0(x+ t) − fj0(x)| : 0 < t < q} > 0

}
is uncountable. In particular, there exist distinct points x1, . . . , xk+1 ∈ [0, 1) with q(xi) = q
(i ∈ Nk+1) for which

inf{|fj0(xi + t) − fj0(xi)| : 0 < t < q} > 0;

we may suppose that x1 < x2 < . . . < xk+1. We note that

q ∈ (xi, xi + δ(xi)) (i ∈ Nk+1).

Take i, j ∈ Nk+1 with i < j. Then xi < xj < q < xi + δ(xi), and hence fj0(xj) �= fj0(xi). Thus
the numbers fj0(x1), . . . , fj0(xk+1) are distinct, a contradiction of the fact that |R(fj0)| = k. Thus
D(f) is countable, as required.

Solution 5.33

a) Given c ∈ R and ε > 0, set δ =
ε

k
. Then

|f(x) − f(y)| < ε for all x ∈ R such that |x− c| < δ.

Hence if f is a contraction, then f is continuous.

b) To show that (xn) is Cauchy, observe:

|xn+1 − xn| = |f(xn) − f(xn−1)| ≤ k|xn − xn−1| = |f(xn−1) − f(xn−2)| ≤ k2|(xn−1 − xn−2)|
we can repeat the above process to obtain

|xn+1 − xn| ≤ kn|x1 − x0|.
Thus if n > m,

|xn − xm| ≤ |xn − xn−1| + |xn−1 − xn−2| + · · · + |xm+1 − xm|

|xn+1 − xn| ≤ (kn−1 + kn−2 + · · · + km)|x1 − x0| ≤ km

1 − k
|x0 − x1|

using the limiting sum of a geometric series, which we may do since 0 < k < 1. Since km → 0
as m → ∞, we must have |xn, xm| < ε for any ε > 0 whenever m and n are sufficiently
large. Hence (xn) is a Cauchy sequence. Since R is a complete space, every Cauchy sequence
converges in it, and the existence of lim

n→∞xn is assured. We set lim
n→∞xn = x∗.
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c) To show x∗ is a fixed point of f , we note that, for any positive integer n,

0 ≤ |f(x∗)−x∗| ≤ |f(x∗)−xn|+|xn−x∗| = |f(x∗)−f(xn−1)|+|xn−x∗| ≤ k|x∗−xn−1|+|xn−x∗|

and so |f(x∗) − x∗| = 0 since |xn − x∗| → 0 ( and |x∗ − xn−1| → 0). Thus f(x∗) = x∗.

d) Suppose there are two fixed points say x∗ and x̃, so also f(x̃) = x̃. Then

|x∗ − x̃| = |f(x∗) − f(x̃)| ≤ k|x∗ − x̃|

which since k < 1 can only be true when |x∗ − x̃| = 0; that is, x∗ = x̃ . Hence there is a
unique fixed point of f .



Chapter 6

Differentiability

[His epitaph:] Who, by vigor of mind almost divine, the motions and figures
of the planets, the paths of comets, and the tides of the seas first demon-
strated.

Isaac Newton (1643–1727)

• Let f be a real-valued function defined on an interval I containing the point c. We say f is
differentiable at c if the limit

lim
x→c

f(x) − f(c)
x− c

= lim
h→0

f(c+ h) − f(c)
h

exists. In this case we write f ′(c) for this limit. If the function f is differentiable at each
point of the set S ⊆ I, then f is said to be differentiable on S and the function f ′ : S → R is
called the derivative of f on S. When f is differentiable at c the tangent line to f at c is the
linear function L(x) = f(c) + f ′(c)(x− c).

• Rolle’s Theorem: Let f be a continuous function on [a, b] that is differentiable on (a, b) and
such that f(a) = f(b) = 0. Then there exists at least one point c ∈ (a, b) such that f ′(c) = 0.

• Mean Value Theorem: If f : [a, b] → R is continuous on [a, b] and differentiable on (a, b), then
there exists a point c ∈ (a, b) where

f ′(c) =
f(b) − f(a)

b− a
.
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• If f is differentiable on (a, b) and f ′ is continuous, we say f is of class C1. If f ′ is differentiable,
then we can get the second derivative f ′′. If f ′′ is continuous, we say f is of class C2, and so
on.

• Taylor’s Theorem: Let f : [a, b] → R be of class Cn (n is a positive integer) and let x0 ∈ [a, b].
Then for each x ∈ [a, b] with x �= x0 there exists a point c between x and x0 such that

f(x) = f(x0)+f ′(x0)(x−x0)+
f ′′(x0)

2!
(x−x0)2+· · ·+ f (n)(x0)

n!
(x−x0)n+

f (n+1)(c)
(n+ 1)!

(x−x0)n+1

Problem 6.1 Show that f(x) = |x| is not differentiable at 0.

Problem 6.2 Discuss the differentiability of f(x) = |x2 − 4| at x = 2.

Problem 6.3 Prove that every differentiable function is continuous.

Problem 6.4 Prove that if the function f : I → R has a bounded derivative on I, then f is
uniformly continuous on I. Is the converse true?

Problem 6.5 Let f be a function on [a, b] that is differentiable at c. Let L(x) be the tangent
line to f at c. Prove that l is the unique linear function with the property that

lim
x→c

f(x) − L(x)
x− c

= 0.

Problem 6.6 Determine whether or not f is differentiable at 0:

1. f(x) = 3
√
x

2. f(x) =
√|x|

3. f : R → R defined by f(x) = x sin
( 1

x

)
if x �= 0 and f(0) = 0

4. f(x) = x|x|
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Problem 6.7 Discuss the differentiability of

f(x) =

⎧⎨⎩x2 sin
(

1
x

)
if x �= 0,

0 if x = 0

at x = 0.

Problem 6.8 Find the derivatives (if they exist) of

f(x) =

{
x2e−x2

if |x| ≤ 1,
1
e if |x| > 1.

Problem 6.9 Suppose a differentiable function f : R −→ R has a uniformly continuous deriva-
tive on R. Show that

lim
n→∞n

[
f

(
x+

1
n

)
− f(x)

]
= f ′(x).

Problem 6.10 Let f(x) be differentiable at a. Find

lim
n→∞

anf(x) − xnf(a)
x− a

where n ∈ N.

Problem 6.11 We say a function f : (a, b) → R is uniformly differentiable if f is differentiable
on (a, b) and for each ε > 0 there exists a δ > 0 such that

0 < |x− y| < δ and x, y ∈ (a, b) ⇒
∣∣∣∣f(x) − f(y)

x− y
− f ′(x)

∣∣∣∣ < ε.

Prove that if f is uniformly differentiable, then f ′ is continuous. Then give an example of a
function that is differentiable but not uniformly differentiable.

Problem 6.12 Let f : (−a, a) → R, with a > 0. Assume f(x) is continuous at 0 and such that
the limit

lim
x→0

f(x) − f(κ x)
x

= l

exists, where 0 < κ < 1. Show that f ′(0) exists. What happens to this conclusion when κ > 1?
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Problem 6.13 Let f : R → R be a continuous function. Consider the sequence

x0 ∈ R and xn+1 = f(xn) .

Assume that lim
n→∞xn = l and f ′(l) exists. Show that |f ′(l)| ≤ 1.

Problem 6.14 Let f(x) =
√

1 + x2. Show that

(1 + x2)f [n+2](x) + (2n+ 1)xf [n+1](x) + (n2 − 1)f [n](x) = 0 ,

for any n ≥ 1. Use this identity to show that f [2n+1](0) = 0 for any n ≥ 0. The notation f [m](x)
denotes the mth derivative of f .

Problem 6.15 Show that the equation ex = 1 − x has one solution in R. Find this solution.

Problem 6.16 Let f : [a, b] → R be continuous and differentiable everywhere in (a, b) except
maybe at c ∈ (a, b). Assume that

lim
x→c

f ′(x) = l .

Show that f(x) is differentiable at c and f ′(c) = l.

Problem 6.17 Let f : R → R differentiable everywhere. Let x0 ∈ R and h ∈ R. Show that
there exists θ ∈ (0, 1) such that

f(x0 + h) − f(x0) = hf ′(x0 + θh) .

Set f(x) =
1

1 + x
and x0 > 0. Find the limit of θ when h → 0.

Problem 6.18 Show the following inequalities:

(a) ln(1 + x) ≤ x, for any x ≥ 0;

(b) x+
x3

3
≤ tan(x), for any x ∈

(
0,
π

2

)
;

(c) x− x3

6
< sin(x) < x, for 0 < x ≤ π

2
;

(d) 1 − x2

2
< cos(x) < 1 − x2

2
+
x4

24
, for 0 < x ≤ π

2
.
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Problem 6.19 Let f(x) be a continuous function on [a, b], differentiable on (a, b), and f ′(x) �= 0
for any x ∈ (a, b). Show that f(x) is one-to-one. Then show that f ′(x) > 0 for every x ∈ (a, b),
or f ′(x) < 0 for every x ∈ (a, b). Deduce from this that f ′(x) satisfies the Intermediate Value
Theorem without use of any continuity of f ′(x).

Problem 6.20 Let f : R → R be a differentiable function. Suppose that f ′(x) > f(x) for all
x ∈ R, and f(x0) = 0 for some x0 ∈ R. Prove that f(x) > 0 for all x > x0. As an application of
this, show that

aex = 1 + x+
x2

2
where a > 0 has exactly one root.

Problem 6.21 Let f : R → R. Assume that for any x, t ∈ R we have

|f(x) − f(t)| ≤ |x− t|1+α

where α > 0. Show that f(x) is constant.

Problem 6.22 Let f : [0,∞) → R differentiable everywhere. Assume that lim
x→∞ f(x)+f ′(x) = 0.

Show that lim
x→∞ f(x) = 0.

Problem 6.23 Let f : [0, 1] → R be continuous and differentiable inside (0, 1) such that

(i) f(0) = 0,

(ii) and there exists M > 0 such that |f ′(x)| ≤ M |f(x)|, for x ∈ (0, 1).

Show that f(x) = 0 for x ∈ [0, 1].

Problem 6.24 Consider the function

f(x) =

⎧⎪⎨⎪⎩
e−1/x2

if x �= 0,

0 if x = 0.

Show that f [n](0) = 0, for n = 1, 2, . . . .
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Problem 6.25 Consider a function f(x) whose second derivative f ′′(x) exists and is continuous
on (a, b). Let c ∈ (a, b). Show that

lim
h→0

f(c+ h) − 2f(c) + f(c− h)
h2 = f ′′(c) .

Is the existence of the second derivative necessary to prove the existence of the above limit?

Problem 6.26 Let f be a real-valued twice continuously differentiable function on [a, b]. Let x̃
be a simple zero of f in (a,b). Show that Newton’s method defined by

xn+1 = g(xn) and g(xn) = xn − f(xn)
f ′(xn)

is a contraction in some neighborhood of x̃, so that the iterative sequence converges to x̃ for
any x0 sufficiently close to x̃.

Note that x̃ is a simple zero implies that f ′(x) �= 0 on some neighborhood U of x̃ where U ⊂ [a, b]
and f ′′ is bounded on U .

Problem 6.27 Consider a function f(x) whose second derivative f ′′(x) exists and is continuous
on [0, 1]. Assume that f(0) = f(1) = 0 and suppose that there exists A > 0 such that |f ′′(x)| ≤ A
for x ∈ [0, 1]. Show that ∣∣∣∣f ′

(
1
2

)∣∣∣∣ ≤ A

4
and

∣∣f ′ (x)
∣∣ ≤ A

2

for 0 < x < 1.

Problem 6.28 Let I be an open interval, and let f : I → R be such that the nth order
derivative f (n) exists on I. Show that for a ∈ I and for each h such that a+ h ∈ I, we have

f(a+ h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) + · · · +

hn−1

(n− 1)!
f (n−1)(a) +Rn,

where Rn =
hn

n!
f (n)(a+ θh) for some θ ∈ (0, 1) (Lagrange’s form of the remainder)

and Rn =
hn(1 − θ)n−1

(n− 1)!
f (n)(a+ θh) for some θ ∈ (0, 1) (Cauchy’s form of the remainder).

Note that here f ′′, f ′′′, . . . , f (j) are the 2nd, 3rd, . . ., jth derivatives of f , θ depends on h, and
is in principle different in Lagrange’s and Cauchy’s forms: a + θh for θ ∈ (0, 1) is a convenient
way of specifying some number c between a and a+ h (even when h is negative). If n = 1, the
two forms are equal, and agree with hf ′(c) in the Mean Value Theorem.
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Problem 6.29 (General Binomial Theorem) Show that for fixed s ∈ R, the power series
expansion

(1 + x)s = 1 + sx+
s(s− 1)

2!
x2 +

s(s− 1)(s− 2)
3!

x3 + · · · +
s(s− 1) · · · (s− k + 1)

k!
xk + · · ·

is valid

(i) for all x whenever s ∈ N,

(ii) for |x| < 1 in all cases,

(iii) for x = 1 if and only if s > −1,

(iv) for x = −1 if and only if s ≥ 0.

More generally, if a > 0, then the expansion (a + x)s = as + sxas−1 +
s(s− 1)

2!
x2as−2 + · · · is

valid whenever |x| < a.
Hint: Use the Maclaurin series of f(x) = (1 + x)s together with Cauchy’s form of the remainder
Rn.

Problem 6.30 (The Leibnitz Formula) Let f(x) and g(x) be two differentiable functions
with continuous nth derivatives. Then their product has a continuous nth derivative, and

dn

dxn

(
f(x)g(x)

)
=

n∑
k=0

(
n

k

)
dk

dxk

(
f(x)

) dn−k

dxn−k

(
g(x)

)
.

Problem 6.31 (Implicit Function Theorem) Let D = {(x, y) ∈ R2 : a ≤ x ≤ b } and
F : D → R be a function where its partial derivative with respect to y exists and there exist
m,M > 0 such that

0 < m <
∂F

∂y
≤ M for all (x, y) ∈ D.

Show that there exists one and only one continuous function y(x) on [a, b] such that

F (x, y(x)) = 0.

Note: This means the equation F (x, y(x)) = 0 does implicitly define a unique continuous function
y in terms of x. To solve this problem consider the vector space C[a, b] of all continuous real-
valued functions defined on [a, b] with ‖ f ‖= max

a≤x≤b
|f(x)| and define a map

T : (C[a, b], ‖ . ‖) → (C[a, b], ‖ . ‖)

as
Ty(x) = y(x) − 1

M
F (x, y(x)).

Show T is a contraction and use the Banach Contraction Mapping Theorem.
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Problem 6.32 (Legendre polynomials)
Consider the sequence of polynomial functions

Ln =
1

2nn!
dn

dxn
(x2 − 1)n, n ∈ N.

1. Show the recurrence relationship

(n+ 1)Ln+1 = (2n+ 1)xLn − nLn−1,

for any n ≥ 1.

2. Find the degree of Ln, n ∈ N.

3. Show that for any polynomial P , with degree less than or equal to n− 1, we have∫ 1

−1
Ln(x)P (x)dx = 0.

4. Find
∫ 1

−1

(
Ln(x)

)2
dx.
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Solutions

Solution 6.1

Let xn = (−1)n

n for n ∈ N. Then the sequence (xn) converges to 0, but the corresponding sequence
of quotients does not converge.

If n is even xn = 1
n , so that

f(xn) − f(0)
xn − 0

=
1
n − 0
1
n − 0

= 1.

If n is odd, we have xn = − 1
n , so that

f(xn) − f(0)
xn − 0

=
1
n − 0

− 1
n − 0

= −1.

Since the two subsequences have different limits, the sequence f(xn)−f(0)
xn−0 does not converge. Thus

f is not differentiable at zero.

Solution 6.2

By definition of the derivative, we know that f ′(2) exists if and only if lim
x→2

f(x) − f(2)
x− 2

exists.

Since

lim
x→2

f(x) − f(2)
x− 2

= lim
x→2

|x2 − 4|
x− 2

,

we will consider the side limits in order to take care of the absolute value. So

lim
x→2+

|x2 − 4|
x− 2

= lim
x→2+

(x2 − 4)
x− 2

= lim
x→2+

x+ 2 = 4.

On the other hand, we have

lim
x→2−

|x2 − 4|
x− 2

= lim
x→2−

−(x2 − 4)
x− 2

= lim
x→2+

−(x+ 2) = −4.

So lim
x→2

f(x) − f(2)
x− 2

does not exist, i.e., f(x) is not differentiable at x = 2. Note that the graph of

f(x) has two half-tangents at x = 2 with different slopes.

Solution 6.3

Suppose that f is differentiable at x = c; we compute

lim
x→c

f(x) = lim
x→c

f(x) + (x− c)
f(x) − f(c)

x− c

= f(c) + 0 · f ′(c) = f(c).
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Solution 6.4

By hypothesis, we know that there is a constant M > 0 such that |f ′(x)| ≤ M for all x ∈ I. Using
the Mean Value Theorem, we have

f(x) − f(y) = f ′(a)(x− y),

where a is between x and y for x, y ∈ I. Hence, |f(x) − f(y)| ≤ M |x − y|. Given ε > 0, choose
δ = ε/M . Then |x−y| < δ implies |f(x)−f(y)| ≤ M |x−y| < Mδ = Mε

M = ε. Hence, f is uniformly
continuous on the interval I. The converse is not true. Indeed, consider the function f(x) defined
on [0, 1] by

f(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x2 sin

(
1
x2

)
if 0 < x ≤ 1,

0 if x = 0.

Since |x2 sin(1/x2)| ≤ |x2|, we see that f is continuous at 0. Since f is continuous on (0, 1], we
conclude that f is continuous on [0, 1]. Then f(x) is uniformly continuous on [0, 1]. However, the
derivative

f ′(x) = 2x sin
1
x2 − 2

x
cos

1
x2

is unbounded on (0, 1), because if xn = 1√
2πn

, then xn → 0 and |f ′(xn)| = 2
√

2πn → ∞ as n → ∞.

Solution 6.5

Setting h = x− c,

lim
x−c

f(x) − L(x)
x− c

= lim
h→0

f(c+ h) − (f(c) + f ′(c)h)
h

= lim
h→0

f(c+ h) − f(c)
h

− f ′(c)

= 0.

Now if we have another function K(x) that satisfies this limit, then by the continuity of K and f
we have

f(c) −K(c) = lim
x→c

f(x) −K(c)

= lim
x→c

(x− c)
f(x) −K(c)

(x− c)
= 0.

Thus K(x) = f(c) +m(x− c) where m is the slope and

m = K ′(c) = lim
h→0

K(c+ h) −K(c)
h

= lim
h→0

K(c+ h) − f(c+ h)
h

+
f(c+ h) − f(c)

h

= 0 + f ′(c) = f ′(c).

Thus the line K that goes through the point (c, f(c)) has the same slope as L. Therefore K = L.
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Solution 6.6

1. f ′(x) = 1
3x

−2/3 for x �= 0. But at x = 0 we have

lim
h→0

f(h) − f(0)
h

= lim
h→0

h−2/3 = +∞,

which is not differentiable at the origin. (Vertical tangent at the origin.)

2. f(x) =
√|x| has a cusp, with right derivative of +∞ and left derivative of −∞. f is not

differentiable at the origin; that is,

f ′(x) =

{
1

2
√

x
if x > 0,

− 1
2
√−x

if x < 0,

since

f ′
+(0) = lim

h→0+

√
h− 0
h

= +∞ and f ′
−(0) = lim

h→0−

√−h− 0
h

= −∞.

3. For x �= 0, we have
f(x) − f(0)

x− 0
=
x sin 1

x

x
= sin

1
x
.

But limx→0 sin
( 1

x

)
does not exist. Thus f is not differentiable at x = 0.

4. Observe that

f(x) =
{
x2 if x ≥ 0,
−x2 if x < 0,

therefore

f ′(x) =
{

2x if x > 0,
−2x if x < 0,

and

f ′
+(0) = lim

h→0+

h2 − 0
h

= 0 = −f ′
−(0).

f is differentiable at 0.

Solution 6.7

Since the sine function is bounded and lim
x→0

x2 = 0, we have

lim
x→0

x2 sin
(

1
x

)
= 0 = f(0) .

Hence f(x) is continuous at x = 0. In order to find out if f(x) is differentiable at x = 0, let us

investigate the limit lim
x→0

f(x) − f(0)
x− 0

. Since

lim
x→0

f(x) − f(0)
x− 0

= lim
x→0

f(x)
x

= lim
x→0

x sin
(

1
x

)
= 0 .
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Therefore f(x) is differentiable at x = 0 and f ′(0) = 0. Note that if one wants to use the properties
of the derivatives, we will get

f ′(x) = 2x sin
(

1
x

)
− cos

(
1
x

)
,

which does not have a limit when x → 0.

Solution 6.8

Clearly

f ′(x) =
{

2xe−x2
(1 − x2) if |x| < 1,

0 if |x| > 1,

for x general. In addition, at x = 1 we have that

f ′
+(1) = lim

x→1+

1
e

− 1
e

x− 1
= 0 and f ′

−(1) = lim
x→1−

x2e−x2 − 1
e

x− 1
=

d

dx
(x2e−x2

)
∣∣∣∣
x=1

= 0.

Solution 6.9

Since f ′ is uniformly continuous on R, given ε > 0 there exists δ > 0 such that |f ′(x) − f ′(y)|ε for
any x, y ∈ R for which |x− y| < δ. Let N ∈ N such that for any n ≥ N we have 1/n < δ. Then for
any x ∈ R we have

|f ′(t) − f ′(x)| < ε, for any t ∈
(
x, x+

1
n

)
.

Since f is differentiable, we can use the Mean Value Theorem to obtain

∣∣∣∣n [f (x+
1
n

)
− f(x)

]
− f ′(x)

∣∣∣∣ =
∣∣∣∣∣∣∣∣
f

(
x+

1
n

)
− f(x)

1
n

− f ′(x)

∣∣∣∣∣∣∣∣ = |f ′(tn) − f ′(x)| < ε

for some tn ∈
(
x, x+

1
n

)
, which yields

lim
n→∞n

[
f

(
x+

1
n

)
− f(x)

]
= f ′(x).

Solution 6.10

We have

anf(x) − xnf(a)
x− a

=
anf(x) − anf(a) + anf(a) − xnf(a)

x− a
= an f(x) − f(a)

x− a
− f(a)

xn − an

x− a
.

Since f(x) and xn are both differentiable at a, we get

lim
n→∞

anf(x) − xnf(a)
x− a

= anf ′(a) − f(a)nan−1 .
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Solution 6.11

Suppose f is uniformly differentiable. Let ε > 0 be given. Then there exists some δ > 0 such that

0 < |x− y| < δ ⇒
∣∣∣∣f(x) − f(y)

x− y
− f ′(x)

∣∣∣∣ < ε

2
.

Therefore,

|f ′(x) − f ′(y)| =
∣∣∣∣f ′(x) − f(x) − f(y)

x− y

∣∣∣∣+ ∣∣∣∣f(y) − f(x)
y − x

− f ′(y)
∣∣∣∣ ≤ ε

2
+
ε

2
= ε.

Hence, f ′ is continuous. Now consider

f(x) =

{
x2 sin 1

x if x �= 0,
0 if x = 0.

This function is differentiable everywhere but f ′(x) = 2x sin 1
x − cos 1

x for x �= 0 and limx→0 f
′(x)

does not exist. Thus, f ′ exists but is not continuous.

Solution 6.12

Let ε > 0. Set ε∗ = ε(1 − κ). Then we have ε∗ > 0. Since lim
x→0

f(x) − f(κ x)
x

= l, there exists

δ > 0 such that for x ∈ (−a, a) and |x| < δ, we have

l − ε∗ <
f(x) − f(κ x)

x
< l + ε∗ .

Since κ ∈ (0, 1), we have |κnx| ≤ |x| < δ for any x ∈ (−δ, δ) ∩ (−a, a) and n ≥ 1. So let
x ∈ (−δ, δ) ∩ (−a, a) be fixed. Hence for any n ≥ 0, we have

l − ε∗ <
f(κn x) − f(κn+1 x)

κn x
< l + ε∗ ,

or

(l − ε∗)κn <
f(κn x) − f(κn+1 x)

x
< (l + ε∗)κn .

So
N∑

n=0

(l − ε∗)κn <
N∑

n=0

f(κn x) − f(κn+1 x)
x

<
N∑

n=0

(l + ε∗)κn ,

for any N ≥ 1. Since ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
n=0

(l − ε∗)κn = (l − ε∗)
1 − κN+1

1 − κ
,

N∑
n=0

(l + ε∗)κn = (l + ε∗)
1 − κN+1

1 − κ
,

N∑
n=0

f(κn x) − f(κn+1 x)
x

=
f(x) − f(κN+1 x)

x
,
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then

(l − ε∗)
1 − κN+1

1 − κ
<
f(x) − f(κN+1 x)

x
< (l + ε∗)

1 − κN+1

1 − κ
,

for any N ≥ 1. Since lim
N→∞

κN = 0, we get by letting N → ∞,

(l − ε∗)
1

1 − κ
≤ f(x) − f(0)

x
≤ (l + ε∗)

1
1 − κ

.

Using the definition of ε∗, we get

l

1 − κ
− ε ≤ f(x) − f(0)

x
≤ l

1 − κ
+ ε ,

for any x ∈ (−δ, δ) ∩ (−a, a). This obviously implies

lim
x→0

f(x) − f(0)
x

=
l

1 − κ
.

Therefore f(x) is differentiable at 0. If we assume κ > 1, then 0 <
1
κ
< 1. Easy algebraic

manipulations will imply

lim
x→0

f(x) − f(κ x)
x

= lim
t→0

f

(
t

κ

)
− f(t)

t

κ

,

where t = κ x. Hence

lim
x→0

f(x) − f(κ x)
x

= lim
t→0

κ

f

(
t

κ

)
− f(t)

t
= −κ lim

t→0

f(t) − f

(
t

κ

)
t

.

So

lim
x→0

f(x) − f
(x
κ

)
x

= − l

κ
.

The proof above will then imply that f(x) is differentiable at 0 and that

lim
x→0

f(x) − f(0)
x

=
− l

κ

1 − 1
κ

=
l

1 − κ
.

Therefore the conclusion in the statement is independent from the conditions κ < 1 or κ > 1.

Solution 6.13

Assume not, i.e., |f ′(l)| > 1. First note that since f(x) is continuous and xn+1 = f(xn), for any
n ≥ 1, we get by letting n → ∞, f(l) = l. Since

lim
x→l

f(x) − f(l)
x− l

= f ′(l) ,
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then

lim
x→l

∣∣∣∣f(x) − l

x− l

∣∣∣∣ = |f ′(l)| > 1 .

Take ε =
|f ′(l)| − 1

2
> 0. Then there exists δ > 0 such that for any x ∈ (l − δ, l + δ), we have

|f ′(l)| − ε <

∣∣∣∣f(x) − l

x− l

∣∣∣∣ < |f ′(l)| + ε,

or |f ′(l)| + 1
2

<

∣∣∣∣f(x) − l

x− l

∣∣∣∣ .
In particular, since 1 < |f ′(l)|, we have

|x− l| < |x− l| |f
′(l)| + 1

2
< |f(x) − l|

for any x ∈ (l − δ, l + δ). Since {xn} converges to l, there exists N ≥ 1 such that for any n ≥ N ,
we have xn ∈ (l − δ, l + δ). So

|xn − l| < |f(xn) − l| = |xn+1 − l|

for any n ≥ N . In particular, we have

|xN − l| < |xN+1 − l| < |xn − l|

for any n > N . If we let n → ∞, we will get

|xN − l| < |xN+1 − l| ≤ 0

which generates the desired contradiction. So we must have |f ′(l)| ≤ 1. Note that one may think
that maybe |f ′(l)| < 1. That is not the case in general. Indeed, take f(x) = sin(x). Then {xn}
converges to 0 but f ′(0) = cos(0) = 1.

Solution 6.14

Note first that
f ′(x) =

2x
2
√

1 + x2
=

x√
1 + x2

.

Hence (1 + x2)f ′(x) = x
√

1 + x2 = xf(x). If we take the derivative of both sides of this equation,
we get

2xf ′(x) + (1 + x2)f ′′(x) = f(x) + xf ′(x)

or
(1 + x2)f ′′(x) + xf ′(x) − f(x) = 0 .

Again let us take the derivative of both sides to get

(1 + x2)f [3](x) + 2xf ′′(x) + xf ′′(x) + f ′(x) − f ′(x) = 0

or
(1 + x2)f [3](x) + 3xf ′′(x) = 0 .
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So the desired identity is valid when n = 1. Assume it is still valid for n and let us prove it for
n+ 1. So we have

(1 + x2)f [n+2](x) + (2n+ 1)xf [n+1](x) + (n2 − 1)f [n](x) = 0 .

If we take the derivative of both sides of this equation, we get

(1 + x2)f [n+3](x) + 2xf [n+2](x) + (2n+ 1)xf [n+2](x) + (2n+ 1)f [n+1](x) + (n2 − 1)f [n+1](x) = 0 ,

or
(1 + x2)f [n+3](x) + (2n+ 3)xf [n+2](x) +

(
2n+ 1 + n2 − 1

)
f [n+1](x) = 0.

Since (n+ 1)2 − 1 = 2n+ 1 + n2 − 1, we get

(1 + x2)f [n+3](x) + (2n+ 3)xf [n+2](x) +
(
(n+ 1)2 − 1

)
f [n+1](x) = 0 .

Hence by induction the desired identity is true for any n ≥ 1. First note that f(0) = 1, f ′(0) = 1.
From the identity

(1 + x2)f ′′(x) + xf ′(x) − f(x) = 0

we get f ′′(0) = 1. Assume that f [2n+1](0) = 0. Then from the identity

(1 + x2)f [2n+3](x) + (2n+ 1)xf [2n+2](x) +
(
(2n+ 1)2 − 1

)
f [2n+1](x) = 0 ,

we get
f [2n+3](0) + (2n+ 1)0f [2n+2](0) +

(
(2n+ 1)2 − 1

)
f [2n+1](0) = 0 ,

or f [2n+3](0) +
(
(2n + 1)2 − 1

)
f [2n+1](0) = 0. Since f [2n+1](0) = 0, we get f [2n+3](0) = 0. By

induction we deduce that f [2n+1](0) = 0, for any n ≥ 0.

Solution 6.15

Since e0 = 1 − 0 = 1, then 0 is one solution of the equation ex = 1 − x. Let us prove that this
equation has only one solution. Assume not. Then there exist at least two solutions x1 < x2. They
must satisfy

f(x1) = f(x2) = 0

where f(x) = ex+x−1. Since this function is differentiable everywhere, we can use Rolle’s theorem,
there exists c ∈ (x1, x2) such that f ′(c) = 0. But f ′(x) = ex + 1 so ec = −1 which is not true.
Therefore our original equation has one solution, i.e., x = 0.

Solution 6.16

Without loss of generality take x ∈ (c, b). Then by the Mean Value Theorem, there exists θx ∈ (c, x)
such that

f(x) − f(c)
x− c

= f ′(θx) .

When x → c, the Squeeze Theorem implies θx → c as well. So

lim
x→c+

f ′(θx) = l ,
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which implies

lim
x→c+

f(x) − f(c)
x− c

= l .

Similarly we will get

lim
x→c−

f(x) − f(c)
x− c

= l ,

which implies f(x) is differentiable at c and f ′(c) = l.

Solution 6.17

Assume h > 0. The Mean Value Theorem implies the existence of c ∈ (x0, x0 + h) such that

f(x0 + h) − f(x0)
h

= f ′(c) .

Set θ =
(c− x0)

h
. Then c = x0 + θh and θ ∈ (0, 1). Hence

f(x0 + h) − f(x0)
h

= f ′(x0 + θh)

or f(x0 + h) − f(x0) = hf ′(x0 + θh). When h < 0, similar ideas will lead to the same conclusion.

If f(x) =
1

1 + x
, then we must have

1
1 + x0 + h

− 1
1 + x0

= h

(
− 1

(1 + x0 + θh)2

)
= − h

(1 + x0 + θh)2
·

Easy algebraic manipulations will then imply

− h

(1 + x0)(1 + x0 + h)
= − h

(1 + x0 + θh)2

which implies (1+x0+θh)2 = (1+x0)(1+x0+h). Since h → 0, we may assume that (1+x0+h) > 0
and 1 + x0 + θh > 0. Hence

θ =

√
(1 + x0)(1 + x0 + h) − 1 − x0

h
·

Since √
(1 + x0)(1 + x0 + h) − 1 − x0

h
=

(1 + x0)(1 + x0 + h) − (1 + x0)2

h
(√

(1 + x0)(1 + x0 + h) + 1 + x0

)
or √

(1 + x0)(1 + x0 + h) − 1 − x0

h
=

h(1 + x0)

h
(√

(1 + x0)(1 + x0 + h) + 1 + x0

) ,

θ =
(1 + x0)(√

(1 + x0)(1 + x0 + h) + 1 + x0

) ·

Hence
lim
h→0

θ =
(1 + x0)(√

(1 + x0)(1 + x0) + 1 + x0

) =
1
2

·
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Solution 6.18

Let us start by proving (a). First assume x > 0. The Mean Value Theorem applied to ln(1 + x)
on the interval [0, x] implies the existence of c ∈ (0, x) such that

ln(1 + x) − ln(1 + 0)
x− 0

=
1

1 + c
,

or ln(1 + x) =
x

1 + c
. Since 0 <

1
1 + c

< 1, we get ln(1 + x) < x. This implies ln(1 + x) ≤ x for any
x ≥ 0.

For (b), set f(x) = tan(x) − x− x3

3
. Let x > 0. Let us apply the Mean Value Theorem to f(x)

on [0, x]. Then there exists c ∈ (0, x) such that

f(x) − f(0)
x− 0

= f ′(c) .

Since

f(x) − f(0)
x− 0

=
tan(x)
x

− 1 − x2

3
and f ′(c) = 1 + tan2(c) − 1 − c2 = tan2(c) − c2 ,

we get

tan(x) − x− x3

3
= x

(
tan2(c) − c2

)
.

The proof will be complete if we prove that tan(x) − x > 0 for any x ∈
(
0,
π

2

)
. In order to get

it done, let us apply the Mean Value Theorem to tan(x) on the interval [0, x]. So there exists
c∗ ∈ (0, x) such that

tan(x) − tan(0)
x− 0

= sec2(c) = 1 + tan2(c) .

Since 1 + tan2(c) > 1, then we have
tan(x)
x

> 1 or x < tan(x). Therefore we have

(
tan2(c) − c2

)
= (tan(c) − c) (tan(c) + c) > 0

which implies tan(x) − x− x3

3
> 0 for any x ∈

(
0,
π

2

)
.

Since sin′(x) = cos(x) and cos′(x) = − sin(x), we will prove (c) and (d) simultaneously. First
for any x ∈ (0,

π

2
), the Mean Value Theorem implies the existence of c ∈ (0, x) such that

sin(x) − sin(0)
x− 0

=
sin(x)
x

= cos(c) < 1

which implies sin(x) < x. Now set

g(x) = 1 − x2

2
− cos(x) .
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When we apply the Mean Value Theorem to g(x) on (0, x) we secure the existence of d ∈ (0, x)
such that

g(x) − g(0)
x− 0

=
1 − x2

2
− cos(x)

x
= g′(d) = sin(d) − d < 0

from the previous argument. Since x > 0 we get

cos(x) > 1 − x2

2
.

In order to show that x− x3

6
< sin(x) and cos(x) < 1 − x2

2
+
x4

24
, apply the Mean Value Theorem

to the functions

h(x) = sin(x) − x+
x3

6
and k(x) = 1 − x2

2
+
x4

24
− cos(x)

for 0 < x ≤ π

2
.

Solution 6.19

Assume that f(x) is not one-to-one. Then there exists x1 < x2 such that f(x1) = f(x2). Rolle’s
theorem will imply the existence of c ∈ (x1, x2) such that f ′(c) = 0 which contradicts our assump-
tion. Next we will prove that f(x) is monotone. Without loss of generality, assume f(a) < f(b). Let
x ∈ (a, b). Assume f(a) < f(b) < f(x). Since f(x) is continuous on [a, b], the Intermediate Value
Theorem implies the existence of c ∈ (a, x) such that f(c) = f(b). Clearly c �= b which generates a
contradiction with f(x) being one-to-one. The same ideas will imply that f(x) < f(a) < f(b) does
not hold. Therefore we must have f(a) < f(x) < f(b) for any x ∈ (a, b). Next let x, y ∈ (a, b) such
that x < y. Assume f(y) < f(x). Then we have f(y) < f(x) < f(b). Again the Intermediate Value
Theorem implies the existence of c ∈ (y, b) such that f(c) = f(x). Clearly c �= x because x < y.
This is a contradiction with f(x) being one-to-one. Therefore, for any x, y ∈ (a, b) with x < y,
we have f(x) < f(y), i.e., f(x) is increasing. This will imply that f ′(x) ≥ 0 but since f ′(x) �= 0,
we get f ′(x) > 0 for any x ∈ (a, b). Finally let us prove that f ′(x) satisfies the conclusion of the
Intermediate Value Theorem. Indeed, let x1, x2 ∈ (a, b) and α ∈ R such that f ′(x1) < α < f ′(x2).
Without loss of generality we assume that x1 < x2. Next define g(x) = f(x) − α x. The function
g(x) inherits all the properties of f(x). In particular, we have g′(x) = f ′(x) − α. Assume that
g′(x) �= 0 for any x ∈ (x1, x2). From the first part, we deduce that g′(x) > 0 or g′(x) < 0 for any
x ∈ (x1, x2). It is easy to check that this conclusion still holds at x1 and x2. Hence g′(x) > 0 or
g′(x) < 0 for any x ∈ [x1, x2]. In other words, we have f ′(x) < α or f ′(x) > α for any x ∈ [x1, x2].
This is a contradiction with f ′(x1) < α < f ′(x2). Therefore there exists c ∈ (x1, x2) such that
g′(c) = 0 or f ′(c) = α. This completes the proof of our statement.

Solution 6.20

Set g(x) = e−xf(x). Then g(x) is differentiable and g′(x) = e−x
(
f ′(x) − f(x)

)
. Our assumption

implies g′(x) > 0 which leads to g(x) being increasing. Since g(x0) = 0, g(x) > 0 for x > x0. Since
f(x) = exg(x), we get f(x) > 0 for x > x0. For the application, define the function

f(x) = aex − 1 − x− x2

2
.
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Note that

f ′(x) = aex − 1 − x > aex − 1 − x− x2

2
= f(x) .

Since
lim

x→∞ f(x) = ∞ and lim
x→−∞ f(x) = −∞ ,

there exists x0 such that f(x0) = 0. This implies the existence of at least one root to the equation.
Let us prove that there is only one root. Assume not. Let x0 < x1 be two different roots. The
previous argument shows that f(x) > 0 for x > x0 which contradicts f(x1) = 0. This completes
the proof of our statements.

Solution 6.21

For any x �= t, we have
|f(x) − f(t)|

|x− t| < |x− t|α .

Since lim
x→t

|x− t|α = 0, we deduce that

lim
x→t

∣∣∣∣f(x) − f(t)
x− t

∣∣∣∣ = lim
x→t

|f(x) − f(t)|
|x− t| = 0 .

Hence

lim
x→t

f(x) − f(t)
x− t

= 0,

therefore f ′(t) exists for any t ∈ R. Since

f ′(t) = lim
x→t

f(x) − f(t)
x− t

= 0,

we deduce that f(x) is constant.

Solution 6.22

Set g(x) = exf(x). Then we have g′(x) = ex
(
f(x) + f ′(x)

)
. Let ε > 0. There exists A > 0 such

that for any x > A we have |f(x) + f ′(x)| < ε

2
. Let x > A, the generalized Mean Value Theorem

implies the existence of c ∈ (A, x) such that

g′(c)
ec

=
g(x) − g(A)
ex − eA

,

or

f(c) + f ′(c) =
g(x) − g(A)
ex − eA

.

In particular, we have |g(x) − g(A)| < ε

2
|ex − eA|, which implies |g(x)| < ε

2
|ex − eA| + |g(A)| or

|f(x)| < ε

2
|1 − eA−x| + |f(A)eA−x| < ε

2
+ |f(A)eA−x|
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because 0 < eA−x < 1. Since lim
x→∞ |f(A)eA−x| = 0, there exists B > 0 such that for any x > B we

have |f(A)eA−x| < ε

2
. Let A∗ = max{A,B}, then for any x > A∗ we have

|f(x)| < ε

2
+
ε

2
= ε .

This completes the proof of our statement.

Solution 6.23

Let D = {x ∈ [0, 1]; f(t) = 0 for t ∈ [0, x]}. Since 0 ∈ D, D is a nonempty subset of [0, 1]. So the
supremum of D exists. Set s = supD. Note that continuity of f(x) implies s ∈ D. In order to
complete the proof of our statement, we want to show that s = 1. Assume otherwise that s < 1.
Then there exists a0 > 0 such that s + a0 < 1 and a0M < 1. For any x ∈ (s, s + a0), the Mean
Value Theorem ensures the existence of c ∈ (s, x) such that

f(x) − f(s) = f ′(c)(x− s) .

Since f(s) = 0, we get f(x) = f ′(c)(x− s). Hence

|f(x)| ≤ |f ′(c)||x− s| ≤ Ma0 max
s≤t≤s+a0

|f(t)|

for any x ∈ [s, s+ a0]. Hence

max
s≤x≤s+a0

|f(x)| ≤ a0M max
s≤t≤s+a0

|f(t)| .

Since a0M < 1, we get
max

s≤x≤s+a0
|f(x)| < max

s≤t≤s+a0
|f(t)|

which is the desired contradiction. So s = 1 or f(x) = 0 for any x ∈ [0, 1].

Solution 6.24

First note that for x �= 0, we have

f ′(x) =
2
x3 e

−1/x2
.

Consider the polynomial function P1(x) = 2x3, then we have

f ′(x) = P1

(
1
x

)
e−1/x2

.

Since
lim
x→0

1
xn
e−1/x2

= 0 ,

for any natural integer n ≥ 0,

lim
x→0

P

(
1
x

)
e−1/x2

= 0 ,
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for any polynomial function P (x). Hence lim
x→0

f ′(x) = 0. By Problem 6.16, we conclude that f(x)

is differentiable at 0 and f ′(0) = 0. By induction, we prove the existence of a polynomial function
Pn(x) such that

f (n)(x) = Pn

(
1
x

)
e−1/x2

,

for any x �= 0. Indeed, the previous calculations show that the induction conclusion is true for
n = 1. Assume it is true for n = k, let us prove it is still true for n = k + 1. We have

f (k+1)(x) =
(
f (k)(x)

)′
=
(
Pk

(
1
x

)
e−1/x2)′

which implies

f (k+1)(x) =

(
− 1
x2P

′
k

(
1
x

)
+

2
x3Pk

(
1
x

))
e−1/x2

.

Set
Pk+1(x) = −x2P ′

k(x) + 2x3Pk(x) .

Then we have

f (k+1)(x) = Pk+1

(
1
x

)
e−1/x2

,

which shows that the claim is true for n = k+ 1. This completes the proof of the induction. From
this conclusion we get lim

x→0
f (n)(x) = 0 for any n ≥ 0. By Problem 6.16, we conclude that f (n)(x)

is differentiable at 0 and f (n+1)(0) = 0 for any n ≥ 0.

Solution 6.25

Fix x, c ∈ (a, b) with x �= c. Set

F (t) = f(t) + f ′(t)(x− t) +M(x− t)2

where M is chosen such that F (c) = f(x). Then we have F (x) = f(x) = F (c). The Mean Value
Theorem implies the existence of θ between x and c such that F ′(θ) = 0. But

F ′(θ) = f ′(θ) + f ′′(θ)(x− θ) − f ′(θ) − 2M(x− θ) = 0

which implies

M =
f ′′(θ)

2
.

So for x, c ∈ (a, b), there exists θ between x and c such that

f(x) = f(c) + f ′(c)(x− c) +
f ′′(θ)

2
(x− c)2 .

So for any h > 0, there exist θ1 ∈ (c, c+ h) and θ1 ∈ (c− h, c) such that

f(c+ h) = f(c) + f ′(c)h+
f ′′(θ1)

2
h2

and

f(c− h) = f(c) − f ′(c)h+
f ′′(θ2)

2
h2 .
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So
f(c+ h) − 2f(c) + f(c− h)

h2 =
f ′′(θ1) + f ′′(θ2)

2
.

It is clear that when h → 0, then θi → c for i = 1, 2. And since f ′′(x) is continuous at c, we get

lim
h→0

f(c+ h) − 2f(c) + f(c− h)
h2 = f ′′(c) .

For the converse, the answer is in the negative. Indeed, take f(x) = x|x| and c = 0. Then we have

lim
h→0

f(0 + h) − 2f(c) + f(0 − h)
h2 = 0

but f ′′(0) does not exist.

Solution 6.26

Since f(x̃) = 0, the Mean Value Theorem gives

|f(x)| = |f(x) − f(x̃)| = |f ′(z)| · |x− x̃| ≤ k1|x− x̃|
with k1 > 0. Since x̃ is simple, f ′(x) �= 0 on some neighborhood U of x̃, U ⊂ [a, b]. f ′′ is bounded
on U , and for any x ∈ U,

|g′(x)| =
∣∣∣∣1 − f ′(x)f ′(x) − f ′′(x)f(x)

(f ′(x))2

∣∣∣∣ = ∣∣∣∣1 − 1 − f ′′(x)f(x)
(f ′(x))2

∣∣∣∣
≤ k2|f(x)| ≤ k1k2|x− x̃| < 1

2
whenever |x − x̃| < 1/2k1k2, thus g is a contraction, and by the Banach Contraction Mapping
Theorem iterative sequence converges to x̃.

Solution 6.27

Let a ∈ (0, 1). The proof of the previous problem or Taylor expansion with remainder of f(x) at a
will imply

f(x) = f(a) + f ′(a)(x− a) +
f ′′(c)

2
(x− a)2

where c is between a and x. Setting x = 0 and x = 1 in the above equation results in

f(0) = f(a) + f ′(a)(0 − a) +
f ′′(c1)

2
(0 − a)2

and

f(1) = f(a) + f ′(a)(1 − a) +
f ′′(c2)

2
(1 − a)2

where 0 < c1 < a and a < c2 < 1. Subtract the first equation from the second to get

0 = f ′(a) +
f ′′(c2)

2
(1 − a)2 − f ′′(c1)

2
a2 .

Hence

f ′(a) =
f ′′(c1)

2
a2 − f ′′(c2)

2
(1 − a)2 .
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If we use the fact |f ′′(x)| ≤ A, we get

|f ′(a)| ≤ A

2

(
a2 + (1 − a)2

)
.

Set a =
1
2

to get ∣∣∣∣f ′
(

1
2

)∣∣∣∣ ≤ A

4
.

Also if we note that a2 + (1 − a)2 ≤ 1, we get

∣∣f ′(a)
∣∣ ≤ A

2
.

Solution 6.28

We first give Lagrange’s version. Define F by setting

F (x) = f(a+ h) − f(x) − (a+ h− x)f ′(x) − (a+ h− x)2

2!
f ′′(x) − · · · − (a+ h− x)n−1

(n− 1)!
f (n−1)(x)

= f(a+ h) −
n−1∑
k=0

(a+ h− x)k

k!
f (k)(x),

and G(x) = F (x) −
(
a+ h− x

h

)n

F (a).

Then the hypotheses imply that the functions F and G are differentiable on I. Also,

G′(x) = F ′(x) +
n

h

(
a+ h− x

h

)n−1

F (a)

=
n−1∑
k=1

(a+ h− x)k−1

(k − 1)!
f (k)(x) −

n−1∑
k=0

(a+ h− x)k

k!
f (k+1)(x) +

n

h

(
a+ h− x

h

)n−1

F (a)

=
n−2∑
k=0

(a+ h− x)k

k!
f (k+1)(x) −

n−1∑
k=0

(a+ h− x)k

k!
f (k+1)(x) +

n

h

(
a+ h− x

h

)n−1

F (a)

= −(a+ h− x)n−1

(n− 1)!
f (n)(x) +

n

h

(
a+ h− x

h

)n−1

F (a).

Now G(a) = F (a) −
(
a+ h− a

h

)n

F (a) = 0 and

G(a+ h) = F (a+ h) −
(
a+ h− a− h

h

)n

F (a) = F (a+ h) = f(a+ h) − f(a+ h) = 0.

So, by Rolle’s Theorem, there exists c between a and a+ h such that G′(c) = 0. Write c as a+ θh
where 0 < θ < 1. Thus

−(a+ h− a− θh)n−1

(n− 1)!
f (n)(a+ θh) +

n

h

(
a+ h− a− θh

h

)n−1

F (a) = 0.
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Now a+ h− a− θh = (1 − θ)h �= 0, so this gives F (a) =
hn

n!
f (n)(a+ θh) = Rn.

Hence f(a+ h) =
n−1∑
k=0

hk

k!
f (k)(a) +Rn, as required.

The proof for the Cauchy form of the remainder is similar, but a bit simpler, using the Mean
Value Theorem instead of Rolle’s Theorem.

Let F (x) =
n−1∑
k=0

(a+ h− x)k

k!
f (k)(x). By the Mean Value Theorem, there exists θ ∈ (0, 1) such

that F (a+ h) = F (a) + hF ′(a+ θh).

Hence F (a+ h) =
n−1∑
k=0

hk

k!
f (k)(a) + hF ′(a+ θh). But

F ′(x) = −
n−1∑
k=1

(a+ h− x)k−1

(k − 1)!
f (k)(x) +

n−1∑
k=0

(a+ h− x)k

k!
f (k+1)(x)

= −
n−2∑
k=0

(a+ h− x)k

k!
f (k+1)(x) +

n−1∑
k=0

(a+ h− x)k

k!
f (k+1)(x)

=
(a+ h− x)n−1

(n− 1)!
f (n)(x),

so F ′(a + θh) =
(a+ h− a− θh)n−1

(n− 1)!
f (n)(a + θh) =

hn−1(1 − θ)n−1

(n− 1)!
f (n)(a + θh), which gives the

result.

Solution 6.29

We just prove (ii). First observe that the given series is indeed the Maclaurin series of f(x) =
(1 + x)s, since f ′(x) = s(1 + x)s−1, f ′′(x) = s(s − 1)(1 + x)s, from which f(0) = 1, f ′(0) = s,
f ′′(0) = s(s − 1), f ′′′(0) = s(s − 1)(s − 2), etc. So the main point is to show that the remainder
Rn → 0 as n → ∞.

We use the Cauchy form for Rn,

Rn =
xn(1 − θ)n−1

(n− 1)!
f (n)(θx)

=
xn(1 − θ)n−1s(s− 1) · · · (s− n+ 1)(1 + θx)s−n

(n− 1)!

= (1 + θx)s−1 ×
(

1 − θ

1 + θx

)n−1

× s(s− 1) · · · (s− n+ 1)xn

(n− 1)!
= an × bn × cn,

say. We now estimate |an|, |bn|, and |cn|.

For an, notice that if s > 1, then |an| ≤ (1 + |x|)s−1 and that if s < 1, then |an| ≤ (1 − |x|)s−1.
In either case, |an| is bounded independently of n, say |an| ≤ K.
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For bn, notice that 1 + θx > 1 − θ, and so |bn| < 1.

For cn, we have ∣∣∣∣cn+1

cn

∣∣∣∣ = ∣∣∣∣s− n

n
x

∣∣∣∣→ |x| as n → ∞.

Fix l with |x| < l < 1. Then there exists N ∈ N such that |cn+1/cn| ≤ l for all n ≥ N . It follows
that |cn| ≤ ln−N |cN | whenever n ≥ N . Hence cn → 0 as n → ∞.

Putting this all together, we obtain

|Rn| = |an| · |bn| · |cn| ≤ K · 1 · |cn| → 0 as n → ∞.

Solution 6.30

By induction, the conclusion is obvious when n = 0. For n = 1, the formula reduces to the
well-known product formula for differentiation. Assume that

dn−1

dxn−1

(
fg
)

=
n−1∑
k=0

(
n− 1
k

)
f [k]g[n−1−k],

where f [k] =
dk

dxk
f , for any k ∈ N. Then

dn

dxn

(
fg
)

=
d

dx

(
dn−1

dxn−1

(
fg
))

=
n−1∑
k=0

(
n− 1
k

)(
f [k]g[n−k] + f [k+1]g[n−1−k]

)
which implies

dn

dxn

(
fg
)

= fg[n] +
n−1∑
k=1

(
n− 1
k

)
f [k]g[n−k] +

n−2∑
k=0

(
n− 1
k

)
f [k+1]g[n−1−k] + f [n]g

= fg[n] +
n−1∑
k=1

(
n− 1
k

)
f [k]g[n−k] +

n−1∑
k=1

(
n− 1
k − 1

)
f [k]g[n−k] + f [n]g

= fg[n] +
n−1∑
k=1

((
n− 1
k

)
+
(
n− 1
k − 1

))
f [k]g[n−k] + f [n]g

= fg[n] +
n−1∑
k=1

(
n

k

)
f [k]g[n−k] + f [n]g

=
n∑

k=0

(
n

k

)
f [k]g[n−k].
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Note that we made use of the formula(
n− 1
k

)
+
(
n− 1
k − 1

)
=
(
n

k

)
.

This completes the proof by induction on n ∈ N.

Solution 6.31

Let
T : (C[a, b], ‖ . ‖) → (C[a, b], ‖ . ‖)

defined as
Ty(x) = y(x) − 1

M
F (x, y(x)).

We first claim that T is a contraction on C[a, b]. From the Mean Value Theorem we have

F (x, y1) − F (x, y2) =
∂F

∂y
(x, c)(y1 − y2)

where c is between y1 and y2. Hence

Ty1(x)−Ty2(x) = [y1(x)−y2(x)]− 1
M

[F (x, y1)−F (x, y2)] = [y1(x)−y2(x)]− 1
M

∂F

∂y
(x, c) [y1(x)−y2(x)]

=
(

1 − 1
M

∂F

∂y
(x, c)

)
[y1(x) − y2(x)] ≤

(
1 − m

M

)
[y1(x) − y2(x)].

Consider the given norm ‖ . ‖,

‖ Ty1 − Ty2 ‖= max
a≤x≤b

|Ty1(x) − Ty2(x)| ≤ max
a≤x≤b

(
1 − m

M

)
|y1(x) − y2(x)| ≤

∣∣∣1 − m

M

∣∣∣ ‖ y1 − y2 ‖ .

Since 1 − m

M
< 1 it follows that T is a contraction on C[a, b], therefore by the Banach Contraction

Mapping Theorem T has a unique fixed point y. Thus for all x ∈ [a, b],

y(x) = Ty(x) = y(x) − 1
M
F (x, y(x))

but M �= 0 thus F (x, y(x)) = 0.

Solution 6.32

1. Using the Leibnitz formula (see Problem 6.30), we get

1
2nn!

dn

dxn

(
x(x2 − 1)n

)
= x

1
2nn!

dn

dxn

(
(x2 − 1)n

)
+ n

1
2nn!

dn−1

dxn−1

(
x(x2 − 1)n

)
which implies

xLn =
1

2nn!
dn

dxn

(
x(x2 − 1)n

)
− n

2nn!
dn−1

dxn−1

(
(x2 − 1)n

)
.
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But
1

2nn!
dn

dxn

(
x(x2 − 1)n

)
=

1
2nn!

dn+1

dxn+1

(
1

2(n+ 1)
(x2 − 1)n+1

)
,

or
1

2nn!
dn

dxn

(
x(x2 − 1)n

)
=

1
2n+1(n+ 1)!

dn+1

dxn+1

(
(x2 − 1)n+1

)
= Ln+1.

Hence

xLn = Ln+1 − n

2nn!
dn−1

dxn−1

(
(x2 − 1)n

)
.

On the other hand, we have

Ln =
1

2nn!
dn

dxn

(
(x2 − 1)n

)
=

1
2nn!

dn−1

dxn−1

(
2nx(x2 − 1)n

)
,

which implies

xLn =
x

2n−1(n− 1)!
dn−1

dxn−1

(
x(x2 − 1)n−1

)
.

Using the Leibnitz formula again we get
(
(x2 − 1)n

)[n−1]
= 2n

(
x(x2 − 1)n−1

)[n−2]
, and(

x2(x2 − 1)n−1
)[n−1]

= x
(
x(x2 − 1)n−1

)[n−1]
+ (n− 1)

(
x(x2 − 1)n−1

)[n−2]
.

Hence

1
2n−1(n− 1)!

(
x2(x2−1)n−1

)[n−1]
=

x

2n−1(n− 1)!

(
x(x2−1)n−1

)[n−1]
+

(n− 1)
2n(n)!

(
(x2−1)n

)[n−1]
,

which implies

xLn =
1

2n−1(n− 1)!

(
x2(x2 − 1)n−1

)[n−1] − (n− 1)
2n(n)!

(
(x2 − 1)n

)[n−1]
.

But (
x2(x2 − 1)n−1

)[n−1]
=
(
(x2 − 1)(x2 − 1)n−1

)[n−1]
+
(
(x2 − 1)n−1

)[n−1]

which combined with the previous identity gives

xLn =
(n+ 1)
2nn!

(
(x2 − 1)n

)[n−1]
+

1
2n−1(n− 1)!

(
(x2 − 1)n−1

)[n−1]
,

or
xLn =

(n+ 1)
2nn!

(
(x2 − 1)n

)[n−1]
+ Ln−1.

Hence we have
x

n
Ln =

1
n
Ln+1 − 1

2nn!

(
(x2 − 1)n

)[n−1]

and
x

n+ 1
Ln =

1
n+ 1

Ln−1 +
1

2nn!

(
(x2 − 1)n

)[n−1]
.

So if we add both equations we get

(2n+ 1)xLn = (n+ 1)Ln+1 + nLn−1,

which gives the desired recurrence formula.
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2. Note that we have

L0(x) = 1, L1(x) =
1
2

(
2x
)

= x, L2(x) = −3x2

2
− 1

2
, L3(x) = −3x

2
+

5x3

2
.

From this we claim that Ln(x) has degree n for all n ∈ N. Indeed the claim is true for
n = 0, 1, 2, 3. Hence assume that Lk has degree k, for any k ≤ n. Let us prove that Ln+1 has
degree n+ 1. The recurrence formula proved above gives

Ln+1 =
(2n+ 1)
(n+ 1)

xLn − n

n+ 1
Ln−1.

Since Ln−1 has degree n − 1 and xLn has degree n + 1, we conclude that Ln+1 has degree
n+ 1. By induction we conclude that Ln has degree n for any n ∈ N.

3. First note that for any k ∈ N and n > k, we have

dk

dxk

(
(x2 − 1)n

)
= (x2 − 1)n−kP (x),

for some polynomial function P (x). Hence for any differentiable function f(x) defined on
[−1, 1], we have ∫ 1

−1
f(x)Ln(x)dx =

1
2nn!

∫ 1

−1
f(x)

(
(x2 − 1)n

)[n]
dx.

Integrating by parts, we get∫ 1

−1
f(x)Ln(x)dx =

1
2nn!

[
f(x)

(
(x2 − 1)n

)[n−1]
]1

−1
− 1

2nn!

∫ 1

−1
f ′(x)

(
(x2 − 1)n

)[n−1]
dx.

Using the above remark on the derivatives of (x2 − 1)n, we get∫ 1

−1
f(x)Ln(x)dx =

−1
2nn!

∫ 1

−1
f ′(x)

(
(x2 − 1)n

)[n−1]
dx,

which implies ∫ 1

−1
f(x)Ln(x)dx =

(−1)n

2nn!

∫ 1

−1
f [n](x)(x2 − 1)ndx.

In particular, we have∫ 1

−1
xkLn(x)dx =

(−1)n

2nn!

∫ 1

−1
(xk)[n](x2 − 1)ndx = 0,

since (xk)[n] = 0, if k < n. This clearly implies∫ 1

−1
P (x)Ln(x)dx = 0,

for any polynomial function P (x) with degree less than n. Hence∫ 1

−1
Lm(x)Ln(x)dx = 0,

for any n �= m.
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4. We have∫ 1

−1

(
Ln(x)

)2
dx =

(−1)n

2nn!

∫ 1

−1
L[n]

n (x)(x2 − 1)ndx =
(−1)n

22n(n!)2

∫ 1

−1
(x2 − 1)n

(
(x2 − 1)n

)[2n]
dx.

Note that
(
(x2 −1)n

)[2n]
= (2n)!, since the polynomial function (x2 −1)n has degree 2n with

the leading coefficient being equal to 1. So∫ 1

−1

(
Ln(x)

)2
dx =

(−1)n(2n)!
22n(n!)2

∫ 1

−1
(x2 − 1)ndx = 2

(2n)!
22n(n!)2

∫ 1

0
(1 − x2)ndx

since the function (1 − x2)n is even. If we do the change of variable x = cos(t), we get∫ 1

−1

(
Ln(x)

)2
dx = 2

(2n)!
22n(n!)2

∫ π/2

0
cos2n+1(t)dt.

We recognize Wallis integrals (see Problem 3.21). Since∫ π/2

0
cos2n+1(t)dt =

22n(n!)2

(2n+ 1)!
,

∫ 1

−1

(
Ln(x)

)2
dx = 2

(2n)!
22n(n!)2

22n(n!)2

(2n+ 1)!
=

2
2n+ 1

·



Chapter 7

Integration

Nature laughs at the difficulties of integration.

Pierre-Simon Laplace (1749–1827)

• Partitions, Upper and Lower Sums : Let f be a bounded function on [a, b]. A partition of
[a, b] is a finite ordered set

P = {a = x0 < x1 < x2 < . . . < xn = b}.

For each subinterval [xk−1, xk] of P set

mk = inf{f(x) : x ∈ [xk−1, xk]}

and
Mk = sup{f(x) : x ∈ [xk−1, xk]}.

The lower sum of f with respect to P is given by

U(f ;P ) =
n∑

k=1

mk(xk − xk−1).

Similarly, we define the upper sum of f with respect to P by

L(f ;P ) =
n∑

k=1

Mk(xk − xk−1).
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Since f is a bounded function on [a, b], there exist numbers M and m such that
m ≤ f(x) ≤ M is true for all x ∈ [a, b]. Thus for any partition P of [a, b] we have

m(b− a) ≤ L(f ;P ) ≤ U(f ;P ) ≤ M(b− a).

• Upper and Lower Integrals: Let P be the collection of all possible partitions of the interval
[a, b]. The lower integral of f

∫ b

a
f(x) dx = L(f) = sup{L(f ;P ) : P ∈ P}.

Likewise the upper integral of f∫ b

a
f(x)dx = U(f) = inf{U(f ;P ) : P ∈ P}.

Clearly for a bounded function f on [a, b] we always have U(f) ≥ L(f).

• Riemann Integral : A bounded function f on [a, b] is Riemann integrable if U(f) = L(f). In

this case, we define
∫ b

a
f(x)dx to be

∫ b

a
f(x)dx = U(f) = L(f).

• Riemann Sum: Let P = {a = x0 < x1 < x2 < . . . < xn = b} be a partition of [a, b]. A tagged
partition is one where in addition to P we have chosen points x∗

k in each of the subintervals
[xk−1, xk]. Suppose f : [a, b] → R and a tagged partition (P, x∗

k) is given. The Riemann sum
generated by this partition is given as

R(f ;P ) =
n∑

k=1

f(x∗
k)(xk − xk−1).

It is clear that
L(f ;P ) ≤ R(f ;P ) ≤ U(f ;P )

true for any bounded function.

• Improper Integral : Let f be defined on [a,∞) and integrable on [a, c] for every c > a. If

lim
c→∞

∫ c

a
f(x)dx exists, then the improper integral of f on [a,∞), denoted by

∫ ∞

a
f(x)dx, is

given by ∫ ∞

a
f(x)dx = lim

c→∞

∫ c

a
f(x)dx.

• Mean Value Theorem for Integrals: If f is a continuous function on [a, b], then there is a point
c ∈ (a, b) such that

1
b− a

∫ b

a
f(x)dx = f(c).

• Fundamental Theorem of Calculus:
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a) Let f : [a, b] → R be integrable, and define F (x) =
∫ x

a
f for all x ∈ [a, b]. Then

(a) F is continuous on [a, b].
(b) If f is continuous at some point x0 ∈ [a, b], then F is differentiable at x0 and

F ′(x0) = f(x0).

The above theorem expresses the fact that every continuous function is the derivative of
its indefinite integral.

b) If g : [a, b] → R is integrable, and G : [a, b] → R satisfies G′(x) = g(x) for all x ∈ [a, b],
then ∫ b

a
g = G(b) −G(a).

Problem 7.1 Is the function

f(x) =

{
1 if x �= 1,
0 if x = 1

integrable over the interval [0, 2]?

Problem 7.2 Let 0 < a < b and

f(x) =
{

1 if x ∈ [a, b] ∩ Q,
0 if x ∈ [a, b] is irrational.

Find the upper and lower Riemann integrals of f(x) over [a, b].

Problem 7.3 Let 0 < a < b and

f(x) =
{

0 if x ∈ [a, b] ∩ Q,
x if x ∈ [a, b] is irrational.

Find the upper and lower Riemann integrals of f(x) over [a, b], and conclude whether f(x) is
Riemann integrable.

Problem 7.4 Let 0 < a < b and

f(x) =

⎧⎪⎪⎨⎪⎪⎩
1
q

if x ∈ [a, b] ∩ Q and x =
p

q
where p and q are coprime;

0 if x ∈ [a, b] is irrational.

Show that f(x) is Riemann integrable over [a, b] and compute
∫ b

a
f(x)dx.

CHAPTER 7. INTEGRATION
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Problem 7.5 Let f : [a, b] → R be a Riemann integrable function. Let g : [a, b] → R be a
function such that {x ∈ [a, b]; f(x) �= g(x)} is finite. Show that g(x) is Riemann integrable and∫ b

a
f(x)dx =

∫ b

a
g(x)dx .

Does the conclusion still hold when {x ∈ [a, b]; f(x) �= g(x)} is countable?

Problem 7.6 Let f : [a, b] → R be a Riemann integrable function. Show that |f(x)| is Riemann
integrable and ∣∣∣∣∫ b

a
f(x)dx

∣∣∣∣ ≤ ∫ b

a
|f(x)|dx .

When do we have equality?

Problem 7.7 We call U : [a, b] → R a step function if there is a partition P of [a, b] so
that U is constant on each interval of P. Show that any function f : [a, b] → R is Riemann
integrable if and only if for each ε > 0, there exist two step functions U and V on [a, b] such that
V (x) ≤ f(x) ≤ U(x) and ∫ b

a

(
U(x) − V (x)

)
dx < ε.

Problem 7.8 (Second Mean Value Theorem for Integrals) Prove that if f and g are
defined on [a, b] with g continuous, f ≥ 0, and f is integrable, then there is a point x0 ∈ (a, b)
such that ∫ b

a
f(x)g(x)dx = g(x0)

∫ b

a
f(x)dx.

Problem 7.9 Use Riemann sums to find the following limits:

(i) lim
n→∞

k=n∑
k=1

n

4n2 + k2

(ii) lim
n→∞

k=n∑
k=1

arctan
(

n

n2 + k2

)
Hint: use the inequalities x− x3

3
< arctan(x) < x, for x > 0.

(iii) lim
n→∞

k=n∑
k=1

1
k

tan
(

kπ

4n+ 4

)
Hint: use the function f(x) =

tan(x)
x

.
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Problem 7.10 Let f : [0, 1] → R be C1, i.e., f(x) is differentiable and its derivative is
continuous. Find

lim
n→∞

k=n∑
k=1

f

(
k

n

)
− n

∫ 1

0
f(x)dx .

Hint: use
∫ 1

0
f(x)dx =

k=n∑
k=1

∫ k/n

(k−1)/n
f(x)dx.

Problem 7.11 Let f : [0, 1] → R be C2, i.e., f(x) is twice differentiable and f ′′(x) is continuous.
Find

lim
n→∞n2

∫ 1

0
f(x)dx− n

k=n∑
k=1

f

(
2k − 1

2n

)
.

Problem 7.12 Define

xn =
n∑

k=1

2
2n+ 2k − 1

.

Find lim
n→∞xn and lim

n→∞n2(ln(2) − xn).

Problem 7.13 Find the following limits:

(i) lim
n→∞

∫ 1

0

xn

1 + x
dx

(ii) lim
n→∞

∫ 1

0
nx(1 − x2)ndx

(iii) lim
n→∞

∫ 2

1

sin(nx)
x

dx

Problem 7.14 Show that ∫ π

0
xesin(x)dx =

π

2

∫ π

0
esin(x)dx .

Problem 7.15 Let f : [a, b] → R be a continuous function. Show that there exists c ∈ (a, b)
such that

1
b− a

∫ b

a
f(x)dx = f(c) .

Is this still true for Riemann integrable functions?

CHAPTER 7. INTEGRATION
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Problem 7.16 Let f : R → R be continuous and set F (x) =
∫ x3

0
f(y) dy. Show that

F ′(x) = 3x2f(x3).

Problem 7.17 Consider the function

f(x) =
{

1 0 ≤ x ≤ 1 ,
0 1 < x ≤ 2 .

(a) What is F (x) =
∫ x
0 f(t)dt on [0, 2]?

(b) Is F (x) continuous?

(c) Is F ′(x) = f(x)?

Problem 7.18 Let f : [a, b] → R be a continuous function. Show that

lim
n→∞

∫ b

a
f(x) sin(nx)dx = 0 and lim

n→∞

∫ b

a
f(x) cos(nx)dx = 0.

Use these limits to find

lim
n→∞

∫ b

a
f(x) sin2(nx)dx .

This is known as Riemann–Lebesgue’s lemma.

Problem 7.19 Let f : [a, b] → R be a Riemann integrable function. Show that if
∫ b
a f

2(x)dx = 0,
then f(x0) = 0 whenever f(x) is continuous at x0 ∈ (a, b). What can we say about the set

{x ∈ [a, b]; f(x) �= 0}?

Problem 7.20 Decide whether or not the following integrals converge or diverge:

(a)
∫ ∞

1

1√
1 + x3

dx.

(b)
∫ ∞

1

sin(x)
x

dx. Does this integral converge absolutely?

(c)
∫ ∞

0

x

1 + x2 sin2(x)
dx.
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Problem 7.21 (Bertrand Integrals) Discuss the convergence or divergence of the Bertrand
Integrals ∫ ∞

2

1
xα lnβ(x)

dx

depending on the parameters α and β.

Problem 7.22 (Cauchy Criterion) Let f : [a,∞) → R be Riemann integrable on bounded

intervals. Show that
∫ ∞

a
f(x)dx converges if and only if for every ε > 0 there exists A > a such

that for any t1, t2 > A we have ∣∣∣∣∫ t2

t1

f(x)dx
∣∣∣∣ < ε .

Problem 7.23 (Abel’s test) Assume that the functions f and g defined on [a,∞) satisfy the
following conditions:

(a) g is monotone and bounded on [a,∞),

(b) the improper integral
∫ ∞

a
f(x)dx is convergent.

Then prove that
∫ ∞

a
f(x)g(x)dx is also convergent.

Problem 7.24 (Luxemburg Monotone Convergence Theorem)Let {fn(x)} be a decreas-
ing sequence of bounded functions on [a, b], with a < b, which converges pointwise to 0 on [a, b].
Show that

lim
n→∞

∫ b

a
fn(x)dx = 0.

Problem 7.25 (Monotone Convergence Theorem) Let {fn(x)} be a decreasing sequence
of Riemann integrable functions on [a, b] which converges pointwise to a Riemann integrable
function f(x). Show that

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
f(x)dx.
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Problem 7.26 (Arzelà Theorem) Let {fn(x)} be a sequence of Riemann integrable functions
on [a, b] which converges pointwise to a Riemann integrable function f(x). Assume that there
exists M > 0 such that |fn(x)| ≤ M for any x ∈ [a, b] and n ≥ 1. Show that

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
f(x)dx.

Problem 7.27 (Fatoo Lemma) Let {fn(x)} be a sequence of Riemann integrable functions
on [a, b] which converges pointwise to a Riemann integrable function f(x). Show that∫ b

a
f(x)dx ≤ lim inf

n→∞

∫ b

a
fn(x)dx.

Problem 7.28 Let T : (C[0, 1], ‖ . ‖) → (C[0, 1], ‖ . ‖) be a function defined as

Tf(x) =
∫ x

0
f(t)dt

where by C[0, 1] we mean the vector space of all continuous real-valued functions defined on [0, 1]
and ‖ f ‖= sup

0≤t≤1
|f(t)|. Show that:

a) T is not a contraction.

b) T has a unique fixed point.

c) T 2 is a contraction.

Problem 7.29 Convert the initial value problem

dy

dx
= 3xy, y(0) = 1

to an integral equation. Use Picard’s iteration scheme to solve it.
Note: For the initial value problem dy

dx = f(x, y), y(x0) = y0, Picard iteration defined by

yn+1(x) = y0 +
∫ x

x0

f(t, yn(t)) dt for n ∈ Z+.
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Problem 7.30 Given the initial value problem

f ′(x) = 1 + x− f(x), with f(0) = 1,

for x ∈
[
−1

2
,
1
2

]
. Show the mapping T : C[−1

2 ,
1
2 ] → C[−1

2 ,
1
2 ] defined by

Tf(x) = 1 + x+
1
2
x2 −

∫ x

0
f(t)dt

is a contraction. Then set up Picard’s iteration scheme to solve it.

Problem 7.31 Show that the integral
∫ π

0

sinxt
t

dt depends continuously on x.

Problem 7.32 (Tchebycheff polynomials)

1. For any n ∈ N, find a polynomial Tn such that Tn(cos(x)) = cos(nx). Find the degree of
Tn, n ∈ N.

2. Show that for any n ≥ 1, we have

Tn+1 = 2xTn − Tn−1.

3. Find the integrals ∫ 1

−1

Tn(x)Tm(x)√
1 − x2

dx,

for any n,m ∈ N.

4. Show that cos
(

(2k − 1)π
2n

)
, k ∈ [1, n], are n different roots of Tn(x), for any n ≥ 1.
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Solutions

Solution 7.1

If P is any partition of [0, 2], then

U(P, f) =
n∑

k=1

Mk(xk − xk−1) = 2.

L(f,P) will be less than 2, because any subinterval of P that contains x = 1 will contribute zero
to the value of the lower sum. The way to show that f is integrable is to construct a partition that
minimizes the effect of the discontinuity by embedding x = 1 into a very small subinterval. Let
ε > 0, and consider the partition Pε = {0, 1 − ε/3, 1 + ε/3, 2}. Then

L(Pε, f) = 1[(1 − ε/3) − 0] + 0[1 + ε/3 − (1 − ε/3)] + 1[2 − (1 + ε/3)]
= 1(1 − ε/3) + 0(2ε/3) + 1(1 − ε/3)
= 2 − 2ε/3.

Now, U(Pε, f) = 2, so we have

U(Pε, f) − L(Pε, f) = 2ε/3 < ε.

Thus, f is integrable.

Solution 7.2

Let P be a partition of [a, b]. If P = {x1 = a < x2 < . . . < xn = b}, then

inf{f(x);xi < x < xi+1} = 0 and sup{f(x);xi < x < xi+1} = 1

because Q and R \ Q are dense in R. Hence we have

L(P, f) = 0 and U(P, f) = b− a .

Obviously this will imply ∫ b

a
f(x)dx = supL(P, f) = 0

and ∫ b

a
f(x)dx = inf U(P, f) = b− a ,

where the infimum and supremum are taken over all partitions of [a, b]. So clearly f(x) is not
Riemann integrable on [a, b].

Solution 7.3

Let P be a partition of [a, b]. If P = {x1 = a < x2 < . . . < xn = b}, then

inf{f(x);xi < x < xi+1} = 0 and sup{f(x);xi < x < xi+1} = xi+1



137

because Q and R \ Q are dense in R. Hence we have L(P, f) = 0, and

U(P, f) = x2(x2 − x1) + · · · + xi(xi − xi−1) + · · · + xn(xn − xn−1) = U(P, h) ,

where h : [a, b] → R defined by h(x) = x. Since h(x) is continuous, h(x) is Riemann integrable and∫ b

a
h(x)dx = inf U(P, h) =

b2 − a2

2
,

where the infimum is taken over all partitions of [a, b]. Hence∫ b

a
f(x)dx = supL(P, f) = 0

and ∫ b

a
f(x)dx = inf U(P, f) =

b2 − a2

2
.

Since 0 <
b2 − a2

2
, we conclude that f(x) is not Riemann integrable on [a, b].

Solution 7.4

Let P be a partition of [a, b]. If P = {x1 = a < x2 < . . . < xn = b}, then

inf{f(x);xi < x < xi+1} = 0

because R \ Q is dense in R. Hence we have L(P, f) = 0, which implies∫ b

a
f(x)dx = supL(P, f) = 0,

where the supremum is taken over all partitions of [a, b]. Let us now show that∫ b

a
f(x)dx = inf U(P, f) = 0

where the infimum is taken over all partitions of [a, b]. Fix ε > 0. Then the set

Bε =
{
p

q
∈ [a, b] ∩ Q; where p and q are coprime and

1
q

≥ ε

2(b− a)

}
is finite. Without loss of generality, assume that Bε is not empty and has n ≥ 1 elements. Set

Bε = {x1 < x2 < . . . < xn} .

Assume for now a < x1 and xn < b. Choose m ≥ 1 large enough to have
1
m

<
ε

2n
, xi +

1
2m

<

xi+1 − 1
2m

, a < x1 − 1
2m

, and xn +
1

2m
< b. Consider the partition

P0 =
{
a, xi − 1

2m
,xi +

1
2m

, b

}
.
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We have

0 ≤ sup
{
f(x); xi − 1

2m
≤ x ≤ xi +

1
2m

}
≤ 1

because 0 ≤ f(x) ≤ 1 for all x ∈ [a, b]. On any other interval I associated with the partition, we
have

0 ≤ sup {f(x); x ∈ I} ≤ ε

2(b− a)

because I ∩Bε is empty. Hence

0 ≤ U(P0, f) ≤ n
1
m

+
ε

2(b− a)
(b− a) =

ε

2
+
ε

2
= ε .

If x1 = a, then we consider only the interval [a, a+ 1/m] and if xn = b, then we consider only the
interval [b − 1/m, b]. The proof is carried similarly to get U(P0, f) ≤ ε. Clearly this will imply
inf U(P, f) = 0, where the infimum is taken over all partitions of [a, b]. Hence∫ b

a
f(x)dx =

∫ b

a
f(x)dx = 0 ,

which implies that f(x) is Riemann integrable and
∫ b

a
f(x)dx = 0.

Solution 7.5

Consider the function h(x) = g(x) − f(x). Fix ε > 0. Then the set B = {x ∈ [a, b];h(x) �= 0} is
finite. Assume that B = {x1, . . . , xn} with a < x1 < . . . < xn < b. Set

M = max{|h(xi)| : i = 1, 2, . . . , n} .
We have M > 0. Choose δ > 0 small enough to have a < x1 − δ, xi + δ < xi+1 − δ, xn + δ < b, and
δ <

ε

2Mn
. Consider the partition

P0 = {a, xi − δ, xi + δ, b} .

We have
0 ≤ sup {|h(x)| : xi − δ ≤ x ≤ xi + δ} ≤ M

because 0 ≤ |h(x)| ≤ M for all x ∈ [a, b]. On any other interval I associated with the partition, we
have

sup {|h(x)| : x ∈ I} = 0

because I ∩B is empty. Hence

0 ≤ |U(P0, h)| ≤ nM2δ ≤ ε , and 0 ≤ |L(P0, h)| ≤ nM2δ ≤ ε .

If x1 = a, then we consider only the interval [a, a + δ] and if xn = b, then we consider only the
interval [b − δ, b]. The proof is carried similarly to get |U(P0, h)| ≤ ε and |L(P0, h)| ≤ ε. Clearly
this will imply inf U(P, h) = 0 and supL(P, h) = 0, where the infimum and supremum are taken
over all partitions of [a, b]. Hence ∫ b

a
h(x)dx =

∫ b

a
h(x)dx = 0 ,
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which implies that h(x) is Riemann integrable and
∫ b

a
h(x)dx = 0. Therefore g(x) = f(x) + h(x)

is also Riemann integrable and∫ b

a
g(x)dx =

∫ b

a
f(x)dx+

∫ b

a
h(x)dx =

∫ b

a
f(x)dx .

Finally, note that if {x ∈ [a, b]; f(x) �= g(x)} is countable but not finite, then the conclusion
may not be true. Indeed, take

f(x) =
{

1 if x ∈ [a, b] ∩ Q,
0 if x ∈ [a, b] is irrational,

and g(x) = 0. Then {x ∈ [a, b]; f(x) �= g(x)} = [a, b] ∩ Q which is countable. But f(x) is not
Riemann integrable while g(x) is.

Solution 7.6

First, let us note that if f : [a, b] → R is Riemann integrable and h : [c, d] → R is continuous,
then h ◦ f(x) = h(f(x)) is Riemann integrable provided f([a, b]) ⊂ [c, d]. Since f(x) is Riemann
integrable, it is bounded. Hence there exist c, d ∈ R such that f([a, b]) ⊂ [c, d]. Set h(x) = |x|.
Since h(x) is continuous on any closed interval, |f(x)| is Riemann integrable. Another way to see
this is true is by the characterization of Riemann integrability. Indeed, we know that a function
is Riemann integrable if and only if it is continuous except maybe at a set which is negligible
or has measure 0. So if we assume that f(x) : [a, b] → R is Riemann integrable, then the set
{x0 ∈ [a, b] : f(x) is not continuous at x0} has measure 0. But it is known that if f(x) is
continuous at x0 ∈ [a, b], then |f(x)| is also continuous at x0. This clearly implies that the set
{x0 ∈ [a, b]; |f(x)| is not continuous at x0} has measure 0 as well because a subset of a measure 0
set has measure 0. Hence |f(x)| is Riemann integrable. Once this fact is established, we can prove
the inequality ∣∣∣∣∫ b

a
f(x)dx

∣∣∣∣ ≤ ∫ b

a
|f(x)|dx .

One way is to use the inequalities −|f(x)| ≤ f(x) ≤ |f(x)| to get∫ b

a
−|f(x)|dx ≤

∫ b

a
f(x)dx ≤

∫ b

a
|f(x)|dx ,

which will lead to the desired conclusion. Let us give another proof of this inequality. Indeed,
consider the partition

P =
{
ai; ai = a+ i

(b− a)
n

for i = 1, 2, . . . , n
}
.

Then we have

lim
n→∞

i=n∑
i=1

(b− a)
n

f(ai) =
∫ b

a
f(x)dx

and

lim
n→∞

i=n∑
i=1

(b− a)
n

|f(ai)| =
∫ b

a
|f(x)|dx .
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Since ∣∣∣∣∣
i=n∑
i=1

(b− a)
n

f(ai)

∣∣∣∣∣ ≤
i=n∑
i=1

(b− a)
n

|f(ai)| ,

we get ∣∣∣∣∫ b

a
f(x)dx

∣∣∣∣ ≤ ∫ b

a
|f(x)|dx .

Solution 7.7

Indeed assume that f(x) is Riemann integrable. Then for any ε > 0, there exists a partition P
such that U(P, f) − L(P, f) < ε. Define the two step functions U(x) and V (x) by

U(x) = sup{f(z); z ∈ I} and V (x) = inf{f(z); z ∈ I} ,
for x ∈ I, where I is any interval of the partition P. Then we have V (x) ≤ f(x) ≤ U(x), for any
x ∈ [a, b], by definition of these two step functions. And since∫ b

a
U(x)dx = U(P, f) and

∫ b

a
V (x)dx = L(P, f) ,

we get ∫ b

a

(
U(x) − V (x)

)
dx < ε.

Now assume the converse is true, i.e., for each ε > 0, there exist two step functions U and V on
[a, b] such that V (x) ≤ f(x) ≤ U(x) and∫ b

a

(
U(x) − V (x)

)
dx < ε.

Let us prove that f(x) is Riemann integrable. Since V (x) ≤ f(x) ≤ U(x), we easily get

U(P, f) ≤
∫ b

a
U(x)dx and

∫ b

a
V (x)dx ≤ L(P, f) .

Hence U(P, f) − L(P, f) < ε, which implies the desired conclusion.

Solution 7.8

Since g is continuous on the compact interval [a, b], we know m = inf(g([a, b])) and
M = sup(g([a, b])) exists as finite real numbers and that there are points x1, x2 in [a, b]
such that g(x1) = m and g(x2) = M . Since

m ≤ g(x) ≤ M and f(x) ≥ 0,

we have
mf(x) ≤ f(x)g(x) ≤ Mf(x) for all x ∈ [a, b].

Then assuming f and f · g are integrable on [a, b] we have

m

∫ b

a
f(x)dx ≤

∫ b

a
f(x)g(x)dx ≤ M

∫ b

a
f(x)dx.
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Next observe that the function h(t) = t

∫ b

a
f(x)dx depends continuously on t where t ∈ [m,M ],

furthermore
∫ b

a
f(x)g(x)dx is in [h(m), h(M)]. By the intermediate value theorem there is a number

t0 ∈ [m,M ] with h(t0) =
∫ b

a
f(x)g(x)dx. Since g is continuous between x1 and x2 and t0 ∈

[m,M ] = [g(x1), g(x2)] a second application of the intermediate value theorem to g this time yields
g(x0) = t0, therefore∫ b

a
f(x)g(x)dx = h(t0) = t0

∫ b

a
f(x)dx = g(x0)

∫ b

a
f(x)dx.

as claimed. The assumption that the product of f · g is integrable on [a, b] follows from the fact
that if f : [a, b] → R is integrable and g : [a, b] → R is continuous, then the product f ·g : [a, b] → R

is also integrable on [a, b].

Solution 7.9

Let us find the limit at (i). Consider the function f(x) =
1

4 + x2 . Then we have

lim
n→∞

k=n∑
k=1

1
n
f

(
k

n

)
=
∫ 1

0
f(x)dx .

But
k=n∑
k=1

1
n
f

(
k

n

)
=

k=n∑
k=1

1
n

1

4 +
(
k

n

)2 =
k=n∑
k=1

n

4n2 + k2 ,

which implies

lim
n→∞

k=n∑
k=1

n

4n2 + k2 =
∫ 1

0
f(x)dx =

1
2

arctan
(

1
2

)
.

Next let us find the limit at (ii). Using the hint we get

n

n2 + k2 − 1
3

(
n

n2 + k2

)3

≤ arctan
(

n

n2 + k2

)
≤ n

n2 + k2 .

As for the previous limit (in (i)), one will easily show

lim
n→∞

k=n∑
k=1

n

n2 + k2 =
∫ 1

0

1
1 + x2dx =

π

4
.

On the other hand, we have

k=n∑
k=1

(
n

n2 + k2

)3

≤
k=n∑
k=1

( n
n2

)3
=

k=n∑
k=1

1
n3 =

1
n2 ,

which implies

lim
n→∞

k=n∑
k=1

(
n

n2 + k2

)3

= 0 .
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The Squeeze Theorem will then imply

lim
n→∞

k=n∑
k=1

arctan
(

n

n2 + k2

)
=
π

4
.

For the last limit, i.e., in (iii), consider the function f(x) =
tan(x)
x

. Then we have

k=n∑
k=1

1
k

tan
(

kπ

4n+ 4

)
=

k=n∑
k=1

π

4n+ 4
f

(
kπ

4n+ 4

)
.

Using the Riemann sums, we get

lim
n→∞

k=n∑
k=1

π

4n+ 4
f

(
kπ

4n+ 4

)
=
∫ π

4
0

f(x)dx ,

or

lim
n→∞

k=n∑
k=1

1
k

tan
(

kπ

4n+ 4

)
=
∫ π

4
0

tan(x)
x

dx .

Note that the function f(x), extended at x = 0 by setting f(0) = 1, is continuous on [0, a], where

a > 0 is any number. Hence
∫ π/4

0

tan(x)
x

dx exists in R.

Solution 7.10

Using the hint, we get

k=n∑
k=1

f

(
k

n

)
− n

∫ 1

0
f(x)dx = n

k=n∑
k=1

1
n
f

(
k

n

)
− n

k=n∑
k=1

∫ k/n

(k−1)/n
f(x)dx ,

which yields

k=n∑
k=1

f

(
k

n

)
− n

∫ 1

0
f(x)dx = n

k=n∑
k=1

∫ k/n

(k−1)/n

(
f

(
k

n

)
− f(x)

)
dx .

Since f(x) is C1, the Mean Value Theorem implies∫ k/n

(k−1)/n

(
f

(
k

n

)
− f(x)

)
dx =

∫ k/n

(k−1)/n
f ′(θk(x))

(
k

n
− x

)
dx ,

for any k = 1, 2, . . . , n. Because f ′(x) is continuous on [0, 1], it is bounded. Set

mk = inf
{
f ′(x);

(k − 1)
n

≤ x ≤ k

n

}
and Mk = sup

{
f ′(x);

(k − 1)
n

≤ x ≤ k

n

}
.

Hence we have∫ k/n

(k−1)/n
mk

(
k

n
− x

)
dx ≤

∫ k/n

(k−1)/n

(
f

(
k

n

)
− f(x)

)
dx ≤

∫ k/n

(k−1)/n
Mk

(
k

n
− x

)
dx ,
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for all k = 1, 2, . . . , n. Since
∫ k/n

(k−1)/n

(
k

n
− x

)
dx =

1
2n2 , we get

k=n∑
k=1

mk

2n2 ≤
k=n∑
k=1

∫ k/n

(k−1)/n

(
f

(
k

n

)
− f(x)

)
dx ≤

k=n∑
k=1

Mk

2n2 .

So
k=n∑
k=1

mk

2n
≤

k=n∑
k=1

f

(
k

n

)
− n

∫ 1

0
f(x)dx ≤

k=n∑
k=1

Mk

2n
.

Since
k=n∑
k=1

mk

n
and

k=n∑
k=1

Mk

n

are the upper and lower Riemann sums associated to the function f ′(x) and the partition P =
{k/n; k = 1, 2, . . . , n} of [0, 1], we get

lim
n→∞

k=n∑
k=1

mk

n
=
∫ 1

0
f ′(x)dx = f(1) − f(0), and lim

n→∞

k=n∑
k=1

Mk

n
=
∫ 1

0
f ′(x)dx = f(1) − f(0).

The Squeeze Theorem will then force the equality

lim
n→∞

k=n∑
k=1

f

(
k

n

)
− n

∫ 1

0
f(x)dx =

f(1) − f(0)
2

.

Solution 7.11

The proof will follow the same ideas as the ones developed in the previous problem. Indeed, we
know from Taylor’s formula that

f(y) = f(x) + f ′(x)(y − x) +
f ′′(θ)

2
(y − x)2 ,

for any x, y ∈ [0, 1] for some θ between x and y. If we use the same hint as in the previous problem,
we get

n2
∫ 1

0
f(x)dx− n

k=n∑
k=1

f

(
2k − 1

2n

)
= n2

(
k=n∑
k=1

∫ k/n

(k−1)/n
f(x)dx− 1

n
f

(
2k − 1

2n

))
,

or

n2
∫ 1

0
f(x)dx− n

k=n∑
k=1

f

(
2k − 1

2n

)
= n2

(
k=n∑
k=1

∫ k/n

(k−1)/n

(
f(x) − f

(
2k − 1

2n

))
dx

)
.

Using Taylor’s formula, we get

f(x) − f

(
2k − 1

2n

)
= f ′

(
2k − 1

2n

)(
x− 2k − 1

2n

)
+
f ′′(θk(x))

2

(
x− 2k − 1

2n

)2

.

Since ∫ k/n

(k−1)/n
f ′
(

2k − 1
2n

)(
x− 2k − 1

2n

)
dx = 0 ,
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we get

n2
∫ 1

0
f(x)dx− n

k=n∑
k=1

f

(
2k − 1

2n

)
= n2

k=n∑
k=1

∫ k/n

(k−1)/n

f ′′(θk(x))
2

(
x− 2k − 1

2n

)2

dx .

As we did in the previous problem, set

mk = inf
{
f ′′(x);

(k − 1)
n

≤ x ≤ k

n

}
and Mk = sup

{
f ′′(x);

(k − 1)
n

≤ x ≤ k

n

}
.

Hence
mk

2

(
x− 2k − 1

2n

)2

≤ f ′′(θk(x))
2

(
x− 2k − 1

2n

)2

≤ Mk

2

(
x− 2k − 1

2n

)2

,

for any x ∈ [(k − 1)/n, k/n]. Since∫ k/n

(k−1)/n

(
x− 2k − 1

2n

)2

dx =
1

12n3 ,

we get
k=n∑
k=1

mk

24n
≤ n2

k=n∑
k=1

∫ k/n

(k−1)/n

f ′′(θk(x))
2

(
x− 2k − 1

2n

)2

dx ≤
k=n∑
k=1

Mk

24n
.

Hence
k=n∑
k=1

mk

24n
≤ n2

∫ 1

0
f(x)dx− n

k=n∑
k=1

f

(
2k − 1

2n

)
≤

k=n∑
k=1

Mk

24n
.

Since
k=n∑
k=1

mk

n
and

k=n∑
k=1

Mk

n

are the upper and lower Riemann sums associated to the function f ′′(x) and the partition P =
{k/n; k = 1, 2, . . . , n} of [0, 1], we get

lim
n→∞

k=n∑
k=1

mk

n
=
∫ 1

0
f ′′(x)dx = f ′(1) − f ′(0), and lim

n→∞

k=n∑
k=1

Mk

n
=
∫ 1

0
f ′′(x)dx = f ′(1) − f ′(0).

The Squeeze Theorem will then force the equality

lim
n→∞n2

∫ 1

0
f(x)dx− n

k=n∑
k=1

f

(
2k − 1

2n

)
=
f ′(1) − f ′(0)

24
.

Solution 7.12

Set f(x) =
1

x+ 1
. Then

xn =
1
n

n∑
k=1

2n
2n+ 2k − 1

=
1
n

n∑
k=1

f

(
2k − 1

2n

)
.
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Since f(x) is continuous on [0, 1], we recognize a Riemann sum which implies

lim
n→∞xn =

∫ 1

0
f(x)dx = ln(2) .

Since

n2(ln(2) − xn) = n2
∫ 1

0
f(x)dx− n

n∑
k=1

f

(
2k − 1

2n

)
,

the previous problem implies

lim
n→∞n2(ln(2) − xn) =

f ′(1) − f ′(0)
24

=
1
32

.

Solution 7.13

For (i), intuitively since xn goes to 0 almost everywhere on [0, 1], then maybe the limit of the
integrals is the integral of the constant function 0, which is 0. Let us try to prove it. Fix δ ∈ (0, 1).
Then we have ∫ 1

0

xn

1 + x
dx =

∫ δ

0

xn

1 + x
dx+

∫ 1

δ

xn

1 + x
dx .

Since

0 ≤
∫ δ

0

xn

1 + x
dx ≤

∫ δ

0
xndx ≤ δn

∫ δ

0
dx = δn+1 ,

we obtain

lim
n→∞

∫ δ

0

xn

1 + x
dx = 0 .

So fix ε ∈ (0, 1). Set δ = 1 − ε

2
, then δ ∈ (0, 1). Using the result stated above, there exists n0 ≥ 1

such that

0 ≤
∫ δ

0

xn

1 + x
dx <

ε

2
,

for any n ≥ n0. On the other hand, we have

0 ≤
∫ 1

δ

xn

1 + x
dx ≤

∫ 1

δ
dx = 1 − δ =

ε

2
.

This obviously will imply

0 ≤
∫ 1

0

xn

1 + x
dx < ε ,

whenever n ≥ n0, which proves the intuitive statement

lim
n→∞

∫ 1

0

xn

1 + x
dx = 0 .

For (ii), note that∫ 1

0
nx(1 − x2)ndx =

[
− n

2(n+ 1)
(1 − x2)n+1

]1
0

=
n

2(n+ 1)
.
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This will obviously imply

lim
n→∞

∫ 1

0
nx(1 − x2)ndx =

1
2
.

For (iii), we use the integration-by-parts technique to get∫ 2

1

sin(nx)
x

dx =
[
−cos(nx)

nx

]2
1
+
∫ 2

1

cos(nx)
nx

dx .

Hence ∫ 2

1

sin(nx)
x

dx =
cos(n)
n

− cos(2n)
2n

+
1
n

∫ 2

1

cos(nx)
x

dx .

Since
∣∣∣∣cos(n)

n

∣∣∣∣ ≤ 1
n

,
∣∣∣∣cos(2n)

2n

∣∣∣∣ ≤ 1
2n

, and

∣∣∣∣∫ 2

1

cos(nx)
x

dx

∣∣∣∣ ≤ ∫ 2

1

∣∣∣∣cos(nx)
x

∣∣∣∣ dx ≤
∫ 2

1

1
x
dx = ln(2) ,

we have

lim
n→∞

∫ 2

1

sin(nx)
x

dx = 0 .

Solution 7.14

Let us use the substitution u = π − x. Then we have∫ π

0
xesin(x)dx =

∫ 0

π
−(π − u)esin(π−u)du =

∫ π

0
(π − u)esin(u)du ,

which implies ∫ π

0
xesin(x)dx = π

∫ π

0
esin(u)du−

∫ π

0
uesin(u)du .

Since ∫ π

0
xesin(x)dx =

∫ π

0
uesin(u)du ,

we get ∫ π

0
xesin(x)dx =

π

2

∫ π

0
esin(x)dx .

Solution 7.15

Since f(x) is continuous on [a, b], it is bounded. Set

m = inf{f(x); x ∈ [a, b]} and M = sup{f(x); x ∈ [a, b]} .

Then it is easy to obtain m(b− a) ≤ ∫ b
a f(x)dx ≤ M(b− a), which implies

m ≤ 1
b− a

∫ b

a
f(x)dx ≤ M .



147

The Intermediate Value Theorem for continuous functions on closed intervals implies the existence
of c ∈ [a, b] such that

1
b− a

∫ b

a
f(x)dx = f(c) .

If we fail continuity, then the conclusion does not hold. Indeed, consider

f(x) =
{

1 0 ≤ x ≤ 1 ,
0 1 < x ≤ 2 .

Then
1

b− a

∫ b

a
f(x)dx =

1
2
.

But f(x) �= 1/2 for all x ∈ [0, 2].

Solution 7.16

Assume g is differentiable and u = g(x) and G(u) =
∫ u

0
f(y)dy. Set

F (x) = G(g(x)) =
∫ u

0
f(y)dy.

Since f is continuous by the Fundamental Theorem of Calculus we have

dG

du
=

d

du

∫ u

0
f(y)dy = f(u).

Using the Chain Rule we obtain

F ′(x) = G′(g(x)) · g′(x) = f(g(x)) · g′(x).

In our problem g(x) = x3, so g′(x) = 3x2, and F ′(x) = f(x3) · 3x2 as claimed.

Solution 7.17

Easy calculations give

F (x) =
{
x 0 ≤ x ≤ 1 ,
1 1 < x ≤ 2 .

It is clear that F (x) is continuous and differentiable except at 1, i.e., F ′(1) does not exist. Note
that we have F ′(x) = f(x), for x ∈ (0, 2) with x �= 1.

Solution 7.18

For any a, b ∈ R, and n ≥ 1, we have∫ b

a
sin(nx)dx =

[
−cos(nx)

n

]b

a

=
cos(na)

n
− cos(nb)

n
.

So

lim
n→∞

∫ b

a
sin(nx)dx = lim

n→∞

(
cos(na)

n
− cos(nb)

n

)
= 0 .
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Since this conclusion is true for any a, b ∈ R, the linearity of the integral will imply

lim
n→∞

∫ b

a
S(x) sin(nx)dx = 0

for any step function S(x). In order to get a similar conclusion for Riemann functions, we use the
fact that for any Riemann integrable function f(x) and for any ε > 0, there exists a step function

L(x) such that L(x) ≤ f(x) and
∫ b

a

(
f(x) − L(x)

)
dx ≤ ε. Since

∣∣∣∣∫ b

a

(
f(x) sin(nx) − L(x) sin(nx)

)
dx

∣∣∣∣ ≤ ∫ b

a

∣∣∣f(x) sin(nx) − L(x) sin(nx)
∣∣∣dx ,

we get ∣∣∣∣∫ b

a
f(x) sin(nx) − L(x) sin(nx)dx

∣∣∣∣ ≤ ∫ b

a
f(x) − L(x)dx < ε .

It is clear then that the above conclusion also holds for Riemann integrable functions, i.e., for any
Riemann integrable function f(x), we have

lim
n→∞

∫ b

a
f(x) sin(nx)dx = 0 .

A similar proof will also imply

lim
n→∞

∫ b

a
f(x) cos(nx)dx = 0 ,

for any Riemann integrable function f(x). In order to finish the last question, note the following
trigonometric identity 2 sin2(nx) = 1 − cos(2nx), which implies∫ b

a
f(x) sin2(nx)dx =

∫ b

a
f(x)

1 − cos(2nx)
2

dx =
1
2

∫ b

a
f(x)dx− 1

2

∫ b

a
f(x) cos(2nx)dx .

The previous conclusions will then imply

lim
n→∞

∫ b

a
f(x) sin2(nx)dx =

1
2

∫ b

a
f(x)dx .

Solution 7.19

Assume not, i.e., f(x0) �= 0. Then we have f2(x0) > 0. Since f2(x) is also continuous at x0, then

there exists δ > 0 such that for any x ∈ (x0 − δ, x0 + δ) ⊂ (a, b), we have f2(x) ≥ f2(x0)
2

. Since

∫ x0+δ

x0−δ
f2(x)dx ≤

∫ b

a
f2(x)dx

and ∫ x0+δ

x0−δ

f2(x0)
2

dx ≤
∫ x0+δ

x0−δ
f2(x)dx ,
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we get

δf2(x0) =
∫ x0+δ

x0−δ

f2(x0)
2

dx ≤
∫ b

a
f2(x)dx .

This obviously contradicts our assumption
∫ b
a f

2(x)dx = 0. From this conclusion, we conclude that
the set {x ∈ [a, b]; f(x) �= 0} is a subset of all discontinuous points of f(x). Since f(x) is Riemann
integrable, this set must be negligible or have measure 0.

Solution 7.20

a) Note the inequality
1√

1 + x3
≤ 1√

x3
,

for any x ≥ 1. Since
∫ ∞

1

1√
x3
dx =

∫ ∞

1

1
x3/2dx is convergent (because 3/2 > 1), the basic

comparison test will force
∫ ∞

1

1√
1 + x3

dx to be convergent.

b) We use the integration by parts to get∫ A

1

sin(x)
x

dx =
[
−cos(x)

x

]A

1
−
∫ A

1

cos(x)
x2 dx ,

for any A > 1. Since

lim
A→∞

[
−cos(x)

x

]A

1
=

cos(1)
1

= cos(1) ,

and the improper integral
∫ ∞

1

cos(x)
x2 dx is absolutely convergent (because

∣∣∣∣cos(x)
x2

∣∣∣∣ ≤ 1
x2 and∫ ∞

1

1
x2dx is convergent), we conclude that

∫ ∞

1

sin(x)
x

dx is convergent. Let us show that it

is not absolutely convergent. Indeed assume not, then
∫ ∞

1

∣∣∣∣sin(x)
x

∣∣∣∣ dx is convergent. Since

∫ ∞

1

∣∣∣∣sin(x)
x

∣∣∣∣ dx =
∞∑

n=1

∫ (n+1)π

nπ

∣∣∣∣sin(x)
x

∣∣∣∣ dx,
we conclude that the series on the left side is convergent. But∫ (n+1)π

nπ

∣∣∣∣sin(x)
x

∣∣∣∣ dx =
∫ π

0

| sin(x+ nπ)|
x+ nπ

dx =
∫ π

0

|(−1)n sin(x)|
x+ nπ

dx =
∫ π

0

sin(x)
x+ nπ

dx .

Since ∫ π

0

sin(x)
x+ nπ

dx ≥
∫ π

0

sin(x)
π + nπ

dx =
2

(n+ 1)π
,

the basic comparison test for positive series will then force the series
∞∑

n=1

2
(n+ 1)π

is conver-

gent. Contradiction.
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Solution 7.21

Set µ =
1 + α

2
. If α > 1, then 1 < µ < α. Since lim

x→∞
xµ

xα lnβ(x)
= 0, for any β ∈ R, there exists

A > 0 such that for any x ≥ A, we have
xµ

xα lnβ(x)
≤ 1 which implies

1
xα lnβ(x)

≤ 1
xµ

. Since the

improper integral
∫ ∞

1

1
xµ
dx is convergent, the basic comparison test will force

∫ ∞

2

1
xα lnβ(x)

dx to

be convergent. If α < 1, then 1 > µ > α. Since lim
x→∞

xµ

xα lnβ(x)
= ∞, for any β ∈ R, there exists

A > 0 such that for any x ≥ A, we have
xµ

xα lnβ(x)
≥ 1 which implies

1
xα lnβ(x)

≥ 1
xµ

. Since the

improper integral
∫ ∞

1

1
xµ
dx is divergent, the basic comparison test will force

∫ ∞

2

1
xα lnβ(x)

dx to

be divergent. Finally, assume α = 1. Then for any A > 2, we have∫ A

2

1
x lnβ(x)

dx =
∫ ln(A)

ln(2)

1
xβ
dx .

Since
∫ ∞

ln(2)

1
xβ
dx is convergent if and only if β > 1,

∫ ∞

2

1
x lnβ(x)

dx is convergent if and only if

β > 1.

Solution 7.22

Set F (t) =
∫ t

a
f(x)dx. It is clear that the improper integral

∫ ∞

a
f(x)dx converges if and only if

lim
t→∞F (t) exists. Assume that the improper integral converges. Then for any ε > 0, there exists
A > 0 such that for any t > A we have∣∣∣∣F (t) −

∫ ∞

a
f(x)dx

∣∣∣∣ < ε

2
.

Hence for any t1, t2 > A, we have∣∣∣F (t1) − F (t2)
∣∣∣ ≤ ∣∣∣∣F (t1) −

∫ ∞

a
f(x)dx

∣∣∣∣+ ∣∣∣∣F (t2) −
∫ ∞

a
f(x)dx

∣∣∣∣ < ε

2
+
ε

2
= ε .

Assume the converse is true, i.e., for every ε > 0 there exists A > a such that for any t1, t2 > A we
have ∣∣∣∣∫ t2

t1

f(x)dx
∣∣∣∣ < ε .

c) Note that
∫ ∞

0

x

1 + x2 sin2(x)
dx is convergent if and only if

∫ ∞

1

x

1 + x2 sin2(x)
dx is convergent.

Since
1
2x

≤ x

1 + x2
≤ x

1 + x2 sin2(x)

for any x ≥ 1 and
∫ ∞

1

1
2x
dx is divergent, the basic comparison test will then force∫ ∞

1

x

1 + x2 sin2(x)
dx to be divergent. Hence the improper integral

∫ ∞

0

x

1 + x2 sin2(x)
dx is

divergent.
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Let us prove that the improper integral
∫ ∞

a
f(x)dx is convergent. Note that lim

t→∞F (t) exists if

and only if for any sequence {tn} which goes to ∞, the sequence {F (tn)} is convergent. In R

convergence of sequences is equivalent to the Cauchy behavior. Hence lim
t→∞F (t) exists if and only

if for any sequence {tn} which goes to ∞, the sequence {F (tn)} is Cauchy. Our assumption forces
this to be true. Indeed, let {tn} be a sequence which goes to 0. Let ε > 0. Then there exists A > 0
such that for any t1, t2 > A we have∣∣∣F (t1) − F (t2)

∣∣∣ = ∣∣∣∣∫ t2

t1

f(x)dx
∣∣∣∣ < ε .

Since {tn} goes to ∞, there exists n0 ≥ 1 such that for any n ≥ n0 we have tn > A. So for any
n,m ≥ n0, we have ∣∣∣F (tn) − F (tm)

∣∣∣ = ∣∣∣∣∫ tm

tn

f(x)dx
∣∣∣∣ < ε ,

which translates into {F (tn)} being a Cauchy sequence.

Solution 7.23

Let us use the Cauchy criteria proved in the previous problem to prove our claim. Let ε > 0. Since

g(x) is bounded, there exists M > 0 such that |g(x)| ≤ M for all x ∈ [a,∞). Since
∫ ∞

a
f(x)dx is

convergent, there exists A > 0 such that for any t1, t2 > A we have∣∣∣∣∫ t2

t1

f(x)dx
∣∣∣∣ < ε

2M
.

By the Second Mean Value Theorem for integrals, and for any t1, t2 > A, there exists c between t1
and t2 such that ∫ t2

t1

f(x)g(x)dx = g(t1)
∫ c

t1

f(x)dx+ g(t2)
∫ t2

c
f(x)dx .

Hence ∣∣∣∣∫ t2

t1

f(x)g(x)dx
∣∣∣∣ ≤ |g(t1)|

∣∣∣∣∫ c

t1

f(x)dx
∣∣∣∣+ |g(t2)|

∣∣∣∣∫ t2

c
f(x)dx

∣∣∣∣ .
But ∣∣∣∣∫ c

t1

f(x)dx
∣∣∣∣ < ε

2M
and

∣∣∣∣∫ t2

c
f(x)dx

∣∣∣∣ < ε

2M
,

which forces the inequality∣∣∣∣∫ t2

t1

f(x)g(x)dx
∣∣∣∣ < ε

2M
|g(t1)| +

ε

2M
|g(t2)| < ε

to be true.
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Solution 7.24

The lower integral of any function is well defined provided the function is bounded. Therefore for
any bounded function f(x), and by definition of the lower integral, for any ε > 0, there exists a
step function L(x) ≤ f(x) such that∫ b

a

(
f(x) − L(x)

)
dx <

ε

2
.

Also note the existence of a continuous function c(x) ≤ L(x) such that∫ b

a

(
L(x) − c(x)

)
dx <

ε

2
.

Putting all this together, we conclude that for any bounded function f(x), and for any ε > 0, there
exists a continuous function c(x) ≤ f(x) such that∫ b

a

(
f(x) − c(x)

)
dx < ε .

Note that if f(x) ≥ 0, then the construction of c(x) will be done to have c(x) ≥ 0 as well. Back to
our claim. Let ε > 0. Then there exists a positive continuous function c1(x) ≤ f1(x) such that∫ b

a

(
f1(x) − c1(x)

)
dx <

ε

22 .

Since min(c1(x), f2(x)) is bounded and positive, there exists a positive continuous function c2(x) ≤
min(c1(x), f2(x)) such that ∫ b

a

(
min(c1(x), f2(x)) − c2(x)

)
dx <

ε

23 .

Since f2(x) − c2(x) ≤ f2(x) − min(c1(x), f2(x)) + min(c1(x), f2(x)) − c2(x), and f2(x) ≤ f1(x), we
get∫ b

a

(
f2(x) − c2(x)

)
dx ≤

∫ b

a

(
f1(x) − c1(x)

)
dx+

∫ b

a

(
min(c1(x), f2(x)) − c2(x)

)
dx <

ε

22 +
ε

23 .

By the induction argument, a similar construction will lead to the existence of a decreasing sequence
of positive continuous functions {cn(x)} such that cn(x) ≤ fn(x) and∫ b

a

(
fn(x) − cn(x)

)
dx <

ε

22 +
ε

23 + · · · +
ε

2n+1 <
ε

2
.

Since {fn(x)} converges pointwise to 0 on [a, b] this will force the sequence {cn(x)} to also converge
pointwise to 0 on [a, b]. Dini’s theorem will imply that {cn(x)} converges uniformly to 0 on [a, b].
So there exists n0 ≥ 1 such that for any n ≥ n0 we have cn(x) ≤ ε

2(b− a)
for any x ∈ [a, b]. Hence

∫ b

a
fn(x)dx ≤

∫ b

a

(
fn(x) − cn(x)

)
dx+

∫ b

a
cn(x)dx <

ε

2
+

ε

2(b− a)
(b− a) = ε
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whenever n ≥ n0. This finishes the proof of our claim.

Solution 7.25

Since f(x) is Riemann integrable, {fn(x) − f(x)} is a sequence of Riemann integrable functions
which decreases to 0. Obviously they are all bounded functions. The Luxemburg Monotone Con-
vergence Theorem will imply

lim
n→∞

∫ b

a

(
fn(x) − f(x)

)
dx = 0 .

But
∫ b

a

(
fn(x) − f(x)

)
dx =

∫ b

a

(
fn(x) − f(x)

)
dx, hence

lim
n→∞

∫ b

a

(
fn(x) − f(x)

)
dx = 0 ,

which implies

lim
n→∞

∫ b

a
fn(x) =

∫ b

a
f(x)dx .

Solution 7.26

Set f̂n(x) = |fn(x) − f(x)|. Our assumptions imply that {f̂n(x)} converges to 0 pointwise. Set
hn(x) = sup

k≥n
f̂k(x). Clearly {hn(x)} also converges pointwise to 0 on [a, b]. But these functions are

not necessarily Riemann integrable. But they are bounded. The Luxemburg Monotone Convergence
Theorem will force the conclusion

lim
n→∞

∫ b

a
hn(x)dx = 0 .

Since 0 ≤ f̂n(x) ≤ hn(x), we get

lim
n→∞

∫ b

a
f̂n(x)dx = 0 .

But f̂n are Riemann integrable which implies

lim
n→∞

∫ b

a
f̂n(x)dx = 0 .

Since
∣∣∣∣∫ b

a

(
fn(x) − f(x)

)
dx

∣∣∣∣ ≤ ∫ b

a
f̂n(x)dx, we get

lim
n→∞

∫ b

a

(
fn(x) − f(x)

)
dx = 0 ,

or

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
f(x)dx.
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Solution 7.27

If lim inf
n→∞

∫ b

a
fn(x)dx = ∞, then the conclusion is obvious. Assume that lim inf

n→∞

∫ b

a
fn(x)dx < ∞.

Then there exists a subsequence {fnk
} of {fn} such that

lim
nk→∞

∫ b

a
fnk

(x)dx = lim inf
n→∞

∫ b

a
fn(x)dx .

Clearly the subsequence {fnk
} also converges pointwise to f(x). Set hni(x) = inf

nk≥ni

fnk
(x). Then

{hnk
(x)} also converges pointwise to f(x) and is increasing. It is easy to see that this sequence is

bounded. The Luxemburg Monotone Convergence Theorem applied to {f(x) − hnk
(x)} will easily

imply that

lim
n→∞

∫ b

a
hnk

(x)dx =
∫ b

a
f(x)dx .

Since hnk
(x) ≤ fnk

(x), we get∫ b

a
f(x)dx ≤ lim

n→∞

∫ b

a
fnk

(x)dx = lim inf
n→∞

∫ b

a
fn(x)dx.

Solution 7.28

a) If T were a contraction, then there exist 0 < λ < 1 such that

‖ Tf − Tg ‖≤ λ ‖ f − g ‖ ∀f, g ∈ C[0, 1].

Taking f(t) = 1, g(t) = 0 in C[0, 1], we have

‖ Tf − Tg ‖= sup |
∫ x

0
dt−

∫ x

0
0 dt | = sup

0≤x≤1
|x| = 1,

‖ f − g ‖= sup
0≤x≤1

|1 − 0| = 1

and hence we will have 1 ≤ λ · 1 which is a contraction since λ < 1. Therefore T is not a
contraction.

b) Consider f(x) = 0, then Tf = f , therefore we have the existence of the fixed point. To show
the uniqueness of the fixed point, assume not, suppose we have another fixed point say h such
that Th = h or equivalently ∫ x

0
h(t) dt = h(x).

From the Fundamental Theorem of Calculus we have
dh

dx
= h(x), and the solution to this

differential equation is h(x) = Cex. Since h(0) = 0 , we have C = 0 and therefore h(x) = 0 =
f(x).
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c) First observe that

T 2f(x) = T (Tf(x)) =
∫ x

0

(∫ t

0
f(s) ds

)
dt

and

‖ T 2f−T 2g ‖= sup
0≤x≤1

∣∣∣∣∫ x

0

(∫ t

0

(
f(s) − g(s)

)
ds

)
dt

∣∣∣∣ ≤ sup
0≤x≤1

∫ x

0

(∫ t

0
| f(s) − g(s) | ds

)
dt,

‖ T 2f − T 2g ‖≤‖ f − g ‖ sup
0≤x≤1

∫ x

0
t dt =‖ f − g ‖ sup

0≤x≤1

x2

2
=

1
2

‖ f − g ‖ .

We showed:
‖ T 2f − T 2g ‖≤ 1

2
‖ f − g ‖

and hence T 2 is a contraction.

Solution 7.29

First observe that the given initial value problem

dy

dx
= 3xy, y(0) = 1

can be written as

f(x) = 1 +
∫ x

0
3s f(s) ds,

since f(0) = 1 and
dy

dx
= 3xf(x) by the fundamental theorem of calculus. Using the Picard iteration

form the following sequence:

f0(x) = 1

f1(x) = T (f0(x)) = 1 +
∫ x

0
3s · 1 ds = 1 + (3/2)s2|x0 = 1 + (3/2)x2

f2(x) = T (f1(x)) = 1 +
∫ x

0
3s ·
(

1 +
3
2
s2
)
ds = 1 + 3

s2

2
+ (3/2)

s4

4
|x0 = 1 +

(
3
2
x2
)

+
(

3
2
x2
)2 1

2!
.

It is clear that we have

fn(x) = T (fn−1(x)) = 1 +
(

3
2
x2
)

+
(

3
2
x2
)2 1

2!
+ · · · +

(
3
2
x2
)n 1

n!
=

n∑
k=0

(3
2x

2)n

n!
.

But this sequence fn(x) converges to f(x) = e
3
2x2

.

Solution 7.30

Given the initial value problem is f ′(x) = 1 + x− f(x) for −1/2 ≤ x ≤ 1/2 under f(0) = 1. So we
have the integral equation

f(x) = 1 +
∫ x

0
(1 + t− f(t)) dt = 1 + x+

x2

2
−
∫ x

0
f(t)dt.
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So define T : C[−1
2 ,

1
2 ] → C[−1

2 ,
1
2 ] by

Tf(x) = 1 + x+
x2

2
−
∫ x

0
f(t)dt

|Tf(x) − Tg(x)| =
∣∣∣∣∫ x

0
f(t) − g(t)dt

∣∣∣∣ ≤ ∫ x

0
|f(t) − g(t)|dt

≤ ‖f − g‖∞
∫ x

0
dt ≤ 1

2
‖f − g‖∞.

This estimate is independent of x ∈ [−1/2, 1/2], so we have ‖Tf − Tg‖∞ ≤ 1/2‖f − g‖∞.

f1(x) = Tf0(x) = 1 + x+
x2

2
−
∫ x

0
1dt = 1 +

1
2
x2.

f2(x) = Tf1(x) = 1 + x+
x2

2
−
∫ x

0

(
1 +

1
2
t2
)
dt = 1 +

1
2
x2 − 1

6
x3.

f3(x) = Tf2(x) = 1 + x+
x2

2
−
∫ x

0

(
1 +

1
2
x2 − 1

6
x3
)
dt = 1 +

1
2
x2 − 1

6
x3 +

1
24
x4.

It is easy to show by induction that

fn(x) = 1 +
1
2!
x2 − 1

3!
x3 +

1
4!
x4 − 1

5!
x5 + · · · +

1
(n+ 1)!

(−x)n+1.

Clearly this sequence converges to e−x + x.

Solution 7.31

Let F (x) =
∫ π

0

sinxt
t

dt and notice that f(x, t) = sinxt is a continuous function on

[a, b] × [0, π]. Let x0 be a fixed x-value, then given ε > 0 choose δ =
ε

π
, then

|F (x) − F (x0)| =
∣∣∣∣ ∫ π

0

sinxt
t

dt−
∫ π

0

sinx0t

t
dt

∣∣∣∣ ≤ ∫ π

0

| sinxt− sinx0t|
t

dt

≤
∫ π

0

|xt− x0t|
t

dt = π|x− x0| ≤ πδ = ε,

thus |F (x) − F (x0)| < ε, and F is continuous.

Solution 7.32

1. In order to prove the existence of such polynomials, we will need Euler’s formula, i.e., eiθ =
cos(θ) + i sin(θ). Indeed we have

einθ = cos(nθ) + i sin(nθ) =
(
eiθ
)n
.
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But (
eiθ
)n

=
n∑

k=0

(
n

k

)
ik sink(θ) cosn−k(θ).

So the real part of the two complex numbers must be equal which gives

cos(nθ) =
∑

0≤2k≤n

(
n

2k

)
(−1)k sin2k(θ) cosn−2k(θ).

But sin2k(θ) =
(

sin2(θ)
)k

=
(
1 − cos2(θ)

)k
, which implies

cos(nθ) =
∑

0≤2k≤n

(
n

2k

)
(−1)k

(
1 − cos2(θ)

)k
cosn−2k(θ).

Set

Tn(x) =
∑

0≤2k≤n

(
n

2k

)
(−1)k

(
1 − x2

)k
xn−2k.

Then Tn(cos(θ)) = cos(nθ). Clearly Tn is a polynomial function with degree n.

2. We have the trigonometric identity

cos(n+ 1)x+ cos(n− 1)x = 2 cos(x) cos(nx).

Hence
Tn+1(cos(x)) + Tn−1(cos(x)) = 2 cos(x)Tn(cos(x))

which implies Tn+1 = 2xTn − Tn−1, for any n ≥ 1.

3. In order to find the integrals ∫ 1

−1

Tn(x)Tm(x)√
1 − x2

dx, n,m ∈ N,

we use the change of variable x = cos(t). Hence∫ 1

−1

Tn(x)Tm(x)√
1 − x2

dx =
∫ 0

π

Tn(cos(t))Tm(cos(t))√
1 − cos2(t)

(− sin(t))dt =
∫ π

0
Tn(cos(t))Tm(cos(t))dt.

Using the main property of the polynomial functions Tn, we get∫ 1

−1

Tn(x)Tm(x)√
1 − x2

dx =
∫ π

0
cos(nt) cos(mt)dt.

If n �= m, we use the identity

cos(nt) cos(mt) =
1
2

(
cos(n−m)t+ cos(n+m)t

)
,

to get ∫ π

0
cos(nt) cos(mt)dt =

1
2

[
sin(n−m)t
n−m

+
sin(n+m)t
n+m

]π

0
= 0.
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If n = m, then∫ 1

−1

T 2
n(x)√
1 − x2

dx =
∫ π

0
cos2(nt)dt =

1
2

∫ π

0

(
1 + cos(2nt)

)
dt =

π

2
,

if n �= 0. If n = 0, then ∫ 1

−1

T 2
0 (x)√
1 − x2

dx = π.



Chapter 8

Series

That fondness for science, ... that affability and condescension which God
shows to the learned, that promptitude with which he protects and supports
them in the elucidation of obscurities and in the removal of difficulties, has
encouraged me to compose a short work on calculating by al-jabr and al-
muqabala, confining it to what is easiest and most useful in arithmetic.
[al-jabr means “restoring,” referring to the process of moving a subtracted
quantity to the other side of an equation; al-muqabala is “comparing” and
refers to subtracting equal quantities from both sides of an equation.]

Musa Al-Khwarizmi (about 790–about 840)

• Let (ak) be a sequence of real numbers. We use the notation sn =
n∑

k=0

ak to denote the nth

partial sum of the infinite series s∞ =
∞∑

k=0

ak. If the sequence of partial sums (sn) converges

to a real number s, we say that the series
∑

k

ak is convergent and we write s =
∞∑

k=0

ak . A

series that is not convergent is called divergent.

• An infinite series
∞∑

k=0

ak is said to converge absolutely if
∞∑

k=0

|ak| converges. If a series converges

absolutely, then it converges. Furthermore, an absolutely convergent series converges to the
same sum in whatever order the terms are taken.
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• If
∞∑

k=0

ak converges but
∞∑

k=0

|ak| diverges, then we say
∞∑

k=0

ak converges conditionally . Any

conditionally convergent series can be rearranged to obtain a series which converges to any
given sum or diverges to ∞ or −∞.

• Ratio Test : Given a series
∞∑

k=1

ak with ak �= 0, if ak satisfies

lim
k→∞

|ak+1

ak
| = r < 1,

then the series converges absolutely.

• Root Test : Let
∞∑

k=1

ak be a series and

α := lim
k→∞

k
√

|ak|.

Then the following hold:

a)
∞∑

k=1

ak converges absolutely if α < 1.

b)
∞∑

k=1

ak diverges if α > 1.

For α = 1 both convergence and divergence of
∞∑

k=1

ak are possible.

• Cauchy Criterion for Series: The series
∞∑

k=1

ak converges if and only if given ε > 0, there

exists N ∈ N such that whenever n > m ≥ N it follows that

|am+1 + am+2 + · · · + an| < ε.

• Comparison Test : Assume (ak) and (bk) are sequences satisfying 0 ≤ ak ≤ bk for all k ∈ N.

a) If
∞∑

k=1

bk converges, then
∞∑

k=1

ak converges.

b) If
∞∑

k=1

ak diverges, then
∞∑

k=1

bk diverges.

• Geometric Series: A series is called geometric if it is of the form
∞∑

k=1

ark = a+ ar + ar2 + ar3 · · ·

and ∞∑
k=1

ark =
a

1 − r

if and only if |r| < 1. In case r = 1 and a �= 0, the series diverges.
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• Alternating Series Test : Let (an) be a sequence satisfying

a) a1 ≥ a2 ≥ a3 ≥ · · · ≥ an ≥ an+1 ≥ · · · and

b) (an) → 0.

Then the alternating series
∞∑

n=1

(−1)n+1an converges.

• Let
∞∑

k=1

ak be a series. A rearrangement is the series
∞∑

k=1

aσ(k) where σ is a permutation of

{1, 2, 3, . . . }. The summands of the rearrangement
∞∑

k=1

aσ(k) are the same as those of the

original series, but they occur in different order. If σ is a permutation of N with σ(k) = k

for almost all k ∈ N, then
∞∑

k=1

ak and
∞∑

k=1

aσ(k) have the same convergence behavior, and their

values are equal if the series converge. For a permutation σ(k) �= k for infinitely many k ∈ N,
this may not be true.

• If
∞∑

k=1

ak converges absolutely, then any rearrangement of this series converges to the same

limit.

Problem 8.1 Prove that if the series
∞∑

k=1

ak converges, then {ak} is a null sequence.

Problem 8.2 Find the infinite series and its sum if the sequence {sn} of partial sums is given
by

{sn} =
{
n+ 1
n

}
n∈N

.

Problem 8.3 Show that the Euler’s series
∞∑

k=1

1
k2 converges. Find the sum of the series.

Problem 8.4 Show that the harmonic series
∞∑

k=1

1
k

diverges.

CHAPTER 8. SERIES
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Problem 8.5 Discuss the convergence of the series
∞∑

n=2

1
n lnp(n)

depending on p ≥ 0. These

series are known as the Bertrand series.

Problem 8.6 Find the sum of the series

a)
∞∑

k=1

1
k2 + k

b)
∞∑

k=1

ln
(

kk+1

(k+1)k

)
k(k + 1)

c)
∞∑

k=1

1
(2k − 1)2

Problem 8.7 Suppose that
∑
xn is a series of positive terms which is convergent. Show that∑ 1

xn
is divergent. What about the converse?

Problem 8.8 Suppose that
∑
xn is a series of positive terms which is convergent. Show that∑

x2
n and

∑√
xnxn+1 are convergent.

Problem 8.9 Suppose that
∑
xn is a series of positive terms which is convergent. Show that∑ √

xn

n
is convergent.

Problem 8.10 Show that the series
∑ (−1)n

√
n+ (−1)n

is divergent while
∑ (−1)n

√
n

is convergent.

Deduce from this that the limit convergence test does not work for nonpositive series.

Problem 8.11 Discuss the convergence or divergence of
∑
xn where

xn =
∫ ∞

1
e−xn

dx, n = 1, . . . .
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Problem 8.12 Let {xn} and {εn} be two sequences of real numbers such that

1. the sequence of partial sums {sn} of
∑
xn is bounded, i.e., there exists M > 0 such that

|sn| = |x1 + · · · + xn| ≤ M, n = 1, . . . ;

2. lim
n→∞ εn = 0;

3. the series
∑ |εn+1 − εn| is convergent.

Then the series
∑
εnxn is convergent. This conclusion is known as Abel’s test or Abel’s theorem.

Problem 8.13 Show that for any n ≥ 1, we have

1 +
1
2!

+ · · · +
1
n!

≤ e ≤ 1 +
1
2!

+ · · · +
1

n(n!)
·

Use these inequalities to discuss the convergence or divergence of∑
n≥1

sin(πen!).

Problem 8.14 Consider the sequence

xn =
(−1)n

p n+ 1

where p > 0. Show that
∑
xn is convergent and its sum is

∞∑
n=0

xn =
∫ 1

0

dt

1 + tp
·

In particular, show

∞∑
n=0

(−1)n

n+ 1
= ln 2,

∞∑
n=0

(−1)n

2n+ 1
=
π

4
, and

∞∑
n=0

(−1)n

3n+ 1
=

1
3

(
ln(2) +

π√
3

)
.

Problem 8.15 Show that the series∑
n≥1

cos(nθ)
n

and
∑
n≥1

sin(nθ)
n

are convergent, where 0 < θ < 2π.

CHAPTER 8. SERIES
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Problem 8.16 (Dirichlet’s Rearrangement Theorem) Let
∑
xn be an absolutely conver-

gent series, with
∑∞

n=1 xn = s, and let
∑
yn be any rearrangement of

∑
xn. Show that

∑
yn

converges, and
∑∞

n=1 yn = s.

Problem 8.17 Given two series
∑
xn and

∑
yn, define zn =

∑n
k=0 xkyn−k. Suppose that

∑
xn

and
∑
yn are absolutely convergent. Show that

∑
zn is absolutely convergent, and∑

zn =
∑

xn ·
∑

yn.

Problem 8.18 Consider the positive series
∑
xn and

∑
yn with xn > 0 and yn > 0. Assume

that there exists N ≥ 1 such that
xn+1

xn
≤ yn+1

yn

for n ≥ N . Show that if
∑
xn is divergent, then

∑
yn is divergent as well.

Problem 8.19 Consider the positive series
∑
xn with xn > 0. Assume that there exists N ≥ 1

and p > 1 is a real number such that

n

(
1 − xn+1

xn

)
≥ p

for any n ≥ N . Show that
∑
xn is convergent.

Problem 8.20 Consider the positive series
∑
xn with xn > 0. Assume that there exists N ≥ 1

such that

n

(
1 − xn+1

xn

)
≤ 1

for any n ≥ N . Show that
∑
xn is divergent.

Problem 8.21 Consider the positive series
∑
xn with xn > 0. Show that

(a) if lim
n→∞n

(
1 − xn+1

xn

)
> 1, then

∑
xn is convergent;

(b) and if lim
n→∞n

(
1 − xn+1

xn

)
< 1, then

∑
xn is divergent.

Show that we do not have any conclusion when

lim
n→∞n

(
1 − xn+1

xn

)
= 1 .
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Problem 8.22 Consider the positive series
∑
xn with xn > 0 such that there exist p > 0 and

q > 1 such that the sequence {
nq

(
1 − xn+1

xn
− p

n

)}
is bounded. Show that

(a) if p ≤ 1, then
∑
xn is divergent;

(b) and if p > 1, then
∑
xn is convergent.

This is known as Raabe–Duhamel’s rule.

Problem 8.23 Discuss the convergence or divergence of
∑
xn where

xn =
1 · 3 · · · (2n− 1)

2 · 4 · · · (2n)
.
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Solutions

Solution 8.1

Let
∑

ak be a convergent series, then the sequence {sn} of partial sums is convergent and hence
(sn) is a Cauchy sequence. Thus for each ε > 0, there exists an N ∈ N such that

|sn − sm| < ε for all n,m ≥ N.

In particular,

|sn+1 − sn| =

∣∣∣∣∣
n+1∑
k=0

ak −
n∑

k=0

ak

∣∣∣∣∣ = |an| < ε for all n ≥ N,

that is, {an} is a null sequence. Note also that if {sn} is convergent, then {sn+1} is also convergent
and converges to the same limit. Hence {sn+1 − sn} converges to 0, i.e., {an} converges to 0.

Solution 8.2

Note that s1 = a1 = 2 and

ak = sk − sk−1 =
k + 1
k

− k

k − 1
=

(k + 1)(k − 1) − k2

k(k − 1)
=

−1
k(k + 1)

∀k > 1,

therefore the series is

2 −
∞∑

k=2

1
k(k + 1)

and the sum of the series is
s = lim

n→∞ sn = lim
n→∞

n+ 1
n

= 1.

Solution 8.3

Because the terms in the sum are all positive, the sequence of partial sums given by

sn = 1 +
1
4

+
1
9

+ · · · +
1
n2

is increasing. To find an upper bound for sn, observe

sn = 1 +
1

2 · 2
+

1
3 · 3

+ · · · +
1

n · n
< 1 +

1
2 · 1

+
1

3 · 2
+ · · · +

1
n · (n− 1)

= 1 +
(

1 − 1
2

)
+
(

1
2

− 1
3 · 2

)
+ · · · +

(
1

n− 1
− 1
n

)
= 1 + 1 − 1

n
< 2.
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Thus 2 is an upper bound for the sequence of partial sums, so by the Monotone Convergence

Theorem,
∞∑

k=1

1
k2 converges to a limit less than 2.

Next, we claim that
∞∑

k=1

1
k2 =

π2

6
. This can be shown by using the well-known clever trick of

evaluating the double integral

I =
∫ 1

0

∫ 1

0

1
1 − xy

dxdy

and we evaluate I in two different ways. First notice

1
1 − xy

=
∞∑

k=0

(xy)k,

therefore

I =
∫ 1

0

∫ 1

0

∞∑
k=0

(xy)kdxdy

=
∞∑

k=0

∫ 1

0

∫ 1

0
(xy)kdxdy

=
∞∑

k=0

(∫ 1

0
xkdx

)(∫ 1

0
ykdy

)

=
∞∑

k=0

1
(k + 1)2

=
∞∑

k=1

1
k2 .

The second way to evaluate I comes from a change of variables. Let

u =
x+ y

2
and v =

y − x

2

or equivalently
x = u− v and y = u+ v.

Given this transformation,
1

1 − xy
=

1
1 − (u2 + v2)

and using the change of variables formula we obtain

I =
∫ ∫

f(x, y)dxdy =
∫ ∫

f(x(u, v), y(u, v))
∣∣∣∣d(x, y)d(u, v)

∣∣∣∣ dudv
where ∣∣∣∣d(x, y)d(u, v)

∣∣∣∣ = 2.

CHAPTER 8. SERIES



168 CHAPTER 8. SERIES

Since the function to be integrated and the domain in the uv-plane are symmetric with respect to
the u-axis, we can split the integral into two parts as such,

I = 4
∫ 1/2

0

(∫ u

0

dv

1 − u2 + v2

)
du+ 4

∫ 1

1/2

(∫ 1−u

0

dv

1 − u2 + v2

)
du

= 4
∫ 1/2

0

1√
1 − u2

arctan
(

u√
1 − u2

)
du+ 4

∫ 1

1/2

1√
1 − u2

arctan
(

1 − u√
1 − u2

)
du.

Now, observe that if we set

k(u) = arctan
(

u√
1 − u2

)
and h(u) = arctan

(
1 − u√
1 − u2

)
,

then we obtain the derivatives

k′(u) =
1√
u2

and h′(u) = −1
2

1 − u√
1 − u2

.

This yields

I = 4
∫ 1/2

0
k′(u)k(u)du+ 4

∫ 1

1/2
−2h′(u)h(u)du

= 2 (k(u))2
∣∣1/2
0 − 4 (h(u))2

∣∣1
1/2

= 2(k(1/2))2 − 2(k(0))2 − −4(h(1))2 + 4(h(1/2))2

= 2
(π

6

)2 − 0 + 0 + 4
(π

6

)2

=
(π

6

)2
.

Solution 8.4

Again we have an increasing sequence of partial sums

sk = 1 +
1
2

+
1
3

+ · · · +
1
k
.

Notice that

s4 = 1 +
1
2

+
1
3

+
1
4
> 1 +

1
2

+
(

1
4

+
1
4

)
= 2.

A similar calculation yields

s8 > 2
1
2
,

therefore, in general we have

s2k = 1 +
1
2

+
(

1
3

+
1
4

)
+
(

1
5

+ · · · 1
8

)
+ · · · +

(
1

2k−1 + · · · 1
2k

)
> 1 +

1
2

+
(

1
4

+
1
4

)
+
(

1
8

+ · · · 1
8

)
+ · · · +

(
1
2k

+ · · · 1
2k

)
= 1 +

1
2

+ 2
(

1
4

)
+ 4
(

1
8

)
+ · · · + 2k−1

(
1
2k

)
= 1 +

1
2

+
1
2

+
1
2

+ · · · +
1
2

= 1 + k

(
1
2

)
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which demonstrates that {s2k} is unbounded. Despite the slow pace, the sequence of partial sums

for
∞∑

k=1

1
k

eventually surpasses every positive real number. The harmonic series diverges.

Solution 8.5

Assume p > 0. Otherwise we have the harmonic series which is divergent. The function f(x) =
1

x lnp(x)
is decreasing on [2,∞). Then the integral test implies that

∞∑
n=2

1
n lnp(n)

is convergent iff∫∞
2 f(x)dx is convergent. But this integral is the Bertrand improper integral. Using Problem 7.21,

we know that
∫∞
2 f(x)dx is convergent iff p > 1. Hence

∞∑
n=2

1
n lnp(n)

is convergent iff p > 1. In

particular, the series
∞∑

n=2

1
n ln(n)

is divergent.

Solution 8.6

a) Notice that
1

k2 + k
=

1
k(k + 1)

=
1
k

+
−1
k + 1

.

Therefore, the nth partial sum

sn =
∞∑

k=1

1
k

− 1
k + 1

=
(

1 − 1
2

)
+
(

1
2

− 1
3

)
+ · · · +

(
1
n

− 1
n+ 1

)
= 1 +

(
−1

2
+

1
2

)
+
(

−1
3

+
1
3

)
+ · · · +

(
− 1
n

+
1
n

)
− 1
n+ 1

= 1 − 1
n+ 1

.

The limit of the sequence of partial sums is

lim
n→∞ sn = lim

(
1 − 1

n+ 1

)
= 1

so the series converges with sum 1.

b) Using the properties of logarithms, we see that

∞∑
k=1

ln

(
kk+1

(k + 1)k

)
k(k + 1)

=
∞∑

k=1

(k + 1) ln k − k ln(k + 1)
k(k + 1)
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and therefore

sn =
n∑

k=1

ln k
k

− ln(k + 1)
k + 1

=
(

ln 1
1

− ln 2
2

)
+
(

ln 2
2

− ln 3
3

)
+ · · · +

(
lnn
n

− ln(n+ 1)
n+ 1

)
= − ln(n+ 1)

n+ 1
,

which implies

lim
n→∞ sn = lim

(
− ln(n+ 1)

n+ 1

)
= 0.

c) We utilize the proof of Problem 8.3 to claim that

∞∑
k=1

1
k2 =

π2

6
.

Next we observe that

s2n =
2n∑

k=1

1
k2 =

n∑
k=1

1
(2k)2

+
n∑

k=1

1
(2k − 1)2

.

We now take the limit of s2n and find that

lim
n→∞ s2n =

1
4

∞∑
k=1

1
(2k)2

+
∞∑

k=1

1
(2k − 1)2

.

Therefore, it is the case that

∞∑
k=1

1
(2k − 1)2

=
3
4

∞∑
k=1

1
(2k)2

=
3
4
π2

6
=
π2

8
.

Solution 8.7

Note that if a series
∑
xn is convergent, then we must have lim

n→∞xn = 0. Obviously this will imply

that
{

1
xn

}
is divergent. Hence

∑ 1
xn

is divergent. For the converse, take xn =
√
n, then both∑

xn and
∑ 1

xn
are divergent. So the converse is false.

Solution 8.8

Since the series
∑
xn is convergent, we must have lim

n→∞xn = 0. So there exists N ≥ 1 such

that xn < 1, for n ≥ N . Hence x2
n < xn for n ≥ N . Since

∑
n≥N

xn is convergent,
∑
n≥N

x2
n is also
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convergent, which implies
∑
n≥1

x2
n is convergent. For the series

∑√
xnxn+1 use the algebraic identity

√
αβ ≤ α+ β

2
for any α and β positive numbers, to get

√
xnxn+1 ≤ xn + xn+1

2

for n ≥ 1. Since the series
∑
xn and

∑
xn+1 are convergent, we conclude that

∑√
xnxn+1 is also

convergent.

Solution 8.9

Indeed, we know that for any positive real numbers α and β, we have αβ ≤ α2 + β2

2
. So

√
xn

n
≤
xn +

1
n2

2
=
xn

2
+

1
2n2

for n ≥ 1. Since the series
∑ xn

2
and

∑ 1
2n2 are convergent, we conclude that the original series∑ √

xn

n
is convergent.

Solution 8.10

It is well known from the alternating series test that the series
∑ (−1)n

√
n

is convergent. Let us

focus on the series
∑ (−1)n

√
n+ (−1)n

. We have

(−1)n

√
n+ (−1)n

− (−1)n

√
n

+
1
n

= (−1)n

⎡⎣ −(−1)n

√
n
(√

n+ (−1)n
)
⎤⎦+

1
n

or
(−1)n

√
n+ (−1)n

− (−1)n

√
n

+
1
n

=
−1

n+ (−1)n
√
n

+
1
n

=
(−1)n√

n

n
(
n+ (−1)n

√
n
) .

Using the inequality
∣∣∣|a| − |b|

∣∣∣ ≤ |a − b| for any real numbers a and b, we get n2 − n
√
n ≤

|n2 − (−1)nn
√
n|, for any n ≥ 2. This will imply∣∣∣∣ (−1)n

√
n+ (−1)n

− (−1)n

√
n

+
1
n

∣∣∣∣ ≤ √
n

n2 − n
√
n

for any n ≥ 2. Note that for any n ≥ 4, we have 2
√
n ≤ n or

√
n ≤ n− √

n. Hence∣∣∣∣ (−1)n

√
n+ (−1)n

− (−1)n

√
n

+
1
n

∣∣∣∣ ≤ √
n

n
√
n
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for any n ≥ 4. Since the series
∑ 1

n1.5 is convergent, from the basic comparison theorem we get that∑∣∣∣∣ (−1)n

√
n+ (−1)n

− (−1)n

√
n

+
1
n

∣∣∣∣ is convergent. Hence the series
∑(

(−1)n

√
n+ (−1)n

− (−1)n

√
n

+
1
n

)
is absolutely convergent which implies that it is also convergent. Since

(−1)n

√
n+ (−1)n

=
(−1)n

√
n

− 1
n

+
(

(−1)n

√
n+ (−1)n

− (−1)n

√
n

+
1
n

)

and the series
∑ (−1)n

√
n

is convergent while
∑ 1

n
is divergent, we can deduce that

∑ (−1)n

√
n+ (−1)n

is divergent. Because

lim
n→∞

(−1)n

√
n+ (−1)n

(−1)n

√
n

= lim
n→∞

√
n√

n+ (−1)n
= lim

n→∞
1

1 +
(−1)n

√
n

= 1

we conclude that the limit test is not valid for nonpositive series.

Solution 8.11

We have ∫ a

1
e−xn

dx ≤
∫ ∞

1
e−xn

dx = xn, n = 1, . . . ,

for any a ≥ 1. Set εn =
1

n ln(n)
, for n ≥ 2. Then we have

∫ 1+εn

1
e−xn

dx ≤
∫ ∞

1
e−xn

dx = xn, n = 2, . . . ·

Since e−xn
is decreasing on [0,∞), we have

εne
−(1+εn)n ≤

∫ 1+εn

1
e−xn

dx ≤ xn, n = 2, . . . ·

On the other hand, we have

lim
n→∞(1 + εn)n = lim

n→∞ en ln(1+εn) = e0 = 1.

Since
∑
εn is divergent, because it is a Bertrand series (see Problem 8.5), the series

∑
εne

−(1+εn)n

is also divergent because of the limit test and both series are positive. The basic comparison test
will force

∑
xn to be divergent.

Solution 8.12

Indeed, let n ≥ 2 and N > n. Then

N∑
k=n

εkxk =
N∑

k=n

εk(sk − sk−1) =
N∑

k=n

εksk −
N∑

k=n

εksk−1.
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But
N∑

k=n

εksk−1 =
N−1∑

k=n−1

εk+1sk.

Hence
N∑

k=n

εkxk =
N−1∑
k=n

(εk − εk+1)sk + εNsN − εnsn−1.

Let ε > 0. Then since {εn} goes to 0 and {sn} is bounded, there exists n0 ≥ 2 such that for any
n,N ≥ n0 we have |εNsN − εnsn−1| < ε/2. Also since

∑ |εn+1 − εn| is convergent and {sn} is
bounded, the basic comparison test implies that

∑ |(εn+1 − εn)sn| is also convergent. Therefore
there exists n1 ≥ 2 such that for any n,N ≥ n1 we have

N−1∑
k=n

|(εk − εk+1)sk| < ε

2
.

Let n2 > max{n0, n1}. Then for any n,N ≥ n2, we have∣∣∣∣∣
N∑

k=n

εkxk

∣∣∣∣∣ ≤
N−1∑
k=n

|(εk − εk+1)sk| + |εNsN − εnsn−1| < ε.

The Cauchy criterion for series will imply that the series
∑
εnxn is convergent as claimed.

Solution 8.13

We know that
∑
n∈N

1
n!

is convergent and its sum is e, i.e.,

∞∑
n=0

1
n!

= e.

This proves one side of the inequalities. Set

xn = 1 +
1
2!

+ · · · +
1

n(n!)
·

Then clearly we have lim
n→∞xn = e. Let u show that in fact {xn} is decreasing. Indeed we have

xn+1 − xn =
1

(n+ 1)!
+

1
(n+ 1)(n+ 1)!

− 1
n(n)!

=
1
n!

(
1

n+ 1
+

1
(n+ 1)2

− 1
n

)
.

Since
1

n+ 1
+

1
(n+ 1)2

− 1
n

=
n(n+ 1) + n− (n+ 1)2

n(n+ 1)2
=

−1
n(n+ 1)2

,

then xn+1 − xn < 0, for n ≥ 1. So {xn} is decreasing which implies e ≤ xn, for n ≥ 1. Therefore
we have

1 +
1
2!

+ · · · +
1
n!

≤ e ≤ 1 +
1
2!

+ · · · +
1

n(n!)
,
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for n ≥ 1. These inequalities will imply mπ ≤ n!πe ≤ mπ + π/n, where

m = n!
(

1 +
1
2!

+ · · · +
1
n!

)
∈ N.

Hence sin(n!πe) = (−1)m sin(πεn), where 0 ≤ εn ≤ 1/n, for n ≥ 1. Note that (−1)m = (−1)n+1.
Indeed we have

m = n!
(

1 +
1
2!

+ · · · +
1
n!

)
= n(n− 1)k + n+ 1

where k ∈ N. Since n(n− 1) is even, we get (−1)m = (−1)n+1. Also note that

εn = n!
(
e− 1 − 1

2!
− · · · − 1

n!

)
= n!

∞∑
k=n+1

1
k!

·

Let us prove that {εn} is decreasing. Indeed we have

εn+1 − εn = (n+ 1)!
∞∑

k=n+2

1
k!

− n!
∞∑

k=n+1

1
k!

=
(
(n+ 1)! − n!

) ∞∑
k=n+2

1
k!

− n!
(n+ 1)!

which implies

εn+1 − εn = n!
∞∑

k=n+2

1
k!

− n!
(n+ 1)!

= n!

( ∞∑
k=n+2

1
k!

− 1
(n+ 1)!

)
.

On the other hand, we have

(n+ 1)!
∞∑

k=n+2

1
k!

=
1

n+ 2
+

1
(n+ 2)(n+ 3)

+
1

(n+ 2)(n+ 3)(n+ 4)
+ · · · ·

But
1

(n+ 2)(n+ 3) · · · (n+ k)
≤ 1

(n+ k − 1)(n+ k)
=

1
n+ k − 1

− 1
n+ k

which implies

(n+ 1)!
∞∑

k=n+2

1
k!

≤ 2
n+ 2

< 1

for n ≥ 1. Hence εn+1 − εn < 0, for n ≥ 1, i.e., {εn} is a decreasing sequence of positive numbers.
And since εn ≤ 1/n, we get lim

n→∞ εn = 0. Putting everything together and using the alternating

series test we conclude that
∑
n≥1

sin(πen!) is convergent.

Solution 8.14

Since
{

1
pn+ 1

}
is decreasing and goes to 0, the alternating series test implies that

∑
xn is

convergent, for any p > 0. Let us find its sum. Let N ∈ N. Then we have

N∑
n=0

(−1)n

p n+ 1
=

N∑
n=0

(−1)n

∫ 1

0
tpndt =

∫ 1

0

( N∑
n=0

(−1)ntpn
)
dt =

∫ 1

0

1 − (−tp)N+1

1 + tp
dt.
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Hence ∣∣∣∣∣
N∑

n=0

(−1)n

p n+ 1
−
∫ 1

0

1
1 + tp

dt

∣∣∣∣∣ ≤
∫ 1

0

tp(N+1)

1 + tp
dt =

1
p(N + 1) + 1

·

If we let N → ∞, we get the desired relation

∞∑
n=0

xn =
∫ 1

0

dt

1 + tp
·

In particular, if we let p = 1, then we have

∞∑
n=0

(−1)n

n+ 1
=
∫ 1

0

dt

1 + t
=
[
ln(t+ 1)

]1
0

= ln 2.

If we let p = 2, we get

∞∑
n=0

(−1)n

2n+ 1
=
∫ 1

0

dt

1 + t2
=
[
arctan(t)

]1
0

=
π

4
·

And finally if we let p = 3, we get

∞∑
n=0

(−1)n

3n+ 1
=
∫ 1

0

dt

1 + t3
·

To perform this integral we will make use of the partial decomposition technique to get

1
1 + t3

=
1
3

(
1

1 + t
− t− 2
t2 − t+ 1

)
=

1
3

(
1

1 + t
− 1

2
2t− 1

t2 − t+ 1
+

3
2

1
(t− 1/2)2 + 3/4

)
which implies∫

dt

1 + t3
=

1
3

(
ln(1 + t) − 1

2
ln(t2 − t+ 1) +

√
3 arctan

(
2t− 1√

3

))
+ C.

Since ∫ 1

0

dt

1 + t3
=

1
3

(
ln(2) +

π√
3

)
,

we get
∞∑

n=0

(−1)n

3n+ 1
=

1
3

(
ln(2) +

π√
3

)
.

Solution 8.15

We will make use of Abel’s theorem (see Problem 8.12). Recall Euler’s formula

eiθ = cos(θ) + i sin(θ).

We have
N∑

n=1

einθ = eiθ
1 − eNiθ

1 − eiθ
= ei(N+1)θ/2 sin(Nθ/2)

sin(θ/2)
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for any N ≥ n ≥ 1. Note that we made use of eiθ �= 1. Hence∣∣∣ N∑
n=1

einθ
∣∣∣ = ∣∣∣∣sin(Nθ/2)

sin(θ/2)

∣∣∣∣ ≤ 1
| sin(θ/2)| ·

Since {1/n} decreases and goes to 0, then by Abel’s theorem, the series∑
n≥1

cos(nθ)
n

and
∑
n≥1

sin(nθ)
n

are convergent.

Solution 8.16

Since
∑
yr is a rearrangement of

∑
xr, there is a bijection f : N → N such that yr = xf(r); and

xr = yf−1(r).
Let ε > 0. Since

∑
xr is absolutely convergent, it follows from the General Principle of Con-

vergence that there exists N such that

n ≥ m ≥ N =⇒
n∑

r=m

|xr| < 1
2
ε.

In fact, if S is any finite subset of {r ∈ N : r > N}, then

(8.1)
∑
r∈S

|xr| < 1
2
ε.

Next, we show that

(8.2) m ≥ N =⇒
∣∣∣∣∣s−

m∑
r=1

xr

∣∣∣∣∣ ≤ 1
2
ε.

The reason for this is that∣∣∣∣∣s−
m∑

r=1

xr

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣
n∑

r=1

xr −
m∑

r=1

xr

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣
n∑

r=m+1

xr

∣∣∣∣∣ ≤ lim
n→∞

n∑
r=m+1

|xr| ≤ 1
2
ε

by (8.1).
Now let M = max{f−1(1), . . . , f−1(N)}, and note that M ≥ N . Since xr = yf−1(r), if follows

that {y1, . . . , yM} ⊃ {x1, . . . , xN}. So, if n ≥ M , then

{y1, . . . , yn} = {x1, . . . , xN} ∪ {xr : r ∈ Sn},
for some finite subset Sn of {r ∈ N}. Thus

n ≥ M =⇒
∣∣∣∣∣s−

n∑
r=1

yr

∣∣∣∣∣ ≤
∣∣∣∣∣s−

N∑
r=1

xr

∣∣∣∣∣+ ∑
r∈Sn

|xr|

<
1
2
ε+

1
2
ε = ε
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by (8.2) and (8.1). This shows that
∑
yr converges to s.

Solution 8.17

We show that the series

(8.3) x0y0 + x0y1 + x1y1 + x1y0 + x0y2 + x1y2 + x2y2 + x2y1 + x2y0 + · · ·
converges absolutely. In fact, the sum of the first (n+ 1)2 terms of the series

(8.4) |x0y0| + |x0y1| + |x1y1| + |x1y0| + |x0y2| + |x1y2| + |x2y2| + |x2y1| + |x2y0| + · · ·
is
∑n

k=0 |xk| ·∑n
k=0 |yk|, which converges to

∑∞
k=0 |xk| ·∑∞

k=0 |yk|.
Hence the sequence of partial sums of (8.4) has a convergent subsequence. But all the terms

of the series are positive, so the sequence of all partial sums is increasing, and bounded above by∑∞
k=0 |xk| ·∑∞

k=0 |yk|, so it also converges, to the same limit.
Thus (8.3) converges absolutely.
The same argument as above, considering sums of the first (n + 1)2 terms of the series (8.3),

shows that the sum of this series is
∑
xn ·∑ yn.

But ∑
zn = x0y0 + (x0y1 + x1y0) + (x0y2 + x1y1 + x2y0) + · · ·

is a rearrangement of (8.3), so by the Rearrangement Theorem it converges to the same limit.
Note: You might like to think about the above proof by considering an “infinite matrix” in which
the (i, j) term is xiyi:

x0y0 x0y1 x0y2 x0y3 · · ·
x1y0 x1y1 x1y2 x1y3 · · ·
x2y0 x2y1 x2y2 x2y3 · · ·
x3y0 x3y1 x3y2 x3y3 · · ·

...
...

...
...

. . .

Solution 8.18

Note that since all the terms are positive, we have
xn+1

xn

xn

xn−1
· · · xN+1

xN
≤ yn+1

yn

yn

yn−1
· · · yN+1

yN

which implies
xn+1

xN
≤ yn+1

yN

for any n ≥ N . Hence
yN

xN
xn ≤ yn

for any n ≥ N . This will imply our desired conclusion from the basic comparison test.

Solution 8.19

Set yn =
1

(n− 1)p
. Then

yn+1

yn
=
(
n− 1
n

)p

=
(

1 − 1
n

)p

.
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Using the inequality (1 − x)p ≥ 1 − p x for any x ∈ [0, 1], we get

yn+1

yn
≥ 1 − p

1
n

≥ xn+1

xn

for any n ≥ N , because of our assumption on {xn}. Since p > 1, the series
∑
n≥N

yn is convergent.

From the previous problem we can deduce that
∑
n≥N

xn is convergent, which implies that
∑
xn is

convergent.

Solution 8.20

Set yn =
1

(n− 1)
. Then

yn+1

yn
=
n− 1
n

= 1 − 1
n
.

Hence
yn+1

yn
≤ xn+1

xn

for any n ≥ N , because of our assumption on {xn}. Since the series
∑
n≥N

yn is divergent, the

previous problem implies that
∑
n≥N

xn is divergent which means that
∑
xn is divergent.

Solution 8.21

For the proof of (a). Let p ∈ R such that

1 < p < lim
n→∞n

(
1 − xn+1

xn

)
.

Then there exists N ≥ 1 such that

n

(
1 − xn+1

xn

)
≥ p .

Since p > 1, Problem 8.19 implies that
∑
xn is convergent. Similar ideas will imply the conclusion

of (b). Finally, if we take xn = 1/n, then

lim
n→∞n

(
1 − xn+1

xn

)
= lim

n→∞n

(
1 − n

n+ 1

)
= lim

n→∞
n

n+ 1
= 1 .

And if we take xn = 1/n ln2(n), then

lim
n→∞n

(
1 − xn+1

xn

)
= 1 .

Indeed, we have

n

(
1 − xn+1

xn

)
= n

(
1 − n ln2(n)

(n+ 1) ln2(n+ 1)

)
=

n

n+ 1

(
(n+ 1) ln2(n+ 1) − n ln2(n)

ln2(n+ 1)

)
,



179

but

(n+ 1) ln2(n+ 1) − n ln2(n)
ln2(n+ 1)

=
n
(

ln2(n+ 1) − ln2(n)
)

ln2(n+ 1)
+ 1 = n ln

(
1 +

1
n

)
ln(n+ 1) + ln(n)

ln2(n+ 1)
+ 1.

Since

lim
n→∞n ln

(
1 +

1
n

)
= 1, and lim

n→∞
ln(n+ 1) + ln(n)

ln2(n+ 1)
= lim

n→∞
1

ln(n+ 1)

(
1 +

ln(n)
ln(n+ 1)

)
= 0,

we obtain

lim
n→∞n

(
1 − xn+1

xn

)
= 1 .

So for both sequences the above condition is satisfied but
∑ 1

n
is divergent while

∑ 1
n ln2(n)

is

convergent (see Problem 8.5).

Solution 8.22

Our assumption implies the existence of M > 0 such that for any n ≥ 1 we have∣∣∣∣1 − xn+1

xn
− p

n

∣∣∣∣ ≤ M

nq
.

So ∣∣∣∣n(1 − xn+1

xn

)
− p

∣∣∣∣ ≤ M

nq−1 .

Hence

lim
n→∞n

(
1 − xn+1

xn

)
= p.

Problem 8.21 implies that if p < 1, then
∑
xn is divergent, and if p > 1, then

∑
xn is convergent.

So assume p = 1 and let us prove that
∑
xn is divergent. Indeed, set

εn = nq

(
xn+1

xn
− 1 +

1
n

)
,

then
xn+1

xn
= 1 − 1

n
+
εn

nq
.

Set yn = nxn, then
yn+1

yn
=
n+ 1
n

xn+1

xn
=
(

1 +
1
n

)(
1 − 1

n
+
εn

nq

)
which implies

yn+1

yn
= 1 − 1

n2 +
δn
nq

where δn = (n+ 1)εn/n. Since {δn} is bounded,

lim
n→∞nα ln

(
yn+1

yn

)
= 1,
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where α = min(2, q). Thus the series
∑

ln
(
yn+1

yn

)
is convergent by the limit test which implies

that lim
n→∞ ln(yn) = l exists. Hence lim

n→∞ yn = el, i.e.,

lim
n→∞nxn = el.

The limit test again implies that
∑
xn is divergent since

∑
el/n is divergent.

Solution 8.23

Note that
xn =

(2n)!
(2nn!)2

=
(2n)!

22n(n!)2
.

Let us first remark that lim
n→∞xn = 0. Indeed, notice that 0 < xn < 1 for any n ≥ 1. Since

xn+1 =
2n+ 1
2n+ 2

xn, we have xn+1 < xn for any n ≥ 1, which implies that {xn} is decreasing. So

lim
n→∞xn = l exists. Define

yn =
2 · 4 · · · (2n)

3 · 5 · · · (2n+ 1)
.

Since 4n2 −1 < 4n2 we get
2n− 1

2n
<

2n
2n+ 1

, for any n ≥ 1. This obviously implies xn < yn for any

n ≥ 1. Since xnyn =
1

2n+ 1
we deduce that x2

n < xnyn =
1

2n+ 1
for any n ≥ 1. Hence lim

n→∞x2
n = 0

which implies lim
n→∞xn = 0. This conclusion may suggest that the series

∑
xn is convergent. But

since
xn+1

xn
=

2n+ 1
2n+ 2

,

we have

n

(
1 − xn+1

xn

)
=

n

2n+ 2
.

Hence lim
n→∞n

(
1 − xn+1

xn

)
=

1
2
< 1, then

∑
xn is divergent based on the previous problem. Note

that the ratio test does not help since lim
n→∞

xn+1

xn
= 1. In fact, the root test will also be not

conclusive.



Chapter 9

Metric Spaces

Therefore, either the reality on which our space is based must form a dis-
crete manifold or else the reason for the metric relationships must be sought
for, externally, in the binding forces acting on it.

Bernhard Riemann (1826–1866)

• Let X be a set. A function
d : X ×X → R+

is called a metric on X if the following hold:

(M1) d(x, y) = 0 ⇔ x = y,

(M2) d(x, y) = d(y, x) for all x, y ∈ X (Symmetry), and

(M3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X (Triangle Inequality).

If d is a metric on X, then (X, d) is called a metric space.

• Let (X, d) be a metric space. A sequence (xn) ⊆ X converges to an element x ∈ X if for all
ε > 0 there exists an N ∈ N such that d(xn, x) < ε whenever n ≥ N .

• A sequence in a metric space (X, d) is a Cauchy sequence if for all ε > 0 there exists an N ∈ N

such that d(xn, xm) < ε whenever n,m ≥ N .

• A metric space (X, d) is called complete if every Cauchy sequence in X converges to an
element of X.

181

A.G. Aksoy, M.A. Khamsi, A Problem Book in Real Analysis, Problem Books in Mathematics,  
DOI 10.1007/978-1-4419-1296-1_9, © Springer Science+Business Media, LLC 2010 



182 CHAPTER 9. METRIC SPACES

Problem 9.1 Show that the following functions define a metric on R.

(a) d(x, y) = |x− y|
(b) d(x, y) =

√|x− y|

Problem 9.2 Show that the function

d(x, y) =

{
0 if x = y,

1 if x �= y

is a metric on any nonempty set X. (This is called the discrete metric on X.)

Problem 9.3 Let X = R2 be the set of points in the plane. Show that for x,y ∈ X with
x = (x1, x2) and y = (y1, y2),

d(x,y) =
√

(x1 − y1)2 + (x2 − y2)2

is a metric on X, also known as the Euclidean metric on R2.

Problem 9.4 Let X = R2. Show that for x = (x1, x2),y = (y1, y2) ∈ X, the function

d(x,y) =

{
|x1 − y1| if x2 = y2,

|x1| + |x2 − y2| + |y1| if x2 �= y2

is a metric on X.

Problem 9.5 Let X be the set of continuous functions from [a, b] to R. For all x, y ∈ X define
d(x, y) to be

d(x, y) = max{|x(t) − y(t)| : t ∈ [a, b]}.
Show that (X, d) is a metric space.

Problem 9.6 Let X be the set of bounded functions from some set A to R. For x, y ∈ X define
d(x, y) by

d(x, y) = sup{|x(t) − y(t)| : t ∈ A}.
Show that (X, d) is a metric space.
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Problem 9.7 Let X be the set of continuous functions from [a, b] into R. For x, y ∈ X define
d(x, y) by

d(x, y) =
∫ b

a
|x(t) − y(t)| dt.

Prove that (X, d) is a metric space.

Problem 9.8 Let (X, d) be a metric space. Show for all x, y, z, w ∈ X we have∣∣∣d(x, z) − d(z, y)
∣∣∣ ≤ d(x, y)

and ∣∣∣d(x, y) − d(z, w)
∣∣∣ ≤ d(x, z) + d(y, w).

Problem 9.9 Let (X, d) be a metric space. Suppose ρ is defined by

ρ(x, y) =
d(x, y)

1 + d(x, y)
·

Show that ρ is also a metric on X.
(Note that the new metric ρ is bounded because ρ(x, y) < 1 for all x, y ∈ X.)

Problem 9.10 Let (X, d) be a metric space. Let p be a point in X. The SNCF metric dp is
defined by

dp(x, y) :=
{

0 if x = y,
d(x, p) + d(p, y) otherwise.

Show that dp is a metric.
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Problem 9.11 Let (X, d) be a metric space. The metric d is called an ultrametric if

d(x, y) ≤ max
{
d(x, z), d(y, z)

}
for any x, y, z ∈ X.

(i) Show that the Euclidean metric (see Problem 9.3) on Rn, for n ≥ 2, is not an ultrametric.

(ii) Let p be any positive prime number p ≥ 2. For any nonzero x ∈ Q, there exists a unique
n ∈ Z such that

x = pnu

v

with some integers u and v indivisible by p. Set |x|p = n. Show that

dp(x, y) :=

⎧⎪⎪⎨⎪⎪⎩
0 when x = y,

(
1
p

)|x−y|p
otherwise

is an ultrametric distance on Q, also known as the p-adic metric.

Problem 9.12 Let (X, d) be an ultrametric space (see Problem 9.11). Show that

(i) every triangle in X is an isosceles triangle;

(ii) every point inside a ball is its center.

Problem 9.13 Let (X, d) be a metric space. Show that if {xn} and {yn} are Cauchy sequences
of X, then {d(xn, yn)} is a Cauchy sequence in R, which implies that {d(xn, yn)} is convergent.

Problem 9.14 Show that every convergent sequence in a metric space (X, d) is a Cauchy
sequence.

Problem 9.15 Give an example of a metric space (X, d) and a Cauchy sequence {xn} ⊆ X
such that {xn} does not converge in X.

Problem 9.16 Let (X, d) be a metric space. Show that X consists of one point iff any bounded
sequence in X is convergent.

Problem 9.17 Let (X, d) be a metric space. Let {xn} be a sequence in X such that any
subsequence of {xn} has a subsequence which converges to some fixed point x ∈ X. Show that
{xn} converges to x.
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Problem 9.18 Let P be the set of all polynomials (of all degrees) defined on [0, 1]. Define
d(x, y) by

d(x, y) = max
0 ≤ t ≤ 1

|x(t) − y(t)|.

Prove that (P, d) is not a complete metric space.

Problem 9.19 The open ball B(x; r) in a metric space (X, d) is defined by

B(x; r) := {y ∈ X : d(x, y) < r}.

B(x; r) is called the unit ball if r = 1. Draw the unit balls centered at (0, 0) in R2 with respect
to the metrics

(a) d1(x, y) =
√

(x1 − y1)2 + (x2 − y2)2

(b) d2(x, y) = |x1 − y1| + |x2 − y2|
(c) d3(x, y) = max(|x1 − y1|, |x2 − y2|)

Problem 9.20 Show that B(x; r) in a Euclidean space is convex.

Problem 9.21 In a metric space (X, d), given a ball B(x0; r), show that for any x ∈ B(x0; r),
B(x; s) ⊆ B(x0; r) for all 0 < s ≤ r − d(x, x0).

Problem 9.22 Describe a closed ball, open ball, and sphere with center x0 and radius r in a
metric space with the discrete metric.

Problem 9.23 Given a metric space (X, d) and a nonempty bounded subset A, the real number
δ(A) := sup{d(x, y) : x, y ∈ A} is called the diameter of A. It is clear that δ(S(x0; r)) ≤ 2r.
Show that equality is not always valid.

Problem 9.24 Let {In} be a sequence of bounded nonempty closed subsets of a complete
metric space (X, d) such that

(a) In+1 ⊆ In, for all n ≥ 1;

(b) lim
n→∞ δ(In) = 0, where δ(A) = sup{d(x, y) : x, y ∈ A}.

Show that
⋂
n≥1

In is not empty and reduced to a single point.
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Solutions

Solution 9.1

(a) Since |x− y| = |y − x|, (M2) is satisfied. Note that

|x− y| = 0 ⇔ x− y = 0 ⇔ x = y,

(M1) is satisfied. To show (M3), we will make use of the inequality |a+ b| ≤ |a| + |b| for any
a, b ∈ R. Indeed, we have

d(x, y) = |x− y| = |(x− z) + (z − y)| ≤ |x− z| + |z − y| = d(x, z) + d(z, y)

for any x, y, z ∈ R.

(b) Since
√|x− y| =

√|y − x|, (M2) is satisfied. As in part (a),√
|x− y| = 0 ⇔ |x− y| = 0 ⇔ x = y,

so (M1) is satisfied. Note that if a, b ≥ 0, then a ≥ b if and only if a2 ≥ b2. Thus, showing
(M3) is equivalent to showing (

√|x− y|)2 ≤ (
√|x− z| +

√|z − y|)2. So

(
√|x− y|)2 = |x− y|

≤ |x− z| + |z − y|
≤ |x− z| + |z − y| + 2

√|x− z|√|z − y|
=

(√|x− z| +
√|z − y|

)2

which completes the proof of (M3).

Solution 9.2

(M1) and (M2) follow straight from the definition. For (M3), suppose x, y, z ∈ X.

• If x = y, then d(x, y) ≤ d(x, z) + d(z, y) is clear.

• If x �= y, then either z �= x or z �= y:

– If z �= x, then d(x, y) = 1 = d(x, z) ≤ d(x, z) + d(z, y).

– If z �= y, then d(x, y) = 1 = d(y, z) ≤ d(x, z) + d(z, y).

Solution 9.3

We show that (M1), (M2), and (M3) hold:

(M1) d(x,y) = 0 ⇔ √
(x1 − y1)2 + (x2 − y2)2 = 0 ⇔ x1 = y1 and x2 = y2 ⇔ x = y.

(M2) d(x,y) =
√

(x1 − y1)2 + (x2 − y2)2 =
√

(y1 − x1)2 + (y2 − x2)2 = d(y,x).
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(M3) Let x = (x1, x2), y = (y1, y2), and z = (z1, z2) be in R2. Note that the quadratic function
αt2+βt+γ has a constant sign if and only if β2−4αγ ≤ 0 which is equivalent to |β| ≤ 2(αγ)1/2.
Now observe that the following function (of t) is never negative:

F (t) = [(x1 − z1)t+ (z1 − y1)]2 + [(x2 − z2)t+ (z2 − y2)]2.

But F (t) = αt2 + βt+ γ where⎧⎪⎨⎪⎩
α = (x1 − z1)2 + (x2 − z2)2,
β = 2

[
(x1 − z1)(z1 − y1) + (x2 − z2)(z2 − y2)

]
,

γ = (z1 − y1)2 + (z2 − y2)2.

So, we must have |β| ≤ 2(αγ)1/2. But

(αγ)1/2 = 2
{
[(x1 − z1)2 + (x2 − z2)2][(z1 − y1)2 + (z2 − y2)2]

}1/2 = 2d(x, z)d(z,y),

so ∣∣∣(x1 − z1)(z1 − y1) + (x2 − z2)(z2 − y2)
∣∣∣ ≤ d(x, z)d(z,y).

Therefore,

[d(x,y)]2 = (x1 − y1)2 + (x2 − y2)2

= [(x1 − z1) + (z1 − y1)]2 + [(x2 − z2) + (z2 − y2)]2

≤ (x1 − z1)2 + (x2 − z2)2 + 2d(x, z)d(z,y) + (z1 − y1)2 + (z2 − y2)2

= [d(x, z)]2 + 2d(x, z)d(z,y) + [d(z,y)]2

= [d(x, z) + d(z,y)]2.

Thus, d(x, y) ≤ d(x, z) + d(z, y), which completes the proof of (M3).

Note that the same proof will show that the function d defined on Rn by

d
(
(xi), (yi)

)
=
√

(x1 − y1)2 + · · · + (xn − yn)2

is a distance on Rn also known as the Euclidean distance.

Solution 9.4

Before we check that (M1)–(M3) hold, note that if x = (x1, x2) and y = (y1, y2), then we have the
inequality |x1 − y1| ≤ d(x,y). This inequality will be useful in the proof of (M1)–(M3).

(M1) Assume d(x,y) = 0. If x2 �= y2, then we have

d(x,y) = |x1| + |x2 − y2| + |y1| = 0

which implies |x2 − y2| = 0 or x2 = y2, which is a clear violation with our assumption. So we
must have x2 = y2. In this case, we have

d(x,y) = |x1 − y1| = 0

which implies x1 = y1. In other words, we have x = y.
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(M2) We observe that

d(x,y) =

{
|x1 − y1| if x2 = y2

|x1| + |x2 − y2| + |y1| if x2 �= y2

=

{
|y1 − x1| if y2 = x2

|y1| + |y2 − x2| + |x1| if y2 �= x2

= d(y,x).

(M3) Let x = (x1, x2), y = (y1, y2), and z = (z1, z2). We examine two cases:

(1) If x2 = y2, then

d(x,y) = |x1 − y1| ≤ |x1 − z1| + |z1 − y1| ≤ d(x, z) + d(z,y).

(2) If x2 �= y2, then z2 �= x2 or z2 �= y2. Without loss of generality, assume z2 �= x2. Then

d(x,y) = |x1| + |x2 − y2| + |y1|
≤ |x1| + |x2 − z2| + |z2 − y2| + |y1|
≤

{
(|x1| + |x2 − z2| + |z1|) + |z1 − y1| if y2 = z2

(|x1| + |x2 − z2| + |z1|) + (|z1| + |z2 − y2| + |y1|) if y2 �= z2
= d(x, z) + d(z,y).

Solution 9.5

We check that (M1)–(M3) hold:

(M1) First note that d(x, y) = max{|x(t) − y(t)| : t ∈ [a, b]} = 0 if and only if for any t ∈ [a, b] we
have |x(t) − y(t)| = 0, which implies x(t) = y(t). So d(x, y) = 0 if and only if x(t) = y(t) for
all t ∈ [a, b], i.e., x = y.

(M2) d(x, y) = max{|x(t) − y(t)| : t ∈ [a, b]} = max{|y(t) − x(t)| : t ∈ [a, b]} = d(y, x).

(M3) Let x, y, z ∈ X. For any s ∈ [a, b] we have

|x(s) − y(s)| ≤ |x(s) − z(s)| + |z(s) − y(s)| ≤ max
t∈[a,b]

|x(t) − z(t)| + max
t∈[a,b]

|z(t) − y(t)|.

Since s was arbitrarily taken in [a, b], we have

max
t∈[a,b]

|x(t) − y(t)| ≤ max
t∈[a,b]

|x(t) − z(t)| + max
t∈[a,b]

|z(t) − y(t)|,

or d(x, y) ≤ d(x, z) + d(z, y).

Solution 9.6

The proofs of (M1), (M2), and (M3) follow exactly the proofs given in the previous problem.

Solution 9.7

We check that (M1) through (M3) hold:
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(M1) The key behind the proof of (M1) is the following property
∫ b
a |f(t)|dt = 0 if and only if

f(t) = 0 for all t ∈ [a, b] provided f(x) is a continuous function. Hence for any x, y ∈ X, we
have

d(x, y) =
∫ b

a
|x(t) − y(t)| dt = 0 ⇔ |x(t) − y(t)| = 0 for all t ∈ [a, b],

which easily implies x = y.

(M2) For any x, y ∈ X, we have

d(x, y) =
∫ b

a
|x(t) − y(t)| dt =

∫ b

a
|y(t) − x(t)| dt = d(y, x).

(M3) For x, y, z ∈ X, we have

d(x, y) =
∫ b

a
|x(t) − y(t)| dt

=
∫ b

a

(
|x(t) − z(t)| + |y(t) − z(t)|

)
dt

≤
∫ b

a
|x(t) − z(t)| dt+

∫ b

a
|y(t) − z(t)| dt

= d(x, z) + d(y, z).

Solution 9.8

From (M3) we get the inequalities

d(x, z) ≤ d(x, y) + d(y, z) ⇒ d(x, z) − d(y, z) ≤ d(x, y)

and
d(y, z) ≤ d(y, x) + d(x, z) ⇒ d(y, z) − d(x, z) ≤ d(y, x).

Together, these inequalities imply ∣∣∣d(x, z) − d(z, y)
∣∣∣ ≤ d(x, y).

For the other inequality note that we have∣∣∣d(x, y) − d(y, z)
∣∣∣ ≤ d(x, z)

and ∣∣∣d(y, z) − d(z, w)
∣∣∣ ≤ d(y, w).

Hence ∣∣∣d(x, y) − d(z, w)
∣∣∣ ≤ ∣∣∣d(x, y) − d(y, z)

∣∣∣+ ∣∣∣d(y, z) − d(z, w)
∣∣∣ ≤ d(x, z) + d(y, w).

Solution 9.9

Before we check that (M1), (M2) and (M3) hold, note that ρ is well defined since 1 + d(x, y) �= 0.
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(M1) ρ(x, y) = 0 iff the numerator d(x, y) = 0, which is true iff x = y.

(M2) It is clear from the symmetry of d that ρ(x, y) = ρ(y, x).

(M3) Let a, b, and c be positive numbers such that a ≤ b+ c. Then we have

a ≤ b+ c ≤ b+ c+ 2bc+ abc

which implies
a+ a(b+ c) + abc ≤ a(b+ c) + b+ c+ 2bc+ 2abc.

But
a+ a(b+ c) + abc = a[1 + b][1 + c]

and
a(b+ c) + b+ c+ 2bc+ 2abc = b[1 + a][1 + c] + c[1 + a][1 + b].

Hence
a[1 + b][1 + c] ≤ b[1 + a][1 + c] + c[1 + a][1 + b]

which implies
a

1 + a
≤ b

1 + b
+

c

1 + c
·

Therefore, if we set a = d(x, y), b = d(x, z), and c = d(z, y), we know that a ≤ b + c since d
obeys the triangle inequality. Hence

a

1 + a
≤ b

1 + b
+

c

1 + c
,

or
ρ(x, y) ≤ ρ(x, z) + ρ(z, y).

Solution 9.10

Let us check that (M1), (M2) and (M3) hold.

(M1) From the definition of dp we know that dp(x, y) = 0 iff x = y.

(M2) Since d(x, p) + d(p, y) = d(y, p) + d(p, x), we get dp(x, y) = dp(y, x).

(M3) Let x, y, z ∈ X. Without loss of generality, we may assume that the three points x, y, and z
are different. Then

dp(x, y) = d(x, p) + d(p, y) ≤ d(x, p) + d(p, z) + d(z, p) + d(p, y) = dp(x, z) + dp(z, y).

Solution 9.11

(i) Take x = (1, 0, . . . , 0), y = (0, 1, 0, . . . , 0), and O = (0, . . . , 0). Then we have d(x,y) =
√

2,
d(x,O) = 1, and d(y,O) = 1. Hence

d(x,y) �≤ max
{
d(x,O), d(y,O)

}
,

which implies that d is not an ultrametric on Rn.
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(ii) First let us show that the p-adic function dp is a metric on Q. Note that (M1) and (M2) hold
directly from the definition of dp. In order to prove (M3), we will prove

dp(x, y) ≤ max
{
dp(x, z), dp(y, z)

}
for any x, y, z ∈ Q. This will prove (M3) and the ultrametric property at the same time.
Indeed, this will follow from the inequality

max
{
dp(x, z), dp(y, z)

}
≤ dp(x, z) + dp(y, z).

Let x, y, z ∈ Q be three different rationals. Set n = |x− z|p, and m = |z − y|p. Without loss

of generality, assume n ≤ m. By definition of | · |p, we have x− z = pnu

v
, and z − y = pmu

∗

v∗ ,
which implies

x− y = pn

(
u

v
+ pm−nu

∗

v∗

)
= pn

(
uv∗ + pm−nvu∗

vv∗

)
·

By definition of | · |p, we get n ≤ |x− y|p since vv∗ is indivisible by p. Since(
1
p

)|x−y|p
≤
(

1
p

)n

= max
{(1

p

)n

,

(
1
p

)m }
or

dp(x, y) ≤ max
{
dp(x, z), dp(y, z)

}
.

Solution 9.12

(i) Let x, y, z ∈ X. Let us prove that

d(x, y) = d(y, z), or d(x, z) = d(y, z), or d(x, y) = d(z, x).

Assume not. Without loss of generality assume d(x, y) < d(y, z) < d(x, z). But these inequal-
ities will contradict the fact

d(x, z) ≤ max{d(x, y), d(y, z)}.

(ii) Let r > 0 and x, y ∈ X. Assume that d(x, y) < r. Then B(x; r) = B(y; r), where B(x; r) =
{z ∈ X; d(x, z) < r}. We will only prove that B(y; r) ⊂ B(x; r). Let z ∈ B(y; r). Since

d(x, z) ≤ max{d(x, y), d(y, z)} < r,

we get z ∈ B(x; r).

Solution 9.13

From Problem 9.8, we know that for any n,m ∈ N we have∣∣∣d(xn, yn) − d(xm, ym)
∣∣∣ ≤ d(xn, xm) + d(yn, ym).
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So, given ε > 0, there exist N1 ∈ N and N2 ∈ N such that for any n,m ≥ N1 we have

d(xn, xm) <
ε

2
,

and for any n,m ≥ N2 we have
d(yn, ym) <

ε

2
·

Set N = max{N1, N2}. Then for any n,m ≥ N we have∣∣∣d(xn, yn) − d(xm, ym)
∣∣∣ ≤ d(xn, xm) + d(yn, ym) <

ε

2
+
ε

2
= ε.

This implies that {d(xn, yn)} is a Cauchy sequence in R.

Solution 9.14

Let {xn} be a convergent sequence in X with limit x. Then for each ε > 0 there exists some N
such that d(xn, x) < ε/2 for all n ≥ N . Using the triangle inequality (M3), it follows that

d(xn, xm) ≤ d(xn, x) + d(x, xm)

<
ε

2
+
ε

2
= ε

for all n,m ≥ N . Hence, {xn} is a Cauchy sequence.

Solution 9.15

Take X = Q with the metric d(x, y) = |x − y|. Consider the sequence {xn} defined in Problem
3.19 by x0 = 1 and

xn+1 =
1
2

(
xn +

2
xn

)
for all n ≥ 1. Then xn ∈ Q for all n ∈ N and limxn =

√
2 ∈ R\Q, as shown in Problem 3.19. Thus,

by the previous problem we have that {xn} is a Cauchy sequence in R, and hence in Q too, but
limxn �∈ Q.

Solution 9.16

Obviously, ifX consists of one point, then any sequence inX is constant and therefore is convergent.
Conversely, assume that any bounded sequence in X is convergent. Let us prove that X consists
of one point. Assume not. Let x, y ∈ X with x �= y. Consider the sequence {xn} defined by

x2n = x and x2n+1 = y.

It is clear that {xn} is bounded and is not convergent. Contradiction.

Solution 9.17

Assume not. Then there exists ε0 > 0 such that for any N ≥ 1, there exists n ≥ N with
|xn − x| ≥ ε0. By induction, we construct a subsequence {xnk

} of {xn} such that for any k ≥ 1 we
have |xnk

− x| ≥ ε0. It is clear no subsequence of {xnk
} will converge to x. Contradiction.
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Solution 9.18

It is clear that (P, d) is a metric space (see Problem 9.5). To show (P, d) is not complete, consider
the following sequence:

xn(t) =
n∑

k=0

(
t

2

)k

= 1 +
t

2
+ · · · +

tn

2n
0 ≤ t ≤ 1.

Clearly, xn(t) ∈ P for each n ∈ N. Next we show that the sequence {xn} is a Cauchy sequence.
Taking m < n we observe

d(xn, xm) = max
0 ≤ t ≤ 1

|xn(t) − xm(t)|

= max
0 ≤ t ≤ 1

∣∣∣∣∣
n∑

k=0

(
t

2

)k

−
m∑

k=0

(
t

2

)k
∣∣∣∣∣

= max
0 ≤ t ≤ 1

∣∣∣∣∣
n∑

k=m+1

(
t

2

)k
∣∣∣∣∣

≤ max
0 ≤ t ≤ 1

∣∣∣∣∣
n∑

k=m+1

1
2k

∣∣∣∣∣
=

1
2m

− 1
2n
.

This difference is arbitrarily small for large enoughm and n, which implies that {xn} is a Cauchy
sequence in P. However, this sequence does not converge in (P , d), because the only candidate for

limxn(t) =
2

2 − t
, for 0 ≤ t ≤ 1, and this is not a polynomial function. Since not every Cauchy

sequence converges in (P, d), we have that (P, d) is not complete.

Solution 9.19

See the following figure.

Figure 9.1

CHAPTER 9. METRIC SPACES



194 CHAPTER 9. METRIC SPACES

Solution 9.20

Let y1, y2 ∈ B(x; r) and set z = αy1 + (1 − α)y2, where 0 ≤ α ≤ 1. Then we have

d(x, z) = d(x, αy1 + (1 − α)y2)
≤ d(x, αy1) + d(x, (1 − α)y2)
= αd(x, y1) + (1 − α)d(x, y2).

Since y1, y2 ∈ B(x; r), we have that d(x, y1) < r and d(x, y2) < r, which implies d(x, z) < r, and
therefore z ∈ B(x; r).

Solution 9.21

Let y ∈ B(x; s), then d(x, y) < s and by the triangle inequality we have

d(y, x0) ≤ d(y, x) + d(x, x0) < s+ d(x, x0) ≤ r.

Solution 9.22

Let x0 ∈ X, then the sphere centered at x0 with radius 1 is

S(x0; 1) = {x ∈ X : d(x0, x) = 1} = X\{x0}.

For r > 0 and r �= 1 , S(x0; r) = {x ∈ X : d(x0, x) = r} = ∅. Let B[x0; r] and B(x0; r) denote the
closed and open ball with center x0 and radius r (respectively). Then we have that

B[x0; r] = B(x0; r) = B[x0; 1] =
{
X for r > 1,
x0 for 0 < r < 1.

Solution 9.23

Let (X, d) be a discrete metric space where X has more than one element. Then

S(x0; 1) = X\{x0} and δ(S(x0; 1)) = 1 < 2.

For r > 0 and r �= 1, S(x0; r) = ∅ and δ(S(x0; r)) is not defined.

Solution 9.24

Since {In} is a sequence of nonempty sets, form a sequence {xn} with xn ∈ In for all n ≥ 1. We
claim that {xn} is a Cauchy sequence in X. Indeed, let ε > 0 and since lim

n→∞ δ(In) = 0, there exists

n0 ≥ 1 such that for all n ≥ n0 we have δ(In) < ε. Let m ≥ n ≥ n0, then xn, xm ∈ Im because
{In} is decreasing. Then

d(xn, xm) ≤ δ(In) < ε .

This proves our claim. Since X is complete we conclude that {xn} is convergent. Let x ∈ X be
its limit. We claim that

⋂
n≥1

In = {x}. Indeed, for any n ≥ 1 and any m ≥ n we have xm ∈ In.
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Since the subsequence {xm}m≥n also converges to x and In is closed, we conclude that x ∈ In.
Since n was arbitrary, we get x ∈

⋂
n≥1

In. Hence
⋂
n≥1

In is not empty. Let y ∈
⋂
n≥1

In. By definition

of the diameter, we get d(x, y) ≤ δ(In) for all n ≥ 1. Since lim
n→∞ δ(In) = 0, we get d(x, y) ≤ 0 or

d(x, y) = 0 which implies y = x. This completes the proof of our statement.
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Chapter 10

Fundamentals of Topology

A linguist would be shocked to learn that if a set is not closed this does not
mean that it is open, or again that “E is dense in E” does not mean the
same thing as “E is dense in itself.”

John Edensor Littlewood (1885–1977)

• We say A ⊂ R is open if for every x ∈ A there exists ε > 0 such that (x− ε, x+ ε) ⊆ A. A is
closed if its complement Ac is open. Similarly a set A in a metric space (M,d) is called open
if for each x ∈ A, there exists an ε > 0 such that B(x; ε) ⊂ A. Here,

B(x; ε) = {y ∈ M : d(x, y) < ε}

is the ε-ball (also called ε-neighborhood) around x.

• Let A be a subset of a metric space (M,d) and x ∈ M . We say x is an accumulation point

of A if every open set U containing x contains some point y ∈ A with y �= x.

• Let A ⊂ (M,d). We say x ∈ M is a limit point of a set A provided U ∩ A �= ∅ for every
neighborhood U of x.

• A set A is closed in a metric space (M,d) if and only if the accumulation points of A belong
to A and we set A := A ∪ {x ∈ M : x is an accumulation point of A}.

• A subset A in a metric space M is called compact if one of the following equivalent conditions
is satisfied:
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a) Every open cover of A has a finite subcover.

b) Every sequence in A has a convergent subsequence converging to a point in A (sequential
compactness).

Furthermore, if A ∈ Rn, the above two conditions are equivalent to saying that A is closed
and bounded (Heine–Borel Theorem).

• A metric space (M,d) is called totally bounded if for each ε > 0 there is a finite set {x1, x2, ·, xk}
in M such that

A ⊂
k⋃

i=1

B(xi; ε).

• A metric space (M,d) is compact if and only if M is complete and totally bounded.

• A subset A of a metric space (M,d) is called not connected if there are disjoint open sets U
and V such that A ⊆ U ∪ V and A ∩ U �= ∅ �= A ∩ V . Otherwise, the set A is said to be
connected.

• A subset A of a metric space (M,d) is said to be path connected if for each pair of points
x and y in A, there is a path in A connecting x to y, i.e., there is a continuous function
ψ : [0, 1] → A such that ψ(0) = x and ψ(1) = y.

• Let M be a metric space and A be a subset of M , and f : A → R be a continuous function.
Suppose B ⊂ A is connected and x, y ∈ B. Then for every real number c such that f(x) <
c < f(y), there exists a point z ∈ B such that f(z) = c.
Notice that, since intervals (open or closed) are connected, the above statement is a generalized
version of the Intermediate Value Theorem given for intervals.

Problem 10.1 Show that R and ∅ are both closed and open.

Problem 10.2 Let A = {x ∈ R : x is irrational}. Is A closed?

Problem 10.3 Prove that arbitrary unions and finite intersections of open sets are open. Using
De Morgan’s laws (Problem 1.9), state a corresponding result for closed sets. Give examples to
prove that infinite intersections of open sets need not be open and infinite unions of closed sets
need not be closed.

Problem 10.4 Show that a subset A ⊆ R is open if and only if A is the union of a countable
collection of open intervals.
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Problem 10.5 Prove that

1. If A is open and B is closed, then A\B is open and B\A is closed.

2. Let A be open and let B be an arbitrary subset of R. Is AB necessarily open?
(Here AB = {xy ∈ R : x ∈ A and y ∈ B}.)

Problem 10.6 Prove that an open ball in any metric space (X, d) is open.

Problem 10.7 Prove that a subset A of any metric space (X, d) is open if and only if A is the
union of open balls.

Problem 10.8 Prove that any closed subset A of any metric space (X, d) is a countable
intersection of open sets.

Problem 10.9 Let A be a subset of (M,d). Prove that

1. A =
⋂{C;A ⊂ C and C is closed};

2. A = A if and only if A is closed.

Problem 10.10 Show that if x ∈ (M,d) is an accumulation point of A, then x is a limit point
of A. Is the converse true?

Problem 10.11 Prove that an element x ∈ (M,d) is a limit point of A if and only if there is a
sequence {xn} ⊂ A\{x} such that lim

n→∞xn = x.

Problem 10.12 For a subset A ⊂ (M,d), prove the following are equivalent:

1. A is closed.

2. A contains all its limit points.

3. Every sequence in A which converges in (M,d) has its limit in A.

Problem 10.13 Consider Rn endowed with the Euclidean distance. Show that if B(a; r) =
{x ∈ Rn : d(x, a) < r}, then

B(a; r) = {x ∈ Rn : d(x, a) ≤ r}.

Is this conclusion true in any metric space?

CHAPTER 10. FUNDAMENTALS OF TOPOLOGY
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Problem 10.14 Let A be a subset of a metric space (M,d). Define

Ă := {a ∈ A : a is an interior point of A} and int(A) :=
⋃

{O ⊆ A : O is open in M}.

Show that

1. Ă = int(A).

2. A is open if and only if A = int(A).

Problem 10.15 For a given set A in a metric space (M,d), the boundary of A, ∂A, is defined
to be the set ∂A = A ∩ (M\A) = A ∩ (Ac). Prove or answer the following:

1. ∂A is a closed set.

2. ∂A = ∂(M\A).

3. If x ∈ ∂A, does x have to be a limit point?

4. x ∈ ∂A if and only if for every ε > 0, B(x; ε) contains points of A and of M\A.

Problem 10.16 Discuss whether the following sets are open or closed. Determine the interior,
closure, and boundary of each set.

1. (1, 2) in R.

2. [1, 2] in R.

3.
∞⋂

n=1

[
−2,

1
n

)
in R.

4. (0, 1) ∩ Q in R.

Problem 10.17 Show that for a set A ⊂ (M,d), x ∈ A if and only if there is a sequence
(xk) ∈ A with xk → x.

Problem 10.18 For a subset A of a metric space, show that x ∈ A if and only if

d(x,A) = inf{d(x, y) : y ∈ A} = 0.
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Problem 10.19 Prove the following:

1. If x is a accumulation point of a set A ⊆ R, then every open set containing x contains
infinitely many points of A. In particular, A must be infinite.

2. Let A ⊂ R be nonempty and bounded above. Let x = sup(A). Show that x ∈ A and
x ∈ ∂A.

Problem 10.20 Which of the following sets are compact?

1. [0, 1] ∪ [5, 6] ⊂ R

2. {x ∈ R : x ≥ 0} ⊂ R

3. {x ∈ R : 0 ≤ x ≤ 1 and x is irrational}
4. A = {1, 1

2 ,
1
3 , . . . ,

1
n , . . .} ∪ {0}

Problem 10.21 Prove that a closed subset of a compact set is compact.

Problem 10.22 Let K be a nonempty compact set. Let {An} be a nonempty decreasing
sequence of closed subsets ofK. Prove that

⋂
n≥1

An is not empty. (Cantor’s Intersection Theorem)

Problem 10.23 Let (M,d) be a metric space. Let K be a nonempty subset of M which is
sequentially compact, i.e., any sequence {xn} in K has a subsequence which converges to a point
in K . Show that for any arbitrary open cover {Oα} of K, there exists ε > 0 such that for any
x ∈ K, there exists α such that B(x, ε) ⊂ Oα.

Problem 10.24 Let (M,d) be a metric space. Show thatK ⊂ M is compact iffK is sequentially
compact, i.e., any sequence {xn} in K has a subsequence which converges to a point in K.

Problem 10.25 Give an example of a closed and bounded set in a metric space which is not
compact.

Problem 10.26 Show that a totally bounded set is bounded. Give an example of a bounded
set which is not totally bounded.

Problem 10.27 Let (M,dM ) and (N, dN ) be two metric spaces. Let A ⊂ M and B ⊂ N be
two compact subsets. Prove that A×B is compact in (M ×N, d), where d = dM + dN .

CHAPTER 10. FUNDAMENTALS OF TOPOLOGY
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Problem 10.28 Let S1 = [0, 1
3 ] ∪ [23 , 1] be obtained from [0, 1] by removing the middle third

(1
3 ,

2
3). Repeat the process to obtain S2 = [0, 1

9 ]∪[29 ,
1
3 ]∪[23 ,

7
9 ]∪[89 , 1]. In general, Sn+1 is obtained

from Sn by removing the middle third of each interval in Sn. Let C =
⋂

n≥1
Sn, also known as the

Cantor set. Prove that

1. C is compact.

2. int(C) = ∅.

3. C has infinitely many points.

4. The total length of the intervals removed is equal to 1.

Problem 10.29 Prove that for a function f mapping A ⊆ Rn into Rm, the following are
equivalent:

1. f is continuous on A.

2. f−1(U) = {x ∈ Rn : f(x) ∈ U} is open in A for every open set U in Rm.

This property is sometimes called the topological characterization of continuity. Also, the above
equivalence is also true if we replace Rn and Rm with arbitrary metric spaces.

Problem 10.30 Give an example of a continuous function f : R → R and an open set U in R

such that f(U) is not an open set.

Problem 10.31 Prove that if f : M → N is continuous and A is a compact subset of M , then
f(A) is a compact subset of N (i.e., the continuous image of a compact set is compact).

Problem 10.32 Prove that a continuous real-valued function defined on a compact set is
bounded and it assumes maximum and minimum values.

Problem 10.33 Let (M,d) be a metric space with a nonempty compact subset A. Prove that
for every x0 ∈ M , there exists a y0 ∈ A such that

d(x0, y0) = d(x0, A) = inf{d(x0, y) : y ∈ A}.

Problem 10.34 Prove that a continuous one-to-one mapping T from a compact metric space
(M,d) onto a metric space (N, d′) is a homeomorphism.
Note that a map T between two metric spaces T : (M,d) → (N, d′) is called a homeomorphism
if T is one-to-one continuous and has a continuous inverse.
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Problem 10.35 Let A be a compact set and let f : A → A be a continuous function with the
property that for all x, y ∈ A, d(f(x), f(y)) ≥ d(x, y). (f is expanding)

1. Prove that f is one-to-one and the inverse map f−1 : f(A) → A is continuous.

2. Show that f(A) = A.

Problem 10.36 Let X be a closed subset of R and let K(X) denote the collection of all
nonempty compact subsets of X. Show that

dH(A,B) := max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

defines a metric on K(X), where d(x,A) = inf
a∈A

d(x, a).

Problem 10.37 (Generalized Cantor’s Intersection Theorem)
The set measure of noncompactness α(D) for a bounded subset D of (M,d) is defined as

α(D) = inf

{
r > 0 : D ⊂

n⋃
i=1

Ai diam(Ai) ≤ r

}
.

Show that

a) If D is compact, then α(D) = 0.

b) D1 ⊂ D2 =⇒ α(D1) ≤ α(D2) (α is monotone).

c) α(D) = α(D) (invariant when given the closure).

d) If {Fn} is a decreasing sequence of nonempty closed and bounded subsets of a complete
metric space (M,d) and if limn→∞ α(Fn) = 0, then the intersection of all the Fn is non-
empty and compact.

Problem 10.38 A subset A of a metric space (M,d) is called not connected if there are disjoint
open sets U and V such that A ⊆ U ∪ V , A ∩ U �= ∅, and A ∩ V �= ∅. Otherwise, the set A is
said to be connected. Show that the following sets are not connected:

1. Q ⊂ R, the set of rational numbers

2. N, the set of natural numbers

Problem 10.39 Let C be the Cantor set as defined in Problem 10.28. Prove that C is totally
disconnected, that is, if x, y ∈ C and x �= y, then x ∈ U and y ∈ V , where U and V are open
sets that disconnect C.

CHAPTER 10. FUNDAMENTALS OF TOPOLOGY
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Problem 10.40 Prove that the continuous image of a connected set is connected.

Problem 10.41 Prove that the continuous image of a path-connected set is path connected.

Problem 10.42 A subset A of a metric space (M,d) is said to be path connected if for each
pair of points x and y in A, there is a path in A connecting x to y, i.e., there is a continuous
function f : [0, 1] → A such that f(0) = x and f(1) = y. Prove that every path-connected set is
connected.

Problem 10.43 Show that the set A = {x ∈ Rn : ‖ x ‖≤ 1} is compact and connected.

Problem 10.44 Give an example of a set which is connected but not path connected.

Problem 10.45 Prove that A ⊆ R is connected if and only if it is an interval (bounded or
unbounded). Then show that if f : M → R is continuous, then f(M) is an interval, where M is
a connected metric space. In particular, f takes on every value between any two given function
values. (Generalized Intermediate Value Theorem)

Problem 10.46 Let A ⊆ M and B ⊆ N be path connected. Prove that A×B is path connected
in M ×N .

Problem 10.47 (Baire’s Theorem) Let {On}n∈N be a sequence of dense open subsets of R.
Show that ∩

n∈N

On is dense in R.

Problem 10.48 (Baire’s Category Theorem) Prove that if M is a nonempty, complete
metric space, then it is of second category itself.
Notice that if M = R , since R is complete, the above question is equivalent to proving that the
set of real numbers R cannot be written as a countable union of nowhere dense sets.

Problem 10.49 Use Baire’s Category Theorem to show that the set of all rationals Q is not
the intersection of a countable collection of open sets. Use this result to show that the set of
irrationals is not the union of a countable collection of closet sets.

Problem 10.50 Let C be a subset of R. Define the Cantor–Bendixson derivative of C, denoted
C ′, by

C ′ = {x ∈ R; x is a limit point or accumulation point of C}.
Show C ′ is closed, and if C ′ �= ∅, then C is infinite.
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Problem 10.51 A subset P of R is said to be perfect if and only if P ′ = P , where P ′ is
the Cantor–Bendixson derivative of P . Show that any nonempty perfect subset of R is not
countable.

Problem 10.52 A point a is a condensation point of A ⊂ R if for any ε > 0, the set (a− ε, a+
ε) ∩A is infinite not countable. Set P = {x ∈ R; x is a condensation point of A}. Show that P
is either empty or perfect.

Problem 10.53 Let C be a closed subset of R. Show that C = P ∪ F , where P is perfect, F
is countable, and P ∩ F = ∅. This is known as the Cantor–Bendixson Theorem.
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Solutions

Solution 10.1

The set R itself is open because for any x ∈ R, (x − 1, x + 1) ⊆ R. The empty set ∅ is also open
“vacuously.” R and ∅ must also both be closed since Rc = ∅ and ∅c = R.

Solution 10.2

No. Note that 0 ∈ Ac. For any ε > 0, the set (0 − ε, 0 + ε) contains irrational points, such as
√

2
n

for large integers n. Thus Ac is not open, and therefore A is not closed. Similarly one can show
that A is not open as well.

Solution 10.3

Let ϑ be a collection of open sets. We want to prove that
⋃

G∈ϑ

G is open. Set
⋃

G∈ϑ

G = A and let

x ∈ A, then x ∈ G for some G ∈ ϑ. Since G is open, there is an ε > 0 such that (x− ε, x+ ε) ⊂ G.
But G ⊆ A, so (x− ε, x+ ε) is also contained in A. Thus, A is open.

Let {G1, G2, . . . , Gn} be a finite collection of open sets, and let B =
⋂

1≤k≤n

Gk. If B = ∅, then it

is open by the previous problem. Suppose B �= ∅. Let x ∈ B, then x ∈ Gk for each k. Each Gk is
open, so there are ε-neighborhoods (x− εk, x+ εk) satisfying (x− εk, x+ εk) ⊆ Gk for each k. Let
ε = min{ε1, ε2, . . . , εn}, then (x−ε, x+ε) ⊆ (x−εk, x+εk) ⊂ Gk for all k. Hence (x−ε, x+ε) ⊆ B.
Thus, B is open.

By De Morgan’s laws, we have(⋂
i∈I

Gi

)c

=
⋃
i∈I

Gi
c and

(
n⋃

i=1

Gi

)c

=
n⋂

i=1

Gi
c.

Therefore we can say finite unions and arbitrary intersections of closed sets are closed.
Since ∞⋂

n=1

(
− 1
n
,

1
n

)
= {0},

we conclude that infinite intersections of open sets need not be open. By taking the complement
we get

∞⋃
n=1

(
− 1
n
,

1
n

)c

= R\{0},

which shows that infinite unions of closed sets need not be closed.

Solution 10.4

Since the union of any collection of open sets is open, we only need to show that if A is open,
then A is a countable union of open intervals. Then for all x ∈ A, there exists ε > 0 such that
(x− ε, x+ ε) ⊆ A. Now find rationals rx ∈ (x− ε, x) and sx ∈ (x, x+ ε). Then clearly x ∈ (rx, sx)
and A = ∪

x∈A
(rx, sx). Notice that the number of open intervals with rational end points is less than
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or equal to QXQ, where Q is the set of rational numbers. Since Q × Q is countable, we see that
this is a countable union.

Solution 10.5

1. A\B = A ∩ Bc and the intersection of a finite number of open sets is open. Similarly,
B\A = B ∩Ac and the intersection of closed sets is closed.

2. If A is an open subset of R and B = {0}, then AB = {0}, which is not open. So, in general,
the answer to the question is “No.” However, under certain conditions, the answer is “Yes.”
For example, if A is open and y �= 0, then yA = {y}A is an open subset of R, and since
AB = ∪

y∈B
yA, AB is open because arbitrary unions of open sets are open.

Solution 10.6

Let B(x, r) = {y ∈ X; d(x, y) < r}, for x ∈ X and r > 0. Let us prove that any point y ∈ B(x, r)
is an interior point, i.e., there exists ε > 0 such that B(y, ε) ⊂ B(x, r). Set ε = r − d(x, y). Since
y ∈ B(x, r), we have ε > 0. Let z ∈ B(y, ε). Then

d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + ε = r

which proves z ∈ B(x, r). Hence B(y, ε) ⊂ B(x, r). This completes the proof of our claim.

Solution 10.7

Note first that the union of open balls is open since an open ball is also an open set (see the
previous problem). In order to complete the proof of our statement, we are only left to prove that
any open set A of X is the union of open balls. By definition of open sets, for any a ∈ A, there
exists εa > 0 such that B(a, εa) ⊂ A. Obviously we have

A ⊆
⋃
a∈A

{a} ⊆
⋃
a∈A

B(a, εa) ⊆ A

which yields ∪
a∈A

B(a, εa) = A.

Solution 10.8

For each n ≥ 1, set On =
⋃
a∈A

B(a, 1/n). Obviously On is open and A ⊂ On for all n ≥ 1.

Therefore, A ⊂ ∩
n≥1

On. We claim that in fact we have A = ∩
n≥1

On. Assume not. Then there exists

y ∈ ∩
n≥1

On\A. Since A is closed, then Ac is open and contains y. Hence there exists ε > 0 such

that B(y, ε) ⊂ Ac. Since ε > 0, there exists n ≥ 1 such that 1/n < ε. Because y ∈ On, there
exists a ∈ A such that d(a, y) < 1/n < ε. So B(y, ε) ∩ A is not empty, which implies A ∩ Ac �= ∅.
Contradiction.

CHAPTER 10. FUNDAMENTALS OF TOPOLOGY
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Solution 10.9

1. Let C be a closed subset of M such that A ⊂ C. Let us show that A ⊂ C. Let x ∈ A. If
x ∈ A, then we have x ∈ C. Assume x is a limit point of A. Assume x is not in C. Since
C is closed, there must exist ε > 0 such that B(x, ε) ∩ C = ∅. On the other hand, we have
B(x, ε) ∩ A contains a point different from x since x is a limit of A. That point is also in
B(x, ε) ∩ C since A ⊂ C. So C ∩ Cc �= ∅. Contradiction. Hence A ⊂ C which implies

A ⊂
⋂

{C;A ⊂ C and C is closed}.

In order to finish the proof, let us show that A is closed. Let x ∈ A
c, then x ∈ Ac and x is

not a limit point of A. Hence there exists ε > 0 such that B(x, ε) ∩ A = ∅. In particular we
have B(x, ε) ⊂ Ac. Any y ∈ B(x, ε) will not be in A and is not a limit point of A. Indeed
since B(x, ε) is open, there must exist δ > 0 such that B(y, δ) ⊂ B(x, ε) ⊂ Ac which implies
B(y, δ)∩A = ∅. Therefore y ∈ A

c or B(x, ε) ⊂ A
c. This shows that Ac is open or A is closed.

Then we have
A ⊂

⋂
{C;A ⊂ C and C is closed} ⊂ A,

which completes the proof of our statement.

2. If A is closed, then obviously we have A = A from the above result. Conversely, if A = A,
then A is closed since A is closed.

Solution 10.10

An accumulation point must be a limit point since

U ∩ (A \ {x}) ⊆ U \A.

If x is an accumulation point of A and U is an open set containing x, then U ∩ (A \ {x}) �= ∅ and
therefore U \ A �= ∅. The converse is not true, a limit point need not be an accumulation point.
For example, if we set A = [0, 1) ∪ {3} ⊆ R, 3 ∈ A so it is a limit point, but if we take U = (1.5, 4)
an open set containing 3 contains no other points y ∈ A with y �= 3.
Notice that 3 is an isolated point of A, a limit point either belongs to A or is an accumulation point
of A, it could be an isolated point of A; an accumulation point is not.

Solution 10.11

Let x be a limit point of A. For each n ≥ 1, choose some element xn �= x in B(x, 1
n). Then {xn}

is a sequence in A\{x} and since 1/n → 0, then xn → x. Conversely, assume there exists {xn}
is a sequence in A\{x} which converges to x. Then for each ε > 0, there exists n ∈ N such that
xn ∈ B(x, ε), i.e., xn ∈ (A\{x}) ∩ B(x, ε). Therefore each neighborhood of x contains an element
of A other than x. Thus x is a limit point of A.
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Solution 10.12

• To show that (a)⇒(b), notice that A = A since A is closed (see Problem 10.9). Hence any
limit point of A is in A.

• To show that (b)⇒(c), let {xn} be a sequence in A which converges to x. Let us prove that
x ∈ A. Assume not, then x �∈ A. Let us show that x is a limit point of A. Indeed let ε > 0.
Then there exists n ∈ N such that xn ∈ B(x, ε). Since x �∈ A and xn ∈ A, B(x, ε)∩A contains
a point different from x. This proves x is a limit point of A. So x ∈ A from our assumption.
Contradiction.

• To show (c)⇒(a), assume (c) holds and (a) does not. Hence Ac is not open. Then there
exists x ∈ Ac such that for any ε > 0, we have B(x, ε) ∩A �= ∅. In particular, for any n ≥ 1,
there exists xn ∈ B(x, 1/n) ∩ A. The sequence {xn} converges to x and {xn} is in A. Our
assumption implies x ∈ A. Contradiction.

Solution 10.13

If x ∈ B(a; r)\B(a, r), then x is a limit point of B(a, r). Hence there is a sequence {xk} ⊂ B(a; r)
such that xk → x. We want to show d(x, a) ≤ r. Suppose not. So we have d(x, a) > r. Then there
exists ε such that d(x, a) − ε > r. Since xk → x, there exists k ∈ N such that d(x, xk) < ε. By the
triangle inequality we get

d(a, x) ≤ d(a, xk) + d(x, xk) < d(a, xk) + ε,

which implies r ≤ d(a, x)−ε < d(a, xk) which contradicts the fact xk ∈ B(a, r). Thus if x ∈ B(a; r),
then d(a, x) ≤ r, i.e., B(a; r) ⊂ {x ∈ R : d(x, a) ≤ r}. Note that we could have obtained this
inclusion easily by showing that {x ∈ R : d(x, a) ≤ r} is closed. Now suppose d(a, x) ≤ r, so now
we want to show that x ∈ B(a; r). Let xn = a+ (1 − 1

n)(x− a), then

d(xn, a) ≤
(

1 − 1
n

)
d(x, a) ≤

(
1 − 1

n

)
r < r.

So xn ∈ B(a; r) for all n. Since xn → x, then x ∈ B(a; r), i.e., {x ∈ R : d(x, a) ≤ r} ⊂ B(a; r).
This completes the proof of the first part.

This characterization of the closure of open balls may not be true in any metric space. Indeed,
take R endowed with the discrete distance d (see Problem 9.23). Then

B(0, 1) = {x ∈ R; d(0, x) < 1} = {0}

is open and closed, while {x ∈ R; d(0, x) ≤ 1} = R.

Solution 10.14

1. Let a ∈ Ă. Then there is an ε > 0 such that B(a; ε) ⊆ A. Since B(a; ε) is open,
B(a; ε) ⊆int(A), which proves a ∈ int(A), i.e., Ă ⊆ int(A). Now let a ∈ int(A). Then
there is an open subset O ⊆ A such that a ∈ O. Since O is open, there exists ε > 0 such that
B(a, ε) ⊂ O. Hence B(a, ε) ⊂ A which means a is an interior point of A, so int(A) ⊆ Ă.

CHAPTER 10. FUNDAMENTALS OF TOPOLOGY
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2. Note that int(A) is open because it is a union of open sets. Hence A = int(A) which will
force A to be open. Assume A is open, then A = Ă from the definition of open sets. Using
the above property, we get A = int(A).

Solution 10.15

1. Since the intersection of two closed sets is closed, it follows that ∂A is a closed set.

2. This follows from the definition of the boundary and the fact that M\(M\A) = A.

3. No. Indeed let A = {0} ⊆ R. Then A has no limit points, but ∂A = {0}.

4. Let x ∈ ∂A. Since ∂A = A ∩ (M\A), we have that x ∈ A and x ∈ (M\A). Note that if
x ∈ K, for any set K, then for any ε > 0, we have B(x, ε) ∩K �= ∅. Indeed, by definition of
K, we know that either x ∈ K which obviously will imply B(x, ε) ∩ K �= ∅, or x is a limit
point of K. And in this case using the definition of limit points, we get again B(x, ε)∩K �= ∅.
So since x ∈ A ∩ (M\A), we get B(x, ε) ∩A �= ∅ and B(x, ε) ∩ (M\A) �= ∅.
Conversely, let x ∈ M such that for any ε > 0, B(x; ε) contains points of A and of M\A. Let
us prove that x ∈ ∂A. It is enough to prove that x ∈ A. If x ∈ A, then we have nothing to
show. Assume x �∈ A. Let ε > 0. We know that B(x, ε)∩A �= ∅, since x �∈ A, then B(x, ε)∩A
contains a point different from x. Hence x is a limit point of A, i.e., x ∈ A.

Solution 10.16

1. (1, 2) is an open subset of R therefore A = int(A) = (1, 2). The endpoints 1 and 2 are limit
points, so they are in the closure: A = [1, 2]. Since R\A = {x : x ≤ 1} ∪ {x : x ≥ 2}, the
boundary of A, ∂A = A ∩ R\A = {1, 2}.

2. [1, 2] = {x ∈ R : 1 ≤ x ≤ 2} is a closed subset of R. Indeed the complement of [1, 2] in R is
the union of the two open half-lines, namely: R\[1, 2] = {x : x < 1} ∪ {x : x > 2}. As the
union of two open subsets is open, R\[1, 2] is open, so [1, 2] is closed. Since [1, 2] is closed,
then [1, 2] = [1, 2], int(B) = (1, 2), and ∂B = {1, 2}.

3.
⋂∞

n=1[−2, 1
n) = [−2, 0]. This is because if −2 ≤ x ≤ 0, then x ∈ [−2, 1

n) for any positive
n, so x is in the intersection. On the other hand, for any x > 0, we can find an integer
n > 0 (Archimedean Principle) with 0 < 1

n < x. Therefore x /∈ [−2, 1
n) for that n, and so

x /∈ ⋂∞
n=1[−2, 1

n).

The interval [−2, 0] is closed by the same argument used in part 2. If we set C = [−2, 0],
then, as above, int(C) = (−2, 0), C = [−2, 0], and ∂C = {−2, 0}.

4. If we set F = (0, 1) ∩ Q, F is not open in R, since, for example, every open interval centered
at 1

2 contains irrational numbers. It is also not closed, since the complement is not open, as
any open interval around 0 contains rational numbers 1

n for large enough positive n in the
integers. Thus, F is neither closed nor open.

If r ∈ F and ε > 0, then the interval (r − ε, r + ε) contains irrational numbers, and so r
cannot be an interior point, and thus int(F ) = ∅. Now if y ∈ [0, 1], then for any ε > 0, there
are rational numbers in (y− ε, y+ ε), so y is a limit point of F . Thus we have F = [0, 1]. By
similar reasoning, one can show R\F = R. Therefore, ∂F = F ∩ R\F ) = [0, 1] ∩ R = [0, 1].



211

Solution 10.17

⇒: Assume x ∈ A. then either x ∈ A or x ∈ {accumulation points of A}. If x ∈ A, form a
sequence {x, x, . . . } → x. If x ∈ {accumulation points of A}, then for every ε > 0 there exist y �= x
such that y ∈ B(x; ε) ∩ A. Setting εn = 1

n and choosing xk �= x from each B(x; εn) ∩ A we obtain

the desired sequence. Note that (xk) → x, because for all ε > 0, we can choose N =
1
ε
, so that

d(xk, x) < ε whenever k ≥ N .
:⇐ Assume there is a sequence (xk) ∈ A converging to x. If x ∈ A, then x ∈ A, since A ⊂ A.
Suppose x is not in A, we must show x ∈ {accumulation points of A}. Since (xk) → x, for any
ε > 0 there exists N such that xk ∈ B(x; ε) whenever k ≥ N . Since we know (xk) ∈ A, we have
xk ∈ B(x; ε) ∩A, this implies that x is an accumulation point.

Solution 10.18

Let x ∈ A. If x ∈ A, then obviously we have d(x,A) = 0. Assume x �∈ A. Then x is a limit point
of A. Thus, for any ε > 0, there exists a y ∈ B(x, ε) ∩ A, i.e., d(x, y) < ε. Therefore d(x,A) < ε,
for any ε > 0. Hence d(x,A) = 0. Conversely suppose d(x,A) = 0. If x ∈ A, then x ∈ A. Assume
x �∈ A. Then by the property of the infimum, for any ε > 0, there is a y ∈ A such that d(x, y) < ε,
i.e., y ∈ B(x, ε) ∩A. Since x �∈ A, then y �= x. Therefore, x is a limit point of A, and thus x ∈ A.

Solution 10.19

1. Proof is done by contradiction. Suppose there is an open set O containing x and containing
only a finite number of points of A different from x. Say x1, x2, . . . , xn are the points of A
in O other than x. Let ε1 = min{d(x, x1), d(x, x2), . . . , d(x, xn)}. Also, since O is open, we
know there exists some ε2 > 0 such that B(x; ε2) ⊆ O. Set ε = min{ε1, ε2}. Notice that
ε > 0 and B(x; ε) contains no points of A other than x. This contradicts the fact that x is a
limit point of A.

2. If supA ∈ A, then supA ∈ A. Assume that supA �∈ A. Then by the properties of supremum,
for every ε > 0, there is a y ∈ A such that supA − ε < y ≤ supA < supA + ε, i.e.,
y ∈ A ∩ (supA− ε, supA+ ε). Thus, supA is a limit point of A, so supA ∈ A.
Let ε > 0. By the properties of supremum, there is an element y ∈ A such that supA− ε <
y ≤ supA, i.e., every interval (supA−ε, supA+ε) contains a point of A. On the other hand,
the upper half of such an interval (supA, supA + ε) ⊂ R\A, since supA is an upper bound
of A. Thus supA ∈ R\A. Therefore, supA ∈ A ∩ (R\A) = ∂A, as desired.

Solution 10.20

1. Compact, because it is closed and bounded (Heine–Borel Theorem).

2. Noncompact, because it is unbounded.

3. Noncompact, because if we set A = {x ∈ R : 0 ≤ x ≤ 1 and x is irrational}, then x = 1
3 /∈ A,

but every interval around it contains irrational numbers which are in A. Therefore Ac is not
open, so A is not closed, and thus A cannot be compact.
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4. Let {Oα} be an arbitrary open cover of A. The point 0 lies in one of the open sets,
suppose 0 ∈ Oα0 for some α0. Since Oα0 is open and 1

n → 0, there is an N such that
1
N ,

1
N+1 , . . . all lie in Oα0 . Now since {Oα} is an open cover of A, we know there must exist

Oα1 , Oα2 , . . . , OαN (not necessarily all distinct from one another, but we can rename and give
multiple names to the sets as is needed) such that 1, 1/2, . . . , 1/N ⊂ Oα1 ∪Oα2 ∪ . . . ∪OαN .
Then {Oα0 , Oα1 , Oα2 , . . . , OαN } is a finite subcover of A. Therefore, every open cover has a
finite subcover, so A is compact.

Solution 10.21

Let K be a compact set and F ⊂ K be a closed subset. Let {Oα} be an arbitrary open cover
of F . Then {F c, Oα} is an open cover of K. Since K is compact, there exists a finite subcover
{F c, Oα1 , Oα2 , . . . , OαN } of K. It is easy to check that {Oα1 , Oα2 , . . . , OαN } is a finite subcover
of F . Thus F is compact.

Solution 10.22

Assume not. Then
⋂

n≥1
An = ∅, which easily implies K ⊂ ⋃

n≥1
Ac

n. Since An is closed, then {Ac
n} is

an open cover of K. Because K is compact, there exist n1, . . . , nN such that K ⊂ Ac
n1

∪ . . . ∪Ac
nN

which implies An1 ∩ . . . ∩AnN = ∅. Since {An} is decreasing we have Amax{ni} ⊂ An1 ∩ . . . ∩AnN .
This will contradict the fact

∅ �= Amax{ni} ⊂ An1 ∩ . . . ∩AnN = ∅.

Solution 10.23

Assume not. Then for any ε > 0, there exists xε ∈ K such that B(xε, ε) �⊂ Oα, for any α. In
particular, there exists a sequence {xn} in K such that B(xn, 1/n) �⊂ Oα, for any n ≥ 1 and any
α. Our assumption on K ensures the existence of a subsequence {xnk

} of {xn} which converges to
some x ∈ K. Since {Oα} covers K, there exists α0 such that x ∈ Oα0 . Since Oα0 is open, there
must exist ε0 > 0 such that B(x, ε0) ⊂ Oα0 . But {xnk

} converges to x, then there exists ni such
that B(xni , 1/ni) ⊂ B(x, ε0) ⊂ Oα0 contradicting the way the subsequence was constructed.

Solution 10.24

Assume thatK ⊂ M is nonempty and compact. Let {xn} be a sequence inK. SetXn = {xi, i ≥ n}.
Then {Xn} is a nonempty sequence of decreasing closed subsets of K. Problem 10.22 will ensure
that

⋂
n≥1

Xn �= ∅. Let x be in this intersection. Then x ∈ K as well. Let us show that there exists a

subsequence of {xn} which converges to x. Let ε > 0, then for any n ≥ 1, B(x, ε) ∩ {xi, i ≥ n} �= ∅
since x ∈ {xi, i ≥ n}. Set ε = 1, then there exists n1 ≥ 1 such that xn1 ∈ B(x, 1). Let ε = 1/2,
then there exists n2 ≥ n1 + 1 such that xn2 ∈ B(x, 1/2). By induction we construct a subsequence
{xni} of {xn} such that xni ∈ B(x, 1/i), for any i ≥ 1. Clearly {xni} converges to x.

Conversely assume that K is sequentially compact. Let us show that K is compact. Let us
prove that for any ε > 0 there exists a finite set of points a1, . . . , aN in K such that

K ⊂ B(a1, ε) ∪ . . . ∪B(aN , ε).
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Indeed, assume not. Then there exists ε > 0 such that for any finite set of points a1, . . . , aN in K,
we have K �⊂ B(a1, ε) ∪ . . .∪B(aN , ε). In particular, we fix x1 ∈ K, then there exists x2 ∈ K such
that d(x1, x2) ≥ ε. Assume x1, . . . , xn are known. Since K �⊂ B(x1, ε) ∪ . . . ∪B(xn, ε), there exists
xn+1 ∈ K such that d(xn+1, xi) ≥ ε for 1 ≤ i ≤ n. By induction we construct a sequence {xn} in
K such that d(xi, xj) ≥ ε for i �= j. Such sequence is called ε-separated. Obviously such sequence
will not have a convergent subsequence. Contradiction. Let us complete the proof of our claim,
i.e., K is compact. Indeed let {Oα} be an arbitrary open cover of K. Problem 10.23 ensures the
existence of ε > 0 such that for any x ∈ K, there exists α such that B(x, ε) ⊂ Oα. For that same
ε, there exists a finite set of points {ai, i = 1, . . . , N} in K such that K ⊂ B(a1, ε) ∪ . . .∪B(aN , ε).
For any i = 1, . . . , N , there exists αi such that B(ai, ε) ⊂ Oαi . Clearly {Oαi , i = 1, . . . , N} is a
finite subcover of K.

Solution 10.25

LetM be the set of all bounded sequences in R. Consider the distance d({xn}, {yn}) = sup
n∈N

|xn−yn|.
Consider

C =
{

{xn}, sup
n∈N

|xn| ≤ 1
}
.

Then C is not empty, closed, and bounded in M . Let us show that C is not compact. Indeed, for
any k ∈ N, let ek = {xn}, where xn = 0 for any n �= k and xk = 1. Then ek ∈ C, for any k ∈ N.
But d(ei, ej) = 1 whenever i �= j. Hence {ei} is 1-separated in C. So C cannot be sequentially
compact (see Problem 10.24). In particular, C is not compact.

Another easier example is the discrete distance on any infinite set.

Solution 10.26

Suppose A ⊂ (M,d) is totally bounded, then for each ε > 0 there is a finite set (called ε-net)

{x1, . . . , xk} in M such that A ⊂
k⋃

i=1

B(xi, ε). Now observe that B(xi, ε) ⊂ B(x1, ε + d(xi, x1)),

therefore if we set R = ε + max{d(x2, x1), . . . , d(xk, x1)}, then A ⊂ B(x1, R) and thus a totally
bounded set is bounded. To show that a bounded set is not necessarily bounded, consider (c0, ‖
. ‖∞), where by c0 we mean the space of all sequences converging to 0 and for x = (xn) ∈ c0 its
norm is defined by ‖ x ‖∞= sup |xn|. Consider the unit sphere S(0; 1) of c0, define a sequence (xn)
as xn = {0, . . . , 0, 1, 0, . . . } (1 in the nth place), then for all n �= m

‖ xn − xm ‖∞= sup |xi − xj | = 1.

Therefore for ε ≤ 1
2 , the ball with radius ε contains a particular element of the sequence (xn) and

contains no other element of the sequence. Thus S(0; 1) does not have an ε-net for ε ≤ 1
2 and

therefore is not totally bounded.

Solution 10.27

Let us use the sequential characterization of compact sets in metric spaces (see Problem 10.24).
Let a sequence (an, bn) ⊆ A×B. Since A is compact, we know there exists some subsequence ank

that converges to some point a ∈ A as k → ∞. Similarly, since B is compact, the subsequence (bnk
)

has a sub-subsequence (bnkl
) that converges to some b ∈ B as l → ∞. Thus (ankl

, bnkl
) → (a, b) as

l → ∞. Since this is true for any arbitrary sequence (an, bn), this proves that A×B is compact.
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Solution 10.28

1. Notice that C ⊂ [0, 1], so it is bounded. C =
⋂

n≥1
Sn, where each Sn is a union of finitely many

closed intervals and so is closed. Thus, the set C is an intersection of closed sets and so C is
closed as well. Therefore, C is a closed and bounded subset of R, so C is compact.

2. The length of each of the subintervals making up the set Sn is 1
3n , so the intersection can

contain no interval longer than this. Since 1
3n → 0 as n → ∞, the intersection can contain no

interval of positive length. If a ∈ C is an interior point, we should be able to find an interval
around a with positive length s. There are no such intervals, so int(C) = ∅.

3. Begin by noting that C contains the endpoints of all the intervals for each Sn and that each
Sn has a total of 2n+1 endpoints. Since the number of endpoints in Sn goes to ∞ as n → ∞,
we have that C has infinitely many points.

4. By summing up the length of the deleted intervals, we are able to obtain:

1
3

+
2
9

+
4
27

+ · · · =
1
3

[
1 +

2
3

+
(

2
3

)2

+ · · ·
]

=
1
3

· 1
1 − 2

3
= 1.

Solution 10.29

Suppose f is continuous and U is an open subset of Rm. Let a ∈ f−1(U), then f(a) ∈ U and since
U is open, there is an ε > 0 such that B (f(a); ε) ⊆ U . From the continuity of f , there is a real
number δ > 0 such that

|f(x) − f(a)| < ε for all x ∈ A, such that |x− a| < δ.

This means that f (B(a; δ) ∩A) ⊂ B (f(a); ε) ⊆ U . Hence, B(a; δ) ∩ A ⊂ f−1(U) and therefore
f−1(U) is open in A. This proves that (a) implies (b).

Conversely, suppose (b) holds. Fix an a ∈ A and ε > 0 and take U = B (f(a); ε) . Then by
assumption, f−1(U) is open in A and contains the point a, i.e., there is a real number δ > 0 such
that B(a; δ) ∩ A ⊂ f−1(U). In other words, |f(x) − f(a)| < ε for all x ∈ A with |x − a| < δ, and
therefore f is continuous.

Solution 10.30

Suppose U = (0, 1) ⊂ R and f : R → R is a function defined as f(x) = 5, then f(U) = {5} is not
an open set. Notice that we can take U as any open subset of R and f(x) = k for any constant k.

Solution 10.31

Suppose (bn) is a sequence in f(A). For each n, choose an ∈ A such that f(an) = bn. Since A is
compact, there is a subsequence (ank

) that converges to some point a ∈ A. By the continuity of f ,
it follows that bnk

= f(ank
) → f(a) ∈ f(A). Therefore, any sequence (bn) in f(A) has a convergent

subsequence, converging to a point in f(A). Thus f(A) is compact.
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Solution 10.32

Let f : M → R be continuous and let A be a compact subset of M . By Problem 10.31, we know
that f(A) is a compact subset of R. By the Heine–Borel Theorem, f(A) is closed and bounded.
Thus sup(f(A)) and inf(f(A)) exist and belong to f(A). Therefore, there exist p, P ∈ A such that
for all a ∈ A, inf(f(A)) = f(p) ≤ f(a) ≤ f(P ) = sup(f(A)).

Solution 10.33

Suppose T−1 is not continuous at y0 ∈ N . Then there exists ε > 0 and a sequence (yn) in N such
that (yn) → y0 but the sequence (xn) where xn = T−1yn and x0 = T−1y0 has the property that

d(xn, x0) > ε for all n ∈ N.

However, since (M,d) is compact (xn) has a convergent subsequence (xnk
) which is convergent

to some x1 ∈ M . But T is continuous at x1, so ynk
where ynk

= Txnk
converges to y1 = Tx1.

However, we are given that (ynk
) → y0, so y1 = y0. Since T is one-to-one we have x1 = x0 but this

contradicts the assumption that d(xn, x0) > ε for all n ∈ N.

Solution 10.34

Consider the real function f on A defined by f(x) = d(x, x0). Now |f(x) − f(y)| = |d(x, x0) −
d(y, x0)| ≤ d(x, y), so f is continuous on A. But A is compact, so f has a minimum on A (Problem
10.32). That is, there exists a y0 ∈ A such that

f(y0) = d(x0, y0) = inf{d(x0, y) : y ∈ A} = d(x0, A).

Solution 10.35

1. f is one-to-one because if f(x) = f(y), then 0 ≥ d(x, y), and therefore x = y. The continuity
of the inverse function follows from d(x, y) = d

(
f(f−1(x)), f(f−1(y))

) ≥ d(f−1(x), f−1(y)).

2. Suppose there exists x ∈ A such that x /∈ f(A). Since f(A) is compact, by Problem 10.18,
we know d(x, f(A)) = d > 0. Note that we have

d ≤ d(x, fh(x)) ≤ d(fn(x), fn+h(x)),

for any n, h ∈ N, where fn = f ◦ · · · ◦ f n times. In particular, the sequence {fn(x)} is
d-separated. In Problem 10.24 we showed that such sequences do not exist in sequentially
compact metric spaces, contradicting the fact that f(A) is compact. So we have f(A) = A.

Solution 10.36

Since A is closed, d(x,A) = 0 if and only if x ∈ A (see Problem 10.18). Therefore dH(A,B) = 0 if
and only if A = B. It is clearly symmetric, i.e., dH(A,B) = dH(B,A). For the triangle inequality,
since A, B, C are three compact subsets of X, for each a ∈ A, by Problem 10.33, we know the
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existence of a closest point b ∈ B so that d(a,B) = d(a, b). Similarly, there is a closest point c ∈ C
to b with d(b, C) = d(b, c). Therefore,

d(a,C) ≤ d(a, c) ≤ d(a, b) + d(b, c) = d(a,B) + d(b, C) ≤ dH(A,B) + dH(B,C),

and hence, sup
a∈A

d(a,C) ≤ dH(A,B) + dH(B,C). Now if we reverse the roles of A and C above we

can obtain that sup
c∈C

d(c, A) ≤ dH(A,B) + dH(B,C). Combining these two inequalities, we get that

dH(A,C) ≤ dH(A,B) + dH(B,C).

Solution 10.37

1. Follows from the definition.

2. If D1 ⊂ D2 and D2 ⊂
n⋃

i=1

Ai with diam(Ai) ≤ r, then covering for D2 also covers D1 and

hence α(D1) ≤ α(D2).

3. Since D ⊂ D by the above part we have α(D) ≤ α(D). Conversely, if D ⊂
n⋃

i=1

Ai, then

D ⊂
n⋃

i=1

Ai; however, diam(Ai) = diam(Ai) ≤ r implies α(D) ≤ α(D).

4. lim
n→∞α(Fn) = 0 implies that for each n, Fn is compact, by the nested intervals property of

the compact nonempty sets we have
∞⋂

n=1

Fn �= ∅.

Solution 10.38

1. For x, y ∈ Q with x < y, choose an irrational number z with x < z < y. Then setting
U = (−∞, z) and V = (z,∞), we see that Q ⊂ U ∪ V , both U and V intersect with Q, and
U ∩ V = ∅. Therefore, Q is not connected.

2. N is not connected, because if we set U = {0} and V = {1, 2, 3, . . . }, then both are open
subsets of N (with respect to the relative topology inherited from the topology of R) with
U ∩ V = ∅ and N = U ∪ V .

Solution 10.39

We use the same notations as in Problem 10.28. Let x and y be distinct points of C. Without
loss of generality assume x < y. Then x, y ∈ Sn for every n. Since the subintervals making up Sn

each have length 1/3n, the points x and y must lie in different subintervals if n is large enough so
that |x− y| > 1/3n. At least one of the subintervals (xn, yn) removed from Sn−1 to create Sn lies
between x and y, i.e., x ≤ xn < yn ≤ y. Now pick a point z such that xn < z < yn. Thus z /∈ Sn,
so z /∈ C. Let U = {a ∈ R : a < z} and V = {b ∈ R : z < b}, so U ∩ V = ∅ and both are open
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sets. Moreover, C ⊂ R\{z} = U ∪ V . Thus x ∈ U and y ∈ V with U and V disconnecting C. C is
totally disconnected as claimed.

Solution 10.40

Assume not. Assume f : X → Y is continuous and X is connected, but the range f(X) is
not connected. Then there are disjoint open sets U and V in Y such that f(X) ⊆ U ∪ V and
f(X) ∩ U �= ∅ �= f(X) ∩ V . If we let K1 = f−1(U) and K2 = f−1(V ), since f is continuous, the
inverse image of an open set is open, and thus K1 and K2 are open subsets of X. Now f(X) ⊆ U∪V
and U ∩ V = ∅ implies that for each x ∈ X, f(x) ∈ U or f(x) ∈ V but not both. Therefore K1
and K2 cover X and K1 ∩ K2 = ∅. Moreover, since f(X) ∩ U �= ∅ and f(X) ∩ V �= ∅, it follows
that K1 ∩X �= ∅ �= and K2 ∩X �= ∅. This shows that X is not connected, so we have arrived at a
contradiction. Therefore, the continuous image of a connected set is connected.

Solution 10.41

Suppose f : X → Y is continuous and C ⊂ X is a path-connected set. Then for every x, y ∈ C there
is a continuous path ψ : [0, 1] → C connecting x to y, i.e., if (tn) → t in [0, 1], then ψ(tn) → ψ(t).
Since composition of two continuous functions is continuous we certainly have f(ψ(tn)) → f(ψ(t)).
Continuous path f ◦ ψ connects every two points in f(C).

Solution 10.42

Suppose A is path connected, but not connected. Then there are disjoint open sets U and V such
that A ⊆ U ∪ V , A ∩ U �= ∅, and A ∩ V �= ∅. Pick points u ∈ A ∩ U and v ∈ A ∩ V . Since A is
path connected, there exists a continuous function f : [0, 1] → A such that f(0) = u and f(1) = v.
Set P = f([0, 1]). It follows that P ⊆ U ∪ V , moreover u ∈ P ∩ U and v ∈ P ∩ V , so both are
nonempty. This shows that P is not connected. But this is a contradiction because a continuous
image of the closed interval [0, 1], which is connected, is connected.

Solution 10.43

A is bounded because A ⊂ B(0, 2), let x ∈ Ac = {x ∈ Rn : ‖ x ‖> 1}, then B(x, ‖ x ‖ −1) ⊂ Ac,
thus Ac is open. A is both closed and bounded subset of Rn and thus A is compact by the Heine–
Borel Theorem. To show A is connected we show A is path connected. Let x, y ∈ A, the straight
line connecting x to y is the required path ψ : [0, 1] → Rn, since

‖ ψ(t) ‖=‖ (1 − t)x+ ty ‖≤ (1 − t) ‖ x ‖ +t ‖ y ‖= 1.

Solution 10.44

Let F = A ∪ B = {(0, t) : |t| ≤ 1} ∪ {(x, sin 1
x) : 0 < x ≤ 1

}
. We claim that F is connected.

Suppose U and V are two disjoint open sets such that F ⊆ U ∪ V . The point (0, 0) must belong
to one of them, so, without loss of generality, assume (0, 0) ∈ U . Therefore U intersects the line
A. Since A is path connected, A ⊆ U . Since U is an open set, there exists some ε > 0 such that
the ball centered at (0, 0) with radius ε is contained in U . But (0, 0) is a limit point of B, so U
contains a point of B. Since B is a graph, it is path connected, so by the same argument, B ⊆ U ,
which shows that F ∩ V = ∅. Therefore, F is connected.
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We prove that F is not path connected via contradiction. Suppose F is path connected. Then
there exists a continuous function f : [0, 1] → F such that f(0) = (0, 0) and f(1) = (1, sin 1). Now
set a = sup{x : f(x) ∈ A}. Since f is continuous, there exists a δ > 0 such that |f(x) − f(a)| < 1

2
if |x − a| ≤ δ. Set b = a + δ. Let f(a) = (0, y) and f(b) = (u, sin 1

u). A similar argument
shows that there is a point a < c < b such that f(c) = (t, sin 1

t ), where t ≤ u
1+2πu . Therefore,

f ([c, b]) is a connected subset of F containing both f(c) and f(b). On the other hand, the graph
G =

{
(x, sin 1

x) : t ≤ x ≤ u
}

is connected: if we remove any part of it we will disconnect it, so
G ⊆ f ([c, b]). Note that sin 1

x takes both values ±1 on [t, u], so there is a point w = (w, sin 1
w ) on G

with |f(w)−f(a)| > | sin 1
w −y| ≥ 1. But this is a contradiction to the above where |f(x)−f(a)| < 1

2
for all x ∈ [a, b]. Therefore F is not path connected.

Solution 10.45

Intervals are path connected, and hence they are connected. For the converse, assume that A is
not an interval and we will show that it is not connected. A is not an interval implies that there
exist points x, y, z such that x < y < z where x, z ∈ A but y /∈ A. Then by setting U = (−∞, y)
and V = (y,∞), we get A ⊆ U ∪V , U ∩V = ∅, A∩U �= ∅, and A∩V �= ∅. Thus A is not connected.
Next let M be a connected metric space and f : M → R is continuous. Since the continuous image
of a connected set is connected, f(M) is connected. From the first part of this problem we conclude
that f(M) is an interval.

Solution 10.46

Since A× B = {(a, b) : a ∈ A, b ∈ B}, if we take x = (x1, x2) and y = (y1, y2) in A× B, then x1
and y1 are in the path-connected set A and x2 and y2 are in the path-connected set B. Hence there
exist γ : [0, 1] → A such that γ(0) = x1 and γ(1) = y1, and ϕ : [0, 1] → B such that ϕ(0) = x2
and ϕ(1) = y2. Now set f(t) = (γ(t), ϕ(t)). Then f : [0, 1] → A × B is continuous since each of
the coordinate functions is continuous. Moreover we have f(0) = x and f(1) = y. This shows that
A×B is path connected.

Solution 10.47

Let x ∈ R and ε > 0. It is enough to show that ∩
n∈N

On ∩ (x − ε, x + ε) is not empty. Since O0 is

dense in R, then O0 ∩ (x− ε, x+ ε) �= ∅ and is open. Let x0 ∈ O0 ∩ (x− ε, x+ ε) and ε0 < ε/4 such
that (x0 − ε0, x0 + ε0) ⊂ O0 ∩ (x− ε, x+ ε). Then by induction one can build the sequences {xn}
and {εn} such that

1. εn <
εn−1

2
,

2. (xn − εn, xn + εn) ⊂ On ∩ (xn−1 − εn−1, xn−1 + εn−1),

for any n ≥ 1. It is easy to check that εn < ε/2n+2, for any n ∈ N. Condition 2 implies

(xm − εm, xm + εm) ⊂ (xn − εn, xn + εn), m > n.

In particular, we have |xm − xn| < εn, for any m > n. So {xn} is Cauchy. Hence {xn} converges
to some z ∈ R. Let us prove that z ∈ ∩

n∈N

On ∩ (x− ε, x+ ε). Indeed, since |xm − xn| < εn, for any

m > n, we get |z − xn| ≤ εn, for any n ∈ N. In particular, we have

z ∈ (xn+1 − 2εn+1, xn+1 + 2εn+1) ⊂ (xn − εn, xn + εn) ⊂ On,
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for any n ∈ N. This implies z ∈ ∩
n∈N

On. On the other hand, we have (xn−εn, xn+εn) ⊂ (x−ε, x+ε)

which implies z ∈ (x− ε, x+ ε). Therefore we have proved that z ∈ ∩
n∈N

On ∩ (x− ε, x+ ε).

The proof given here is analytical in nature and may be extended to complete metric spaces.
In fact, Baire’s Category Theorem extends to complete metric spaces as shown in the following
problem.

Solution 10.48

Recall that subset A of a metric space M is said to be nowhere dense if its closure A has no interior
points. (If M = R, A contains no nonempty intervals, for example Z is nowhere dense in R.) We
say A is of first category in M if A is the union of countably many sets each of which is nowhere
dense in M . A is second category in M if A is not first category.
Proof is done by contradiction. Suppose M �= ∅ and first category in itself, then

M =
∞⋃

k=1

Mk

with each Mk nowhere dense in M . We will construct a Cauchy sequence {xk} whose limit x which
exists by completeness is in no Mk, thus contradicting the representation above. By assumption
M1 is nowhere dense in M , which means M1 does not contain a nonempty open set. But M is
open in itself, and this implies that M1 �= M . Therefore the complement of M1 in M is not empty
and open. Using the definition of open set this means we can choose a point x1 in M1

c such that
the open ball centered at x1 and radius ε1, B(x1; ε1) is contained in M1

c, i.e.,

B(x1; ε1) ⊂ M1
c
.

By assumption M2 is nowhere dense in M , i.e., M2 does not contain a nonempty open set. Hence
it does not contain the open ball B(x1; 1

2ε1). This implies that M2
c ∩ B(x1; 1

2ε1) �= ∅ so we can
choose a point x2 in M2

c ∩B(x1; 1
2ε1) and ε2 < 1

2ε1 such that

B(x2, ε2) ⊂ M2
c ∩B(x1;

1
2
ε1).

Continuing in this manner, we obtain a sequence of open balls b(xk; εk) such that B(xk; εk)∩Mk �= ∅
and

B(xk,
1
2
εk) ⊂ B(xk; εk)

for k = 1, 2, . . . . Furthermore εk <
1
2k guarantees that the sequence formed by centers xk of these

balls forms a Cauchy sequence. Since M was complete the sequence {xk} converges to some x ∈ M .
Also for every m with n > m we have

B(xn; εn) ⊂ B(xm;
1
2
εm).

Now using the triangle inequality we get

d(xm, x) ≤ d(xm, xn) + d(xn, x) <
1
3
εm + d(xn, x)

which implies that d(xm, x) → 1
2εm as n → ∞ thus proving that x ∈ B(xm; εm) for every m. But

B(xm; εm) ⊂ Mm
c, and we showed that x /∈ Mm for every m, so that

x /∈ M =
∞⋃

k=1

Mk.
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This contradicts the fact that x ∈ M .

Solution 10.49

Assume not. Then there exists {On} a sequence of open sets such that Q = ∩
n∈N

On. Since Q is

countable, then we may write Q = {rn;n ∈ N}. Set Õn = On \ {rn}, for n ∈ N. It is clear that Õn

is open as an intersection of two open sets. Since Q ⊂ On, then On is dense in R and consequently
Õn is also dense in R, for any n ∈ N. Baire’s Category Theorem implies that ∩

n∈N

Õn is not empty

and is dense in R. But this contradicts

∩
n∈N

Õn = ∩
n∈N

On \ Q = ∅.

Finally assume that the set of irrationals is the union of a countable collection of closed sets. Then
by taking the complement one can easily prove that Q is the intersection of a countable collection
of open sets. Contradiction.

In topology, this conclusion means that Q is not Gδ-set and R \ Q is not an Fσ.

Solution 10.50

If C ′ = ∅, we have nothing to prove. So assume C ′ �= ∅. Let us prove that C ′ is closed. Let a �∈ C ′,
then a is not a limit point of C. Hence there exists ε > 0 such that (a − ε, a + ε) ∩ C does not
contain a point different from a. Since a �∈ C, we have (a − ε, a + ε) ∩ C = ∅. In fact, we have
(a− ε, a+ ε) ∩C ′ = ∅. Indeed assume not, i.e., (a− ε, a+ ε) ∩C ′ �= ∅. Let a∗ ∈ (a− ε, a+ ε) ∩C ′.
Since (a− ε, a+ ε) is open, there exists δ > 0 such that (a∗ − δ, a∗ + δ) ⊂ (a− ε, a+ ε). Since a∗ is a
limit point of C, (a∗ −δ, a∗ +δ)∩C �= ∅ which in turns implies (a−ε, a+ε)∩C �= ∅. Contradiction.
Hence R\C ′ is open or equivalently C ′ is closed. Finally let us prove that C is infinite. Assume not.
So C = {c1, . . . , cn}. Since C ′ is not empty, let c∗ ∈ C ′. Set ε = min{|c∗ −ci|; ci �= c∗, i = 1, . . . , n}.
It is clear that ε > 0 and (c∗ − ε, c∗ + ε) ∩ C = ∅. Contradiction. Hence C is not finite.

Solution 10.51

Let P ⊂ R be a nonempty perfect set. Since P has a limit point (being not empty), P is infinite
and is closed. Assume P is countable. Write P = {pn; n ∈ N}. Since p0 is a limit point of P ,
P∩(p0−1, p0+1) is not empty and is infinite. Take a p ∈ P∩(p0−1, p0+1), with p �= p0. Then there
exists an open interval I1 which contains p, such that I0 does not contain p0 and I0 ⊂ (p0−1, p0+1),
where I0 denotes the closure of I0. Since I1 contains a limit point of P , it contains infinitely many
points of P . In particular, it contains a point different from p1. Since I1 is open, it will contain an
open interval I2, which contains a point from P such that I2 does not contain p1 and I2 ⊂ I1. By
induction, we will construct a sequence of open intervals {In}n∈N ⊂ (p0 − 1, p0 + 1) such that

1. pn �∈ In,

2. In+1 ⊂ In,

3. In ∩ P �= ∅,

for any n ∈ N. The sequence {In ∩ P} is a decreasing sequence of bounded closed nonempty sets.
Hence I = ∩

n∈N

In ∩ P �= ∅. Let p∗ ∈ I. Then p∗ ∈ In ∩ P , for any n ∈ N. Hence p∗ �= pn, for any

n ∈ N. So P \ {pn;n ∈ N} �= ∅. Contradiction.
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Solution 10.52

Assume P not empty. Before we prove that P is perfect, let us prove that C = A \P is countable.
Indeed, let a ∈ C, then there exists r1 < a < r2 with r1, r2 ∈ Q such that (r1, r2) ∩A is countable.
Hence

C ⊂
⋃{

(q1, q2) ∩A; q1, q2 ∈ Q such that (q1, q2) ∩A is countable
}
.

Since a countable union of countable sets is countable, we conclude that C is countable. Next let
us prove that P is perfect. Clearly any condensation point of A is also a limit point of A. The
converse is not true in general. Indeed, if we take A = {1/n; n ≥ 1}, then 0 is a limit of A but it is
not a condensation point since A is countable. Let a ∈ P ′, i.e., a is a limit point of P . Let ε > 0,
then there exists p ∈ (a − ε, a + ε) ∩ P , such that p �= a. Since (a − ε, a + ε) is open, there exists
δ > 0 such that (p− δ, p+ δ) ⊂ (a− ε, a+ ε). Since (p− δ, p+ δ) ∩A is infinite not countable, then
(a− ε, a+ ε) ∩A is infinite not countable, i.e., a ∈ P . So P ′ ⊂ P . Let p ∈ P . Then for any ε > 0,
(p− ε, p+ ε) ∩A is infinite and not countable. Also (p− ε, p+ ε) ∩ C is countable. Since

(p− ε, p+ ε) ∩A =
(
(p− ε, p+ ε) ∩ P

)
∪
(
(p− ε, p+ ε) ∩ C

)
,

we conclude that (p− ε, p+ ε) ∩P is infinite and not countable. Hence p is a limit point of P , i.e.,
p ∈ P ′. Therefore we have P = P ′, or P is perfect.

Solution 10.53

Let P be the set of all condensed points of C. Set F = C \ P . Then C = P ∪ F . We have
P ∩ F = ∅. According to Problem 10.52, P is perfect, and F is countable.
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Chapter 11

Sequences and Series of Functions

Where is it proved that one obtains the derivative of an infinite series by
taking derivative of each term?

Niels Henrik Abel (1802–1829)

• We say that a sequence of functions {fn : D → R} defined on a subset D ⊆ R converges
pointwise on D if for each x ∈ D the sequence of numbers {fn(x)} converge. If {fn} converges
pointwise on D, then we define f : D → R with f(x) = lim

n→∞ fn(x) for each x ∈ D. We denote
this symbolically by fn → f on D.

• We say that a sequence of functions {fn} defined on a subset D ⊆ R converges uniformly on
D to a function f such that for every ε > 0 there is a number N such that

|fn(x) − f(x)| < ε for all x ∈ D, n ≥ N.

We denote this type of convergence symbolically by fn ⇒ f on D.

• If {fn}∞
0 is a sequence of functions defined on D, the series

∞∑
n=0

fn is said to converge pointwise

(respectively, uniformly) on D if and only if the sequence {sn}∞
n=0 of partial sums, given by

sn(x) =
n∑

k=0

fk(x),

converges pointwise (respectively, uniformly) on D.
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• Weierstrass M-Test : Suppose that {fn} is a sequence of functions defined on D and {Mn} is
a sequence of nonnegative numbers such that

|fn(x)| ≤ Mn ∀x ∈ D, ∀n ∈ N.

If
∑∞

n=0Mn converges, then
∑∞

n=0 fn(x) converges uniformly on D.

• Assume that fn ⇒ f uniformly on [a, b] and that each fn is integrable. Then, f is integrable
and

lim
n→∞

∫ b

a
fn =

∫ b

a
f.

As a corollary to this theorem we obtain the following result:

• Termwise Integration: If each functionfn(x) is continuous on a closed interval [a, b] and if the

series
∞∑

n=1

fn(x) converges uniformly on [a, b], then we have

∞∑
n=1

∫ b

a
fn(x)dx =

∫ b

a

∞∑
n=1

fn(x)dx.

• Suppose that {fn} converges to f on the interval [a, b]. Suppose also that f ′
n exists and is

continuous on [a, b], and the sequence {f ′
n} converges uniformly on [a, b]. Then

lim
n→∞ f ′

n(x) = f ′(x)

for each x ∈ [a, b]. As a corollary to this theorem we obtain the following result:

• Termwise Differentiation: If each function fn(x) has the derivative f ′
n(x) at any point x ∈

(a, b), if the series
∞∑

n=1

fn(x) converges to at least one point k ∈ (a, b), and if
∞∑

n=1

f ′
n(x)

converges uniformly on (a, b) to a function g(x), then
∞∑

n=1

fn(x) converges uniformly on (a, b)

and is differentiable at any point x ∈ (a, b), whose derivative is equal to g(x). In other words,
termwise differentiation is possible, i.e.,

( ∞∑
n=1

fn(x)
)′ =

∞∑
n=1

f ′
n(x).

• A family of functions {fn} ∈ F mapping a set A ∈ Rn into Rm is equicontinuous at a point
a ∈ A if for every ε > 0, ∃δ > 0 such that

|fn(x) − fn(a)| < ε where |x− a| < δ and fn ∈ F .

The family F is equicontinuous on a set A if it is equicontinuous at every point in A.

• Arzelà–Ascoli Theorem: Let A be a compact subset of Rn and C(A,Rm) the space of contin-
uous functions from A into Rm. A subset B of C(A,Rm) is compact if and only if it is closed,
bounded, and equicontinuous.
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• Weierstrass Approximation Theorem: If f is a continuous function on a closed interval [a, b],
then there exists a sequence of polynomials that converge uniformly to f(x) on [a, b].

Problem 11.1 Prove that if a sequence {fn} of continuous functions on D converges uniformly
to f on D, then f is continuous on D.

Problem 11.2 Prove that a sequence of functions {fn} defined on D is uniformly convergent
on U ⊂ D to f : U −→ R if and only if lim

n→∞ an = 0, where

an := sup{|fn(x) − f(x)| : x ∈ U}, n ∈ N.

Problem 11.3 Consider the sequence {fn} defined by fn(x) =
nx

1 + nx
, for x ≥ 0.

a) Find f(x) = lim
n→∞ fn(x).

b) Show that for a > 0, {fn} converges uniformly to f on [a,∞).

c) Show that {fn} does not converge uniformly to f on [0,∞).

Problem 11.4 Consider the sequence {fn} defined by fn(x) =
1

1 + xn
, for x ∈ [0, 1].

a) Find f(x) = lim
n→∞ fn(x).

b) Show that for 0 < a < 1, {fn} converges uniformly to f on [0, a].

c) Show that {fn} does not converge uniformly to f on [0, 1].

Problem 11.5 Consider the sequence {fn} defined by fn(x) =
nx

enx
, for x ∈ [0, 2].

a) Show that lim
n→∞ fn(x) = 0 for x ∈ (0, 2].

b) Show that the convergence is not uniform on [0, 2].

CHAPTER 11. SEQUENCES AND SERIES OF FUNCTIONS
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Problem 11.6 Determine whether the sequence {fn} converges uniformly on D.

a) fn(x) =
1

1 + (nx− 1)2
D = [0, 1]

b) fn(x) = nxn(1 − x) D = [0, 1]

c) fn(x) = arctan
(

2x
x2 + n3

)
D = R

Problem 11.7 Prove that if {fn} is a sequence of functions defined on A, then {fn} is uniformly
convergent on D if and only if for ε > 0, there exists N ∈ N such that for any m,n > N

sup
x∈D

|fn(x) − fm(x)| < ε.

This is called the uniform Cauchy criterion.

Problem 11.8 Suppose that the sequence {fn} converges uniformly to f on the set D and that
for each n ∈ N, fn is bounded on D. Prove that f is bounded on D.

Problem 11.9 Suppose a sequence of functions {fn} are defined as

fn(x) = 2x+
x

n
x ∈ [0, 1].

a) Find the limit function f = lim
n→∞ fn.

b) Is f continuous on [0,1]?

c) Does [ lim
n→∞ fn(x)]′ = lim

n→∞ f ′
n(x) for x ∈ [0, 1]?

d) Does
∫ 1

0
lim

n→∞ fn(x)dx = lim
n→∞

∫ 1

0
fn(x)dx?

Problem 11.10 Give examples to illustrate that

a) the pointwise limit of continuous (respectively, differentiable) functions is not necessarily
continuous (respectively, differentiable),

b) the pointwise limit of integrable functions is not necessarily integrable.
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Problem 11.11 Give examples to illustrate that

a) there exist differentiable functions fn and f such that fn → f pointwise on [0,1] but

lim
n→∞ f ′

n(x) �=
(

lim
n→∞ fn(x)

)′
when x = 1,

b) there exist continuous functions fn and f such that fn → f pointwise on [0,1] but

lim
n→∞

∫ 1

0
fn(x)dx �=

∫ 1

0

(
lim

n→∞ fn(x)
)
dx.

Problem 11.12 Suppose that {fn} is a sequence of functions defined on D and {Mn} is a
sequence of nonnegative numbers such that

|fn(x)| ≤ Mn ∀x ∈ D, ∀n ∈ N.

Show that if
∞∑

n=0

Mn converges, then
∞∑

n=0

fn(x) converges uniformly on D. (This is called the

Weierstrass M-test.)

Problem 11.13 Discuss the uniform convergence of the following series:

a)
∞∑

n=0

xn

n!
on R

b)
∞∑

n=1

sin(nx)√
n

on [0, 2π]

c)
∞∑

n=1

cos2(nx)
n2 on R

Problem 11.14 Let
∞∑

n=0

anx
n be a power series with radius of convergence r, where 0 < r ≤ +∞.

If 0 < t < r, prove that the power series converges uniformly on [−t, t].

Problem 11.15 Show that the function defined by f(x) =
∞∑

n=0

(
xn

n!

)2

is continuous on R.
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Problem 11.16 Prove Dini’s Theorem: Let A ⊆ R be a closed and bounded (and thus compact)
set and {fn} be a sequence of continuous functions fn : A −→ R such that

a) fn(x) ≥ 0 for any x ∈ A,

b) fn −→ f pointwise and f is continuous,

c) fn+1(x) ≤ fn(x) for any x ∈ A, and any n ∈ N.

Prove that {fn} converges to f uniformly on A.

Problem 11.17 Give examples to illustrate that all of the hypotheses in Dini’s Theorem
(Problem 11.16) are essential.

Problem 11.18 Let fn : [1, 2] −→ R be defined by

fn(x) =
x

(1 + x)n
.

a) Show that
∞∑

n=1

fn(x) converges for x ∈ [1, 2].

b) Use Dini’s Theorem to show that the convergence is uniform.

c) Does the following hold: ∫ 2

1

( ∞∑
n=1

fn(x)

)
dx =

∞∑
n=1

∫ 2

1
fn(x)dx?

Problem 11.19 A sequence of functions {fn} defined on a set A is said to be equicontinuous
on A if for every ε > 0, there exists δ > 0 such that

|fn(x) − fn(y)| < ε whenever |x− y| < δ

for x, y ∈ A and n ∈ N. Prove the following:

a) Any finite set of continuous functions on [0,1] is equicontinuous.

b) If {fn} is a uniformly convergent sequence of continuous functions on [0,1], then {fn} is
equicontinuous.
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Problem 11.20 Show that there exists a continuous function defined on R that is nowhere
differentiable by proving the following:

a) Let g(x) = |x| if x ∈ [−1, 1]. Extend g to be periodic. Sketch g and the first few terms of
the sum

f(x) =
∞∑

n=1

(
3
4

)n

g(4nx).

b) Use the Weierstrass M-test to show that f is continuous.

c) Prove that f is not differentiable at any point.

Problem 11.21 Let fn be a function such that

fn : (0, 1) −→ R.

a) Prove that if fn ⇒ f and f ′
n ⇒ g, then f is continuous on (0,1) and f ′ = g.

b) Describe how you would construct an example to show that uniform convergence of the
derivatives is necessary.

Problem 11.22 Let fn : [0, 1] −→ R be continuous such that {fn} are uniformly bounded
on [0, 1] and the derivatives f ′

n exist and are uniformly bounded on (0, 1). Prove that fn has a
uniformly convergent subsequence.

Problem 11.23 Let B be a bounded and equicontinuous subset of the set of continuous real-
valued functions defined on [a, b]. Let T : B −→ R defined as

T (f) =
∫ b

a
f(x)dx.

Prove that there is a function f0 ∈ B at which the value of T is maximized.
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Problem 11.24 Suppose a, b, c, and d are constants chosen from an interval [−K,K] and let
Φ ⊂ (C[0, π], d) be a family of functions f of the form

f(x) = a sin bx+ c cos dx where 0 ≤ x ≤ π.

Metric d on C[0, π] is given by d(f, g) = max
0≤x≤π

|f(x) − g(x)|.

a) Show that Φ is a compact subset of C[0, π].

b) Show that for any continuous function g defined on C[0, π] there exist values a, b, c, and d
in [−K,K] such that

max
0≤x≤π

|g(x) − (a sin bx+ c cos dx)|

is minimum.
For an obvious reason f ∈ Φ is called minimax approximation of g.

Problem 11.25 (Bernstein Polynomials) The nth Bernstein polynomial of a continuous
function f : [0, 1] → R defined by

Bn(f)(x) =
n∑

k=0

f

(
k

n

)(
n
k

)
xk(1 − x)n−k.

a) Show that Bn is linear, monotone map, and Bn1 = 1 and Bnx = x.

b) Show that nth Bernstein polynomial for f(x) = ex is Bn(x) = [1 + (e
1
n − 1)x]n.

c) Show that Bn(ex) converges uniformly to ex on [0, 1].

Problem 11.26

a) Show that for any function f ∈ C[0, 1] and any number ε > 0, there exists a polynomial p,
all of whose coefficients are rational numbers, such that

||p− f || < ε.

b) Show that C[a, b] is separable.

Problem 11.27 Let f be a continuous function on [a, b] and suppose that
∫ b
a f(x)xndx = 0 for

n = 0, 1, 2, . . .. Prove that f(x) = 0 on [a, b].
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Solutions

Solution 11.1

It follows from the uniform convergence of {fn} that given ε > 0, ∃N ∈ N such that

|fn(x) − f(x)| < 1
3
ε ∀x ∈ D, n ≥ N.

Let c ∈ D be fixed. By the continuity of fN at c, there is δ > 0 such that

|fN (x) − fN (c)| < 1
3
ε whenever |x− c| < δ.

Thus
|f(x) − f(c)| ≤ |f(x) − fN (x)| + |fN (x) − fN (c)| + |fN (c) − f(c)| < ε.

Solution 11.2

(⇒) Suppose fn ⇒ f on U . Then given ε > 0, there exists N ∈ N such that

|fn(x) − f(x)| < ε ∀n ≥ N ∀x ∈ U.

Hence,
an := sup{|fn(x) − f(x)| : x ∈ U, n ≥ N} < ε

and therefore lim
n→∞ an = 0.

(⇐) Suppose lim
n→∞ an = 0. Then for large n and ∀x ∈ U

|fn(x) − f(x)| ≤ sup{|fn(x) − f(x)| : x ∈ U} < ε.

That is, fn ⇒ f on U .

Solution 11.3

a) Since fn(0) = 0 for all n ∈ N, we get f(0) = 0. And for x > 0, we have

lim
n→∞

nx

1 + nx
= lim

n→∞
1

1 + 1/nx
= 1,

which yields f(x) = 1 for x > 0.

b) If x ≥ a, then ∣∣∣∣ nx

1 + nx
− 1
∣∣∣∣ = 1

1 + nx
≤ 1

1 + na
,

and thus we have
lim

n→∞
1

1 + na
= 0,

which implies {fn} converges uniformly to f on [a,∞).
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c) Let n ≥ 1. If 0 < x <
1
n

, then∣∣∣∣ nx

1 + nx
− 1
∣∣∣∣ = 1

1 + nx
>

1
1 + 1

=
1
2
,

which implies {fn} does not converge uniformly to f on [0,∞).

Solution 11.4

a) Since fn(1) = 1/2 for all n ∈ N, we get f(1) = 1/2. And for 0 ≤ x < 1, we have

lim
n→∞

1
1 + xn

= 1,

which yields f(x) = 1 for 0 ≤ x < 1.

b) If x ∈ [0, a], then ∣∣∣∣ 1
1 + xn

− 1
∣∣∣∣ = xn

1 + xn
≤ an

1 + an
.

Furthermore, because 0 < a < 1,

lim
n→∞

an

1 + an
= 0,

so {fn} converges uniformly to f on [0, a].

c) Given n ∈ N , let x be such that n

√
1
2
< x < 1, then

1
2
< xn < 1. Therefore∣∣∣∣ 1

1 + xn
− 1
∣∣∣∣ = xn

1 + xn
>

1
2

1 + 1
=

1
4
,

which implies {fn} does not converge uniformly to f on [0, 1].

Solution 11.5

a) Since
fn+1

fn
=

(n+ 1)xenx

nxe(n+1)x =
(n+ 1)
n

e−x,

lim
n→∞

fn+1

fn
= e−x < 1. Now we use Problem 3.16 to show that lim

n→∞ fn = 0 for x ∈ (0, 2].

b) Let us find the maximum of fn in [0, 2]. Since

f ′
n(x) =

nenx − nenxnx

(enx)2
= 0 =⇒ enx(n− n2x) = 0

=⇒ n2x = n

=⇒ x =
1
n
,
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it is easy to check that 1/n is the maximum with fn

(
1
n

)
=

1
e
. Since

lim
n→∞ sup{|fn(x) − 0| : x ∈ [0, 2]} = lim

n→∞ fn

(
1
n

)
=

1
e
,

the convergence is not uniform on [0, 2].

Solution 11.6

a) Note

lim
n→∞ fn(x) = lim

n→∞
1

1 + (nx− 1)2
=
{

0 x ∈ (0, 1],
1
2 x = 0.

Notice that all fn’s are continuous while the limit function is not continuous, which implies
that convergence is not uniform.

b) First notice that
lim

n→∞ fn(x) = lim
n→∞nxn(1 − x) = 0.

The previous argument will not work in this case. So let us find the maximum value of fn,
for n ≥ 1. Let n ≥ 2. We have

f ′
n(x) = n2xn−1(1 − x) − nxn = nxn−1

(
n− (n+ 1)x

)
.

Hence f ′
n(x) = 0 iff x = 0 or x =

n

n+ 1
. It is easy to check that the maximum value of fn(x)

is given by

sup{|fn(x) − 0| : x ∈ [0, 1]} = fn

(
n

n+ 1

)
.

However,

lim
n→∞ fn

(
n

n+ 1

)
= lim

n→∞

(
n

n+ 1

)n+1

=
1
e

�= 0.

Thus convergence is not uniform.

c) We have

lim
n→∞ fn(x) = lim

n→∞ arctan
(

2x
x2 + n3

)
= 0.

In order to find the maximum value of fn, let us compute its derivative

f ′
n(x) =

2n3 − 2x2

(x2 + n3)2 + 4x2 .

Hence f ′
n(x) = 0 iff x = ±n√

n. It is easy to check that the maximum value of |fn(x)| is given
by

sup{|fn(x) − 0| : x ∈ R} = fn(n
√
n) = arctan

(
1

n
√
n

)
.

Since lim
n→∞ sup{|fn(x) − 0| : x ∈ R} = 0, {fn} converges uniformly to 0 on R.
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Solution 11.7

(⇒) Suppose fn ⇒ f , then given ε > 0, we can find an integer N such that

m ≥ N =⇒ |fm(x) − f(x)| < ε

2

for all x ∈ D. If m,n ≥ N , then

|fm(x) − fn(x)| ≤ |fn(x) − f(x)| + |f(x) − fn(x)| < ε

2
+
ε

2
= ε

for any x ∈ D.

(⇐) If given some ε > 0, we can find an N such that for any m,n ≥ N we have

sup
x∈D

|fn(x) − fm(x)| < ε.

Hence for any x ∈ D, {fn(x)} is a Cauchy sequence in R which implies fn(x) converges
to f(x). Let us prove that {fn} converges uniformly to f on D. Indeed, let ε > 0. By
the uniform Cauchy criterion, there exists N ∈ N such that for all n,m ≥ N , we have
sup
x∈D

|fn(x) − fm(x)| ≤ ε/2. Fix n ≥ N . Then

|fn(x) − f(x)| = lim
m→∞ |fn(x) − fm(x)| ≤ ε

2

for any x ∈ D. Hence
sup
x∈D

|fn(x) − f(x)| ≤ ε

2
< ε.

This obviously implies fn ⇒ f on D.

Solution 11.8

Since {fn} converges to f uniformly on D, there exists an N such that n ≥ N implies that
|fn(x) − f(x)| < 1 for all x ∈ D. Fix n0 ≥ N , since fn0 is bounded on D, there exists a constant k
such that |fn0(x)| < k for all x ∈ D. Thus for all x ∈ D we have that

|f(x)| ≤ |f(x) − fn0(x)| + |fn0(x)| ≤ 1 + k.

Thus f is bounded on D.

Solution 11.9

a) f(x) = 2x for x ∈ [0, 1].

b) 2x is continuous for all x ∈ [0, 1].

c) Note that lim
n→∞ f ′

n(x) = lim
n→∞ 2 +

1
n

= 2. Therefore [limn→∞ fn(x)]′ = f ′(x) = 2.
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d) Note that lim
n→∞

∫ 1

0
fn(x)dx = lim

n→∞

∫ 1

0
2x +

x

n
dx = lim

n→∞ 1 +
1
2n

= 1 and
∫ 1

0
f(x)dx = 1.

Therefore ∫ 1

0
lim

n→∞ fn(x)dx =
∫ 1

0
f(x)dx = 1.

Solution 11.10

a) Let fn(x) = xn, for x ∈ [0, 1], as in the following figure:

Figure 11.1

Then {fn} converges pointwise to

f(x) =
{

0 0 ≤ x < 1,
1 x = 1.

Each fn is continuous and differentiable on [0, 1], but f is neither continuous nor differentiable
at x = 1.

b) The pointwise limit of integrable functions is not necessarily integrable. Indeed, let

fn(x) =
{

1 if x = p
m ∈ Q, m ≤ n, when written in reduced form,

0 otherwise,

for n ∈ N. Then {fn} converges pointwise to

f(x) =
{

1 x ∈ Q,
0 otherwise.

Since each of the fn has only a finite number of nonzero points, it is integrable on [0,1] with
integral zero. However, f is not integrable on [0,1] as can be seen from Problem 7.2.
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Solution 11.11

a) Let fn(x) = xn/n, for n ≥ 1, and f(x) = 0. Then fn → f pointwise on [0,1]. Each fn is
differentiable and f ′

n(x) = xn−1. Thus, for x ∈ [0, 1),

lim
n→∞ f ′

n(x) = lim
n→∞xn−1 = 0.

When x = 1, however,
lim

n→∞ f ′
n(1) = lim

n→∞ 1n−1 = 1.

Thus, for x = 1,
lim

n→∞ f ′
n(1) = 1 �= 0 = f ′(1).

b) For x ∈ [0, 1], set f1(x) = 1 and for n ≥ 2

fn(x) =

⎧⎨⎩
n2x 0 ≤ x ≤ 1/n,
2n− n2x 1/n < x ≤ 2/n,
0 2/n < x ≤ 1,

as depicted in the following figure:

Figure 11.2

Since fn encloses an area of a triangle with base 2/n and altitude n, we have∫ 1

0
fn(x)dx = 1 for all n > 2

which can also be computed directly. Therefore,

lim
n→∞

∫ 1

0
fn(x)dx = 1.
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However, fn → f where f(x) = 0 for x ∈ [0, 1]. This is because for x = 0, fn(0) = 0 for every
n, and for any x ∈ (0, 1], we also have fn(x) = 0 for large enough n. Therefore,∫ 1

0

(
lim

n→∞ fn(x)
)
dx = 0.

Thus we have the result that

lim
n→∞

∫ 1

0
fn(x)dx = 1 �= 0 =

∫ 1

0

(
lim

n→∞ fn(x)
)
dx.

Solution 11.12

Let sn(x) =
n∑

k=0

fk(x) be the nth partial sum. Since
∞∑

n=0

Mn converges, for all ε > 0, ∃N such that

if n ≥ m ≥ N , then
Mm +Mm+1 + · · · +Mn < ε.

Thus if n ≥ m ≥ N , we have

|sn(x) − sm(x)| = |fm+1(x) + · · · + fn(x)|
≤ |fm+1(x)| + · · · + |fn(x)|
≤ Mm+1 + · · · +Mn < ε

for all x ∈ D. It follows from Problem 11.7 that {sn} converges uniformly on D. Hence
∞∑

n=0

fn also

converges uniformly on D.

Solution 11.13

a) For any n ≥ 1, we have

sup
x∈R

|sn(x) − sn−1(x)| = sup
x∈R

|fn(x)| ≥ |fn(n)| =
nn

n!
≥ 1.

The Cauchy criterion is not satisfied and thus, convergence is not uniform.

b) First note that we do have pointwise convergence. Next notice that

2
π
x ≤ sin(x) , for any x ∈

[
0,
π

4

]
.

Let n ≥ 10, and h ∈ N such that 2n ≤ n + h < n
√
nπ/4. Then for any k ∈ N with

n ≤ k ≤ n+ h, we have k/n
√
n < π/4. Hence

2
π

k

n
√
n

≤ sin
(
k

1
n
√
n

)
,
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which implies
n+h∑
k=n

1√
k

2
π

k

n
√
n

≤
n+h∑
k=n

1√
k

sin
(
k

1
n
√
n

)
.

But
n+h∑
k=n

1√
k

2
π

k

n
√
n

=
n+h∑
k=n

2
π

√
k

n
√
n

≥
n+h∑
k=n

2
π

√
n

n
√
n

=
2
π

h

n
≥ 2
π

·

This obviously shows that

sup
x∈[0,2π]

∣∣∣∣∣
n+h∑
k=n

1√
k

sin(kx)

∣∣∣∣∣ ≥ 2
π

for any n ≥ 10 and h ∈ N such that 2n ≤ n + h < n
√
nπ/4. Therefore the convergence will

not be uniform on [0, 2π].

c) Let Mn = 1/n2, for n ≥ 1, then ∣∣∣∣cos2(nx)
n2

∣∣∣∣ ≤ Mn,

since | cos(nx)| ≤ 1. Because
∞∑

n=1

1
n2 is a p-series with p = 2 > 1, it converges. Hence, by the

Weierstrass M-test convergence is uniform (see Problem 11.12).

Solution 11.14

Let x ∈ [−t, t], then |anx
n| ≤ |an|tn. Since 0 < t < r, the series

∞∑
n=0

|an|tn is convergent. Thus by

the Weierstrass M-test,
∞∑

n=0

anx
n converges uniformly on [−t, t].

Solution 11.15

Let t ∈ R. Let us first show that
∞∑

n=0

(
xn

n!

)2

converges uniformly on [−t, t]. Set

Mn =
(
tn

n!

)2

, for n ≥ 1.

Since

lim
n→∞

Mn+1

Mn
= lim

n→∞

(
tn+1

(n+ 1)!

)2

·
(
n!
tn

)2

= lim
n→∞

(
t

n+ 1

)2

= 0 < 1,

the ratio test forces
∞∑

n=0

Mn to be convergent and by the Weierstrass M-test,
∞∑

n=0

(
xn

n!

)2

converges

uniformly on [−t, t]. Uniform convergence will guarantee that f(x) is continuous because each of
the partial sums is continuous on [−t, t]. Since t was arbitrary, we have continuity of f(x) on R.
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Solution 11.16

Let {gn} = {fn − f}. It is sufficient to show that gn ⇒ 0 on A. Given ε > 0, we want to find N
such that |gn(x)| < ε for all n ≥ N and x ∈ A. By hypothesis b), we know that {gn} converges to 0
pointwise on A. That is, for x ∈ A there exists Nx = N(ε, x) such that for n ≥ Nx, 0 ≤ gn(x) ≤ ε/2.
By the continuity of gNx there is a neighborhood U(x,Nx) such that

|gNx(y) − gNx(x)| < ε

2
for any y ∈ U(x,Nx).

The neighborhoods U(xi, Nxi) form a cover for the compact set A. That is, there are finitely many
points x1, x2, . . . , xn ∈ A such that

A ⊂ U(x1, Nx1) ∪ U(x2, Nx2) ∪ · · · ∪ U(xn, Nxn).

Let N = max(Nx1 , Nx2 , . . . , Nxn). For any x ∈ A, there exists xi such that x ∈ Nxi . Hence for any
n ≥ N we have

0 ≤ gn(x) ≤ gNxi
(x) ≤ gNxi

(x) − gNxi
(xi) + gNxi

(xi) ≤ ε

2
+
ε

2
= ε.

Therefore |gn(x)| < ε for n > N , x ∈ A. This completes our proof.

Solution 11.17

(1) Let

fn(x) =
1

1 + nx
x ∈ (0, 1), n = 1, 2, . . . .

It is the case that
fn+1(x) ≤ fn(x).

However, using Problem 11.2, we see

an = sup
x∈(0,1)

∣∣∣∣ 1
1 + nx

− 0
∣∣∣∣ = 1,

so convergence is not uniform, because A = (0, 1) is not closed, hence not compact.

(2) The assumption that {fn} is a monotone sequence is also necessary. If we consider the function
defined in Problem 11.11 (b), then fn → f pointwise on [0,1]. But the sequence {fn} is not
monotonic and convergence is not uniform.

(3) Continuity of each fn cannot be omitted. For instance, let

fn(x) =
{

1 x ∈ (0, 1
n),

0 x = 0 or x ∈ [ 1
n , 1].

Then each fn is not continuous. However, they form a monotonic sequence converging point-
wise to zero on [0,1], but again the convergence is not uniform.

(4) Finally, the continuity of the limit function is also needed. The sequence fn(x) = xn for
x ∈ [0, 1] defined in Problem 11.10 (a) has a discontinuous limit f(x) and fn(x) fails to
converge uniformly on [0,1].

CHAPTER 11. SEQUENCES AND SERIES OF FUNCTIONS



240 CHAPTER 11. SEQUENCES AND SERIES OF FUNCTIONS

Solution 11.18

a) First observe that
∞∑

n=1

x

(1 + x)n
= x

∞∑
n=1

1
(1 + x)n

and when |1/(1 + x)| < 1 or equivalently when |1 + x| > 1 we have that

∞∑
n=1

x

(1 + x)n
=

x

1 + x
· 1
1 − 1

1+x

= 1

so in particular
∞∑

n=1

fn(x) is convergent for x ∈ [1, 2].

b) A = [1, 2] is compact and fn(x) → 0 pointwise. Clearly, if k ≥ � holds, then f	(x) ≥ fk(x).
All the hypotheses of Dini’s theorem are satisfied and thus convergence is uniform.

c) Since the convergence is uniform we can interchange the integral and the summation. Thus
the equality holds.

Solution 11.19

a) Consider {fi : 1 ≤ i ≤ n} where each fi : [0, 1] → R is continuous. Since [0,1] is compact, each
fi is uniformly continuous. Let ε > 0. Since fi is uniformly continuous, there exists δi > 0
such that if |x−y| < δi, then |fi(x)−fi(y)| < ε for 1 ≤ i ≤ n. Now let δ = min{δ1, δ2, . . . , δn},
then for any x, y ∈ [0, 1] such that |x− y| < δ, we have

|fi(x) − fi(y)| < ε, for 1 ≤ i ≤ n.

Hence {fi} is equicontinuous.

b) Let ε > 0. Since {fn} is uniformly convergent, there exists N ∈ N such that for any n,m ≥ N
we have

sup
x∈[0,1]

|fn(x) − fm(x)| < ε

3
·

In particular, we have for any n ≥ N

sup
x∈[0,1]

|fn(x) − fN (x)| < ε

3
,

for any n ≥ N . The first part shows that the family {f1, f2, . . . , fN} is equicontinuous. Hence
there exists δ > 0 such that

|fi(x) − fi(y)| < ε

3
for any i ≤ N and x, y ∈ [0, 1] such that |x− y| < δ. Let n ≥ N , then we have

|fn(x) − fn(y)| ≤ |fn(x) − fN (x)| + |fN (x) − fN (y)| + |fN (y) − fn(y)| < ε
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for any x, y ∈ [0, 1] such that |x − y| < δ. Hence for any n ∈ N and any x, y ∈ [0, 1] with
|x− y| < δ, we have

|fn(x) − fn(y)| < ε.

Therefore {fn} is equicontinuous.

Solution 11.20

a) Extend g(x) to all of R by requiring g(x) = g(x+2) for all x. This is depicted in the following
figure:

Figure 11.3

b) Now, given x, y ∈ R, we have

|g(x) − g(y)| =
∣∣∣|x| − |y|

∣∣∣ ≤ |x− y|.

By translation, this also applies to any pair of points that are no more than two apart. On
the other hand, if |x− y| > 2, then

|g(x) − g(y)| ≤ |g(x)| + |g(y)| ≤ 1 + 1 = 2 < |x− y|.
Hence, |g(x) − g(y)| ≤ |x− y| for all x and y, and so it follows that g is continuous on R.

For each integer n ≥ 0, let gn(x) = (3/4)ng(4nx). For instance,

g0(x) = g(x)
g1(x) = 3

4g(4x)
g2(x) = 9

16g(16x)
...

Notice that gn oscillates four times as fast as gn−1 and at 3/4 the height of gn−1. Now

f(x) =
∞∑

n=0

gn(x) is defined on R. Moreover, for all x ∈ R, we have that

|gn(x)| ≤
(

3
4

)n

∀n ∈ N.

Thus we can apply the Weierstrass M-test to conclude that
∞∑

n=0

gn(x) converges uniformly on R. Since each gn is continuous on R, then f(x) is continuous

on R.
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c) To see that f is nowhere differentiable, we fix x ∈ R and let hm = ±4−m

2 (note that 4m|hm| =
1
2). Next, we claim that ∣∣∣∣f(x+ hm) − f(x)

hm

∣∣∣∣
are bounded below by a sequence that diverges to +∞ as m → ∞. In order to accomplish
this, we first observe that

f(x+ hm) − f(x) =
∞∑

n=0

(
3
4

)n

[g(4nx+ 4nhm) − g(4nx)].

Now we need to examine g(4nx+ 4nhm) − g(4nx) for each n.

Case 1: If n > m, then 4nhm = ±4n−m/2 is an even integer. Since g(t) = g(t + 2) for all t, it
follows that g(4nx+ 4nhm) − g(4nx) = 0.

Case 2: If n < m, then since |g(r) − g(s)| ≤ |r − s| for all r, s ∈ R, we have that

|g(4mx+ 4mhm) − g(4mx)| ≤ 4m|hm|.

Case 3: If n = m, then since there is no integer between 4mx and 4m(x + hm), the graph of g
between these points is a straight line of slope ±1. Thus

|g(4mx+ 4mhm) − g(4mx)| = 4m|hm|.

Combining all of these three cases together, we obtain∣∣∣∣f(x+ hm) − f(x)
hm

∣∣∣∣ =

∣∣∣∣∣
m∑

n=0

(
3
4

)n g(4nx+ 4nhm) − g(4nx)
hm

∣∣∣∣∣
≥ 3m −

m−1∑
n=0

(
3
4

)n 4n|hm|
|hm|

= 3m −
m−1∑
n=0

3n

= 3m − 1 − 3m

1 − 3
=

1
2
(3m + 1).

Since (3m + 1)/2 diverges to +∞ as m → ∞, we have shown that f is not differentiable at x.
Since x was arbitrary, f is nowhere differentiable.
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Solution 11.21

1. Let x0 ∈ (0, 1). We have

fn(x) = fn(x0) +
∫ x

x0

f ′
n(u)du

for x ∈ (0, 1). If we take the limit as n → ∞, we will get

f(x) − f(x0) = lim
n→∞ (fn(x) − fn(x0)) = lim

n→∞

∫ x

x0

f ′
n(u)du

=
∫ x

x0

g(u)du

because uniform convergence allows for interchanging the limit with the integral. The equa-

tion f(x) − f(x0) =
∫ x

x0

g(u)du implies f ′(x) = g(x), for any x ∈ (0, 1).

2. Consider the sequence {fn} defined by

fn(x) =
x

1 + nx2 ·

Then {fn} converges uniformly to 0 on R. Indeed let ε > 0. Choose N ∈ N such that
1/ε2 < N . Then for any n ≥ N and x ∈ R we have

• Case 1: if |x| < ε, then

|fn(x)| =
|x|

1 + nx2 ≤ |x| < ε.

• Case 2: if |x| ≥ ε, then

|fn(x)| =
|x|

1 + nx2 ≤ |x|
nx2 ≤ 1

εn
< ε,

since n ≥ N .

Hence
sup
x∈R

|fn(x)| < ε , for any n ≥ N.

On the other hand, we have

f ′
n(x) =

1 − nx2

(1 + nx2)2
·

Hence {f ′
n} converges pointwise to g where

g(x) =
{

1 if x = 0,
0 if x �= 0.

Notice that fn ⇒ f uniformly, but f ′
n → g pointwise and f is differentiable but f ′ �= g.
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Solution 11.22

This is known as the Arzelà–Ascoli Theorem in its simplest form, if we omit the uniform bound-
edness of the derivatives and replace it by the equicontinuity of the functions. Indeed since f ′

n are
uniformly bounded on (0,1), there exists M > 0 such that |f ′

n(x)| ≤ M , for any x ∈ (0, 1). Using
the Mean Value Theorem, we get

|fn(x) − fn(y)| ≤ M |x− y|, for any x, y ∈ [0, 1], and n ∈ N.

So if ε > 0 is given, set δ = ε/M . Then |fn(x) − fn(y)| < ε, for any n ∈ N, provided |x − y| < δ.
So {fn} is equicontinuous. Let us prove that {fn} has a subsequence which converges uniformly.
Set {rn} = [0, 1] ∩ Q. Since {fn} is uniformly bounded, so {fn(x)} is bounded, for any x ∈ [0, 1].
Therefore the Bolzano–Weierstrass Theorem shows that there exists a subsequence {fn1} of {fn}
such that {fn1(r1)} is convergent. By induction, we can construct a sequence of subsequences {fni}
such that

(1) {fni+1} is a subsequence of {fni};

(2) {fni(rk)}, k = 1, . . . , i is convergent.

Consider the subsequence {fnn}. We have

(1) {fnn} is a subsequence of {fn};

(2) {fnn(rk)}, for any k ∈ N, is convergent.

Let ε > 0. Since {fn} is equicontinuous, then there exists δ > 0 such that |fn(x) − fn(y)| < ε/3,
for any n ∈ N, provided |x − y| < δ. Since [0, 1] is compact, there exists {rn1 , . . . , rnK } such that
for any x ∈ [0, 1] there exists 1 ≤ i ≤ K such that |x− rni | < δ. Since {fnn(rk)}, for any k ∈ N, is
convergent, there exists N ∈ N such that for any n,m ≥ N ,

|fnn(rni) − fmm(rni)| <
ε

3
for any i = 1, . . . ,K. Let x ∈ [0, 1], then there exists 1 ≤ i ≤ K such that |x− rni | < δ. Hence

|fnn(x) − fmm(x)| ≤ |fnn(x) − fnn(rni)| + |fnn(rni) − fmm(rni)| + |fmm(rni) − fmm(x)| < ε.

So the subsequence {fnn} satisfies the uniform Cauchy criteria which imply that {fnn} is uniformly
convergent.

Solution 11.23

B is closed, bounded, and equicontinuous. Therefore, by the Arzelà–Ascoli Theorem B is compact.
Next we claim that T : B → R defined as T (f) =

∫ b
a f(x)dx is continuous. Let {fk} be a sequence

of functions in B converging to some f uniformly. For ε > 0, we can choose N such that k ≥ N

implies that |fk(x) − f(x)| < ε

b− a
. Then∣∣∣∣∫ b

a
fk(x)dx−

∫ b

a
f(x)dx

∣∣∣∣ =
∣∣∣∣∫ b

a
fk(x) − f(x)dx

∣∣∣∣
≤
∫ b

a
|fk(x) − f(x)| dx

≤ ε

b− a
(b− a) = ε.
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T is continuous on a compact set B, hence T (B) is also compact. Since compact subsets of R have
a maximum, there exists f0 ∈ B such that

T (f0) = max{T (f); f ∈ B}.

Solution 11.24

a) The family Φ is uniformly bounded and equicontinuous, since

|f́(x)| ≤ |ab| + |cd| ≤ 2K2 and |f(x)| ≤ |a| + |c| ≤ 2K

for all x ∈ [0, π] and any f ∈ Φ. Furthermore Φ is a closed subset of C[0, π], by the Arzelà–
Ascoli Theorem we conclude that Φ is compact in C[0, π].

b) Take g ∈ C[0, π], consider the distance d(g,Φ) = inf{d(g, h) : h ∈ Φ}. Since Φ is compact
this infimum is attained. In other words there exist values of a, b, c, and d in [−K,K] such
that

d(f, g) = max
0≤x≤π

|g(x) − (a sin bx+ c cos dx)|

is a minimum.

Solution 11.25

a) It is clear that the map Bn is linear, since Bn(f + g) = Bnf +Bng and Bn(αf) = αBnf .

Notice that when f ≥ 0, then Bnf is also positive. In particular, |f | ≤ g means −g ≤ f ≤ g
and hence −Bng ≤ Bnf ≤ Bng. This also proves that |Bnf | < Bng if |f | < g (since it is
straightforward to show that f ≥ g ⇒ Bnf ≥ Bng).

b) Bn(1) =
∑n

k=0 1
(
n
k

)
xk(1 − x)n−k = 1 (From the Binomial Theorem). Next notice that

k

n

(
n

k

)
=
k

n

n!
k!(n− k)!

=
(n− 1)!

(k − 1)!(n− k)!
=
(
n− 1
k − 1

)
.

Using the Binomial Theorem again, we have

Bn(x) =
n∑

k=0

k

n

(
n

k

)
xk(1 − x)n−k

= x

n∑
k=0

(
n− 1
k − 1

)
xk−1(1 − x)n−k

= x(x+ (1 − x))n−1 = x.
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c)
B1(x) = f(0)(1 − x) + f(1)x = (1 − x) + ex = 1 + (e− 1)x.

B2(x) = f(0)(1 − x)2 + 2f(
1
2
)x(1 − x) + f(1)x2 = (10x)2 + 2e1/2x(1 − x)ex2

=
(
(1 − x) + e1/2x

)2
=
(
1 + (e1/2 − 1)x

)2
.

More generally, we have

Bn(x) =
n∑

k=0

(
n

k

)
(e1/nx)k(1 − x)n−k = (e1/nx+ (1 − x))n = (1 + (e1/n − 1)x)n.

d) It can be shown that Bn(ex) may be written as (1 + x
n + cn

n2 ) where 0 ≤ cn ≤ 1 and hence
Bn(ex) converges uniformly to ex.

Solution 11.26

a) Let ε > 0. By the Weierstrass Approximation Theorem, there exists a polynomial q(x) such
that ‖q − f‖ < ε/2. Suppose q has degree r, and

q(x) =
r∑

k=0

akx
k

where some or all of the coefficients a0, a1, . . . , ar may be irrational. For each coefficient ak

we find a rational number bk such that |bk − ak| < ε/2(r+ 1). Let p be the polynomial given
by

p(x) =
r∑

k=0

bkx
k.

Then, for all x ∈ [0, 1] we have

|p(x) − q(x)| =

∣∣∣∣∣
r∑

k=0

(bk − ak)xk

∣∣∣∣∣ ≤
r∑

k=0

|bk − ak||x|k ≤
r∑

k=0

ε

2(r + 1)
=
ε

2
.

Then ‖p− q‖ ≤ ε/2, so ‖p− f‖ ≤ ‖p− q‖ + ‖q − f‖ < ε.

b) To show C[a, b] separable we must show it contains a countable dense set. Let

A = {p(x) =
n∑

i=0

bix
i | bi ∈ Q, n ∈ N}.

Then define

An = {p(x) =
n∑

i=0

bix
i | bi ∈ Q},
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and we have

A =
⋃
n∈N

An.

There is an obvious bijection between An and Qn+1 which sends each coefficient of a polyno-
mial in An to one coordinate in Qn+1. Thus An is countable, and A is countable since it is a
countable union of countable sets.

So we must show that A is dense in C[a, b]. We follow the same proof as above:

Let ε > 0. By the Weierstrass Approximation Theorem, there exists a polynomial q(x) such
that ‖q − f‖ < ε/2. Suppose q has degree r, and

q(x) =
r∑

k=0

akx
k

where some or all of the coefficients a0, a1, . . . , ar may be irrational. Let c = max
0≤i≤r

{ sup
a≤x≤b

{|x|i}}.
Then for each coefficient ak we find a rational number bk such that |bk − ak| < ε/2c(r + 1).
Let p be the polynomial given by

p(x) =
r∑

k=0

bkx
k.

Then, for all x ∈ [0, 1] we have

|p(x) − q(x)| =

∣∣∣∣∣
r∑

k=0

(bk − ak)xk

∣∣∣∣∣ ≤
r∑

k=0

|bk − ak||x|k ≤
r∑

k=0

|x|kε
2c(r + 1)

≤
r∑

k=0

ε

2(r + 1)
=
ε

2
.

Then ‖p− q‖ ≤ ε/2, so ‖p− f‖ ≤ ‖p− q‖ + ‖q − f‖ < ε. Thus for any ε > 0 and f ∈ C[a, b]
we can find a p ∈ A with ‖p− f‖ < ε, so A is dense in C[a, b].

Solution 11.27

Let Pn(x) = a0 + a1x+ · · · + anx
n be a polynomial. Then by the given hypothesis,∫ b

a
f(x)Pn(x)dx = a0

∫ b

a
f(x)dx+ a1

∫ b

a
x.f(x)dx+ · · · + an

∫ b

a
xn.f(x)dx = 0.

By the Weierstrass Approximation Theorem, we know that any continuous function on [a, b] can be
uniformly approximated by polynomials. Hence there exists a sequence {Pn(x)} which converges
uniformly to f(x) on [a, b]. Since Pn ⇒ f , then fPn ⇒ f2. Therefore

lim
n→∞

∫ b

a
f(x)Pn(x)dx =

∫ b

a
lim

n→∞ f(x)Pn(x)dx =
∫ b

a
f2(x)dx = 0.

Continuity of f(x) implies that f = 0 constantly (see Problem 7.19).
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Archimedean Property, 22, 33, 36, 210
Arithmetic and Geometric Means, 25
Arzelà Theorem, 134
Arzelà–Ascoli Theorem, 224, 244

Baire’s Category Theorem, 204
Banach Contraction Mapping Theorem, 83,

103
Bernstein Polynomials, 230
Bertrand series, 162, 172, 179
Binomial Theorem, 103
Bolzano–Weierstrass Theorem, 41, 89
boundary of a set, 200
bounded, 22

above, 23, 42
below, 23
function, 63, 70
sequence, 41
set, 23

above, 22
below, 22

totally, 198
uniformly, 229

Cantor function, 93
Cantor set, 24, 202

compact, 202
disconnected, 203
interior, 202
uncountable, 24

Cantor’s diagonalization, 17

Cantor’s Intersection Theorem, 201, 203, 212
Cantor–Bendixson Theorem, 205
Cantor–Bendixton Derivative, 204
cardinality, 3, 6
Cartesian product, 3, 204
Cauchy criterion

for integral, 133
for series, 173
for uniform convergence, 226, 237, 244

Cauchy sequence, 42, 81, 181, 184
in a metric space, 184
subsequence, 43

Cauchy, Augustin Louis, 63
Cauchy–Schwartz Inequality, 25
Cesaro Average, 44
closed ball

in a metric space, 185
closed set, 197

in a metric space, 197
closure of a set, 199–201
compact, 197, 201

Cantor set, 202
Cantor-intersection property, 201
closed subset, 201
continuous image of, 202
distance to, 215
in a metric space, 201
sequential, 198
sequentially compact, 201
subsets of space of continuous functions,

224
complement, 3

relative, 3
connected, 198, 203

but not path connected, 204
continuous image of, 204

continuity, 77, 78
and periodic, 81, 82
equicontinuous, 224
everywhere but nowhere differentiable, 229

251
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Lipschitz, 79
modulus of continuity, 78, 80
nowhere, 80
on a compact set, 202
on a set, 77
on compact sets, 80, 93
pointwise limit, 226
sequential, 79
topological characterization of, 202
uniform, 77, 81

convergence
metric space, 181
not uniform, 225
pointwise, 223
uniform, 225
uniformly, 223, 226

countable, 3, 8, 66, 75, 130, 139, 198, 199
Q is, 8
R is not, 8
Cantor set is not, 24
subsets, 7
unions, 8

De Morgan’s Laws, 6, 198, 206
Dedekind, Richard, 77
dense, 23, 137
derivative

nth, 100, 101
and tangent line, 97, 98
and uniform convergence, 229
at a point, 97
bounded, 98
does not exist, 107
exists, 99
exists everywhere, 100, 101
Leibnitz formula, 103
nowhere differentiable, 229
on a set, 97
uniformly continuous, 99
uniformly differentiable, 99

diameter of a set, 185
Dini’s Theorem, 228
Dirichlet’s function, 65, 79, 87
Dirichlet’s Rearrangement Theorem

rearrangement, 164
disconnected, 203

Cantor set, 203
discontinuous everywhere, 79

equicontinuous, 224, 228, 229
Euclidean distance, 187
Euler constant, 50
Euler’s series, 161, 170
Euler, Leonhard, 41

Fatoo Lemma, 134
Fibonacci numbers, 23
fixed point, 81
function

C1, 98, 131
C2, 98, 131
asymptotic to, 67
bijection, 3
bounded, 182
constant, 101
convex, 77, 82
greatest integer, 52, 80
inverse, 215
Lipschitz, 79
monotone, 63, 66
nonconstant, 82
one-to-one, 3, 7, 101
onto, 3
periodic, 65, 78
square-root, 24
step, 82, 130

Fundamental Theorem of Calculus, 128

Hölder inequality, 25
harmonic series, 161
Heine–Borel Theorem, 198, 211, 215
homeomorphism, 202

infA, 22, 24, 32
infinite series, 159

absolute convergence, 159
and termwise differentiation, 224
and termwise integration, 224
Bertrand, 179
conditional convergence, 160
convergence, 159
divergence, 159
Euler, 161
harmonic, 161
partial sum, 159
Raabe–Duhamel’s rule, 165
uniform convergence, 227
with positive terms, 162
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integral
Bertrand, 133
improper, 128, 132, 133
lower, 128, 129, 152
pointwise limit, 226
Riemann, 128–130
Riemann sums, 128
upper, 128, 129
Wallis, 45, 59

interchange of limit
and derivative, 226, 227
and integral, 226, 227

interior of a set, 200
interior point of a set, 200
Intermediate Value Theorem, 77, 101, 115,

147
generalized, 204

Interval Intersection Property, 26
irrational, 24, 68, 204

Laplace, Pierre-Simon, 127
Legendre polynomials, 104
Leibnitz formula, 103
limit

inferior, 42, 45, 46
is irrational, 57
of a function, 64
of a sequence, 41
of integrals, 131
of rational numbers, 45
one-sided, 64
Riemann sums, 128, 130
sequential characterization, 65, 92
superior, 41, 45, 46

limit point of a set, 199, 201
Littlewood, John, 197
Luxemburg Monotone Convergence Theorem,

133, 153, 154

Mean Value Theorem, 97, 108, 112–114, 118
for integrals, 128, 142, 151
generalized, 116

measure of noncompactness, 203
metric, 181, 182

bounded, 183
discrete, 182, 185
Euclidean, 182
Hausdorff, 203

p-adic, 184
SNCF, 183
ultrametric, 184, 190

metric space, 181
complete, 181, 185
not complete, 184, 185
of continuous functions, 182, 183
ultrametric space, 184

Minkowski Inequality, 25
Monotone Convergence Theorem, 133

natural numbers, 203
coprime, 25, 36

negation of a statement, 4
neighborhood, 25
nest of intervals, 22
Nested Intersection Property, 26
Newton, Isaac, 97
nowhere dense, 219

open ball
closure of, 199
in a metric space, 185, 199
in Euclidean space, 185

path connected, 198, 204
Picard iteration, 134, 155
power series, 227

uniform convergence of, 227
power set, 23
proof

by contradiction, 2, 27, 219
by induction, 21–23, 37
by strong induction, 21, 29
contrapositive, 2

Raabe–Duhamel’s rule, 165
rational number, 22, 23, 203
real number, 23, 24
rearrangement, 176
Riemann sum, 128, 144, 145
Riemann–Lebesgue’s lemma, 132
Rolle’s Theorem, 97, 112, 115

Schröder–Bernstein Theorem, 4, 8
sequence, 41

bounded, 41, 184
Cauchy, 42, 43, 49, 219
convergent, 41–43, 45
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decreasing, 42
divergent, 41, 43, 44
in a metric space, 184
increasing, 42
not bounded, 54
ratio, 44

series of functions
converge pointwise, 223
converge uniformly, 223

set, 1
both open and closed, 198
closed, 198–200
closed and bounded but not compact, 201
compact, 201
countable, 7
disjoint, 15
disjoint open, 198
empty, 7, 25
equal, 1
intersection, 2
open, 198, 200

in R, 197
subset, 1
union, 2

sets
intersection and union of a family, 3

sphere
in a metric space, 185

Squeeze Theorem, 51, 52, 56, 66, 112, 142–144
Stirling formula, 45
subsequence, 41, 42, 48, 184

uniformly convergent, 229
supA, 22, 31

Taylor’s Theorem, 98, 143
Tchebycheff polynomials, 135
triangle inequality, 38, 181

generalized, 189, 191

uniformly continuous extension, 82
unit balls in R2, 185

Weierstrass Approximation Theorem, 225, 247
Weierstrass M-Test, 224, 227, 238, 241
Weierstrass’s example, 229
well-ordering property, 22

Young Inequality, 25
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