Most Relevant Explanation: Properties, Algorithms, and Evaluations

Changhe Yuan & Xiaolu Liu
Uncertainty Reasoning Laboratory
Dept of Computer Science and Engineering
Mississippi State University
Mississippi State, MS 39762

Abstract

Most Relevant Explanation (MRE) is a method
for finding multivariate explanations for given
evidence in Bayesian networks [12]. This pa-
per studies the theoretical properties of MRE
and develops an algorithm for finding multiple
top MRE solutions. Our study shows that MRE
relies on an implicit soft relevance measure in
automatically identifying the most relevant tar-
get variables and pruning less relevant variables
from an explanation. The soft measure also en-
ables MRE to capture the intuitive phenomenon
of explaining away encoded in Bayesian net-
works. Furthermore, our study shows that the
solution space of MRE has a special lattice struc-
ture which yields interesting dominance relations
among the solutions. A K-MRE algorithm based
on these dominance relations is developed for
generating a set of top solutions that are more
representative. Our empirical results show that
MRE methods are promising approaches for ex-
planation in Bayesian networks.

1 Introduction

Bayesian networks offer compact and intuitive graphical
representations of uncertain relations among the random
variables of a domain and provide a foundation for many
diagnostic expert systems. However, these systems typi-
cally focus on disambiguating single-fault diagnostic hy-
potheses because it is hard to generate “just right” multiple-
fault hypotheses that contain only the most relevant faults.
Maximum a Posteriori (MAP) assignment and Most Prob-
able Explanation (MPE) are two explanation methods for
Bayesian networks that find a complete assignment to a
set of target variables as the best explanation for given ev-
idence and can be applied to generate multiple-fault hy-
potheses. A priori, the set of target variables is often large
and can be in tens or even hundreds for a real-world diag-
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nostic system. Given that so many variables are involved,
even the best solution by MAP or MPE may have an ex-
tremely low probability, say in the order of 1076, Tt is hard
to make any decision based on such hypotheses.

In real-world problems, it is observed that usually only a
few target variables are most relevant in explaining any
given evidence. For example, there are many possible dis-
eases in a medical domain, but a patient can have at most
a few diseases at one time, as long as he or she does not
delay treatments for too long. It is desirable to find diag-
nostic hypotheses containing only those relevant diseases.
Other diseases should be excluded from further tests or
treatments. In a recent work, Yuan and Lu [12] propose
an approach called Most Relevant Explanation (MRE) to
generate explanations containing only the most relevant tar-
get variables for given evidence in Bayesian networks. Its
main idea is to traverse a trans-dimensional space contain-
ing all the partial instantiations of the target variables and
find one instantiation that maximizes a relevance measure
called generalized Bayes factor [3]. The approach was
shown in [12] to be able to find precise and concise ex-
planations. This paper provides a study of the theoretical
properties of MRE and offers further evidence for its valid-
ity. The study shows that MRE relies on an implicit soft
relevance measure that enables the automatic identification
of the most relevant target variables and pruning of less rel-
evant variables from an explanation. Furthermore, the solu-
tion space of MRE has a special lattice structure that allows
two interesting dominance relations among the solutions to
be defined. These dominance relations are used to design
and develop a K-MRE algorithm for finding a set of top
explanations that are more representative. Our empirical
results show that MRE methods are promising approaches
for explanation in Bayesian networks.

The remainder of the paper is structured as follows. We
first review methods for explanation in Bayesian networks,
including Most Relevant Explanation. Then we introduce
several theoretical properties of Most Relevant Explana-
tion. We also develop a K-MRE algorithm for generating
multiple top explanations and evaluate it empirically.
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Figure 1: (a) A probabilistic digital circuit and (b) a corre-
sponding diagnostic Bayesian network

2 A Running Example

Let us first introduce a running example used throughout
this paper. Consider the circuit in Figure 1(a) adapted
from [9, 12]. Gates A, B, C and D are defective if they are
closed. The prior probabilities that the gates close indepen-
dently are 0.016,0.1,0.15 and 0.1 respectively. Connec-
tions between the gates may not work properly with certain
small probabilities. The circuit can be modeled with a di-
agnostic Bayesian network as shown in Figure 1(b). Nodes
A, B,C and D correspond to the gates in the circuit and
each has two states: “defective” and “ok”. Others are input
or output nodes and have two states: “current” or “noCurr”.
Uncertainty is introduced to the model such that an output
node is in state “current” with a certain probability less than
1.0 if its parent gate, when exists, is “defective” and any
of its other parents is in state “current”. Otherwise, it is
in “noCurr” state with probability 1.0. For example, node
output of B takes state “current” with probability 0.99 if
parent gate B is in state “defective” and parent Input is in
state “current”.

Suppose we observe that current flows through the circuit,
which means that nodes Input and Total Output in the
Bayesian network are both in the state “current”. The task
is to diagnose the system and find the best fault hypotheses.
Based on our knowledge of the domain, we know there are
three basic scenarios that most likely lead to the observa-
tion: (1) A is defective; (2) B and C' are defective; and (3)
B and D are defective.

3 Related Work

Many methods exist for explaining evidence in Bayesian
networks. However, they often fail to find “just-right” ex-
planations containing the most relevant target variables.

Many existing methods make simplifying assumptions and
focus on singleton explanations [5, 7]. However, singleton
explanations may be underspecified and are unable to fully
explain given evidence. For the running example, the pos-
terior probabilities of A, B, C, and D failing independently
are 0.391, 0.649, 0.446, and 0.301 respectively. Therefore,
(—B) is the best singleton explanation'. However, B alone
does not fully explain the evidence. C' or D has to be in-
volved. Actually, if we are not focusing on faulty states,
(D) (0.699) is the best singleton explanation. It is clearly
not an adequate explanation for the evidence.

For a domain in which target variables are interdependent,
multivariate explanations are often more natural for ex-
plaining given evidence. However, existing methods of-
ten produce hypotheses that are overspecified. MAP finds
a configuration of a set of target variables that maximize
the joint posterior probability given partial evidence on
the other variables. For the running example, if we set
A,B,C and D as the target variables, MAP will find
(AAN=BA-CAD) as the best explanation. However, given
that B and C are faulty, A and D are somewhat redundant
for explaining the evidence. MPE finds an explanation with
even more variables. Several other approaches use the de-
pendence relations encoded in Bayesian networks to prune
independent variables [10, 11]. They will find the same
explanation as MAP because all of the target variables are
dependent on the evidence. Yet several other methods mea-
sure the quality of an explanation using the likelihood of the
evidence [1]. Unfortunately they will overfit and choose
(mA A =B A —=C A —D) as the explanation, because the
likelihood of the evidence given that all the target variables
fail is almost 1.0.

There have been efforts trying to generate more appropri-
ate explanations. Henrion and Druzdzel [6] assume that a
system has a set of pre-defined scenarios as potential ex-
planations and find the scenario with the highest posterior
probability. Flores et al. [4] propose to grow an explanation
tree incrementally by branching the most informative vari-
able at each step while maintaining the probability of each
explanation above certain threshold. Nielsen et al. [8] use
a different measure called causal information flow to grow
the explanation trees. Because the explanations in the trees
have to branch on the same variable(s), they may still con-
tain redundant variables. Finding more concise hypotheses
also have been studied in model-based diagnosis [2]. The
approach focus on truth-based systems and cannot be easily
generalized to deal with Bayesian networks.

1We use a variable and its negation to stand for its “ok” and
“defective” states respectively



4 Most Relevant Explanation

There are two most essential properties for a good expla-
nation. First, the explanation should be precise, meaning
it should explain the presence of the evidence well. Sec-
ond, the explanation should be concise and only contain the
most relevant variables. The above discussions show that
existing approaches for explaining evidence in Bayesian
networks often generate explanations that are either under-
specified (imprecise) or overspecified (inconcise).

To address the limitations, Yuan and Lu [12] propose a
method called Most Relevant Explanation (MRE) to au-
tomatically identify the most relevant target variables for
given evidence in Bayesian networks. First, explanation in
Bayesian networks is formally defined as follows.

Definition 1. Given a set of target variables X in a
Bayesian network and evidence e on the remaining vari-
ables, an explanation for the evidence is a partial instanti-
ation X1.x of X, i.e., X1« € X and Xq.x # 0.

MRE is then defined as follows [12].

Definition 2. Let X be a set of target variables, and e be
the evidence on the remaining variables in a Bayesian net-
work. Most Relevant Explanation is the problem of find-
ing an explanation x1.x that has the maximum Generalized
Bayes Factor score GBF (x1.x;€), i.e.,

MRE(X,e) = arg maxxl:k,xl:kgx,xl;k;é(bGBF(Xlrk§ e),

(1)
where GBF is defined as
P(e|x1:k1)
P(e[X1aa)

GBF(X1:x1;€) @)

Therefore, MRE traverses the trans-dimensional space con-
taining all the partial assignments of X and finds an assign-
ment that maximizes the GBF score. Potentially, MRE
can use any measure that provides a common ground for
comparing the partial instantiations of the target variables.
G BF is chosen because it is shown to provide a plausible
measure for representing the degree of evidential support
in recent studies in Bayesian confirmation theory [3].

MRE was shown to be able to generate precise and con-
cise explanations for the running example [12]. The best
explanation according to MRE is:

GBF(~B,~C;e) = 42.62 . 3)

For simplicity we often omit e and write GBF (=B, -C).
(=B, —C) is a better explanation than both (—A) (39.44)
and (- B, D) (35.88), because its prior and posterior prob-
abilities are both relatively high; The posterior probabil-
ities of the explanations are 0.394, 0.391, and 0.266 re-
spectively. Therefore, MRE seems able to automatically
identify the most relevant target variables and states as the
explanations for given evidence.

S A Theoretical Study

5.1 Theoretical properties of MRE

We now discuss several theoretical properties of MRE.
Since MRE relies heavily on the GBF measure in gener-
ating its explanations, it is not surprising that these proper-
ties are mostly originated from GBF'. The proofs of these
properties can be found in the appendix.

First, we note that GBF can be expressed in a different way
using the belief update ratio.

Definition 3. The belief update ratio of x1.x1 given e,
r(x1.x1; €), is defined as

P(xy.
r(x1.x;€) = m 4

GBF can then be expressed as the ratio between the belief
update ratios of xj.x1 and alternative explanations Xi.x1
given e, i.e.,

T(X1:k1; e)

GBF(Xl:kl; e) = T(m e) .

o)

The most important property of MRE is that it is able to
weigh the relative importance of multiple variables and
only include the most relevant variables in explaining the
given evidence. The degree of relevance is evaluated using
a measure called conditional Bayes factor (CBF) implicitly
encoded in the GBF measure and defined as follows.

Definition 4. The conditional Bayes factor of hypothesis
Y1.m for given evidence e conditional on X1.x is defined as

P(e|y1:ma Xlzk)

. 6
Pleyimxin) 0

CBF(y1m;e[x1x) =

Then, we have the following theorem.

Theorem 1. Let the conditional Bayes factor of y1.m given
X1.x be less than or equal to inverse of the belief update
ratio of the alternative explanations X1 i, i.e.,

1

CBF ‘m; k) < —
(Y1. e\X1.k) r(ixl;k;e)

) (M

the following holds

GBF(x1x Uy1m;e) < GBF(x1.x;e). ®)

Therefore, C BF(y1.m, €|X1.k) provides a soft measure on
the relevance of a new set of variable states with regard to
an existing explanation and can be used to decide whether
or not to include them in an existing explanation. GBF
also encodes a decision boundary, the inverse belief update



ratio of alternative explanations X1k given e, which pro-
vides a threshold on how important the remaining variables
should be in order to be included in the current explanation.
If CBF(y1.m; €|X1.x) is greater than or equal to ﬁ,
Y1.m 18 regarded as relevant and will be included. Other-
wise, Y1.m Will be excluded from the explanation.

Theorem 1 has several intuitive and desirable corollaries.
First, the following corollary shows that, for any explana-
tion x;.;, with belief update ratio greater than or equal to
1.0, adding any independent variable to the explanation will
decrease its GBF score [12].

Corollary 1. Let x1.x be an explanation with r(X1.x; €) >
1.0, and y be a state of variable Y independent from vari-
ables in x1.x and e. Then

GBF(x1.x U{y};e) < GBF(x1.x;e). 9

Therefore, adding an irrelevant variable dilutes the expla-
native power of an existing explanation. MRE is able to
automatically prune such variables. This is clearly a desir-
able property.

Note that we focus on the explanations with belief update
ratio greater than or equal to 1.0. We believe that an ex-
planation whose probability decreases given the evidence
is unlikely to be a good explanation for the evidence.

Corollary 1 requires the additional variable Y to be inde-
pendent from both X;.x and E. The assumption is rather
strong. The following corollary relaxes it to be that Y is
conditionally independent from E given X;.x and shows
the same result still holds.

Corollary 2. Let X1 be an explanation with r(X1.x; €) >
1.0, and y be a state of a variable Y conditionally indepen-
dent from variables in e given X1.x. Then

GBF(x1.x U{y};e) < GBF(x1.x;e€). (10)

Corollary 2 is a more general result than corollary 1 and
captures the intuition that conditionally independent vari-
ables add no additional information to an explanation in
explaining given evidence, even though the variable may
be marginally dependent on the evidence. Also note that
these properties are all relative to an existing explanation.
It is possible that a variable is independent from the ev-
idence given one explanation, but becomes dependent on
the evidence given another explanation. In other words,
GBEF score is not monotonic. Looking at variables one by
one does not guarantee to find the optimal solution.

The above results can be further relaxed to accommodate
cases where the posterior probability of y given e is smaller
than its prior, i.e.,

Figure 2: Solution space of Most Relevant Explanation

Corollary 3. Let x1.x be an explanation with r(Xx1.x;€) >
1.0, and y be a state of a variable Y such that
P(y|x1.x,e) < P(y|x1.x). Then

GBF(x1.x U{y};e) < GBF(x1.x;e). (11)

This is again an intuitive result; a variable state whose pos-
terior probability decreases for given evidence should not
be part of an explanation for the evidence.

The above theoretical results can be verified using the run-
ning example. For example,

GBF(-B,-C)
> GBF(~B,~C,A) & GBF(~B,~C,D)
> GBF(-B,~C,A,D) .

The results suggest that GBF has the intrinsic capability
to penalize higher-dimensional explanations and prune less
relevant variables.

5.2 Explaining away

One unique property of Bayesian networks is that they can
model the so called explaining away phenomenon using the
V structure, i.e., a single variable with two or more parents.
This structure intuitively captures the situation where an
effect has multiple causes. Observing the presence of the
effect and one of the causes reduces the likelihood of the
presence of the other causes. It is desirable to capture this
phenomenon when generating explanations.

MRE seems able to capture the explaining away effect us-
ing CBF. CBF provides a measure on how relevant a new
variable is to an existing explanation. In an explaining-
away situation, if one of the causes is already present in
the current explanation, other causes typically do not re-
ceive high CBF scores. Again for the running example,
(=B, —C) and (—A) are both good explanations for the ev-
idence by themselves. The CBF of = A given only e (the
effect) is equal to its GBF (39.44), which is rather high.
However, when (—B, —C) (one of the causes) is also ob-
served, CBF(—A;e|-B,~C) becomes rather low and is
only equal to 1.03. Clearly, CBF is able to capture the ex-
plaining away phenomenon in this example.



5.3 Dominance relations

MRE has a solution space with an interesting lattice struc-
ture similar to the graph in Figure 2 for three binary target
variables. The graph contains all the partial assignments of
the target variables. Two explanations are linked together
if they only have a local difference, meaning they either
have the same set of variables with one variable in different
states, or one explanation has one fewer variable than the
other explanation with all the other variables being in the
same states.

There are two dominance relations among these potential
solutions that are implied by Figure 2. The first concept is
strong dominance.

Definition 5. An explanation x; .k strongly dominates an-
other explanation y1.m if and only if X1.x C Y1.m and
GBF(Xl:k) Z GBF(yl;m).

If x7.x strongly dominates y1.m, X1.kx is clearly a better
explanation than y1.m, because it not only has a no-worse
explanative score but also is more concise. We only need
to consider x3.x when finding multiple top MRE explana-
tions. The second concept is weak dominance.

Definition 6. An explanation x;1.x weakly dominates an-
other explanation y1.m if and only if X1.x O Y1.m and
GBF(Xl;k) > GBF(ylm)

In this case, X1.x has a strictly larger GBF' score than
¥Y1:m, but the latter is more concise. It is possible that we
can include them both and let the decision makers to decide
whether they prefer higher score or conciseness. However,
we believe that we only need to include x;.x, because its
higher GBF score indicates that the extra variable states are
relevant to explain given evidence and should be included
in the explanation.

Based on the two kinds of dominance relations, we define
the concept minimal.

Definition 7. An explanation is minimal if it is neither
strongly nor weakly dominated by any other explanation.

In case we want to find multiple top explanations, we only
need to consider the minimal explanations, because they
are the most representative ones.

6 K-MRE Algorithm

In many decision problems, outputting the single top solu-
tion may not be the best practice. Decision makers typ-
ically would like multiple competing options to choose
from. This is especially important when there are multi-
ple solutions that are almost equally good. For the circuit
example, all three basic explanations will lead to the same
observation. However, we can only recover one explana-
tion if we are satisfied with one top solution. It is better to

GBF(— B, - C) = 42.62
GBF(A, =B, - C) = 42.15
GBF(— B, = C, D) = 39.93

GBF(A, ~ B, - C, D) = 39.56

GBF(— A) = 39.44
GBF(— A, B) = 36.98
GBF(— A, C) = 35.99

GBF(— B, - D) = 35.88

Table 1: The top solutions ranked by GBF. The solutions in
boldface are the top minimal solutions.

output all the top solutions rather than selecting any one of
the solutions.

The dominance relations defined in the last section allow
us to develop a K-MRE algorithm to find a set of top so-
lutions that are more representative. Let us look at the
running example again to illustrate the idea. The expla-
nations in Table 1 have the highest GBF scores. If we sim-
ply select top three explanations solely based on GBF, we
will obtain these rather similar explanations: (=B, -C),
(A,—B,~(C), and (—B,~C, D), which are rather similar.
Since (A,—-B,-C), (—-B,~C,D), and (A,—~B,-C,D)
are strongly dominated by (—B, —C'), we should only con-
sider (=B, —C) out of those four explanations. Similarly,
(mA, B) and (—A,C) are strongly dominated by (—A).
These dominated explanations should be excluded from the
top solution set. In the end, we get the set of top explana-
tions shown in boldface in Table 1, which is clearly more
diverse and representative than the original set. MAP and
MPE clearly do not have this nice property.

Therefore, our proposed K-MRE algorithm works as fol-
lows. Whenever we generate a new explanation, we check
its score against the best solution pool. If it is lower than
the worst score in the pool, reject the new explanation. If
there are fewer than K best solutions or if the score of the
new explanation is higher than the worst score in the pool,
we consider adding the new explanation to the top pool. We
first check whether the new solution is strongly or weakly
dominated by any of the top explanations. If so, reject the
new explanation. Otherwise, we add the new explanation
to the top pool. However, we then need to check whether
there are existing top explanations that are dominated by
the newly added explanation. If yes, these existing expla-
nations should be excluded. Otherwise we delete the top
explanation with the least score.

7 Empirical Results

7.1 Experimental design

We tested the K-MRE algorithm on a set of benchmark
models, including Alarm, Circuit, Hepar, Munin, and
SmallHepar. We chose these several models because we
have the diagnostic versions of these networks, whose vari-
ables have been annotated into three categories: target, ob-
servation, and auxiliary. For generating the test cases, we
used the networks as generative models and sampled with-
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Figure 3: Precision vs recall plots of the results by four algorithms, Marginal, P-MAP, F-MAP, and MRE, on a set of
benchmark diagnostic Bayesian networks.“K” shows the number of top solutions generated. “F” shows the least number
of faulty target variables in test cases. “F_Score” shows the F-Scores of the results of the algorithms. Marginal algorithm
did not appear in rows “K3F1” and “K3F2” because it has only one solution.

out replacement from their prior probability distributions.
We only kept those test cases with at least one abnormal ob-
servation and used the abnormal observations as evidence.
Since Circuit and SmallHepar have 4 and 3 target variables
respectively, we collected as many test cases as possible.
Munin also has 4 target variables but each with many more
states. Hepar and Alarm have 9 and 12 target variables re-
spectively. We collected 50 test cases for the last three net-
works. We also extracted from them the test cases which
contain at least two faulty target variables for separate ex-
periments on multiple-fault test cases.

Our experiments compared MRE with MAP given their
similarities. We tested two versions of the MAP algorithm,
one focusing on all the target variables (F-MAP) and the
other only on the target variables selected by MRE (P-
MAP). In addition, we compared with the Marginal algo-
rithm, which neglects the interdependence among the tar-
get variables and uses the marginal posterior probabilities
to determine the most likely states of the target variables.
We plot the accuracy statistics, including precision (the per-

centage of faulty states correctly identified among all faulty
explanation variables) and recall (the percentage of faulty
states correctly identified among all faulty variables in test
cases) of these algorithms in Figure 3. We also include
sample results on F-Score, which is defined as

FoScore — 2 x (precision x recall)

(12)

(precision + recall)

7.2 Results and analysis

We make the following observations from these results.
First, MRE is able to achieve higher precision and/or recall
rates in identifying the faulty target variables than the other
algorithms on all the networks except Munin. An outstand-
ing example is the SmallHepar network. Marginal, F-MAP
and P-MAP all failed badly on this model in identifying the
faulty variables, while MRE was able to achieve reasonable
performance. It is clearly desirable given that one major
goal of diagnosis or explanation is to identify problems,
e.g. faulty states. We investigated the results of Munin



network further and found that all target variables of these
test cases are in faulty states. Marginal and F-MAP have
exactly the same statistics, which suggests that the target
variables may have weak correlations with each other. This
puts MRE in disadvantage because MRE takes into account
such weak correlations and generate concise explanations
with fewer target variables. On average, the explanations of
MRE identifies 4.3 variables out of 12 target variables for
Alarm, 1.7 /4 for Circuit, 4/9 for Hepar, 2.5/4 for Munin,
and 2.3/3 for SmallHepar. For networks with strong corre-
lations among the target variables, e.g. Circuit and Hepar,
MRE has much higher precision/recall rates. The sample
F-score results in the case of “K1F1” further confirmed the
observation.

Second, by comparing rows “KI1F1” vs. “K3F1” and
“KI1F2” vs. “K3F2,” we found that using multiple top
solutions helps MRE significantly in improving the preci-
sion/recall rates than the other algorithms. With multiple
solutions, we kept the results with the maximum precision
rates. The results seem to support our claim that K-MRE
was able to generate solutions that are more representative.
It is somewhat surprising that the precision/recall rates of
F-MAP were not improved at all on the networks, but those
of P-MAP were improved. Our hypothesis is that, since the
explanations by F-MAP are more grained because more
variables are involved, its top explanations tend to agree
with each other on the faulty variables and differ mostly
in the less important non-faulty variables. Generating mul-
tiple top solutions could not really help F-MAP much in
improving its accuracy statistics.

Third, although P-MAP gets the target variables identified
by MRE as input, it still failed badly on the SmallHepar
network in identifying faulty states of the target variables.
It did not show any significant advantage over F-MAP on
other networks either. The results suggest that relying on
posterior probabilities may not work well in certain diag-
nostic systems.

Fourth, although multiple-fault cases are believed to be
more difficult because of their low likelihood, the algo-
rithms in our experiments seem able to maintain the same
level of accuracy rates in face of multiple-fault test cases
(rows “K1F2” and “K3F2”). We hope to apply the pro-
posed methods to real-world systems and test cases to gain
more insights.

Last but not least, the Marginal algorithm is efficient and
sometimes can achieve similar accuracy rates with other
methods. However, since it does not take into account
the dependence among the target variables, its results can
be arbitrarily bad if the dependence are strong. It is evi-
dent on the Circuit network for which the accuracy rates
of Marginal algorithm are much lower than other methods.
The results suggest that we have to be cautious about the
use of the Marginal algorithm in certain systems.

8 Concluding Remarks

In this paper, we discuss several theoretical properties of
Most Relevant Explanation (MRE) and develop an algo-
rithm for finding multiple top MRE solutions. Our study
shows that MRE relies on an implicit soft relevance mea-
sure in automatically identifying the most relevant target
variables and pruning less relevant variables from an ex-
planation. The soft measure also enables MRE to cap-
ture the intuitive phenomenon of explaining away encoded
in Bayesian networks. Furthermore, we define two dom-
inance relations among the explanations that are implied
by the structure of the solution space of MRE. These rela-
tions allow us to design and develop a K-MRE algorithm
for finding top MRE solutions that are much more repre-
sentative.

Our empirical results agree quite well with the theoretical
understanding of MRE. The results show that MRE is ef-
fective in identifying the most relevant target variables, es-
pecially the true faulty target variables. Furthermore, K-
MRE seems able to generate more representative top ex-
planations than K-MAP methods. We believe that MRE
is especially suitable for systems in which target variables
are strong correlated with each other and can generate more
precise and concise explanations for these systems.

This research has many future works. It is desirable to un-
derstand the theoretical complexity of MRE. It has a solu-
tion space even larger than MAP and is believed to be at
least as hard. Currently we rely on an exhaustive search
algorithm for solving MRE and K-MRE. More efficient
methods for solving MRE need be developed to make it
applicable to large real-world problems.
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Appendix
Proof of Theorem 1:

GBF(x1.k Uy1:m;e)

_ P(xixUyimle)(l — P(x1x Uy1m))

~ P(x1xUyim)(1 — P(x1.6 Uyi.m|e)

_ P(x1x|e) P(y1m[X1:x,€)(1 — P(y1:m|X1:x)P(X1:x))

" P(x1:6)P(y1:m|X1:6) (1 — P(y1.m|X1:x, €) P(x1.4|€))
_ P(xaale) 1= P + pyiaman !
P(x1x) 1— P(x1xle) + st —" — 1

+ P(y1:mlx1:x.e)

The above equation is less than or equal to GBF(X1.x; €) when

1
PO Tmbam 1 — P(x1)
P(Yl:ml‘xl:kﬁe) - 1= P(x1:k|e)
P(y1:m|x1x,e)(1 — P(y1m|X1:x)) P(X1x)
P(yl:m|xl:k)(1 - P(Y1:m|X1:k,e)) - P(X13k|e)
1

< CBF(Y1:m;€|x1.x)

IA

r(Xix;e)’

Proof of Corollary 1: The corollary follows immediately from
Theorem 1. We can also prove it in the following way.

GBF(x1.x U{y};e)

_ PxixU{y}le)(1 — P(xaa U{y}))
P(x1 U{y})(1 = P(x1:c U{y}e))
P(x1x|e)P(y)(1 — P(y)P(x1:x))

P(x11) P(y)(1 — P(y) P(x1:e))

(
(

P(xaxle)(l = P(y)P(x1x))
— P(y)P(x1:cle))

P X1: k)(
Because P(x1.x|e) > P(x1:x), we have the following:

GBF(x1x U{y};e)

_ P(xaxle)(1 — P(y)P(x1:x))
P(x1)(1 = P(y)P(x1:xle))

_ P(xaxle)(1 — P(x1x) + (1 — p(y)) P(x1:x))
P(x1)(1 — P(x1:x]e) + (1 — p(y)) P(x1:x]e))
P(x1xle)(1 — P(x1x) + (1 — p(y)) P(x1:x))

= P(x1ac)(1 — P(x1:cle) + (1 — p(y)) P(x1:x))
P(x1xle)(1 — P(x1:x))

~ P(x1ac)(1 — P(x1:xle))

= GBF (x1:x;€) .

Proof of Corollary 2: This corollary can be proved in a similar
way as Corollary 1.

GBF(x1x U {y};e)
_ P U{y}e)(I — P(x1x U {y}))
P(x1x U{y})(1 = P(x1x U {y}le)
_ P(xax|e)P(y|x1x,e)(1 — Py[x1x, €)P(x1:k))
P(x1) P(ylx1ac) (1 = P(y[x1:) P(x1:x]€))
P(x1:x]e) P(ylxa) (1 — Pylxaa) P(x1:x))
(1) P(y[x1:1) (1 = P(ylx1.5) P(x1:[€))
_ P(xakle)(I = P(ylx1x) P(x1:x))
P(x1)(1 = P(y[x1a) P(x1:x]e) -

P
P

Because P(x1.x|e) > P(x1.k), we have

GBF(x1x U {y};e)

_ Px1xle)(I — P(y[xa1) P(x1:x))
P(x1ac)(1 = P(ylx1a) P(X1:x]e)

_ _P(xaale)(1 = P(x1x) + (1 = p(y[x1:0)) P(x1:%))
P(x1:)(1 = P(xa:cle) + (1 — p(ylx1x)) P(x1:xe))
P(xaxle)(1 = P(x1x) + (1 — p(ylx1:x)) P(x1:x))

T P(xw)(1 = P(xwxle) + (1 — p(y[x1x)) P(x1:x))
P(xa1xle)(1 = P(x1:x))

= P(x1x)(1 — P(x1:x|e))

= GBF(Xl;k, ) .

Proof of Corollary 3:

This corollary follows immediately from Theorem 1.



