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ABSTRACT 

This thesis presents the theory and development involved in the enhancement of 

EMAG, a 2-D electrostatic and rnagnetostatic solver, to allow it to solve problems 

involving rotational symmetry. EMAG 2.0 solves rotationally symmetric problems using 

discrete forms of the Poisson equations for electrostatics and magnetostatics in 

cylindrical coordinates. EMAG 2.0 is written entirely in MA TLAB script formal It 

allows users to define electrostatic or magnetostatic problems on a 2-D grid and solve the 

problem for the potentials at uniformly spaced nodes on the grid Graphical displays 

allow the users to visualize contour or mesh plots of potential, vector plots of electric or 

magnetic fields and to calculate the charge or current enclosed in a user defined region of 

the grid. 

The EMAG 2.0 computational grid has a simulated open boundary which is generated 

by the Transparent Grid Termination (TGT) technique. This boundary is unique to the 

type of system being solved. This thesis presents and compares two different methods 

for generating this boundary, one involving a probabilistic model of the system and the 

other using a direct matrix solution approach. Optimization of the Transparent Grid 

Termination technique is also explored. 
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I. INTRODUCTION 

A. OVERVIEW 

This thesis will describe the enhancement of EMAG, a Finite Difference Electrostatic 

and Magnctostatic problem solver toolbox for MA TLAB, to enable it to solve problems 

involving rotational symmetry. Further, it will detail the results of the associated 

research concerning the modeling of open boundary conditions. It will begin with an 

introduction to the original version of EMAG and the method used in modeling its 

boundary conditions, Transparent Grid Termination (TOT). In Chapter II, the finite 

difference equations used in solving rotationally symmetric problems will be developed 

These results will be used in the third chapter as the solution to the open boundary 

problem for rotationally symmetric systems is explored Chapter III will also present an 

analysis of two different methods used for solving the open boundary problem and will 

compare the two methods with respect to accuracy, speed of calculation, and 

computational memory requirements. Chapter IV will present examples ofEMAG 2.0 

capabilities and compare these results with known solutions. 
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B. EMAG 

EMAG was originally developed by Roger Manke, Jr. at Rosc-Hulman Institute of 

Technology. It is a MA TLAB toolbox that solves user defined electrostatic and 

magnetostatic problems on a unifonn square grid, subject to a distant Dirichlet boundary 

of zero potential Potentials at equally spaced nodes within the grid are calculated using 

discretized fonns of Poisson's equation. Using a mouse and keyboard, EMAG users 

define a problem by drawing media and sources on a 2-D computational grid For 

electrostatic problems, the types of media include dielectric and perfect electric 

conductor (PEC) material. For problems in magnetostatics, the media is magnetic or 

perfect magnetic reluctor (PMR) material. PMR is a non-physical medium characterized 

by constant magnetic vector potential throughout its volume and therefore, is the dual of 

PEC. PMR media has infinite reluctivity or zero permeability. Two computational grid 

sizes are available to the user. The 17x 17, "coarse" computational grid provides rapid 

results with one third of the resolution of the "fine" grid The SlxSI, "fine" 

computational grid provides greater fidelity but requires more computation time. EMAG 

output is in the fonn of graphical displays and numerical data. EMAG graphical displays 

include 3-D mesh plots of potential, equipotential contour plots, and plots of electric or 

magnetic f.elds. EMAG can also calculate numerical results for the enclosed charge 

within a user specified area on an electric fteld plot or enclosed current on a magnetic 

field plot. Furthermore, all output parameters (such as the matrix containing the 
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calculated nodal potentials) arc available to the user for analysis. The original version of 

EMAG solved problems that were invariant along an infinite axis into and out of the 

computational grid (z-invariant). In Reference I, Manke developed the finite difference 

(FD) equations used in EMAG for solving z-invariant problems. Chapter II of this thesis 

will present the development of the equations used in EMAG 2.0 for systems involving 

rotational symmetry about a central axis. 

The EMAG computational grid boundary is a layer of nodes which simulate a distant, 

homogeneous Dirichlet boundary of zero potential. This boundary is developed using a 

method referred to as Transparent Grid Termination (TGT). Usc of the distant Dirichlet 

boundary, in effect, surrounds the EMAG computational grid with free space and 

maximizes EMAG's accuracy. TGT is used to allow the lengthy process of boundary 

calculations to be performed only once. These results arc then stored as a file and used 

by EMAG in the solution of its open boundary problems. The theory behind TGT and 

the methods used in calculating the boundary conditions for rotationally symmetric 

systems will be explored in detail in Chapter III. [Ref l.] 
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II. FD SOLUTION OF ROTATIONALLY 

SYMMETRIC GEOMETRIES 

A. DISCRETIZED POISSON EQUATION 

This section will detail the process of developing the discretizcd Poisson equations 

for rotationally symmetric systems. Although the electrostatic and magnetostatic Poisson 

equations are dual equations, for rotationally symmetric systems their discretizcd forms 

are quite different from one another. This is unlike the discretizcd equations for 

z-invariant systems which are identical for both electrostatics and magnetostatics. 

Development of the discretizcd electrostatic Poisson equation begins by considering an 

elementary volume in cylindrical coordinates as shown in Figures I and 2. Figure I 

shows an elementary volume in cylindrical coordinates and the locations of neighboring 

discrete nodes relative to that volume. Figure 2 depicts a cross section of that volume. 
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Poisson's equation relates electric scalar potential to the enclosed charge distribution and 

media by 

(1) 

The goal of this section is to develop an equation which relates the potential at a given 

node (say the center node) to the potentials of its neighboring nodes, the charge within 

the volume, and the media parameters. Since this system is rotationally synunctric, there 

is no variation in the media or the sources with respect to the angle of rotation and 

<b front= <b ,_ • The center node is separated from its neighbors by four annular regions of 

media, each of dimension llr by &z in cross section. Since symmetry requires that 

potential remains constant with respect to 9, the 9 component of the electric field is zero. 

Using the integral form of Gauss' Law 

I --+ --+ 
'Is D • d S = Q.,cloud, (2) 

the constitutive relationship 

(3) 
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and assuming that the fields are constant over each face of the elementary volume, the 

charge inside the elementary volume can be related to the electric flux penetrating 

outward through each of the remaining four sides of the volume by 

l!J- l!J- t:.z llr t:.z -Er(r-- z)·[(r--)AS-·£..4 +(r--)A8-·£c Left (4) 2' 2 2 2 2 

Top 

where Q~,c~DMd is related to the volume charge density by 

(5) 

The next step is to relate the electric field components to the potentials of the discrete 

nodes. Using the definition of electric scalar potential 

~ 

E = - V<l>, (6) 
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leads to the following FD equations: 

(7) 

(8) 

E llz) <1>,- <l>c 
z(r,z+T = llz (9) 

(10) 

Substituting equations (7) through (1 0) into equation ( 4) and selecting llz =~=Ill to 

establish a uniform grid yields 

(11) 

which is the discretizcd Poisson equation for a rotationally symmetric electrostatic 

system 

8 



--------------------------------------------------------------------------

The development of the magnetostatic Poisson equation also begins with the 

elementary volume in cylindrical coordinates. A cross section of the elementary volume is 

shown in Figure 3. 

At 

Axis of Symmetry 

Figure 3. Magnetostatic Elementary Volume 

In this figure, the current (I) and the magnetic vector potentials (A,. A,, A,, Ab and AJ 

are all in the e direction. This allows the magnetic vector potential to be treated as a 

scalar. Using this fact along with the integral form of Ampere's Law. a discretized form of 

Ampere's Law can be developed. Ampere's Law relates the magnetic field around a 
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closed path to the total current flowing through any surface bounded by that path and is 

given by 

f -+-+ I-+,_. 
c H • dl = s J • d s (12) 

when: His the magnetic f~eld and J is the current density. Selecting a uniform grid for 

EMAG (ll/ = llr = llz) n:sults in a discn:tized form of Ampen:'s Law 

(13) 

The next step is to solve for the magnetic faclds along each side of the elementary volume 

containing the center node. This is accomplished by using the n:lationship 

-+ I -+ 
H= Jl(Vx A) (14) 

which n:latcs the magnetic facld to the magnetic flux density (the curl of the magnetic 

vector potential) and the permeability of the media. Assuming that the magnetic flux is 

constant along each side of the contour surrounding the elementary volume, the 

n:luctivity, 1/Jl, will be the average of the n:luctivities of the two homogeneous annular 

n:gions through which the flux penetrates. 
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Using this value for reluctivity along with the: definition of curl in cylindrical coordinate 

systems and the: fact that all of the: magnetic vector potentials are exclusively in thee 

direction, equation (14) becomes 

(IS) 

where r is the center node's radial distance from the axis of rotation. Applying cq, ..• ton 

(IS) to all four sides of the volume results in the following four FD equations for the 

magnetic fields shown in Figure 3: 

(16) 

(17) 

(18) 

(19) 
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Substituting equations (16) through (19) into equation (13) yields 

I I I I I I -[-(-+-)]A,-[-(-+-)] Ab= I 2 J.l..4 J.lB 2 J.lc J.lD c 
(Amps). 

Equation (20) is the discrctizcd magnetostatic Poisson equation which ~elates the 

potential of the center node to the potential of its four nearest neighboring nodes and the 

currcnt through the center node. Although equations (II) and (20) look very difTercnt 

from one another, they both tend toward the z-invariant Poisson equations used in 

EMAG as r tends toward infinity. This fact is the basis for the approach used to modify 

the EMAG code prcscntcd in the next section. 
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B. IMPLEMENTATION OF DISCRETE POISSON'S EQUATION IN EMAG l.O 

In order to solve rotationally symmetric problems, the original version ofEMAO 

needed to be modifted in three ways. First, in the equation solver subprograms, code 

needed to be added which applied the Poisson equations derived in the previous section. 

These types of modifications are the subject of this section. The second set of 

modifications, to be discussed in Chapter Ill, involved the usc of rotational symmetry 

equations to develop the TOT boundary data. The third set of modifications involved 

addition of code to allow EMAO 2.0 users to choose between z-invariant and rotationally 

synunctric systems. This last set if modifications will not be discussed except in the 

context of how EMAO 2.0 is used. All modifaed EMAO subprograms can be found in 

Appendix A. 

The original version ofEMAO uses two different methods for calculating the 

potentials across the computational grid. The first method, intended for solving coarse 

( 17 x 17) grid problems, utilizes a system matrix containing all information about media 

and the TOT boundary. This system matrix is generated by the MA TLAB script file 

makesys2.m. The script file matsolve.m then applies the user spccifaed source 

information and solves the system of equations using matrix operations. To modify the 

coarse solver for rotational symmetry, equations (11) and (20) were used. Specifically, 

the factors in these equations which weight the media parameters based on the center 

node's relative distance from the axis of symmetry (such as ( 1 - t)) were inserted into 
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duplicates of the z-invariant equations. These equations~ used instead of the 

z-invariant set when the user specifiCs that the problem to be solved has rotational 

symmetry. The system matrix approach was not used in the original version ofEMAG in 

solving fine ( S 1 x S 1) grid problems, because of the large size of a fine grid system matrix 

and the fact that the sparse matrix tools were not yet included in MATLAB. For a fine 

grid of this size, the system matrix would contain nearly 6.8 million elements and require 

54 megabytes of memory if stored as a full matrix [Ref. 1]. As a result, a second, more 

memory conservative solution approach was utilized. 

The method originally used in EMAG for solving fine grid problems was a Jacobi 

iterative solver. ( The reasons for choosing a Jacobi solver ~ detailed in Reference 1.) 

This solver is contained in the MA TLAB script file itersoln.m. The Jacobi solver can 

utilize saved results from previous problems, the results of the coarse solver or a default 

set of potentials (zero except where known a priori) as the starting point for its iterations. 

The EMAG user specifics a desired percent error at which to stop iterating the solution. 

The computational time required to solve a problem using this approach increases with 

the degree of accuracy required. Because the modifications leading to EMAG 2.0 were 

accomplished using MA TLAB 4.0, sparse matrix operations were utilized in the system 

matrix solver to allow it to be used for both coarse and fine grid solutions. The Jacobi 

solver however, was not eliminated since it has the useful advantage that it can usc 

previous solutions as the starting point for its iterations, thereby increasing its speed of 
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convergence to the solution. For example, by using the coarse grid solution as a starting 

point for a fine grid calculation, the iterative solver can often run faster than the system 

matrix solver with an estimated error less than I%. The system matrix approach, which 

n:quin:s the same computational time n:gardless of the problel'llt cannot take advantage 

of a pn:vious solution, but generally runs faster than the Jacobi solver without an 

accurate starting set of potentials. Accordingly, in EMAG 2.0 the user has a choice of 

using either the Jacobi solver or the system matrix solver when solving a problem on the 

fine grid. Fine grid problems using the system matrix approach an: solved using the 

matsolvf.m and makesysf.m script files. The iterative solver in itersoln.m has been 

modified to include the Poisson equations for rotational symmetry. Modifications to 

itersoln.m wen: similar to those made to makesys.m in that the rotational symmetry 

unique terms wen: applied as factors weighting the media parameter terms. 

When EMAG 2.0 users desin: to solve a rotationally symmetric problem, they simply 

answer "y" (or "Y") to the question "Do you want to solve a rotationally symmetric 

system?" in the "New Domain Region" selection part of the EMAG session. Once this 

choice is made, EMAG 2.0 remains in the rotational symmetry mode until a new domain 

n:gion is n:qucsted. As a n:minder that EMAG is in the rotational symmetry mode, a 

border around the computational grid is plotted in red. This border is white in the 

z-invariant mode. The user then defines cells of media and sources on the computational 

grid in the same manner as in the z-invariant case except that only the right half of the 
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cross section of the system is visible. For problems in electrostatics, the axis of 

symmetry is parallel and one half of an inter-nodal distance (AI) to the left of the left 

side of the computational grid. For magnctostatic problems, the axis of symmetry is 

parallel and a whole inter-nodal distance to the left. These arrangements take advantage 

of symmetry, maximize the useful input area of the computational grid, and eliminate the 

mirror images that would result if the axes of symmetry had been chosen to be in the 

center of the computational grid. They also allow reuse of the drawing routines used for 

z-invariant systems. A sample electrostatic problem on the EMAG 2.0 rotational 

symmetry computational grid is shown in Figure 4. 

Inner Conductor l Axis of Symmetry 

Border 

i Axis of Symmetry 

Figure 4. Section of Coaxial Cable on Computational Grid 
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Figure 4 depicts the right half cross section of a short segment of a coaxial cable as it 

would appear on the EMAG 2.0 computational grid. (If the user had not requested a 

rotationally symmetric problem, this same picture would represent a parallel plate 

capacitor extending infinitely into and out of the computational grid along the z-axis.) 

In addition to the changes to the system solver programs listed above, EMAG's 

subroutines required several other modifications to accommodate rotational symmetry. 

First, the subroutines cefield.m andfefleld.m, which plot the electric or magnetic fields 

for the coarse and fine grids respectively, were modified so that the magnetic fteld would 

be calculated using the definition of curl in cylindrical coordinates. Next, the enclosed 

charge calculation subprogram, q_calc.m, which performs a flux integral, was modifJCd 

to account for the fact that the area of the faces of the elementary volume arc functions of 

the volume's distance from the axis of rotation. This modification results in the charge 

enclosed in a user specified area of the rotationally symmetric computational grid being 

expressed as total charge (in Coulombs) instead of charge per unit length 

(Coulombs/meter) as it is in the z-invariant case. The last modification was applied to 

the enclosed current subroutine i_calc.m. This subroutine was modified so that the 

enclosed current for rotationally symmetric systems is calculated using the definition of 

curl in cylindrical coordinates. The modified versions of all the above subroutines arc 

included in Appendix A. 
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III. MODELING OF OPEN BOUNDARY 

A. THEORY OF TRANSPARENT GRID TERMINATION (TGT) 

In order to quickly and accurately solve open boundary problems, EMAG uses a 

technique called Transparent Grid Termination (TGT) to simulate the existence of a zero 

potential, Dirichlet boundary far away from the user defined problem on the 

computational grid. Using the known zero potential on the Dirichlet boundary and 

defining all space outside EMAG's computational grid to be source free and 

homogeneous, a very large system of Poisson equations involving the nodes inside the 

Dirichlet boundary is panially solved in advance. The end result of this process is a 

system of equations which relate the potentials of the nodes on the first layer outside the 

computational grid (called the TGT boundary) to all of the nodes just inside of this layer, 

given that there exists a distant boundary of zero potential. These equations arc stored in 

the fonn of a matrix (called the TGT matrix) which, once calculated, replaces the many 

concentric layers of nodes in the homogeneous, source free region between the 

computational grid and the distant Dirichlet boundary. 

Since this original "buffer" zone of nodes was defined to be homogeneous and source 

free, this TGT matrix does not change from problem to problem and in no way depends 

on what may be defined within the computational grid for any particular problem. As 

such, the TGT matrix is stored and reused over and over to solve any user defined 
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problem quickly. Since the TGT boundary relationships arc calculated by partially 

solving the larger physical system with a Dirichlet boundary, TGT provides exactly the 

same solution as would be obtained by solving the user defined problem with a distant 

homogeneous Dirichlet boundary. However "solving through" this unchanging buffer 

zone once and storing the results eliminates repetitive and time consuming computations. 

Solving the whole open boundary problem would require several hours on even the 

fastest PC. The vast majority of this time would be spent solving through the buffer zone 

which docs not change from problem to problem. TGT simply allows one to devote this 

time only once in the calculation of the TGT matrix and then to use the results of this 

partially solved system for different problems. [Ref. 1] 

Figures 5 and 6 illustrate the relationships between the computational grid and the 

Dirichlet boundary for z-invariant and rotationally symmetric systems respectively. 

The arrows in these two figures show how each node on the TGT boundary is globally 

related to every node on the outer layer of the computational grid and the Dirichlet 

boundary while each node on the computational grid is related only locally to its four 

nearest neighbors [Ref. 2]. Notice that unlike the z-invariant computational grid 

(Figure 5), the rotationally symmetric computational grid (Figure 6) has a distant 

Dirichlet boundary on only three sides. The left side of the rotationally symmetric 

computational grid for electrostatic systems is adjacent to the axis of symmetry and as a 

result, has a Neuman boundary of zero gradient to its left. The axis of symmetry for 
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the magnetostatic rotationally symmetric system is placed on the left side of the TOT 

boundary and is a homogeneous Dirichlet boundary. The reason for the different 

placements of the rotationally symmetric electrostatic and magnetostatic computational 

grids is that for magnetostatic systems with only e directed components of magnetic 

vector potential, the potential is known to be zero on the axis of rotation. In contrast, for 

the electrostatic system, it is the gradient of the electric scalar potential that is zero on the 

axis of rotation. Different grid placements, therefore, take advantage of these known 

facts in establishing the boundary conditions. As shown in Figures 5 and 6, EMAO 

always uses a square computational grid and the TOT boundary is a layer of nodes one 

inter-nodal distance outward from the last layer of the computational grid. This TOT 

boundary contains all information about i:he distan~ Dirichlet boundary required to solve 

any problem drawn by a user on the computational grid with the same accuracy as 

solving the much larger problem within the distant Dirichlet boundary. With the T'"'!T 

boundary matrix calculated in advance, EMAO only needs to solve the sparse system of 

equations depicted by the topology map of Figure 7. [Ref. 2] 
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Figure 7 is a mapping of the non-zero clements in the matrix which relates the nodes 

on the computational grid and the TGT boundary to one another. A spiral node labeling 

pattern is used, starting from the upper left node on the TGT boundary and spiraling 

clockwise inward to the center of the computational grid The main "diagonal" is three 

clements wide and represents the relationship between a node and its nearest neighboring 

nodes on its right and left. These relationships arc derived using the discretizcd Poisson's 

equations, equations (II) or (20). The upper diagonal represents the tcnns which relate 

each node to its neighboring node immediately inward, toward the center. The lower 
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diagonal represents the tenns which relate each node to its neighbor outward, away from 

the center. The dense square area in the upper left corner of the map represents the TGT 

matrix. It is this densely packed matrix which relates the potentials of the nodes on the 

TGT boundary to the nodes on the outer edge of the computational grid wven the fact 

that there exists a distant Dirichlet boundm of zero potentia). Whereas the diagonals 

represent local relationships between a node and its neighbors, the TGT matrix relates 

each node on the TGT boundary globally to all the nodes on the outer edge of the 

computational grid. The spiral numbering scheme is used in order that the TGT matrix be 

densely packed with no non-zero elements, thereby minimizing its size. The next two 

sections of this chapter will present two different approaches to calculating the TGT 

matrix. The final section of this chapter will compare these techniques and present the 

results of research into the optimization ofTGT. [Ref. 2] 
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B. CALCULATING THE TGT MATRIX: THE MATRIX SOLUTION METHOD 

The starting point for calculating the TOT matrix of coefficients is always the 

discretized Poisson equation for the given system Although this chapter will describe 

the process of calculating the TOT coefficients for a rotationally symmetric system, the 

procedure is "generic" and has also been used to calculate TOT coefficients for 

z-invariant systems. Since the buffer zone between the distant Dirichlet boundary is 

homogeneous and source-free, the discretized Poisson equation for electrostatics 

(equation (11)) simplifies to a discretized Laplace equation given by 

(21) 

The corresponding equation for magnetostatics is 

(22) 

Using the appropriate Laplace equation, it is a straightforward process to generate a 

set of three matrices which relate each node to its four neighbors. One matrix, M1, 

relates the nodes on a layer (say layer m) in the homogeneous, source-free buffer zone to 
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their neighbors on the next layer of nodes outward toward the Dirichlet boundary (say 

layer 1). The second matrix, M,. , relates nodes on layer m to the nodes on the next layer 

inward toward the computational grid (layer n). The third matrix, M., relates the nodes 

on a layer to themselves and their two neighbors on the same layer. Because these 

matrices have a discernible pattern, and arc functions of the computational grid size and 

the relative size of the m-th layer of nodes, they can_ be generated algorithmically. 

Functions for creating these matrices via MA TLAB arc included in Appendix B. The 

three functions makem/c.m, makemnc.m and makemmc.m produce the M1• M,. and M. 

matrices respectively, for rotationally symmetric electrostatic systems. The functions 

magmlc.m, magmnc.m and magmmc.m perfonn the same functions for magnetostatic 

rotationally symmetric systems. The two input parameters for these functions are the 

number of nodes on a side of the desired square computational grid and the number of 

nodes on the right or left side of the m-th layer of nodes. 

As shown in Figure 6, layers of nodes outside the computational grid are defined to 

have only three sides for a rotationally symmetric system. Symmetry makes it 

unnecessary to calculate the TGT coefficients for the left side of the TGT boundary. For 

electrostatic systems, these nodes arc known to be at the same potential as their "mirror 

images" across the axis of rotation (Neuman boundary condition). The upper left and 

lower left nodes on the TGT boundary have the same TGT coefficients as their image 

nodes across the axis of rotation. The remaining nodes on the left side of the TGT 

25 



boundary have the same potential as their images and therefore have a single TOT 

coefficient equal to one, which relates them only to their image node on the 

computational grid. Figure 8 illustrates these relationships. In this fi~, the gray nodes 

arc TOT boundary nodes and the black ones belong to the computational grid. 

v Share Same OJeffrcients 
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Figure 8. Left Side ofTGT Boundary for Electrostatics 

For magnctostatic systems, the potentials on the axis of rotation arc known to be zero so 

the left side of TOT boundary has been placed on the axis and all of the corresponding 

coefficients have been set to zero (local Dirichlet boundary condition). 
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Samples of the output of each of these functions and their MA TLAB script file listings 

arc in Appendix B. The samples were generated for the first layer of nodes outside a 

three by three node computational grid such as shown in Figure 8. Output from these 

functions arc m by x matrices (x=l,m or n) for which the rows represent the nodes on the 

m-th layer and arc numbered in a clockwise fashion starting with the node in the upper 

left corner of the layer. The columns represent the nodes on the /, m or nth layer and arc 

numbered in the same manner. As can be seen from the sample outputs for this small 

computational grid, the matrices can get to be quite large. Fortunately, they arc always 

very sparse. Also inc1udcd in Appendix B arc the three functions makeml.m, makemn.m 

and makemm.m which generate the M1, M,. and M. matrices for z-invariant systems along 

with samples of their output. Note that for z-invariant systems, these matrices arc not 

functions of the inner grid size. The reason for this is that the layers of nodes outside the 

computational grid arc concentric squares for this coordinate system. For rotationally 

symmetric systems, these layers of nodes arc rectangular in shape and missing a left side. 

Further, it is important to note that there is no need to have different sets of programs to 

generate TOT coefficients for z-invariant electrostatic and magnetostatic systems since 

the z-invariant Laplace equations for electrostatics and magnetostatics arc identical. 

The process of solving for the TGT coefficients begins with a vector , Ia>, which 

represents the potentials of the nodes on the Dirichlet boundary (layer a) and the node 

relationship matrices discussed above for the next layer inward (layer b ). 
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The discrctized Laplace's equation in matrix fonn is 

(23) 

where lb> and lc> represent the potentials on the next two layers inward, b and c 

respectively. Continuing one layer inward leads to 

(24) 

Given that la>=O for a layer with zero potential, equations (23) and (24) can be 

combined and solved to find lc>, the potentials of the nodes on layer c, in tenns of the 

nodes on the next layer inward. This solution is given by 

(25) 

Since this solution docs not depend on the potentials of nodes on layers a or b , these 

layers have been effectively eliminated from the problem. To calculate the TOT 

coefficients, this process of layer elimination is continued inward towards the 

computational grid Since the subsequent expressions grow in length with every 

elimination, a special "termination" matrix can be defined for each node layer. 
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To simplify notation, define 

(26) 

and 

(27) 

as the termination matrices for layers band c respectively. [Ref. 2] 

In general, the expression which relates the nodes on a layer to the nodes on the next 

layer inward is given by 

lm > =(f ~-1 M, In> (28) 

where the generic termination matrix, r,' can be calculated iteratively by 

(29) 

When this elimination process is continued inward until the TGT boundary layer is 

reached, the TGT coefficients arc obtained by 

TGT= (f "')-1M,. (30) 
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The MA TLAB script files , coefgenc.m and coefmagc.m, used in calculating the TGT 

coefficients for rotationally symmetric electrostatic and magnctostatic systems 

respectively, can be found in Appendix B. These programs calculate the TGT 

coefficients for three sides of the TGT boundary using the algorithm discussed above. 

They then add the remaining terms for the fourth side based on symmetry and either 

known potentials or known gradients of potential. The last program contained in 

Appendix B is the TGT coefficient generating script file for z-invariant systems, 

coefgen.m. [Ref. 2] 
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C. CALCULATING THE TGT MATRIX: THE MONTE CARLO METHOD 

The Monte Carlo Method (MCM) is a technique used to approximately solve a 

mathematical problem through the use of a probabilistic model [Ref. 3: p. 73]. To use 

the MCM to solve for TOT coefficients, a MA TLAB algorithm was developed to 

"release" a faxed number of"random walkers" from a node on the TOT boundary. The 

direction in which each of these walkers travel is determined and assigned based on the 

outcome of a random number generator and the relationship between nodal potentials 

given by the discretized Laplace equation for the appropriate system For a z-invariant 

system, random walkers arc assigned an equal 25% probability of going up, down, right 

or left. This is because the pf)tential of a node in the homogeneous source-free buffer 

zone between the computational grid and the defined far Dirichlet boundary is 25% of 

the sum ofthe potentials of each of its four neighbors (above, below, to the right and 

left). For rotationally symmetric electrostatic systems, however, the "contributions" of 

the right and left neighboring nodes are weighted by the (1- 1, ) and (I+ 1, ) 
2(Ar) 2(Ar) 

terms of equation (21 ), repeated below for convenience 

(31) 

31 



Similarly, the weighting factors for the rotationally symmetric magnctostatic system 

come from equation (22), repeated below 

(32) 

As can be seen in equation (32), the potential of the center node is also weighted for 

magnetostatics. 

After every step, each random walker is given a new direction based on a new random 

number and the walker's current location. The walkers continue their "journey" until 

they land on the computational grid or the distant Dirichlet boundary. If they land on the 

Dirichlet boundary, they are eliminated as if to be "nullified" by the zero potential of the 

boundary nodes. If they land on the computational grid, a counter which counts the 

number of walkers to land on that node is incremented by one and again the walker is 

eliminated. Once all of the walkers have been eliminated, the final count of walkers 

arriving at each node on the computational grid is divided by the number of walkers 

originally released. The end result is a set of coefficients which relate the original walker 

release node to each of the nodes on the outside edge of the computational grid This set 

is a row in the TGT matrix. The MA TLAB functions which perform this algorithm are 



contained in Appendix C. The functionfncylwlk.m is used for rotationally symmetric 

electrostatic systems whilcfnrctwlk.m is used for z-invariant systems. The programs 

cylcoff.m and rctcoff.m, also in Appendix C, call these functions once for each node on 

the TGT boundary and assemble the data into the TGT matrix for rotationally symmetric 

and z-invariant systems respectively. As in the case of the matrix solution method, the 

TGT coefficients for the nodes on the left side of the TGT boundary in a rotationally 

symmetric system arc derived using symmetry. This is done not just to improve 

efficiency but out of necessity since a walker on the left edge of the buffer zone is 

exactly ~ away from the axis of rotation and by the electrostatic Laplace equation has 

zero probability of stepping to the left. Accordingly, no walker can ever land on the left 

side of the computational grid and the TGT relationships can only be determined by 

using the symmetry of the system For reasons discussed in the next section, TGT 

coefficients for rotationally symmetric magnetostatic systems were not calculated using 

the MCM approach, although this could be easily accomplished with only slight 

modification to rctcoff.m andfnrctwlk.m. 
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D. COMPARISON OF TGT METHODS 

Each of the two methods for calculating TGT coefficients discussed previously have 

advantages and disadvantages. The greatest advantage of the Matrix Solution Method is 

its accuracy. As discussed in the first section of this chapter, TGT provides the same 

accuracy as solving the whole open boundary problem without TGT. This is because the 

matrix solution method uses Poisson's equation to solve for the TGT coefficients just as it 

would be used to solve the whole open boundary problem The Monte Carlo Method 

(MCM) approach however, is only based on the Poisson equation and will always be 

subject to an amount of random "noise". The MCM approach gencraJJy makes TGT less 

accurate than solving the whole open boundary problem. For this reason, the TGT 

coefficients used in EMAG 2.0 were calculated using the matrix solution method. 

Insufficient accuracy, however, docs not necessarily eliminate the MCM approach 

because its accuracy is improved by using a very large number of walkers. This 

increases computation time, but parallel processing can be used to recover this time as a 

result of the parallel nature of the problem (i.e., the independence of random walk 

outcomes for different walkers). Further, the MCM approach has the advantage that it 

allows the user to exchange run time for computer memory. The user can release large 

sets of walkers a few times to maximize the usc of available memory and improve speed 

of computation, or the user can choose to release only a very few walkers many times 

thereby increasing computation time but using little memory. In this way, the user can 
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select a set of walkers of a size which either maximizes or minimizes the usc of memory. 

The number of walkers can effectively be increased by running the program a number of 

times and averaging the results. In this way, there is no limitation on either the number 

of walkers or the distance to the Dirichlet boundary except for the CPU time. This can 

be a distinct advantage over the matrix solution method which is primarily limited by the 

available memory. The process of layer elimination for the matrix method, requires that 

the CPU have enough available memory to invert and store a square matrix with 

dimensions equal to the number of nodes on the first layer to be eliminated Although 

sparse matrix tools available in MA TLAB help, the inverse of a sparse matrix is 

generally not sparse. A memory limitation can only be alleviated by moving the 

Dirichlet boundary closer to the computational grid. 

35 



E. TGT OPTIMIZATION 

This section summarizes the research into optimization ofTGT. The questions to be 

answered concerning optimization are: 

1. Given a computational grid size, is there an optimum distance at which to put the 

Dirichlet boundary? 

2. Using the Monte Carlo Method and the optimum boundaly distance from above, 

how many random walkers are required to produce accurate TGT coefficients? 

3. Given the answers to the first two questions, how do speed of computation and 

memory requirements compare between the two TOT methods? 

Optimization of TOT begins with answering the first of these questions. This answer 

is important because the first step in using TOT is deciding how far away to place the 

Dirichlet boundary. The result of this decision controls the speed of calculation and 

memory required as well as the accuracy of calculations within the TGT boundary. In 

calculating the TOT matrix for use in the original version ofEMAO, this decision was 

made based on the memory limitations of the computer used to calculate the TOT 

coefficients (a HP-700 series UNIX workstation). As the result, the Dirichlet boundary 

was established for the "fine" grid to be 803 by 803 nodes or 376 layers away from the 

computational grid. In order to maintain the same ratio between the boundary and 

computational grid size, the boundary for the "coarse" grid was made 267 by 267 nodes 

or 125 )ayers away from the computational grid [Ref. 1]. The following paragraphs 
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describe the research conducted to determine the optimum boundary location for a given 

computational grid. This research w~ conducted using a z-invariant system since the 

z-invariant computational grid has a distant Dirichlet boundary on all four sides and the 

layers of nodes in the buffer zone between the boundary and the computational grid arc 

concentric squares. However, it has been verified that the results apply to rotationally 

symmetric systems as well. 

Ideally, if the EMAG computational grid were actually surrounded by free space, the 

TGT coefficients relating a node on the TGT boundary to the nodes on the outer edge of 

the computational grid would always sum to unity. In the language of the MCM 

approach, this is because the walkers would have no outer boundary to land on and 

would all eventually land somewhere along the edge of the computational grid. As a 

result of this property, a measure of the quality of the TGT matrix can be defined as 

Lq; 
Qror=-n- , q;=LCn (33) 

where q; is the sum of all the coefficients (c,.) relating the i-th node on the TGT boundary 

to the nodes on the edge of the computational grid and n is the number of nodes on the 

TGT boundary [Ref. 4]. For a computational grid in infinite free space, Q would be 

equal to one. Now, if Q was the only factor governing the quality of the TGT 

coefficients, the original approach of placing the Dirichlet boundary as far away from the 
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computational grid as possible would be the best solution. However, thcR: is a fmite 

limit at which the size of the Dirichlet boundary becomes so large in comparison to the 

size of the computational grid, that moving the boundary further away yields diminishing 

R:tums. In tenns of the MCM approach, this phenomenon can be described as walkers 

being moR: likely to land on a very large but distant Dirichlet boundary than a R:latively 

small computational grid simply because of the vast diffeR:nce in their sizes. As a 

specific example, an 11 by 11 computational grid would have 40 nodes on its outer edge. 

A 21 by 21 node Dirichlet boundary layer would be only five layers away but would 

already have 80 nodes or twice as many as aR: on the edge of the 11 by 11 computational 

grid. The size of the Dirichlet boundary grows by eight nodes for every layer it is moved 

away from the computational grid. 

In order to determine the R:lationship between the size of the computational grid and 

the optimum size of the Dirichlet boundary, the matrix solution algorithms for 

calculating TGT coefficients described in section B of this chapter weR: used. Early 

attempts at this involved fixing the computational grid size and moving the Dirichlet 

boundary further away one layer at a time while looking for a point at which the R:lative 

change in Q between successive computations was less than 0.1 %. During this process, 

it was noticed that for a fixed Dirichlet boundary size, choosing successively smaller 

computational grids would eventually R:sult in a maximum value for Q after which it 

dropped rapidly. This R:sult was contrary to the expectation that moR: layers of nodes 
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~-------------------------------------------------------------------------

between the boundary and the computational grid would always ~suit in higher Q's. 

Through investigation of this phenomenon, it was discovered that for a given Dirichlet 

boundary size there is a computational grid size which maximizes Q but that the convene 

of this is not true. This observation led to a "~venc" approach of starting with a known 

Dirichlet boundary size and searching for the ideal computational grid size. To this end, 

a Dirichlet boundary size was chosen and the row elimination process involved in 

calculating the TOT coefficients begun. As each row was eliminated, a new set of TOT 

coefficients was generated as if the dcsi~d TOT boundary had been ~ached. The Q 

factor for this set of TOT coefficients was then calculated and stored. This process was 

continued until the inner-most layer was reached (a 3 by 3 layer of nodes). The stored 

values for Q were then plotted versus the dimension of the layer at which they were 

calculated. The resulting curve ~presented the Q factor trend for a fixed Dirichlet 

boundary size as the computational grid was decreased in size. The Q curves ~suiting 

from using Dirichlet boundary sizes of 51 by 51, 1 01 by 101 , 151 by 151 and 201 by 

201 ~shown in Figure 9. 
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Figure 9. Boundary Curves: Q-Factor Trend 

The starred points on each of the curves in Figure 9 represent the TGT boundary size 

(and therefore the computational grid size) which corresponds to the maximum value of 

Q. These curves illustrate that although moving the boundary further away will always 

increase the Q for a fiXed computational grid size, this computational grid size will 

eventually fall on the left hand side of the boundary curve when: Q drops off. Choosing 

computational grid sizes which correspond to the maxima on each of these curves results 

in a set ofTGT coefficients that most effectively match the resolution of the grid To put 

it another way, although moving the Dirichlet boundary further away always improves 
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the TGT coefficients, there is a point at which the resolution of the grid becomes the 

limiting factor in solution accuracy and improving TGT is no longer beneficial. 

To determine the function which relates the optimum computational grid size to the 

Dirichlet boundary size, boundary curves were generated for 9S Dirichlet boundary sizes 

ranging from 11 by 11 to 201 by 201. The resulting computational grid sizes were 

plotted against their corresponding boundary sizes as shown in Figure 10. 
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Figure 10. Boundary to Grid Size Relationship 

Figure 10 shows that there is a linear relationship between the Dirichlet boundary size 

and the corresponding optimum computational grid Figure 11 is a plot of the ratios of 

the sizes of the data pairs plotted in Figure I 0. 

41 



Figure II. Convergence of Data 

Figure II shows that the ratio of Dirichlet boundary size to computational grid size 

converges to a value of2.879. As a result, the Dirichlet boundary size to be used with a 

given computational grid can be calculated directly by multiplying the desired grid size 

by 2.879 and then rounding to the nearest odd integer if the computational grid is of odd 

dimension or to the nearest even integer if it is of even dimension. 

Once the relationship between the boundary and the computational grid sizes was 

dctermir.ed, the number of MCM random wallcen required to accurately solve the TOT 

problem could be evaluated To accomplish this, sets of TOT coefficients wen: 

42 



generated using varying numbers of walkers for a fiXed computational grid size and a 

distant Dirichlet boundary established from the condition given above. These TGT 

coefficients wen: then compared to the matrix method TGT coefficients to dctennine a 

tenn-by-term error, &t, given by 

(34) 

where St is the k-th, matrix method TGT coefficient and s t is the k-th coefficient 

generated by the MCM approach. A root-mean-square (RMS) error was then 

determined for the MCM coefficients by 

Error.,..= J~<;;>' (35) 

where N is the number of coefficients in the set. This result was then used to form an 

error-to-data ratio by using an RMS measure of the matrix solution TGT coefficient set 

given by 

(36) 
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and the relationship 

(37) 

Using this measure of accuracy, data was collected over a wide range of numbers of 

walkers. The results of many equal-sm:d sets of walkers were then used to produce a 

mean value and standard deviation for the error between trials associated with using a 

particular number of walkers. The lower curve in figure 12 depicts the mean 

error-to-data ratio for sets of MCM walkers using an II x II computational grid Curves 

for one and three standard deviations above the mean are also shown. 
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figure 12. Error vs. Number of Walkers 
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The Central Limit Theorem states that the sum of many statistically independent random 

variables approaches a Gaussian random variable. The number of walkers that will yield 

a set ofTGT coefficients with a given decibel error 99.7% (m+Jo) of the time, can 

therefore be chosen by using the upper standard deviation Jine in Figure 12 [Ref. S: 

pp. 425-430]. To achieve -40dB error with this level of success for an II x II 

computational grid would require approximately I.S x 105 walkers. To achieve this 

same error level but with 68.3% reliability, the lower standard deviation line (m+o) 

indicates that only about S x I 04 walkers would be required. This type of analysis has 

been conducted for grid sizes smaller and larger than 11 x II and it has been observed 

that the required number of walkers actually diminishes slightly with increasing grid size 

(at least up to 51 x 51, the size ofEMAG's "fine" grid). This is due to the fact that for 

larger computational grids a greater number of the TGT coefficients are very small and 

contribute little to the RMS values for the data and error. An approximation for the m+a 

curve is given by the equation: 

X 
Error -106 (-)dB= 40e -80 
Lata 

(38) 

where xis the number of walkers released from each node on the TGT boundary. This 

approximation is only valid for numbers of walkers greater than about 50,000 but gives 

an indication of how many walkers would be required to achieve accuracies greater than 
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shown in Figure 12. Using this approximation, about 700,000 walkers would be ~ired 

to achieve a -60 dB error to data ratio with 68.3% reliability. 

With the fint two optimization questions answered, the computational speed and 

memory requirements for the two TGT coefficient generation methods were compared. 

This comparison was made by calculating a set ofTGT coefficients for EMAG's "coarse" 

and "fmc" computational grid sizes. The number of MCM walkers was chosen to 

provide a -40dB error at a 68.3% level of reliability (m+<J). Table 1 contains the results 

of this comparison. The computational times were obtained by calculating TGT 

coefficients on an IBM compatible 486 class PC. The memory requirements arc 

estimates based only on the sizes of the matrices stored by each coefficient generating 

program and do not account for any of the MA TLAB overhead memory needed for the 

inversion of the sparse matrices, etc. 

TABLE 1: COMPARISON OFTGT METHODS 

17 X 17 S1 x SI 

Memory(KB) Time (sec) Memory(KB) Time (sec) 

Matrix 271 100 2,700 6,520 
Method 

MCMwith 400 29,700 400 217,000 
Sx1 04 Walkers 
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As can be seen in Table 1, the matrix solution method is considerably faster than the 

MCM approach. It should also be noted however, that the mernol)' requirements of the 

MCM approach do not change with increasing grid size while the memol)' requirements 

for the matrix solution method grow rapidly. Furthennorc, although computational times 

for the matrix method arc much shorter than the MCM times, they also grow at a much 

faster rate than the MCM times. Finally, it needs to be noted that the MCM coefficient 

generating algorithm used here docs not take advantage of the symmeli)' of the system 

For z-invariant systems, one could calculate TGT coefficients for one-eighth of the nodes 

on the TGT boundal)' and then usc symmetcy to completely fi)) the TGT matrix. Such an 

approach would theoretically cut the MCM times by a factor of eight. Similarly, the 

rotationally symmetric MCM coefficient generation time can be reduced, but only by a 

factor of two. Furthennorc, only three-quarters as many coefficients need to be 

generated using MCM for a rotationally symmetric system (the left side coefficients arc 

already obtained by using the symmeli)' about the axis of rotation) resulting in a 

computational time of about three-eighths of the value listed in the table. 

As shown in this section, there is a choice of method by which the TGT boundal)' 

matrix can be calculated. Although the matrix solution method is the most desirable 

approach when using sequential computers to calculate TGT coefficients for EMAG's 

current computational grid sizes, the MCM approach can take advantage of parallel 

processing capabilities. This is because the paths taken by the individual walkers arc 
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statistically independent. The same statistical independence holds even for consecutive 

steps taken by a single walker. Using a parallel MCM algorithm, a massively parallel 

computer (l 024 processors, for example) could easily be more efficient in calculating 

TGT coefficients than it would be if it used the matrix solution approach. Further, dr. 

MCM approach docs provide an effective albeit slow alternative if memory is a limiting 

factor even on a sequential processing computer. Another Important point is that the 

MCM approach if very intuitive. It has served as a valuable tool in analyzing the 

generation of the TGT matrix. Finally, using two completely different methods for 

calculating the same set of coefficients proved to be a tremendous asset in the 

development and testing of the TGT algorithms contained in the appendices. 
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IV. EMAG 2.0 EXAMPLES 

This chapter presents two examples ofEMAG 2.0's solution of rotationally symmetric 

problems. These particular problems have been chosen because analytic solutions exist 

and can be compared with EMAG's results. The farst example is a problem in 

electrostatics: the calculation of the capacitance of a cylindrical capacitor. The second 

example is a magnetostatics problem which involves calculating the magnetic field on tt.P. 

axis of a current carrying circular loop. 
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A. CYLINDRICAL CAPACITOR 

The objective of this example is to calculate the capacitance of a cylindrical capacitor 

as shown in figun:: 13. This capacitor has length L = l em, an inner conductor radius 

a = 0.2 em, a variable outer conductor radius b, and a polyethylene dielectric separating 

the two conductors having a n::lative permittivity £r = 2.3. 

Inner Cbnductor 

Dielectric, £, = 2.3 

figun:: 13. Cylindrical Capacitor 

To calculate the capacitance using EMAG 2.0, the capacitor was modeled as shown in 

Figun:: 14. EMAG's "enclosed charge" utility was then used to determine the charge on 

the outer conductor and the n::sult was divided by the known potential diffen::nce between 

the conductors ( V au~u- V ._ = 1 volt) to find the capacitance. 

so 
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Figure 14. Cylindrical Capacitor 

Although Figure 14 depicts a cylindrical capacitor with an outer conductor radius 

b = 0.4 em, Table 2 presents the results for four capacitors with various outer conductor 

radii. The relationship used to calculate the theoretical capacitance is 

C 
21t&,.&oL 

TIJ~OI't!ltca/ : b 
In <a> 

(39) 

The derivation of this equation uses Gauss' Law, the definitions of capacitance and 

potential, and assumes that the fringing effects near the ends of the capacitor do not 
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contribute to the net capacitance [Ref. 6: p. 125]. Since these end effects~ only 

negligible when the separation between the conductors is small compared to the length of 

the capacitor, the EMAG and theoretical capacitances converge only for long, thin 

capacitors. However, end effects cannot be neglected for capacitors in which the length 

is not much greater than the conductor separation, and equation (39) is no longer valid. 

In this situation, equation (39) can serve only as a lower bound for the actual capacitance. 

Table 2 presents the capacitances calculated using EMAG and equation (39), the ratio of 

these two values and the separation to length ratio, (b-a)IL, for the four cylindrical 

capacitors modeled on EMAG's "fine" computational grid. 

TABLE 2: CYLINDRICAL CAPACITOR 

b(cm) ~a(pF) ~(pF) ~ic.J/~MAG (b-a)IL 

0.257 5.202 5.103 0.981 0.057 

0.300 3.219 3.156 0.980 0.100 

0.333 2.842 2.509 0.883 0.133 

0.400 2.433 1.990 0.822 0.200 
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B. MAGNETIC FIELD ALONG AXIS OF A CIRCULAR CURRENT WOP 

This example demonstrates the accuracy of EMAG's coarse and fine grid solvers in 

calculating the magnetic faeld along the axis of a cum:nt carrying loop. The problem to 

be modeled is shown in Figure IS. 

z 

y 

Figure IS. Current Canying Loop 

This problem was modeled in EMAG as a "point" cum:nt source on the rotationally 

symmetric computational grid. The "point" represented the cross-section of a loop of 

current perpendicular to the z-axis. This current was set to I Amp. Once this was done, 

the magnetic field values corresponding to the nodes on the axis of rotation were 
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extracted from the magnetic field matrix generated by EMAG. The coarse grid model 

and the equi-potential contour lines generated by EMAG arc shown in Figure 16. 

Cross Section of Loop 

1 SF=:;::=:;=::;=~'====:;, 
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Figure 16. Equal Potential Contours for Current Loop 

The fine and coarse grid solutions are plotted in Figure 17 along with the theoretical 

field strength given by 

(40) 
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which was obtained by dividing the thcoldical mapctic flux density by the permeability 

of free space [Ref. 6 : p. 238]. 

OM,----------------------~ 

OS 

045 

04 

3~ ,'.- .,. 
I/ ,_ .. ~·T \ 

:+ 
4• "t. 

/+ ... 
I• ,.. 

~t.· - Theoretical 
.. ·~· 025 ,_ 

~{•• ····· Fine Oid 
0 2 .'..,. .. 

4" +++ Coarse Oid 
0 '~,L._ __ .o._s ____ o.__ __ o._s ___ _~ 

Zlmei«SI 

Figure 17. Magnetic Field Along Axis of Loop 

As can be seen in Figure 17. EMAG's solutions are nearly identical to the theoretical 

solution. Not only does this example demonstrate EMAG's accuracy, but it also shows 

how infonnation can be extracted from EMAG to extend the analysis of a given problem. 

In this case, the column of data in each of the magnetic fteld matrices, hfJine and 

hf_coarse, which corresponded to the axis of rotation was copied and plotted against the 

theoretical solution. 
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V. CONCLUSIONS 

The enhancement of EMAG described in this thesis involved solving two related but 

separate problems. The fint was the generation of fmite difference equations for 

rotationally syllliJlCtric electrostatic and magnctostatic systems. The accond was the 

application of these: equations in implementing a boundary to accurately simulate infmite 

free space. In solving the fint problem it was found that for rotationally syllliJlCtric 

systems, the discrete Poison equations for electrostatics and magnctostatics arc different 

due to the directional properties ofthe magnetic vector potential. For z-invariant systems 

these directional properties can be ignored (because the magnetic vector potential and 

the current sources arc. in the z direction). As a result, z-invariant electrostatic and 

magnetostatic systems can share the same discretizcd Poisson equation. This is not the 

case for rotationally symmetric systems. Even if the sources arc defined to be 

exclusively in the 9 direction as they are in EMAG 2.0, the directional properties of 

magnetic vector potential cannot be ignored The curl operation relating the magnetic 

field to the magnetic vector potential causes the resulting discrete Poisson equation for 

magnetostatics to be different than the electrostatic equation developed using the 

relationship between the electric field and the electric scalar potential which involves a 

gradient operation. 
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~----------------------------------·------

Once these equations were developed, :h~·; were integrated into EMAG and used to 

calculate boundary relationships based on the concept ofTGT. During the course of this 

work. two different methods were used to calculate the TGT coefficients. Both methods 

usc discretizcd Poisson equations for a homogeneous, source-free region. Although both 

approaches create nearly identical sets ofTGT coefficients, each have their strengths and 

weaknesses. The matrix solution approach is more accurate. Using TGT coefficients 

generated from the matrix approach allows one to solve a problem on a fixed 

computational grid with the same accuracy as solving a much larger system extending all 

of the way out to the distant Dirichlet boundary (used to generate the TGT coefficients). 

The matrix approach was used to determine an optimal relationship bc:·:~.:en the 

computational grid size and the size of the distant Dirichlet boundary. This could not 

have been easily done using the MCM approach because its results arc a function of an 

additional variable: the number of walkers released from each of the TGT nodes. The 

matrix approach is also the faster of the two approaches, but this would not be the case if 

a parallel processing computer were used. The major disadvantage of the matrix solution 

approach is its memory requirement. 

The second method for generating TGT coefficients, the MCM approach, uses a 

probabilistic model in the generation of the TGT coefficients. It can only approach the 

accuracy of the matrix method when the number of random walkers becomes veey large 

and, on sequential computers, it is also veey slow. An exli:nsive parallel p~essing 
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capability however, could make the MCM approach faster than the matrix approach and 

then:fon:, mon: desirable. The other advantages of the MCM approach are its smaller 

memory n:quin:ments and its intuitive natun:. 

The end n:sult of above research is a mon: capable version ofEMAO. With its 

enhancements for rotational symmetry, EMAO can solve a wider set of problems. With 

the inclusion of TOT generating algorithms, it is possible to modify the program to solve 

problems on computational grid sizes of the user's choice. The possibilities for futun: 

improvements are numerous. They include the enhancement of the graphical user 

interface, and the addition of the capability to solve time varying problems. 
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APPENDIX A 
EMAG 2.0 LIST OF PROGRAMS 

Below is a directory of the files which make up EMAG 2.0. The italicized files are the 
MA TLAB script files which were modified to incorporate rotational symmetry. The 
following pages contain the complete code listings for these modified files. Code listings 
for the unmodified files are found in Reference 1. 

ccontour.m helppec.m pecline3.m 
cefie/dm helppost.m pecpnt.m 
chargsrc.m helpsolv.m pecreg.m 
checkchr.m helpsrc.m permat.m 
coarsegd.m i ca/c.m plotc.m 
connecto.m in267 _17.tgt source2.m 
cy267_17.tgt in803 _51.tgt table2.m 
cy803_51.tgt itersoln.m plotp.m 
cymag_17. tgt linterp.m plotq.m 
cymag_ 51. tgt looktab.m posterro.m 
dielcolo.m makesys2.m postproc.m 
emag.m makesysj.m printplo.m 
epscell.m matsolve.m q_calc.m 
epsreg.m matsolvfm redraw2.m 
fcontour.m plotd.m rprint.m 
fefieldm plotm.m saveplot.m 
fileopt.m mousetst.m so/ndom.m 
tind2rc.m myquiver.m solver.m 
geosetup.m nodes.m table 2.m 
hardcop.m numpec.m thresh.m 
helpemag.m oudine2.m toggle.m 
helpfopt.m outn51.dat uavg.m 
helpgeo.m pec.m voltsrc.m 
helpmed.m peccell.m xygrido.m 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% % 
%% cefield.m: Plots either theE-Field or the H-Field depending on the value % 
%% of the EM_flag, the field vectors can be plotted with the % 
%% geometry of the problem, and the vectors magnitudes can Qe % 
%% "thresholded", or scaled to minimum size as expressed as a % 
%% percentage of the maximum field. The field vectors plotted are% 
%% a result of the coarse grid solution. % 
%% (See thresh.m for more info on threshold) % 
%% % 
%% This program has been modified for rotational symmetry. % 
%% Magnetic fields are explicitly calculated for rot sym systems. % 
%% dpw 950515 % 
%% % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

eo _1 =pi•4e-7~ 
geo _on_ screen=O~ 

with _geometry=input('Outline the geometry [y]: ','s')~ 

if strcmp( with _geometry,[]), with _geometry='y'~ end 

if with _geometry=='y', 

geom_type='c'~ 

outline2 
hold on 

else 

xygrido( xmin,xmax,ymin,ymax,N _ coarse,N _coarse) 
hold on 

end 

ef_ coarse=gradient( -v _ mati,dx _ coarse/3,dy _ coarse/3)~ 

if EM_ flag=='M' 
uavg 

end 
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if ( cyl_ flag 'C')&(EM _ ftag=='M') 
rmat _rowc=O:(length(v _ mati)-1 ); 
rmat_row-rmat_rowc•dx_coarse•(l/3); 
rmatc=rmat_rowc; 
numrows=l; 
while numrows<length(v _ mati) 

rmatc=[ rmatc;rmat _rowe]; 
numrows=numrows+ 1; 

end 
h_tennc=gradient((v_mati.•rmatc),dx_coarse/3,dy_coarsel3); 
h _ tennc( :,2:length(h _ tennc ))=h _ tennc( :,2:length(h _ tennc) )./ ... 

(rmatc( :,2:length(h _ tennc ))); 
h _ tennc( 1 : length(h_ tennc ),1 )=h _ tennc( 1 :length(h _ tennc ),2) ... 

*(1+(4/l)*dx_coarse/3); 

j=sqrt( -1 ); 
hf _coarse=( -1 )*imag( ef _coarse)+( lj)*real(h _ tennc ); 
hf_coarse=hf_coarse./(eo_1*u_avg_matrix); 
clear nnatc 

end 

with_thresh=input('Set threshold for the vectors [n]: ','s'); 

if strcmp( with_ thresh,[]), with_ thresh='n'; end 

if with_ thresh='y', 

hold on 

if EM _flag 'M', 

if cyl_flag 'C' 
[ xx,yy ]=thresh(( -1 )*imag( ef_ coarse) ./( u _ avg_ matrix*eo _1 ), ... 

real(h_tennc) ./(u_avg_matrix•eo_1)); 
else 
[yy,xx]=thresh(real(ef_coarse) ./u_avg_matrix •eo_1, ... 

imag( ef_ coarse) ./u _ avg_ matrix •eo _1 ); 

end 
else 

[ xx,yy ]=thresh( real( ef _coarse), -imag( ef_ coarse)); 
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end 

myquiver(~yy.xmax,ymax, 'r-'); 

else 

ifEM_flag M', 

if cyl_ flag 'C' 
myquiver( ( -1 )*imag( ef _coarse) ./(u _ avg_ matrix*eo _I), ... 

real(h_tennc) ./(u_avg_matrix*eo_l),xmax,ymax,'r-'); 

else 
myquiver( imag(ef_coarse) ./u_avg_matrix •eo_l, ... 

real(ef_coarse) ./u_avg_matrix •eo_l,xmax,ymax,'r-'); 
end 

else 

myquiver(real( ef _coarse), -imag( ef _coarse ),xmax,ymax,'r-'); 

end 

end 

hold off 

o/o %%%%% o/oo/oo/oo/oo/oo/o%o/oo/oo/oo/oo/oo/oo/oo/oo/o%%%%% end of cefield. m 
o/oo/oo/oo/oo/oo/o%o/oo/oo/oo/oo/oo/o%o/oo/oo/oo/oo/oo/oo/o%o/oo/o%o/oo/oo/oo/oo/oo/o%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%o/oo/oo/o%%%o/oo/o%%%%%%%%%%o/o%%o/oo/o%%o/o%%%%%o/o%%o/o% 
%% % 
%% fefield.m: Plots either the E-Fie:J or the H-Field depending on the value o/o 
%% of the EM_flag, the field vectors can be plotted with the o/o 
%% geometry of the problem, and the vectors magnitudes can be % 
%% "thresholded" or scaled to minimum size as expressed by a % 
%% percentage of the maximum field. The field vectors plotted are o/o 
%% a result of the fine grid solution. See thresh.m for more info % 
%% o/o 
%% This file has been modified to explicitly cal.:ulate H-field % 
%% for rotationally symmetric magnetostatic systems. o/o 
%% dpw 940515 o/o 
%% 
%% 
%% % 

% 
% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

eo_l=pi*4e-7; 
geo _on_ screen=O; 

with_geometry=input('Outline the geometry [y]: ','s'); 

if strcmp( with _geometry,[]), with _geometry='y'; end 

if with_geometry=='y', 

geom _ type='r; 
outline2 
hold on 

else 

xygrido(xmin,xmax,ymin,ymax,N _fine,N _fine) 
hold on 

end 

ef_fine=gradient(-v_source_mat,dx,dy);% (-dV/dx)+j(-dV/dy) z-invar 
o/c (-dV/dr)+j(-dV/dz) rot sym 
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if EM_ flag 'M' 
uavg 

end 

if ( cyl_flag 'C')&(EM _flag='M') 

rmat _row=O:(length(v _source_ mat )-1 )~ 
nnat_row=(nnat_row)*dx~ % dx=dr 
rmat=rmat_row; 
numrows=l~ 

while numrows<length(v _source_ mat) 
rmat=[ rmat~nnat_row ]~ 
numrows=numrows+ 1 ~ 

end 
h _ term=gradient(( v _source_ mat. *rmat),dx,dy )~ 

% h_term=(d(rA)/dr)+j(d(rA)/dz) 

h_term(:,2:length(h_term))=h_term(:,2Jength(h_term))./ ... 
(rmat( :,2:length(h _term)))~ 

% h_term=(l/r)*[(d(rA)Idr)+j(d(rA)/dz)] 

h_term(1:length(h_term),1)=h_term(1:length(h_term),2)*(1+(4/3)*dx)~ 

%2.333 (1+4/3) tennis from coefficient 
% for values dx from axis 
% This approach avoids division by zero with accurate results. 

j=sqrt(-1 )~ 
hf_fine=(-1)*imag(ef_fine)+(lj)*real(h_term)~% mag flux density 

% -1 is due to the fact that 
% MATLAB is taking gradient in -z direction 

hf_fine=hf_fine./(eo_1*u_avg_matrix)~% hf_fine is now magnetic field matrix 
dear rmat 

end 
with_thresh=input('Set threshold for the vectors [n]: ','s'); 

if strcmp( with_ thresh,[]), with _thresh='n'; end 

if with_ thresh='y', 

hold on 

ifEM_flag='M', 
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else 

if cyl_ flag 'C 
[xx,yy]=thresh((-l)*imag(ef_fine) ./u_avg_matrix, ... 

real(h _term) ./u _ avg_ matrix)~ 

else 
[yy,xx]=thresh(real(ef_fine) ./u_avg_matrix, ... 

imag( ef_ fine) ./u _ avg_ matrix); 
end 

else 

[ xx,yy ]=thresh( real( ef_ fine), -imag( ef _fine))~ 

end 

myquiver(xx,yy,xmax,ymax,'r-')~ 

if EM_ flag='M', 

if cyl_ flag 'C' 
myquiver( (-l)*imag(ef_fine) ./u_avg_matrix, ... 

real(h_ term) ./u _ avg_ matrix,xmax,ymax, 'r-')~ 

else 
myquiver( imag(ef_fine) ./u_avg_matrix, ... 

real( ef _fine) ./u _ avg_ matrix,xmax,ymax, 'r-')~ 
end 

else 

myquiver(real(ef_fine),-imag(ef_fine),xmax,ymax,'r-')~ 

end 
end 

hold off 

%%%%%%%%%%%%%%%%%%%%%%%%%%%end offefield.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% % 
%% i_calc.m: Function to perform a closed line integral of the H-Field along % 
%% the rectangular contour shown below. % 
%% % 
%%USAGE: [I]=i_calc(Az,nu,dx,dy) where: Az is the Magnetic vector potential% 
%% nu is 1/relative permeability % 
%% o<---(x1,y1)-------------o dx and dy are the grid spacing % 
%% LLI_LLLIJJJJJJJ % 
%% I_I_I_I_Current_l_lj_l_lj Az: (MxN) matrix Units: Wb/m% 
%% l_ljj_ enclosedl_ljj_l_l nu: (M-1 )x(N-1) matrix Units: none % 
%% 11111111111111 dx and dy: scalar Units: m % 
%% o--------------(x2,y2)--->o 1: scalar Units: Aim % 
%% % 
%%When the function is called, the user will use the crosshairs to indicate % 
%%the positions of two opposite comers. The function will return the % 
%% amount of current enclosed or 'error' if the user has entered the comers % 
%%outside of the region where Az exists or the closed contour contains no % 
%%area. (i.e. the two comers are do not specify a box) % 
%% % 
%% This file has been modified for rot sym systems. dpw 950515 % 
%% % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [i]=i_calc(A,n,dx,dy)~ 
load mouse.emg -mat~ 

global cyl_flag 

disp(") 
disp('l. Press the left button for one comer of the box') 
disp('2. Press the left button again for the other comer') 
disp('3. Press the right button when you are done') 
disp(") 
disp('lf you press the right button immediately after choosing this option') 
disp('it will take you back to the previous screen.') 
disp(") 

%···················· 
disp('Press any key to continue ... ') 
pause 

%···················· 
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%plot; 
[ xx,yy ,button ]=ginput( 1 ); 

Lower=O; 
blflag=O; 
b2flag=O; 

while button-=Right_Button I blflag=O I b2flag=O, 

ifbutton-Left_Button & Lower=O, 
blflag=l; 
x(l)=xx; 
y(l)=yy; 
Lower= I; 

elseifbutton Left_ Button & Lowe• 1, 
b2flag=l; 
x(2)=xx; 
y(2)=yy; 
Lower=O; 

end 

[ xx,yy,button ]=ginput( 1 ); 

end 

x=round(x/dx); 
y=round(y/dy); 
[ r,c ]=size( A); 

ifsum(x<O) 0 & sum(y<O) 0 & abs(x(l)-x(2))>1 & abs(y(l)-y(2))>1 & ... 
sum(x>c)==O & sum(y>r)==O, 

i=O; 
uo=pi*4e-7; 

ifx(l)>x(2), x=[x(2) x(l)]; end 
ify(l)<y(2), y=[y(2) y(l)]; end 

toprow = r-y(I); bottomrow = r-y(2)-I; 
leftcol = x( I)+ 1; right col = x(2); 

for col=leftcol+ 1 :rightcol 
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nlr_top = O.S*(n(toprow,col-1) + n(toprow,col)); 
nlr_bottom = 0.5*(n(bottomrow,col-1) + n(bottomrow,col)); 

i = i + nlr_top • (A(toprow+1,col) - A(toprow,col)) + ... 
nlr_bottom • (A(bottomrow,col)- A(bottomrow+1,col)); 

end 

for row=toprow+ 1 :bottomrow 

ntb_left = 0.5*(n(row-1,1eftcol) + n(row,leftcol)); 
ntb_right = O.S*(n(row-1,rightcol) + n(row,rightcol)); 

if cyl_ flag 'C' 
i = i + ntb_left • (1/(leftcol-0.5)) • ... 

((leftcol)* A(row,leftcol+ 1 )-(leftcol-1 )* A(row,leftcol)) ... 
+ ntb_right • (1/(rightcol-0.5)) • ... 

((rightcol-1 )* A(row,rightcol)-(rightcol)* A(row,rightcol+ I)); 

else 
i = i + ntb _left • (A(row,leftcol+ 1) - A(row,leftcol)) + ... 

ntb_right • (A(row,rightcol) - A(row,rightcol+1)); 
end 

end 

i=i/uo; 
x(l )=(x( 1 )+0 .S )*dx; 
x(2)=(x(2)-0.5)*dx; 
y(l)=(y(l)-O.S)*dy; 
y(2)=(y(2)+0.5)*dy; 
hold on 
plot([x(l) x(2) x(2) x(1) x(l)],[y(l) y(l) y(2) y(2) y(l)],'cl-') 
hold off 

else 

i='error'; 

end 

%%%%%%%%%%%%%%%%%%%%%%end ofi_calc.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Yo%%%%%% 
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%%%%%%%%%%%%%%%%%%%o/oo/oo/oo/oo/oo/oo/oo/oo/o%%%o/oo/o%o/oo/oo/o%%o/o%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% % 
%% itersoln.m: Used to solve Poisson's equation forE-Statics and M-Statics % 
%% The equations are formulated using standard Finite Differences% 
%% and the solution algorithm is a essentially Jacobi's Method % 
%% with or without a approximate starting solution. o/o 
%% % 
%% This program has been modified from its original version % 
o/o% to solve both z-invariant and rotationally symmetric systems % 
%% 
%% Modified 940514 dpw 
%% % 
%%%%%%%%o/t%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
cc=[]~ 
if EM _flag='M', 

prefix=' .im'~ 
hold_ er=er _matrix~ 
er _matrix= I ./er _matrix; 
eo _ _I =pi*4e-7~ 

else 
prefix='.ie'~ 

eo _1 = 118.854e-12~ 
end 

float_ nodes=[]~ 
num _fnodes=O~ 
nodes_ around _pee=[]; 
er _around _pee=[]~ 
num_nodes=O~ 
col_index=O; 
obj_index=O~ 
charge_ obj=[]; 
disp(' ') 
disp('Input the %-error you wish to stop at and specify the maximum number') 
disp('of iterations.') 
disp('When either of these two criteria is satisfied, the program stops') 
disp(' ') 
TOL=input('lnput the error toi~rance (in percent) [1]: '); 
if strcmp(TOL,[]). TOL= 1; end 
TOL=TOUIOO~ 

disp(' ') 
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MAXITER=input('lnput the maximum number ofiterations [ 1000]: ')~ 
if strcmp(MAXITER,[]). MAXITER== 1 000~ end 
MAXITER==round(MAXITER/1 00)*1 00~ 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% First, i need to know where all the nodes around all the floating PECIPMR % 
% objects are . . . % 
o/~~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

v _source_ mat==9999*ones(ycells+ 1,xcells+ 1 )~ 

N==N fine· - . 
ltable==looktab(N)~ 

disp(' ') 
disp('Setting up iterative solver variables . .') 

pntr==find(ltable-=0)~ 

v _source_ mat(pntr )==v _ source(ltable(pntr) ); 

v _source_ mat==reshape(v _source_ mat,ycells+ 1 ,xcells+ 1 ); 

for i==1 :max(max(v_source_mat))-10003 

fprintft'\nProcessing object #0/c,g- nodes: ',i) 

pts _ obj_i=find( v _source_ mat= 1 0003+i)~ 

[row_ size, col_ size ]==size(pts _ obj_i)~ 

ifrow_size-=0 & col_size-=0, 

obj_index=obj_index+ 1; 

col_index=col _index+ I; 

float_ nodes( 1 :row_ size,col_index)=pts _ obj_i; 
num-modes( col_index)=row-size; 

row_ index= 1; 
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num _nodes( obj_index)=O~ 

for j=l :row_size 

fprintft'%g 'j) 

c _ row=rem(pts _ obj_i(j),ycells+ 1 )~ 
c _ col=ceil(pts _ obj_i(j)l(xceJJs+ 1 ))~ 
t_row==c_row-I~ t_col=c_col~ 

b row==c row+ I~ b col=c col~ - - - -
I row==c row~ 1 col=c col-I~ - - - -
r row=c row; r col=c col+ I~ - - - -

% look up to see if there is no PEC/PMR 

if v _source _mat( t _row ,t _ co1)=9999, 

nodes _around _pee( row _index,col_index)=(t_ col-I )*(ycells+ I )+t_row; 
er _around _pee( row _index, col _index)=( er _matrix( c _row-1 ,c _col-I)+ ... 

er_matrix(c_row-I,c_col))/2; 
num _nodes( obj_index)=num _nodes( obj_index)+ I~ 
row index=row index+ I~ - -

end 

% look left to see ifthere is no PEC/PMR 

if v _source_ mat(l_row,l_ col)=9999, 

nodes _around _pee( row _index,col_index)=(l_ col-I )*(ycells+ I )+l_row~ 
er _around _pee( row _index,col_index)=( er _matrix( c _ row-I ,c _col-I)+ ... 

er _matrix(c_row,c _col-I ))/2~ 
num _nodes( obj_index)=num _nodes( obj_ index)+ 1; 
row index=row index+ I; - -

end 

% look right to see if there is no PEC/PMR 
ifv _source_ mat(r _row,r _ col)=9999, 

nodes _around _pee( row _index,col_index)=(r _col-I )*(ycells+ 1 )+r _row; 
er_around_pec(row_index,col_index)=(er_matrix(c_row-1,c_col)+ ... 

er _matrix( c _row,c _ col))/2; 
num _nodes( obj_index)=num _nodes( obj_index)+ 1; 
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end 

row _index=row _index+ 1; 
end 

o/o look down to see if there is no PECIPMR 

ifv_source_mat(b_row,b_col)=9999, 

nodes_around_pec(row_index,col_index)=(b_col-l)*(ycells+l)+b_row; 
er _around _pee( row _index,col_index)=( er _matrix( c _row .c _coi-l)+ ... 

er _matrix( c _row,c _ col))/2; 
num _nodes( obj_index)=num _nodes( obj_index)+ 1; 
row _index=row _index+ 1; 

end 

fprintft'\n') 

end 

end 

o/o calculate the total charge/current for each PECIPMR object 

for i=l :obj_index 
charge_obj(i)=sum(charge_mat(float_nodes(l :num_fnodes(i),i))); 
charge_ mat(float _nodes( 1 :num _fnodes(i),i) )=zeros( l,num _ fnodes(i) ); 
disp(' ') 
disp(['Charge for object #',int2str(i),': ',num2str(charge_obj(i)),' C/m']) 
disp(' ') 

end 

charge_ obj=charge _ obj •eo _1; 
o/o%o/oo/oo/oo/oo/oo/oo/oo/oo/oo/o%o/oo/oo/oo/oo/oo/o%o/oo/oo/oo/oo/oo/oo/o%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
o/o Set up pointers to the middle and outer layers % 
%%%%%%%%%o/o%%%%%o/o%%%%%%%%%o/o%%o/o%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

if cyl_ flag 'C' 
if EM_ flag 'M' 

load cymag_ 51. tgt -mat % coefficients for mag rot sym 
else 
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load cy803 _51. tgt -mat % coefficients for elect rot sym 
end 

else 
load in803 _51. tgt -mat % coefficients for z-invariance 

end 
N=N fine+I· - , 
xmat=table _ 2(N)~ 

%clear middle _pts outer _pts 

disp(") 
disp('lnitializing pointers to the outer and middle layers') 

if exist('outNSl.dat')-=2, 
for i=1 :2*(xcells+ycells) 

outer _pts(i)=find(xmat=i); 
end 
save outNSl.dat outer_pts 

else 
load outNSl.dat -mat 

end 
if exist('midNSI.dat')-=2, 

for i=2*(xceJJs+yceJJs)+ J :2*(xceJJs+yceJJs)+2*(xcells-2+ycells-2) 
middle_pts(i-120)=find(xmat=i)~ 

end 
save midSt. dat middle _pts 

else 
load midNSl.dat -mat 

end 

disp(") 
disp('Set source pointers and media pointers') 

source _pts=find(v _source_ mat@9999); 

v _lrnown=v _source_ mat( source _pts ); 

diel_pts=find( v _source_ mat>=9999); 
[ drow,dcol]=size( diel_pts); 
v _source_ mat( diel_pts )=zeros( 1 ,drow); 

try_ again='y'; 
load_ success=O; 
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suftix='x'; 
ig_loaded='n'; 

o/o to load or not load an initial solution 

init_guess=input('Do you wish to use an initial guess? (y]: ','s'); 
ifstrcmp(init_guess,[]), init_guess='y'; end 

if init _guess='y', 

if exist('v _mat') 1, 
disp(' ') 
ig_loaded=input('Use current coarse grid solution? [y]: ','s'); 
if strcmp(ig_loaded,[]), ig_loaded=Y; end 

end 

if ig_loaded='y', 

v _source _mat=linterp( v _mat); 

else 

while try_ again 'y', 
disp(' ') 
disp(' Enter the file which contains the initial guess: ') 
fuame=input('with no file extension: ','s')~ 
while suffix-='c' & suffix-='£', 

disp(' ') 
disp('Is the data from a coarse or fine grid solution? ') 

suffix=input('Enter c or f: ','s'); 
end 

if exist([fiwne,prefix,suffix]) 2, 
eval(('load ',fname,prefix,suftix,' -mat'])~ 
try_ again='n'~ 
load_ success= 1; 

else 
disp(' ') 

disp([bell,fuame,prefix,suffix, ... 
' does not exist in the current directory!']) 

suftix='x'; 
try_again=input('Do you wish to try again? [y]: ','s')~ 
ifstrcmp(try_again,[]), try_again=Y~ end 
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end 

end 

ifload_success=1 & suffix='c', 
v _source_ mat=linterp( v _mat); 

elseif load success 0, 
disp(' ') 

disp([beii,'An initial guess of all zeros will be used', ... 
'(except known potentials)!']); 

v _source_ mat=zeros(N _fine+ 1 ,N _fine+ 1 ); 
v _source_ mat( source _pts)=v _known; 

end 

end 

else 
disp(' ') 
disp([beli,'An initial guess of zeros will be used', ... 

'(except known potentials)!']) 
v _source_ mat=zeros(N _fine+ 1 ,N _fine+ 1 ); 
v _source _mat( source _pts)=v _known; 

end 

mesh (flipud(v_source_mat)) 

disp(") 
disp('Averaging media properties') 

r=(2:ycells)'; 
c=(2:xcells)'; 

rt=r-1; 
rb=r+1; 
cl=c-1; 
cr=c+l; 

if cyl_ flag 'C' % rotational symmetry 
cols= 1 :length( c); 
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for k=1 :length(r) 
cc=(cc;cols]; 

end 
ifEM_flag='M' 

erl(r,c)=(er _matrix(r-1 ,c-1 )+er _matrix(r,c-1 )). *(l-(2*cc-1 ). "( -1 )); 
err(r,c)=(er _matrix(r-1 ,c)+er_matrix(r,c)). *(1 +(2*cc+ 1 )."( -1 )); 
ert(r,c)=er _matrix(r-1,c-1 )+er _matrix(r-1 ,c); 
erb(r ,c )=er _ matrix(r,c-1 )+er _ matrix(r,c ); 
erc(r,c)=2*(er_matrix(r-1,c-1) ... 

+er _ matrix(r,c-1 )). *( 1 +( 1/2)*(2*cc-1 ). "( -1)) ... 
+2*(er_matrix(r-1,c) ... 
+er_matrix(r,c)). *(1-(1/2)*(2*cc+ 1 ). "'( -1 )); 
%% 2 term is from 1/2 avg of reluctivities 

else 
erl(r,c)=(er _matrix(r-1,c-1 )+er _matrix(r,c-1 )). *(1-(2*cc-1 ). "'( -1 )); 
err(r,c)=(er _matrix(r-1 ,c)+er _matrix(r,c)). *(I +(2*cc-1 )."( -1 )); 
ert(r,c)=er _matrix(r-1,c-1 ). *(1-( 4*cc-2). "'( -1)) ... 

+er _matrix(r-1 ,c). *(1 +(4*cc-2). "( -1 )); 
erb(r,c)=er _matrix(r,c-1 ). *(1-( 4*cc-2). "( -1)) ... 

+er _matrix(r,c). *(I+( 4*cc-2). "'( -1 )); 
erc(r,c)=(er_matrix(r-1,c-1 )+er_matrix(r,c-1)). *(2-3*(4*cc-2). "'(-1)) ... 

+(er_matrix(r-1,c)+er_matrix(r,c)).*(2+3*(4*cc-2)."(-1)); 
end 

else % z-invariance 
erl(r,c)=er _matrix(r-1 ,c-1 )+er _matrix(r,c-1 ); 
err( r,c )=er _matrix( r-1 ,c )+er _matrix( r,c ); 
ert(r,c)=er_matrix(r-1 ,c-1 )+er _matrix(r-1 ,c); 
erb(r,c)=er _matrix(r,c-1 )+er _ matrix(r,c); 
erc(r,c)=2*(erl(r,c)+err(r,c));% 2 term is from 112 of average of epsilons 

end 
den=err(r,c) .I erc(r,c); 
derl=erl(r,c) .I erc(r,c)~ 
dert=ert(r,c) .I erc(r,c); 
derb=erb(r,c) .I erc(r,c); 

%from left, right, bottom and top terms!!! 

dcharge:_mat=2*eo_1*charge_mat(r,c) .I erc(r,c); 

outer _pts=outer _pts'; 
middle _pts=middle _pts'; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%~~%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% The main loop of the iterative algorithm % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
disp(' ') 
disp('Starting the iterative solver now ... HEAVY NUMBER CRUNCHING') 

N=lOO~ 

error=O; 
direction=+ 1; % error is going up instead of down. 
done='n'~ 

iterations=O; 
errordat=f1· 

L- • 

sinfdat=[}~ 

while done=='il', 

while iterations < MAXITER & (error > TOL I (error <= TOL & direction= 1) ), 

%for 96 iterations do not calculate the norm s(n), becuase it is an 
% expensive operation, do this for the last four iterations of every 
% 1 00 iterations 

for q=1:96 

% apply Poission's equation to every point 

v_source_mat(r,c)=dcharge_mat + v_source_mat(r,cr).*derr + ... 
v _source _mat(r,cl). *derl+v _source_ mat(rb,c )_ *derb+ . _. 
v _source_ mat( rt, c). • dert~ 

% reset the source points back to their known values 

v _source_ mat( source _pts )=v _known; 

% for each floating PEC/PMR object enforce the appropriate boundary 
%conditions, flux ofD equals zero and equipotential (forE-statics) 
%or H normal equals zero, equipotential, and curl ofH equals zero 
%(forM-statics) 

for j=l :obj_index 

n _ num=num _ nodes(j); 
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f _ num=num _ fnodes(j)~ 
e_a_p==er_around_pec(I :n_numj)~ 

v_source_mat(float_nodes(I :f_numj))=ones(l,f_num)*(charge_objG) + ... 
v _source_ mat( nodes_ around _pee( I :n _ numj))'* e _a _p )/ sum( e _a _p ); 

end 

%fix the boundary nodes with the TGT matrix to simulate the "open" 
%boundary 

v _source _mat( outer _pts )=inside*v _source_ mat( middle _pts )~ 

end 

% for the last four iterations of every 100, calcualate s(n) 

for q=l:4 

end 

v_source_mat(r,c)=dcharge_mat + v_source_mat(r,cr). *derr + ... 
v _source_mat(r,cl).*derl+v _source_mat(rb,c). *derb+ ... 
v _source_mat{rt,c). *dert~ 

v _source_ mat( source _pts )=v _known; 

for j=l :obj_index 

n _ num=num _ nodes(j)~ 
f_ num=num _ fnodes(j); 
e _ a_p=er _around _pee( 1 :n _ numj)~ 

v _source_ mat(float_nodes( 1 :f_ numj))=ones( l ,f_ num)*( charge_ obj(j) + ... 
v_source_mat(nodes_around_pec(l :n_numj))'* e_a_p)/ sum(e_a_p); 

end 

v _source_ mat( outer _pts )=inside*v _source_ mat( middle _pts )~ 

s(q)=sum(sum(v_source_mat ."2)); 
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%using the last three norms (s(n)), calculate the lambda coefficient and 
% the estimated norm as iterations->infinity to give a more accurate 
% determination of the actual error 

lambda 1 =(s(3)-s(2))/( s(2)-s(1 ))~ 
s_infinity1 =(s(3)-lambda1*s(2))1( 1-lambda1 ); 

lambda2=(s( 4)-5(3 ))/(s(3 )-s(2)); 
s_infinity2=(s(4)-lambda2*s(3))/(1-lambda2); 

s _infinity=( s _infinity 1 +s _infinity2 )12~ 

olderror=error~ 

error=abs((s( 4)-s_infinity)/s( 4)); 

errordat=[errordat error]~ 
sinfdat=[ sinfdat s _infinity]; 

direction=sign( error-olderror ); 

iterations=iterations+ 1 00; 
disp(' ') 
disp(['Estimated Error: ',num2str( error*1 00), ... 

'Iterations: ',int2str(iterations), ... 
'S_inf: ',num2str(s_infinity)]) 

end 

mesh(flipud( v _source_ mat)) 

done='y'~ 

if error@=TOL, 
disp(' ') 
disp([bell, 'The specified error (',num2str(TOL *100), ... 

'%)has been reached.']) 
disp(' ') 
disp(['The current number of iterations: ',int2str(iterations)]) 

end 

if iterations>=MAXITER, 
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disp(' ') 
disp([bell, 'The maximum number of iterations has been reached, ', ... 

int2str(MAXITER),' iterations.']) 
disp(' ') 
disp(['The current estimated error is: ',num2str( error• I 00), '%.'])~ 

end 

disp('') 
newerror=input('Do you wish to modify this? [n] ','s')~ 
if strcmp(newerror,[]), newerror='n'~ end 
if newerroa 'y', 

done='n'~ 

while (error<=TOL I iterations>=MAXITER) & done 'n', 

done='n'~ 
disp('') 

TOL=input('New error tolerance(%): ')/100~ 
MAXITER=input('New maximum# ofiterations (UNITS OF 100!): ')•too~ 

if error<=TOL I iterations>=MAXITER, 
disp('') 

disp([bell, 'One or both of those conditions is already ', ... 
'satisfied! ']) 

disp('') 
done=input('Do you wish to try again? [y]','s')~ 

if done-'n', 
done='y'~ 

else 
done='n'~ 

end 

else 

disp('') 
disp('Continuing iterative solver ... ') 

end 
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end 

end 

end 

if EM _flag 'M', 
er _matrix= hold_ er~ 
eo _1 =l/8.854e-12~ 

end 

clear dcharge _mat derr dert derb derl f_ num n _ num e _ a_p 

%%%%%%%%%%%%%%%%%%%%%%%%end ofitersoln.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% % 
%% makesys2.m: This program will generate the system matrix for the coarse % 
%% grid using the geometry media and the TGT coefficients. This % 
%% system matrix sys _mat will then be modified by matsolve.m % 
%% using the appropriate source and object boundary conditions. % 
%% % 
%% This program has been modified to generate the coarse grid % 
%% system matrix for both z-invariant and rotationally symmetric % 
%% systems. dpw 940514 % 
%% % 
%% Note that different code is required for rotationally % 
%% symmetric electrostatic and magnetostatic problems. % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ifEM_flag='M', %forM-statics the er matrix 
hold_er=er_matrix_coarse; %hold the value of relative 
er_matrix_coarse=l .I er_matrix_coarse; %permeability. 
eo_l=pi*4E-7; 

end 

if cyl_flag='C' % rotationally symmetric system 

ifEM_flag='M' 
load cymag_l7.tgt -mat % tgt matrix for magnetostatics (rot sym) 

else 
load cy267_17.tgt -mat % tgt mat for electrostatics (rot sym) 

end 

else % z-invariant system 
load in267 _17.tgt -mat 

end 

N=N _coarse; % # of cells for coarse grid 
ltable=looktab(N); % call lookup table routine 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Now, make the matrix!!!! % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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sys_mat=zeros((N+l)*(N+l)-4,(N+l)*(N+l)-4); % "-4" is to exclude the four 
rhs=zeros((N+1)*(N+1)-4,1); %comers in the system matrix 

for eq_num=4*N-3:(N+l)*(N+1)-4 %equation# starts at 4N-3 becuase the first 
% 4N-4 equations come from the TGT boundary 
% condition matrix 

pntr=find(ltable==eq_num); %point to the grid point for equation#: eq_num 

c _row=rem(pntr,N+ 1 ); 
c _ col=ceil(pntr/(N+ 1 )); 

% current row and column of geometry converted 
% from the "find" commmand's indexing scheme 

t_row=c_row-1;, t_col=c_col; %top row and column 
b_row=c_row+I;, b_col=c_col; %bottom row and column 
l_row=c _row;, 1_ col=c _col-I; % left row and column 
r _row=c _row;, r _ col=c _col+ 1; % right row and column 

t_num=(t_col-l)*(N+l)+t_row; %convert row and column info ofthe above 
b _ num=(b _col-I )*(N+ I )+b _row; % variables back into the "find" -indexing 
l_num=(l_col-l)*(N+l)-~l_row; %scheme 
r _ num=( r _col-I )*(N+ 1 )+r _row; 

% pre-calculate the averaging of the media 

%% Rotationally Symmetric Systems 
if cyl_ flag 'C' % rotationally symmetric systems 
if EM_ flag='M' 

er_top = er_matrix_coarse(c_row-l,c_col-1) ... 
+er _matrix_ coarse( c _row-1 ,c _col); 

er_bottom =er_matrix_coarse(c_row,c_col-1) ... 
+er _matrix_ coarse( c _row,c _col); 

er_left =( er _matrix_ coarse( c_row-l,c_ col-I) ... 
+er_matrix_coarse(c_row,c_col-1)) ... 
*(l-11(2*(c_col-l)-I)); 

er _right =( er _matrix_ coarse( c _row-1 ,c _col) ... 
+er_matrix_coarse(c_row,c_col)) ... 
*( 1 + 11(2*( c _col-I)+ 1 )); 

er _center =( er _matrix_ coarse( c _row- I ,c _col) ... 
+er_matrix_coarse(c_row,c_col)) ... 
*(l-(l/2)*(11(2*(c_col-l)+ 1))) ... 
+( er _matrix_ coarse( c _row-1 ,c _coi-l) ... 
+er_matrix_coarse(c_row,c_col-1)) ... 
*(1 +(l/2)*(11(2*(c_ coi-l )-1 ))); 
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else 
a_ col=c _col-I; % actual column away from centerline 
er_top =er_matrix_coarse(c_row-I,c_col-1)*(1-I/(4*a_col-2)) ... 

+er _matrix_ coarse( c _row-I,c _col )*(I+ I/( 4*a_ col-2)); 
er _ bottom=er _matrix_ coarse( c _row,c _col-I)*( 1-II( 4 •a_ col-2)) ... 

+er _matrix_ coarse( c _row,c _col )*(1 + 1/( 4*a _ col-2)); 
er _left =( er _matrix_ coarse( c _row-I,c _col-I) ... 

+er _matrix_ coarse( c _row,c _col-I))*( 1-1/(2*a_ col-1 )); 
er_right =(er_matrix_coarse(c_row-l,c_col) ... 

+er_matrix_coarse(c_row,c_col))*(l+l/(2*a_col-l)); 
er _center=( er _matrix_ coarse( c _row-I,c _col-I) ... 

+er_matrix_coarse(c_row,c_col-l))*(l-3/(8*a_col-4)) ... 
+( er _matrix_ coarse( c _row-l,c _col) ... 
+er_matrix_coarse(c_row,c_coi))*(I+3/(8*a_col-4)); 

end 

else %% z-invariant systems 
er _top =er _matrix_ coarse( c _row-l,c _col-I )+er _matrix_ coarse( c _row-l,c _col); 
er_bottom=er_matrix_coarse(c_row,c_col-1) +er_matrix_coarse(c_row,c_col); 
er _left =er _matrix_ coarse( c _row-I.e_ col-I )+er _matrix_ coarse( c _row,c _coi-l); 
er _right =er _matrix_ coarse( c _row-1 ,c _col) +er _matrix_ coarse( c _row ,c _col); 
er _ center=er _ top+er _bottom; 

end 
% fill the system matrix! 

sys _mat( eq_num,eq_ num) =-2*er _center; 
sys_mat(eq_num,Jtable(t_num))=er_top; 
sys _mat( eq_ num,ltable(b _ num) )=er _bottom; 
sys _mat( eq_ num,ltable(l_ num) )=er _left; 
sys _mat( eq_ num,ltable( r _ num) )=er _right; 

% generate the Right hand side forcing function 

rhs( eq_ num)=-2 *charge_ mat_ coarse( c _row ,c _ col)*eo _I; 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Modify the inside matrix of tgt coefficients to exclude the 4 comers % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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insidep=[inside(2 :N,: )~ 
inside(N+2:2*N,:); 
inside(2*N+2:3*N,:); 
inside(3 *N+ 2:4 *N,:) ]; 

insidepp=[inside( 1,: ); 
inside(N+ 1,: ); 
inside(2 *N+ 1,: ); 
inside(3*N+ 1,:)]; 

[ r _ inp,c _inp ]=size(insidep ); 

sys _mat( 1 :r _inp,r _inp+ 1 :r _ inp+c _ inp )=insidep; 
sys_mat(l :r_inp, 1 :r_inp)=-eye(r_inp); 

ifEM_flag 'M', 
er _matrix_ coarse= hold_ er; 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%end ofmakesys2.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 
%% This will be used to augment the iterative solver by using 
%% sparse matrices to solve fine grid system. Updated 9405 14 dpw 
%% 
%% makesysfm: This program will generate the system matrix for the fine 
%% grid using the geometry media and the TGT coefficients. This 
%% system matrix sys_mat will then be modified by matsolvfm 
%% using the appropriate source and object boundary conditions. 
%% This program handles either rotationally symmetric or 
%% z-invariant systems. 
%% 
%% 
o/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/o%%%%%%%% 
%%o/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/o%o/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/o 

if EM _flag='M', 
hold_ er=er _matrix~ 
er _matrix= 1 ./ er _matrix~ 
eo_l=pi*4E-7; 

end 

o/o for M-statics the er _matrix 
o/o hold the value of relative 

o/o permeability. 

if cyl_ flag 'C' o/o rotationally symmetric system 

if EM_ flag 'M' 
load cymag_ 51. tgt -mat 

else 
load cy803 _51. tgt -mat 

end 

else o/o z-invariant system 
load in803_5l.tgt -mat 

end 

N=N_fine; o/o #of cells for coarse grid 
ltable=looktab(N)~ o/o call lookup table routine 

%o/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/o%o/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/o%o/oo/oo/oo/oo/oo/oo/oo/o% 
o/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/o 
%Now, make the matrix!!!! o/o 
o/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/o%%%%%o/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/o 
o/oo/o%%%%o/oo/oo/oo/oo/o%%o/oo/oo/oo/oo/oo/oo/oo/oo/o%o/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/o 
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sys_mat=sparse((N+1)*(N+1)-4,(N+1)*(N+1)-4)~ % "-4" is to exclude the four 
rhs=sparse((N+ l )*(N+ l )-4, I)~ % corners in the system matrix 

for eq_num=4*N-3:(N+l)*(N+I)-4 %equation# starts at 4N-3 becuase the first 
% 4N-4 equations come from the TGT boundary 
% condition matrix 

pntr=find(ltable eq_num)~ %point to the grid point for equation#: eq_num 

c _row=rem(pntr,N+ 1 )~ 
c _ col=ceil(pntr/(N+ 1) )~ 

% current row and column of geometry converted 
% from the "find" commmand's indexing scheme 

t_row=c_row-1~. t_col=c_col~ %top row and column 
b _row=c _row+ 1 ~. b _ col=c _col~ % bottom row and column 
l_row=c_row~, l_col=c_col-1~% left row and column 
r _row=c _row~. r _ col=c _col+ 1 ~ % right row and column 

t_num=(t_coi-1)*(N+I)+t_row~ %covert row and column info ofthe above 
b_num=(b_col-l)*(N+l)+b_row~ %variables back into the "find"-indexing 
l_num=(l_col-1)*(N+1)+l_row~ %scheme 
r num=(r col-1)*(N+ l)+r row~ - - -

% pre-calculate the averaging of the media 

if cyl_ flag='C' % rotationally symmetric system 
if EM_ flag 'M' 

er_top = er_matrix(c_row-l,c_col-1) ... 
+er _matrix( c _row-1 ,c _col)~ 

er _bottom =er _matrix( c _row,c _col-I) ... 
+er _matrix( c _row,c _col)~ 

er _left =( er _matrix( c _row- I ,c _col-I) ... 
+er_matrix(c_row,c_col-I)) ... 
*(1-11(2*(c_col-I)-I))~ 

er _right =( er _matrix( c _row- I ,c _col) ... 
+er_matrix(c_row,c_col)) ... 
*(I+ 11(2 *( c _col-I)+ I)); 

er_center =(er_matrix(c_row-I,c_col) ... 
+er_matrix(c_row,c_col)) ... 
*(I-(l/2)*(11(2*(c_col-I)+ I))) .. . 
+( er _matrix( c _row- I ,c _col-I) .. . 
+er_matrix(c_row,c_coi-I)) ... 
*(I +(112)*(11(2*( c _col-I )-I))); 
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else 
a_ col=c _col-I ~ % actual column away from centerline 
er _top =er _ matrix(c_row-1 ,c_ col-I )*(1-l/(4*a_col-2)) ... 

+er_matrix(c_row-l,c_col )*(I+ l/(4*a_col-2))~ 
er _ bottom=er _matrix( c _row,c _col-I)*( 1-1/( 4 •a_ col-2)) ... 

+er_matrix(c_row,c_col )*(1+11(4*a_col-2))~ 
er _left =( er _matrix( c _row- I ,c _col-I) ... 

+er _matrix(c_row,c_col-1 ))*(1-11(2*a_ col-I))~ 
er_right =(er_matrix(c_row-l,c_col) ... 

+er _matrix(c_row,c _ col))*(l + l/(2*a_ coi-l))~ 
er _center=( er _matrix( c _row- I ,c _col-I) ... 

+er_matrix(c_row,c_col-I))*(l-3/(8*a_col-4)) ... 
+(er_matrix(c_row-l,c_col) ... 
+er_matrix(c_row,c_col))*(l +3/(8*a_col-4))~ 

end 
else %% z-invariant system 
er _top =er _matrix(c_row-1 ,c _col-I )+er _matrix(c_row-1 ,c_ col)~ 
er _ bottom=er _matrix( c _ row,c _col-I) +er _matrix( c _row,c _col)~ 
er _left =er _matrix( c _row- I ,c _ col-1 )+er _matrix( c _row,c _col-I)~ 
er _right =er _matrix( c _row-1 ,c _col) +er _matrix( c _row,c _col); 
er _ center=er _ top+er _bottom~ 

end 
%fill the system matrix! 

sys_ mat( eq_ num,eq_num) =-2*er _center; 
sys_mat(eq_num,ltable(t_num))=er_top~ 

sys _mat( eq_ num,ltable(b _ num) )=er _bottom; 
sys _mat( eq_ num,ltable(l_ num) )=er _left; 
sys _mat( eq_ num,ltable(r _ num) )=er _right; 

% generate the Right hand side forcing function 

rhs(eq_num)=-2*charge_mat(c_row,c_col)*eo_l~ 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% ModifY the inside matrix of tgt coefficients to exclude the 4 comers % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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insidep=[inside(2:N,:); 
inside(N+2:2•N,: ); 
inside(2•N+2:3•N,:); 
inside(J•N+2:4•N,:)]; 

insidepp=[inside( 1,: ); 
inside(N+ 1,: ); 
inside(2•N+ 1,:); 
inside(3 •N+ I,:)]; 

[ r _inp,c _inp ]=size(insidep ); 

sys _mat( 1 :r _inp,r _inp+ I :r _inp+c _inp )=insidep; 
sys_mat(1 :r_inp, 1 :r_inp)=-eye(r_inp); 

if EM_ flag 'M', 
er _ matrix=hold _ er; 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%end ofmakesysfm 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% This will be used to augment the iterative solver by 
%% using sparse matrices to slve the fine grid system. 
%% Updated 940107 dpw. 
o/oo/o 
%% 
%% matsolvfm: This program will use the sys_mat from makesysfm and the 
%% source information from voltsrc.m and chargsrc.m and and solve 
%% the system of equations for the fine grid. 
%% 
%%o/o%%%%%o/oo/oo/oo/oo/oo/oo/o%o/o%o/oo/oo/oo/oo/o%%o/oo/oo/oo/o%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

k=(xcells+ 1 )•(ycells+ 1 )-4; 
v _pntr-1 : k; 
ep _rem_ col_flag=[]; 
kp _rem_ col_ flag=[]; 
keep_ col_ flag=[]; 
keep _row_ flag=[]; 

o/o find all the floating PECIPMR. and eliminate the need to solve for them, only 
o/o need to solve for one of the potentials for each object 

for i=1 :num_pec_obj 

equal _pots=find( v _source 1 0000+ J+i); 

[ dum,num _ eq__pots ]=size( equal _pots); 

while num _ eq__pots> 1, 

% adding the rows and columns of the equal pots and set the first 
o/o row and column number (equal_pot(1)) to the sum, also add the charges 
% on the floating objects 

sys _mat( :,equal _pots( 1) )=sum( sys _mat(: ,equal _pots)')'; 
sys _mat( equal _pots( 1 ), :)=sum( sys _mat( equal _pots,:)); 
rhs( equal _pots( 1) )=sum( rhs( equal _pots)); 

% set the equi-potential remove column flag to the rows and column 
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% corresponding to the floating potentials we don't need to solve for 
%anymore. 

ep _rem_ col_ flag=[ ep _rem_ col_ flag equal _pots(2:num_eq_pots)]~ 

v _pntr( equal _pots(2 :num _ eq_pots) )=equal _pots( 1 )•ones( 1 ,num _ eq_pots-1 ); 

num _ eq_pots=O; 

end 

end 

% find all the known potentials 

vs=zeros(1,k)~ 

known _pots=find(v _source@9999)~ 
[ dum,num _ kn _pots ]=size(known _pots)~ 
vs(known _pots)=v _ source(known _pots)~ 

kp _rem_ col_ flag=known _pots; 

fori=1:k 

%if either of the flags below contain "i" then keep that row and column 
% (i.i. set flag!) 

ifsum(ep_rem_col_flag i)==O & sum(kp_rem_col_flag i)==O, 

keep_col_flag=[keep_col_flag i]~ 

keep _row _flag=[keep _row_ flag i]~ 

end 

end 

% modified the rhs due to the known potentials 

rhs=sparse(-sys_mat•(vs(1 :k)')+full(rhs))~ 

sys_ mat=sys _ mat(keep _row_ flag,keep _ col_flag)~ % prune the system matrix based 
rhs=rhs(keep _row_ flag, 1 )~ % on the flags set above 
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---------- -------------~---

%solve the system! EXPLOIT SPARSITY 

v=full( sys _ mat\rhs ); 
v _pntr==v _pntr( 1,keep _row_ flag)'; 
v _soln(v _pntr)=v; 
% put back all the equi-potentials for the floating PECIPMR objects 
for i= 1 :num_pec _ obj 

equal _pots=find( v _source 1 0000+ 3+i); 

[ dum,num _ eq_pots ]=size( equal _pots); 

while num _ eq_pots> 1, 

v _ soln( equal _pots )=v _ soln( equal _pots( 1 ))•ones( 1,num _ eq_pots ); 

num _ eq_pots=O; 

end 

end 
v _soln(known _pots)=v _ source(known_pots); 
% put the solution into a matrix form so that results can be displayed 
v _source_ mat=zeros(ycells+ 1,xcells+ 1 ); 
for i=1:k 

pntr=find(ltable=i); 
v _source_ mat(pntr)=v _ soln(ltable(pntr)); 

end 

% fix the comers, since they were not included in the system matrix 

v_comer=insidepp•v_soln(xcells•4-3:xcells•4-3+ ... 
(xcells-2)•4-l )'; 

v _source_ mat( 1, 1 )=v _comer( 1 ); 
v _source_ mat( 1 ,xcells+ 1 )=v _ comer(2); 
v _source_ mat(ycells+ 1 ,xcells+ 1 )=v _ comer(3 ); 
v _source_ mat(ycells+ 1, 1 )=v _comer( 4); 

%%%%%%%%%%%%%%%%%%%%%%%%%end of matsolvf.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% % 
%% q_calc.m: Function to perfonn a flux integral of the D-Field through the % 
%% rectangular "surface" shown below. % 
%% % 
%%USAGE: [Q]=q_calc(V,er,dx,dy) where: Vis the Electric potential % 
%% er is relative permittivity % 
%% o<--(x1,y1)--------------o dx and dy are the grid spacing % 

%% IJJJJJJJJJJJJJ % 
%% IJJJJChargej_IJjJJ V: (MxN) matrix Units: V % 
%% LLLL enclosediJJJJJ er: (M-1 )x(N-1) matrix Units: none % 
%% 11111111111111 dx and dy: scalar Units: m % 
%% o------------(x2,y2)--->o Q: scalar Units: C/m (z-invariant)% 
%% C (rotational sym)% 
%% When the function is called, the user will use the crosshairs to indicate % 
%% the positions of two opposite comers. The function will return the o/o 
%% amount of charge enclosed or 'error' if the user has entered the comers % 
%% outside of the region where V exists or the closed surface contains no % 
%%volume. (i.e. the two comers do not specifY a box) % 
%% % 
%% This program has been modified to accomodate rotational symmetry % 
%% dpw 940430 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [q]=q_calc(v,e,dx,dy)~ 
load mouse.emg -mat~ 
global cyl_ flag 
disp(") 
disp(' 1. Press the left button for one comer of the box') 
disp('2. Press the left button again for the other comer') 
disp('3. Press the right button when you are done') 
disp(") 
disp('lf you press the right button immediately after choosing this option') 
disp('it will take you back to the previous screen.') 
disp(") 

%···················· 
disp('Press any key to continue ... ') 

%···················· 
pause 

[xx,yy,button]=ginput(1)~ 
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blflag=O~ 
b2flag=O~ 

Lower=O~ 

while button-=Right_Button I blflag==O I b2flag==O, 

ifbutton Left_Button & Lower==O, 
blflag=l; 
x(l)=xx; 
y(l)=yy; 
Lower= I; 

elseifbutton Left_Button & Lowe•-1, 
b2flag=l; 
x(2)=xx~ 

y(2)=yy; 
Lower=O; 

end 

[ xx,yy ,button ]=ginput( 1 ); 

end 

x=round(xldx); 
y=round(y/dy); 
[r,c]=size(v); 

ifsum(x<O)=O & sum(y<O)=O & abs(x(l)-x(2))>1 & abs(y(l)-y(2))>1 & ... 
sum(x>c)==O & sum(y>r)==O, 

q=O; 
eo=8.854e-12; 

ifx(l)>x(2), x=[x(2) x(l)]; end 
ify(l)<y(2), y=[y(2) y(l)]; end 

toprow = r-y(l ); bottomrow = r-y(2)-1; 
leftcol = x(l)+l~ rightcol = x(2)~ 

for col=leftcol+ 1 :rightcol 

elr_top = o.s•(e(toprow,col-1) + e(toprow,col)); 
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elr bottom= O.S*(e(bottomrow,col-1) + e(bottomrow,col)); 
if cyl_ flag 'C 

q = q + (elr_top • (v(toprow+1,col) - v(toprow,col)) + ... 
elr_bottom • (v(bottomrow,col)- v(bottomrow+1,col))) ... 
*(2*pi*( col- l/2)*dx); 

else 
q = q + elr_top • (v(toprow+l,col) - v(toprow,col)) + ... 

elr_bottom • (v(bottomrow,col)- v(bottomrow+l,col)); 
end 

end 
for row=toprow+ I :bottomrow 

etb_left = 0.5*(e(row-1,1eftcol) + e(row,leftcol)); 
etb_right = 0.5*(e(row-l,rightcol) + e(row,rightcol)); 

if cyl_flag 'C' 
q = q + etb _left • (v(row ,leftcol+ I) - v(row,leftcol)) ... 

• (2*pi*(leftcol-I/2)*dy) + ... 
etb_right • (v(row,rightcol) - v(row,rightcol+1)) ... 
• (2*pi*(rightcol-ll2)*dy); 

else 
q = q + etb_left • (v(row,leftcol+1)- v(row,leftcol)) + ... 

etb _right • (v( row,rightcol) - v(row ,right col+ 1)) 
end 

end 

x(l)=(x(1)+0.5)*dx; 
x(2)=(x(2)-0.5)*dx; 
y(1)=(y(1)-0.5)*dy; 
y(2)=(y(2)+0.5)*dy; 

hold on 
plot([x(1) x(2) x(2) x(1) x(1)],[y(l) y(1) y(2) y(2) y(l)],'c1-') 
hold off 

else 
q='error'; 

end 

%%%%%%%%%%%%%%%%%%%%%%end ofq_calc.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% % 
%% solndom.m: This is used to start a new EM-Static problem. It is chosen to % 
%% initialize a new solution domain. % 
%% updated 940101 dpw % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clc 

newdomain='y'~ 

if domain_ flag 1, 

newdomain=input([bell,'W ARNING: TillS WILL ERASE YOUR PREVIOUS', ... 
' DOMAIN, CONTINUE [n]?: '],'s')~ 

if strcmp(newdomain,[]), newdomain='n'~ end 

end 

if newdomain='y', 

domain_ flag= 1 ~ 

c1c 
disp(' DOMAIN REGION SCREEN ') 
disp('') 
disp('The dimension entered here determines the area in which you will') 
disp('place your sources and media geometry. This area is bordered by ') 
disp('the dashed blue line around the blue grid. ') 
disp(") 

rot_sym=input('Do you want to solve a rotationally symmetric system? [n] ','s')~ 
ifstrcmp(rot_sym,[]), rot_sym='R'~ end 
if (rot_sym='y')l(rot_sym='Y') 

cyl_ flag='C'~ 
ifEM_flag 'E' 

enclosed str='C'· - , 
else 

enclosed str 'A *m'· - , 
end 

else 
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cyl_flag='R'; 

end 
xmax=-9999; 
xmin=O; 
while xmax@O, 

xrnax=input(['Enter the dimension (in meters) of a', ... 

if strcmp( xmax,[]), xmax=-1; end 
ifxmax@O, 

' square solution domain: 1); 

disp([beii.'Only positive dimensions in this world, thank you!']); 
end 

end 
ymin=O; 
ymax=xmax; 
xcells=N fine-2; 
ycells=N _fine-2; 
dxp=(xmax-xmin)/xcells; 
dyp=(ymax-ymin)/ycells; 
ymax=ymax+2*dyp; 
xmax=xmax+2*dxp; 
xcells=xcells+2; 
ycells=ycells+2; 
er _ matrix=ones(ycells,xcells ); 
v _source=9999*ones((xcells+ 1 )*(ycells+ 1 ), 1 ); 
v _source_ coarse=9999*ones((N _coarse+ 1 )*(N _coarse+ 1 ), 1 ); 
pee _pt _ matrix=zeros(ycells+ 1 ,xcells+ 1 ); 
pee_ com_ matrix=zeros(2*ycells+ 1 ,2*xcells+ 1 ); 
pcm=pec _ com_matrix; 
dx=(xmax-xmin)lxcells; 
dy=(ymax-ymin)lycells; 
charge_ mat=zeros(ycells+ I ,xcells+ 1 ); 
charge_ mat_ coarse=zeros(N _coarse+ 1 ,N _coarse+ 1 ); 
cg_made=O; 
geom_ type='f; 
redraw2 

~···················· 
pause 

~··················· 
hold off 

end 
~~~~~~~~~~~~~~~~~~~~~~~~~~end ofsolndom.m 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%~% 
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APPENDIXB 
MATRIX METHOD TGT PROGRAMS 

o/o coefgenc.m 
o/o This program will generate TGT coefficients using the 
% matrix solution method for rotationally symmetric electrostatic systems. 
% Functions required include: makemmc.rn, makemlc.m and makemnc.m. 
% Author: David P. Wells 
%Date oflast revision: 940116 
M=input('Enter the Far Dirichlet Boundary Dimension')~ 
N=input('Enter the Computational Grid Dimension ')~ 
M=M-2~ 
garnmac=makemmc(M,N); 
whileM>N+2 

M=M-2~ 
gammac=sparse(makemmc(M,N)-sparse(makemlc(M,N)*inv(gammac) ... 

*makemnc(M+2,N))); 
end 
TGT=( -1 )*(inv(gammac )*makemnc(M,N)); 
TGT=[TGT;TGT(3*N+2,:)]; %%Adding left side TGT coefficients 
TGT=[TGT(l,:);TGT]; %%based on symmetry. 
TGT(4*N+4,l)=l; 
for i=3*N-2:4*N-4 

TGT(i+ 7 ,i)= 1 ~ 
end 
TGT=full(TGT); 
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function [ x ]=makemlc(M.N)~ 
% This function makes the Ml matrix for generating TGT 
%coefficients given the desired size ofM (right side oflayer) 
%and N (computational grid dimension) 
% for rotationally symmetric systems. 
%David P. Wells 940302 
l=N+2*M+2~ 
m=l-4; 
top=N+(M-N)/2; 
r=top-1/2~ 
side=M; 
x=sparse( m,l)~ 
row=1; 
col= I; 
for i=l:top 

x(row,col)=-1 ~ 
row=row+l~ 

col=col+1; 
end 
col=col+1; 
row=row-1; 
for i=1:M 

x(row,col)=-1*(1+ 1/(2*r)); 
row=row+1; 
col=col+1; 

end 
col=col+1; 
row=row-1~ 

for i=1:top 
x(row,col)=-1; 
row=row+1; 
col=col+l~ 

end 
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Ml-full(makemlc(S,3)) 

Ml= 
Columns 1 through 6 

-1 0 0 0 0 0 
0 -1 0 0 0 0 
0 0 -1 0 0 0 
0 0 0 -1 0 -Bn 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

Columns 7 through 12 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

-8/7 0 0 0 0 0 
0 -817 0 0 0 0 
0 0 -817 0 0 0 
0 0 0 -8/7 0 -1 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

Columns 13 through 1 S 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

-1 0 0 
0 -1 0 
0 0 -1 
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function [Mm)=makemmc(M.N) 
%This function makes layer self matrices (Mm) for rotationally 
%symmetric systems given M (length of right side of layer) 
%and N (computational grid dimension). 
% David P. Wells 940115 
m=N+2*M-2~ 
top=N+(M-N)/2~ 
side=M; 
rtcom=top-1 +side~ 
e=ones(m, 1 )~ 
Mm=spdiags([-1*e 4*e -1*e],-1 :1,m,m); 
r=1/2~ 
for i=1:top 

ifi-=top 
Mm(i,i+ 1 )=( -1 )*( 1 + 11(2*r))~ 

end 
ifi-=1 

Mm(i,i-1 )=( -1 )*( 1-1/(2*r)); 
end 

r=r+1~ 
end 
r=l/2; 
for i=m:-1:rtcom 

if i---rtcom 
Mm(i,i-1 )=( -1 )*( 1 + 11(2 *r)); 

end 
ifi-=m 

Mm(i,i+ 1)=(-1 )*(1-11(2*r)); 
end 

r=r+1; 
end 
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Mm--full(makemmc(5,3)) 

Mm= 
Columns 1 through 6 

4 -2 0 u 0 0 
-2/3 4 -4/3 0 0 0 

0 -415 4 -6/5 0 0 
0 0 -6n 4 -1 0 
0 0 0 -1 4 -1 
0 0 0 0 -1 4 
0 0 0 0 0 -1 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

Columns 7 through 11 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
-l 0 0 0 0 
4 -1 0 0 0 

-1 4 -617 0 0 
0 -6/5 4 -415 0 
0 0 -4/3 4 -2/3 
0 0 0 -2 4 
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,.......--------------------------~- "--

function [x]=makemnc(M,N)~ 
% This function makes the Mn matrix for generating TGT 
%coefficients given the desired size ofM (length of right side of layer) 
%and N (computational grid size) for z-invariant systems. 
%David P. Wells 940115 
M=M-2~ 
m=N+2*M-2~ 

n=m-4~ 
top=N+(M-N)/2; 
r=top+1/2; 
side=M~ 
x=sparse( m,n); 
row=1; 
col= I; 
for i=l:top 

x(row,col)=-1; 
row=row+1; 
col=col+1; 

end 
col=col-1; 
row=row+1; 
fori=1:M 

x(row,col)=-1*( l-11(2*r)); 
row=row+1~ 

col=col+l; 
end 
col=col-1; 
row=row+l; 
for i=1:top 

x(row,col)=-1; 
row=row+1; 
col=col+l; 

end 
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Mn--full(makemnc(5,3)) 

Mn== 
Columns 1 through 6 

-1 0 0 
0 -1 0 
0 0 -1 
0 0 0 
0 0 -617 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

Column 7 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 

0 
0 
0 
0 
0 

-617 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

-6/7 
0 
-1 
0 
0 
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o/o coefinagc.m 
o/o This program will generate TGT coefficients using the 
o/o matrix solution method for magnetostatic 
o/o rotationally symmetric systems. 
o/o Functions required include: magmmc.m, magmlc.m and magmnc.m. 
o/o Author: David P. Wells 
o/o Date oflast revision: 940S 14 
M=input('Enter the Far Dirichlet Boundary Dimension'); 
N=input('Enter the Computational Grid Dimension '); 
M=M-2; 
gammac=magmmc(M.N); 
whileM>N+2 

M=M-2; 

gammac=sparse(magmmc(M,N)-sparse(magmlc(M.N)*inv(gammac)*magmnc(M+2,N))J; 
end 
TGT=( -1 )*(inv(gammac )*makemnc(M,N)); 
[leng, width ]=size(TGT); 
TGT=[TGT;zeros( 1, width)]; 
TGT=[zeros(l,width);TGT]; 
TGT(4*N+4,1)=0; 
for i=3*N-2:4*N-4 

TGT(i+ 7 ,i)=O; 
end 
TGT=full(TGT); 

o/oo/o Adding left side TGT coefficients 
o/oo/o based on symmetry. 

o/oo/o centerline has zero potential 
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-- ·-~-~------~ 

function [x]=magmlc(M,N)~ 
% This function makes the M1 matrix for generating TGT 
%coefficients given the desired size ofM (right side of layer) 
% and N (computational grid dimension) 
o/o for magnetostatic rotationally symmetric systems. 
%David P. Wells 940514 
l=N+2•M+2; 
m=l-4; 
top=N+(M-N)/2; 
r=top; 
side=M; 
x=sparse(m,l); 
row=1; 
col= I~ 
for i=1:top 

x(row,col)=-1; 
row=row+1; 
col=col+1; 

end 
col=col+1; 
row=row-1; 
fori=1:M 

x(row,col)=-t•(l + 1/(2•r+ 1 )); 
row=row+1; 
col=col+1; 

end 
col=col+1; 
row=row-1; 
for i=1:top 

x(row,col)=-1; 
row=row+1; 
col=col+l; 

end 
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Ml=full(rnagmlc( 5,3)) 

Ml= 

Columns 1 through 6 
-1 0 0 0 0 0 
0 -1 0 0 0 0 
0 0 -1 0 0 0 
0 0 0 -1 0 -10/9 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

Columns 7 through 12 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

-10/9 0 0 0 0 0 
0 -10/9 0 0 0 0 
0 0 -10/9 0 0 0 
0 0 0 -10/9 0 -1 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

Columns 13 through 1 5 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

-1 0 0 
0 -1 0 
0 0 -1 
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function [Mm]=magmrnc(M.N) 
% This function makes layer self matrices (Mm) for rotationally 
% symmetric magnetostatic systems 
% given M (length of right side of layer) 
% and N (computational grid dimension). 
%David P. Wells 9S041S 
m=N+l*M-2; 
top=N+(M·N)/2~ 
side=M; 
rtcom=top-1 +side; 
e=ones(m, 1 ); 
Mm=spdiags([-1*e 4*e -1*e],-1 :l,m,m)~ 
r=1~ 
for i=1:top 

Mm(i,i)=Mm(i,i)-(1/(2*r+ 1 ))+( 11(2*r-1 )); 
ifi-=top 

Mm(i,i+ 1 )=( -1 )*( 1 + 1/(2*r+ 1) )~ 
end 
ifi-=1 

Mm(i,i-1 )=( -1 )*(1-11(2*r-1 ))~ 
end 
r=r+1; 

end 
r=r-1~ 
for i=(top+ 1 ):(rtcom-1) 

Mm(i,i)=Mm(i,i)-(1/(2*r+ 1 ))+(11(2*r-1 )); 
end 
r=1~ 
for i=m:-1 :rtcom 

Mm(i,i)=Mm(i,i)-(11(2*r+ 1))+(1/(2*r-1));· 
ifi-=rtcom 

Mm(i,i-1 )=( -1 )*(1 + 1/(2*r+ 1 )); 
end 
ifi-=m 

Mm(i,i+ 1 )=( -1 )*( 1-1/(2*r-1) ); 
end 

r=r+l; 
end 
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Mm-full(magmmc(5,3)) 

Mm= 

Columns 1 through 6 
14/3 -413 0 0 0 0 
-213 62/15 -615 0 0 0 
0 -415 142135 -an 0 0 
0 0 -617 254/63 -1 0 
0 0 0 -1 254/63 -1 
0 0 0 0 -1 254/63 
0 0 0 0 0 -1 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

Columns 7 through 11 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

-1 0 0 0 0 
254/63 -1 0 0 0 

-1 254/63 -617 0 0 
0 -sn 142/35 -4/5 0 
0 0 -615 62/15 -213 
0 0 0 -4/3 1413 
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function [x]=rnagmnc(M,N); 
% This function makes the Mn matrix for generating magnetostatic TGT 
%coefficients given the desired size ofM (length of right side oflayer) 
% and N (computational grid size) for rotationally symmetric systems. 
%David P. Wells 940514 
M=M-2; 
m=N+2*M-2; 
n=m-4; 
top-N+(M-N)/2; 
r=top+1; 
side=M; 
x=sparse(m,n); 
row=1; 
col=1; 
for i=1:top 

x(row,col)=-1; 
row=row+1; 
col=col+1; 

end 
col=col-1; 
row=row+1; 
fori=1:M 

x(row,col)=-1*( l-I/(2*r-1 )); 
row=row+1; 
col=col+1; 

end 
col=col-1; 
row=row+l; 
for i=1:top 

x(row,col)=-1; 
row=row+1; 
col=col+1; 

end 
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Mn==full(magmnc( 5,3)) 

Mn= 

Columns 1 through 6 
-1 0 0 0 0 0 
0 -1 0 0 0 0 
0 0 -1 0 0 0 
0 0 0 0 0 0 
0 0 ~ 0 0 0 
0 0 0 ~7 0 0 
o o o o -6n o 
0 0 0 0 0 0 
0 0 0 0 -1 0 
0 0 0 0 0 -1 
0 0 0 0 0 0 

Column 7 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 
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%coefgen.m 
% This program will generate TGT coefticients using the 
% matrix solution method for z-invariant systems. 
%Functions required include: makemm.m, makeml.m and makemn.m. 
%Author: David P. Wells 
% Date oflast revision: 940116 
M=input('Enter the Dirichlet Boundary Dimension '); 
N==input('Enter the Computational Grid Dimension '); 
M=M-2; 
gamma=makemm(M); 
whileM>N+2 

M=M-2; 
gamma=sparse(makemm(M)-sparse(makeml(M)*inv(gamma)*makemn(M+2))); 

end 
TGT=( -1 )•full(inv(gamma)•makemn(M)); 
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function [ x ]=makeml(M)~ 
% This function makes the Ml matrix for generating TGT 
%coefficients given the desired size ofM (layer dimension). 
% It is a modified version of makemn since pattern is same but transposed. 
%David P. Wells 940115 
M=M+2~ 
m=4*M-4~ 

n=m-8~ 

N=M-2~ 
x=sparse(m.n)~ 
x(m,1)=-1~ 

row=1~ 
col=1; 
while row<(m-(N+1)) 

row=row+1~ 

for i=1:N 
x(row,col)=-1; 
row=row+1; 
col=col+1; 

end 
col=col-1~ 
end 
row=row+l~ 

for i=1:(N-1) 
x(row,col)=-1; 

row=row+1~ 

col=col+1; 
end 
x=x'~ 
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----~----

Ml-full(makeml(S)) 

Ml= 
Columns 1 through 6 

0 -1 0 0 0 0 
0 0 -1 0 0 0 
0 0 0 -1 0 0 
0 0 0 0 -1 0 
0 0 0 0 0 -1 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

Columns 7 through 12 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 -1 0 0 0 0 
0 0 -1 0 0 0 
0 0 0 -I 0 0 
0 0 0 0 -1 0 
0 0 0 0 0 -1 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
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Columns 13 through 18 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 -1 0 0 0 0 
0 0 -1 0 0 0 
0 0 0 -1 0 0 
0 0 0 0 -1 0 
0 0 0 0 0 -1 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

Columns 19 through 24 
0 0 0 0 0 -1 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 -1 0 0 0 0 
0 0 -1 0 0 0 
0 0 0 -1 0 0 
0 0 0 0 -1 0 
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function [Mm]=makemm(M) 
o/e This function makes layer self matrices (Mm) for z-invariant systems 
%given M (layer size). 
o/o David P. Wells 940115 
m=4•M-4~ 

e=ones(m, 1 ); 
Mm=spdiags([ -I•e 4 •e -1•e ], -1: 1 ,m,m)~ 
Mm(l,m)=-1, 
Mm(m,1)=-1~ 
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Mm=full(rnakemm(S)) 

Mm= 
Columns 1 through 6 

4 -1 0 0 0 0 
-1 4 -1 0 0 0 
0 -1 4 -1 0 0 
0 0 -1 4 -1 0 
0 0 0 -1 4 -1 
0 0 0 0 -1 4 
0 0 0 0 0 -1 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

-1 0 0 0 0 0 

Columns 1 through 12 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

-1 0 0 0 0 0 
4 -1 0 0 0 0 
-1 4 -1 0 0 0 
0 -1 4 -1 0 0 
0 0 -I 4 -1 0 
0 0 0 -1 4 -1 
0 0 0 0 -1 4 
0 0 0 0 0 -1 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
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Columns 13 through 16 
0 0 0 -1 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

-1 0 0 0 
4 -1 0 0 

-1 4 -1 0 
0 -1 4 -1 
0 0 -1 4 
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function [x]=makemn(M)~ 
% This function makes the Mn matrix for generating TGT 
%coefficients given the desired size ofM (layer size). 
%David P. Wells 940115 
m=4•M-4~ 
n=m-8~ 

N=M-2~ 
x=sparse(m.n); 
x(m.1)=-1; 
row=1; 
col=1~ 
while row<(m-(N+ 1)) 

row=row+1; 
fori=1:N 

x(row,col)=-1 ~ 
row=row+l; 
col=col+1; 

end 
col=col-1~ 
end 
row=row+1~ 

fori=1:(N-l) 
x(row,col)=-1; 

row=row+l; 
col=col+1; 

end 
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Mn=full(makemn(S)) 

Mn= 
Columns 1 through 6 

0 0 0 0 0 0 
-1 0 0 0 0 0 
0 -1 0 0 0 0 
0 0 -1 0 0 0 
0 0 0 0 0 0 
0 0 -1 0 0 0 
0 0 0 -1 0 0 
0 0 0 0 -1 0 
0 0 0 0 0 0 
0 0 0 0 -1 0 
0 0 0 0 0 -1 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

-1 0 0 0 0 0 

Columns 7 through 8 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

-1 0 
0 0 

-1 0 
0 -1 
0 0 
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APPENDIXC 
MONTE CARLO METHOD TGT PROGRAMS 

% cylcoffs.m 
% Purpose is to create matrix of coefficients for rotationally symmetric 
% system for use in EMAG via the Monte Carlo Method. 
%Required functions include: thcylwlk.m and unravel.m 
% TGT matrix will be saved in a tile named cymatrix.mat with variable name 
% "coeffs" 
%David P. Wells 931231 
N=input('Enter Computational Grid Dimension ')~ 
M=input('Enter Dirichlet Boundary Size (odd/even if comp grid odd/even)')~ 
R=input('Enter the Number of Walkers')~ 
coeffs=[]~ 
for i=2:N+2 %%top 

new_ coeffs=thcylw1k(N,M,R.1,(M-N)/2,i)~ 
coeffs=[ coeffs~new _ coeffs ]~ 

end 
for i=1 :N+ 1 %%right side 

new _coeffs=thcylwlk(N,M,R.1,(M-N)/2+i,N+2); 
coeffs=[ coeffs;new _ coeffs ]~ 

end 
for i=N+1:-1:2 %%bottom 

new_ coeffs=thcylwlk(N,M,R.1 ,(M+N)/2+ 1 ,i); 
coeffs=[ coeffs;new _ coeffs ]~ 

end 
coeffs=[ coeffs( 1,: );coeffs ]; 
coeffs=[ coeffs;coeffs(3 *N+ 3,:) ]; 
counter=O; 
for i=(M+N)/2:-1 :((M-N+4)/2) %%left side using symmetry 

new_ coeffs=zeros( 1, 4 *N-4); 
new_ coeffs(3 *N-3+counter+ 1 )= 1 ; 
counter=counter+ 1 ~ 
coeffs=( coeffs;new _ coeffs ]~ 

end 
new_ coeffs=zeros( 1, 4 *N-4 ); 
new_ coeffs( 1 )= 1; 
coeffs=[ coeffs;new _ coeffs ]; 
save cymatrix coeffs 
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function [ coeffs ]=fncylwlk(N,M, W ,loops,startrow,startcol) 
o/o% David P. Wells Updated 931027. This function returns a row of the TGT matrix for 
% rotationally symmetric systems using the MCM given the coordinates 
% of the walke ... s starting point and the following input parameters: 
% N= inner matrix dimension 
% M= outer matrix dimension 
% loops= number of loops 
% W= # of walkers per loop 
% startrow= walker release row 
% startcol= release column 
L=2~ 
T=(M-N+2)12: 
R=N+1; 
B=(M+N)/2; 
compgrid=ze ,)s(N,N); 
crnrow=T -1; %comers of inner grid 
cmcol=L-1; 
for i=1 :loops 

inbound=zeros( 1, W); 
outbound=zeros( 1, W); 
row=ones( 1, W); 
col=ones( 1, W); 
row=startrow•row; 
col=startcol*col; 
while length(row)-=0 

dr=rand(1,length(row)); 
up=( dr<= .25); 
dn=((dr>.2S)&(dr<=.S)); 
comprand=.25*(3-ones(l,length(col))./(2*(col-1.S))); 
It=( ( dr>. S)&( dr<=comprand) ); 
rt=( dr>comprand); 
row=row+up-dn; 
col=col+rt-lt; 
inbound=((row==T)&(( col>=L)&( col<=R))); 
inbound=(inboundl((row==B)&(( coi>==L)&( col<=R)))); 
inbound=(inboundl(( col R)&((row>==T)&(row<=B)))); 
inbound=(inboundl(( col L)&((row>=T)&(row<=B)))); 
rowin=row(find(inbound= 1) ); 
colin=col(find(inbound= 1) ); 
for k=1 :length(rowin) 
compgrid(rowin(k)-crnrow,colin(k)-crncol)= ... 

compgrid(rowin(k)-cmrow,colin(k)-cmcol)+ 1; 
end 
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outbound-((row-1)1(row-M)I(col--1)l(coi==(M+N+2)12)); 
row( find(( outbound-=1 )!(inbound= 1 )))=[]; 
col( find(( outbound-== I )l(inbound=-=1)) )=[); 

end 
end 
coeffs=unravel( compgrid); 
coetrs-( ll(loops•W))•coetrs; 
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function x=unravel(y) 
%function unravel takes boundary coefficients from around compgrid and puts 
%them in a row vector using a spiral numbering scheme. 
%David P. Wells 931030 
D=size(y); 
d=D(1); 
x=y(1,:); 
x=[x (y(2:d,d))']; 
for i=d-1 :-1:1 
x=[x y(d,i)]; 

end 
for i=d-1 :-1:2 
x=[x y(i,1)]; 

end 
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%Dave Wells Updated:931026 
% rctcoffs.m 
% Purpose is to create a TGT matrix of coefficients for rectangular 
% coordinate systems for use in EMAG 
% Coefficients will be saved in a file named rcmatrix.mat 
% with variable name coeffs 
% The coefficient pattern is as follows: 
% 
% 
% 
% 
% 
% 
% 

ABC DE 
P 1 2 3 F 
0 8 4 G 
N76SH 
M L K J I 

% Here, the letters represent the relative location 
% on the boundary layer and the numbers represent the relative 
% locations on the computational grid edges. 
%Row~ Column 1 of the coefficient matrix named "coeffs" is the 
% coefficient linking point A on the boundary to point # 1 on 
%the computational grid. For this example, "coeffs" would be a 
% 16x8 matrix. 
% This program requires fnrctwlk.m and unravel.m to operate. 
N=input('enter the inner grid dimension ')~ 
M=input('enter outer grid dimension (odd if inner dimension odd, even if inner is even)'); 
R=input('enter the number of walkers'); 
coeffs=[]; 
for i=(M-N)/2:(M+N+2)12 % top row 

new_ coeffs=fnrctwlk(N.~R, 1,(M-N)/2,i); 
coeffs=[ coeffs;new _ coeffs ]; 

end 
for i=(M-N+2)12:(M+N+2)12 % right side 

new_ coeffs=fnrctwlk(N.~R, 1,i,(M+N+2)12); 
coeffs=[ coeffs;new _ coeffs ]; 

end 
for i=(M+N)/2:-1:(M-N)/2 %bottom row 

new_ coeffs=fnrctwlk(N.~R, 1,(M+N+2)12,i); 
coeffs=[ coeffs;new _ coeffs ); 

end 
for i=(M+N)/2:-1 :(M-N+2)12 

new_coeffs=fnrctwlk(N,M,R,l,i,(M-N)/2);% left side 
coeffs=[ coeffs;new _ coeffs ]; 

end 
save rcmatrix coeffs 
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function[ coetfs ]=fhrctwlk(N,M, W ,loops,startrow ,start col) 
%%David P. Wells Updated 931027 
% This function returns a row of the TGT matrix for z-invariant systems 
% given the coordinates of the walker's starting point and the following 
% input parameters: 
% N= inner matrix dimension 
% M= outer matrix dimension 
% W= number of walkers per loop 
%loops= number ofloops (use one unless running out of memory) 
L=(M-N)/2+ 1; % defining left side of computational grid 
T=L; % defining top 
R=(M+N)/2; % defining right 
B=R; % defining bottom 
pr=.2S; %fraction moving right 
pi= .S; % fraction moving left 
pu=.7S; o/o fraction moving up 
compgrid=zeros(N,N); o/o initializing computational grid location matrix 
cmrow=T -1; %comers of inner grid 
cmcoi=L-1; 

for i=1 :loops o/o loops used only to avoid "out of memory" situation 
inbound=zeros( 1, W)~ % initializing collision with imer grid matrix 
outbound=zeros(1,W)~ o/o initializing collision with outer grid matrix 
row=ones( 1, W); o/o creating walker row position vector 
col-ones( 1, W); o/o creating walker column position vector 
row=startrow•row; o/o initializing starting release point 
col=startcol*col; % 
while length( row)-=() o/o looping until all walkers have come to rest on 

o/o imer or outer bound 
dr=rand(1,1ength(row))~ o/o creating walker direction vector 
rt=(dr<=.2S); o/o choosing those to move right 
lt=((dr>.2S)&(dr<=.S)); %choosing those to move left 
up=((dr>.S)&(dr<=.7S)); %choosing those to move up 
dn=(dr>.7S); o/o choosing those to move down 
row=row+up-dn; o/o moving some left and some right 
col=col+rt-lt; % moving some up and some down 
inbound=((row==T)&((col>=L)&(coi<=R))); %check for inside collisions 
inbound=(inboundl((row=B)&((coi>=L)&( coi<=R)))); % ditto 
inbound=(inboundl(( col R)&((row>=T)&(row<=B)))); % ditto 
inbound=(inboundl((col L)&((row>=T)&(row<=B)))); % ditto 
rowin=row(find(inbound= 1 )); % isolating walkers on inner boundary 
colin=col(find(inbound= 1) ); % ditto 
for k=1 :length(rowin) %record loc of walkers on inner bound 
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---------------------------

compgrid( rowin(k)-cmrow,colin(k )-cmcol)= ... 
compgrid(rowin(k)-cmrow,colin(k)-cmcol)+ 1; 

end 
outbound=((row=l)l(row=M)I(col=l)l(coi=M));% finding walkers on 

% outer boundary 
row( find( (outbound= 1 )!(inbound= 1)) )=[]; % discarding walkers 

% on inner or outer bounds 
col(find((outbound=l)l(inbound=l)))=[];% ditto 

end 
end 
coeffs=unravel( compgrid); % organizing coeffs using spiral number scheme 
coeffs=(l/(loops•W))•coeffs;% normalizing coefficients to# walkers released 
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