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Abstract—A recent paper [1] proposed a provably optimal polynomial time

method for performing near-isometric point pattern matching by means of exact

probabilistic inference in a chordal graphical model. Its fundamental result is that

the chordal graph in question is shown to be globally rigid, implying that exact

inference provides the same matching solution as exact inference in a complete

graphical model. This implies that the algorithm is optimal when there is no noise

in the point patterns. In this paper, we present a new graph that is also globally

rigid but has an advantage over the graph proposed in [1]: Its maximal clique size

is smaller, rendering inference significantly more efficient. However, this graph is

not chordal, and thus, standard Junction Tree algorithms cannot be directly

applied. Nevertheless, we show that loopy belief propagation in such a graph

converges to the optimal solution. This allows us to retain the optimality guarantee

in the noiseless case, while substantially reducing both memory requirements and

processing time. Our experimental results show that the accuracy of the proposed

solution is indistinguishable from that in [1] when there is noise in the point

patterns.

Index Terms—Point pattern matching, graph matching, graphical models, belief

propagation, global rigidity, chordal graphs.

Ç

1 INTRODUCTION

POINT pattern matching is a fundamental problem in pattern

recognition and has been modeled in several different forms

depending on the demands of the application domain in which it is

required [2], [3], [4], [5]. A classic formulation that is realistic in

many practical scenarios is that of near-isometric point pattern

matching, in which we are given both a “template” ðT Þ and a

“scene” ðSÞ point pattern, and it is assumed that S contains an

instance of T (say, T 0) apart from an isometric transformation and

possibly some small jitter in the point coordinates. The goal is to

identify T 0 in S and find which points in T correspond to which

points in T 0.
Recently, a method was introduced that solves this problem

efficiently by means of exact belief propagation in a certain

graphical model [1].1 The approach is appealing because it is

optimal not only in that it consists of exact inference in a graph

with small maximal clique size (¼ 4 for matching in IR2) but also in

that the graph itself is optimal. There it is shown that the maximum

a posteriori (MAP) solution in the sparse and tractable graphical

model where inference is performed is actually the same MAP

solution that would be obtained if a fully connected model (which

is intractable) could be used. This is due to the so-called global

rigidity of the chordal graph in question: When the graph is

embedded in the plane, the lengths of its edges uniquely determine

the lengths of the absent edges (i.e., the edges of the graph

complement) [9]. The computational complexity of the optimal

point pattern matching algorithm is then shown to be Oðnm4Þ
(both in terms of processing time and memory requirements),

where n is the number of points in the template point pattern and

m is the number of points in the scene point pattern (usually with

m > n in applications). This reflects precisely the computational

complexity of the Junction Tree algorithm in a chordal graph with

OðnÞ nodes, OðmÞ states per node, and maximal cliques of size 4.

The authors present experiments which give evidence that the

method substantially improves on well-known matching techni-

ques, including Graduated Assignment [10].

In this paper, we show how the same optimality proof can be

obtained with an algorithm that runs in Oðnm3Þ time per iteration.

In addition, memory requirements are precisely decreased by a

factor of m. We are able to achieve this by identifying a new graph,

which is globally rigid but has a smaller maximal clique size: three.

The main problem we face is that our graph is not chordal, so in

order to enforce the running intersection property for applying the

Junction Tree algorithm, the graph should first be triangulated;

this would not be interesting in our case, since the resulting

triangulated graph would have larger maximal clique size. Instead,

we show that belief propagation in this graph converges to the

optimal solution, although not necessarily in a single iteration. In

practice, we find that convergence occurs after a small number of

iterations, thus improving the runtime by an order of magnitude.

We compare the performance of our model to that in [1] with

synthetic and real point sets derived from images and show that in

fact comparable accuracy is obtained while substantial speedups

are observed.

2 BACKGROUND

We consider point matching problems in IR2. The problem we

study is that of near-isometric point pattern matching (as defined

above), i.e., one assumes that a near-isometric instance ðT 0Þ of

the template ðT Þ is somewhere “hidden” in the scene ðSÞ. By

“near-isometric,” it is meant that the relative distances of points

in T are approximately preserved in T 0. For simplicity of

exposition, we assume that T , T 0, and S are ordered sets (their

elements are indexed). Our aim is to find a map x : T 7! S with

image T 0 that best preserves the relative distances of the points

in T and T 0, i.e.,

x� ¼ argmin
x

DðT Þ �D xðT Þð Þk k2
2; ð1Þ

where DðT Þ is the matrix whose ði; jÞth entry is the euclidean

distance between points indexed by i and j in T and k � k2 is the

Frobenius norm. Note that finding x� is inherently a combinatorial

optimization problem since T 0 is itself a subset of S, the scene

point pattern. In [1], a generic point in T is modeled as a random

variable ðXiÞ and a generic point in S is modeled as a possible

realization of the random variable ðxiÞ. As a result, a joint

realization of all the random variables corresponds to a match

between the template and the scene point patterns. A graphical

model (see [11] and [12]) is then defined on this set of random

variables whose edges are set according to the topology of a so-

called 3-tree graph (any 3-tree that spans T ). A 3-tree is a graph

obtained by starting with the complete graph on three vertices,

K3, and then adding new vertices that are connected only to those
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same three vertices.2 Fig. 1 shows an example of a 3-tree; it should

be noted that the points in the template set correspond to the nodes

in this graph, whereas the points in the scene correspond to their

assignments. The reasons claimed in [1] for introducing 3-trees as a

graph topology for the probabilistic graphical model are that

1) 3-trees are globally rigid in the plane and 2) 3-trees are chordal3

graphs. This implies 1) that the 3-tree model is “optimal” (in a

way that will be made clear in Section 3 in the context of the new

graph we propose) and 2) that 3-trees have a Junction Tree with

fixed maximal clique size ð¼ 4Þ; as a result, it is possible to

perform exact inference in polynomial time [1].

Potential functions are defined on pairs of neighboring nodes

and are large if the difference between the distance of neighboring

nodes in the template and the distance between the nodes they

map to in the scene is small (and small if this difference is large).

This favors isometric matchings. More precisely,

 ijðXi ¼ xi;Xj ¼ xjÞ ¼ f dðXi;XjÞ � dðxi; xjÞ
� �

; ð2Þ

where fð�Þ is typically some unimodal function peaked at zero

(e.g., a zero-mean Gaussian function) and dð�; �Þ is the euclidean

distance between the corresponding points (for simplicity of

notation, we do not disambiguate between random variables and

template points or realizations and scene points). For the case of

exact matching, i.e., when there exists an x� such that the minimal

value in (1) is zero, then fð�Þ ¼ �ð�Þ (where �ð�Þ is just the

indicator function 1f0gð�Þ). The potential function of a maximal

clique ð�Þ is then simply defined as the product of the potential

functions over its six ð¼ C4
2Þ edges (which will be maximal when

every factor is maximal). It should be noted that the potential

function of each edge is included in no more than one of the

cliques containing that edge.

For the case of exact matching (i.e., no jitter), it is shown in [1]

that running the Junction Tree algorithm on the 3-tree graphical

model with fð�Þ ¼ �ð�Þ will actually find a MAP assignment which

coincides with x�, i.e., such that DðT Þ �Dðx�ðT ÞÞk k2
2¼ 0. This is

due to the “graph rigidity” result, which tells us that equality of

the lengths of the edges in the 3-tree and the edges induced by the

matching in T 0 is sufficient to ensure the equality of the lengths of

all pairs of points in T and T 0. This will be made technically

precise in Section 3, when we prove an analogous result for

another graph.4

3 AN IMPROVED GRAPH

Here, we introduce another globally rigid graph that has the
advantage of having a smaller maximal clique size. Although the
graph is not chordal, we will show that exact inference is tractable
and that we will indeed benefit from the decrease in the maximal
clique size. As a result, we will be able to obtain optimality
guarantees like those from [1].

Our graph is constructed using Algorithm 1.

Algorithm 1. Graph generation for G.

1 Create a cycle graph by traversing all the nodes in T (in any

order)

2 Connect all nodes whose distance in this cycle graph is two

(i.e., connect each node to its neighbor’s neighbor)

This algorithm will produce a graph like the one shown in
Fig. 2. We will denote by G the set of graphs that can be generated
by Algorithm 1. G ¼ ðV ;EÞ will denote a generic graph in G.

In order to present our results, we need to start with the
definition of a globally rigid graph.

Definition 1. A planar graph embedding G is said to be globally rigid in
IR2 if the lengths of the edges uniquely determine the lengths of the
edges of the graph complement of G.

Therefore, our statements are really about graph embeddings in IR2,
but for simplicity of presentation, we will simply refer to these
embeddings as “graphs.”

This means that there are no degrees of freedom for the absent
edges in the graph: They must all have specified and fixed lengths.
To proceed, we need a simple definition and some simple technical
lemmas.

Definition 2. A set of points is said to be in a general position in IR2 if
no three points lie in a straight line.

Lemma 3. Given a set of points in general position in IR2, if the distances
from a point P to two other fixed points are determined, then P can be
in precisely two different positions.

Proof. Consider two circles, each centered at one of the two
reference points with radii equal to the given distances to
point P . These circles intersect at precisely two points (since the
three points are not collinear). This proves the statement. tu
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Fig. 1. An example of a 3-tree. Each node corresponds to a point in the

template set.

Fig. 2. The general form of the graph we consider, with n nodes.

2. Technically, connecting new vertices to the three nodes of the original
K3 graph is not required: It suffices to connect new vertices to any existent
3-clique.

3. A chordal graph is one in which every cycle of length greater than
three has a chord. A chord of a cycle is an edge not belonging to the cycle
but which connects two nodes in the cycle (i.e., a “shortcut” in a cycle).

4. It is worth noting that a 2-tree would be sufficient if we only wished to
allow for translations and rotations, and a 1-tree would be sufficient if we
only wished to allow for translations [13]. Since we wish to handle all
isometries, these models are not further considered.



The following lemma follows directly from Lemma 1 in [1] and

is stated without proof:

Lemma 4. Given a set of points in general position in IR2, if the distances

from a point P to three other fixed points are determined, then the

position of P is uniquely determined.

We can now present a proposition.

Proposition 5. Any graph G 2 G arising from Algorithm 1 is globally

rigid in the plane if the nodes are in general position in the plane.

Proof. Define a reference frame S, where points 1, 2, and n have

specific coordinates (we say that the points are “determined”).

We will show that all points then have determined positions in

S and therefore have determined relative distances, which by

definition implies that the graph is globally rigid.

We proceed by contradition: Assume there exists at least one

undetermined point in the graph. Then, we must have an

undetermined point i such that i� 1 and i� 2 are determined

(since points 1 and 2 are determined). By virtue of Lemma 4,

points iþ 1 and iþ 2 must then be also undetermined

(otherwise, point i would have determined distances from

three determined points and as a result would be determined).

Let us now assume that only points i, iþ 1, and iþ 2 are

undetermined. Then, the only possible realizations for points i,

iþ 1, and iþ 2 are their reflections with respect to the straight

line that passes through points i� 1 and iþ 3, since these are

the only possible realizations that maintain the rigidity of the

triangles ði� 1; i; iþ 1Þ, ði; iþ 1; iþ 2Þ, and ðiþ 1; iþ 2; iþ 3Þ,
since i� 1 and iþ 3 are assumed fixed. However, since iþ 4

and i� 2 are also fixed by assumption, this would break the

rigidity of triangles ðiþ 2; iþ 3; iþ 4Þ and ði; i� 1; i� 2Þ.
Therefore, iþ 3 cannot be determined. This can then be

considered as the base case in an induction argument that

goes as follows: Assume only i; . . . ; iþ p are undetermined.

Then, by reflecting these points over the line that joins i� 1

and iþ pþ 1 (which are fixed by assumption), we obtain the

only other possible realization consistent with the rigidity of

the triangles who have all their vertices in i� 1; . . . ; iþ pþ 1.

However, this realization is inconsistent with the rigidity of

triangles ðI þ p; iþ pþ 1; iþ pþ 2Þ and ði; i� 1; i� 2Þ; there-

fore, iþ pþ 1 must not be determined and, by induction, any

point j such that j > iþ 2 must not be determined, which

contradicts the assumption that n is determined. As a result,

the assumption that there is at least one undetermined point in

the graph is false. This implies that the graph has all points

determined in S, and therefore, all relative distances are

determined, and by definition, the graph is globally rigid. This

proves the statement. tu
Although we have shown that graphs G 2 G are globally rigid,

notice that they are not chordal. For the graph in Fig. 2, the cycles

ð1; 3; 5; . . . ; n� 1; 1Þ and ð2; 4; 6; . . . ; n; 2Þ have no chord. Moreover,

triangulating this graph in order to make it chordal will necessarily

increase (to at least 4) the maximal clique size (which is not

sufficient for our purposes since we arrive at the case of [1]).

Instead, consider the clique graph formed by G 2 G. If there are

n nodes, the clique graph will have cliques ð1; 2; 3Þ; ð2; 3; 4Þ; . . . ;

ðn� 2; n� 1; nÞ; ðn� 1; n; 1Þ; ðn; 1; 2Þ. This clique graph forms a

cycle, which is depicted in Fig. 3.5

We now draw on results first obtained by Weiss [14] and

confirmed elsewhere [15], [16]. There it is shown that, for graphical

models with a single cycle, belief propagation converges to the

optimal MAP assignment, although the computed marginals may

be incorrect. Note that, for our purposes, this is precisely what is

needed: We are after the most likely joint realization of the set of

random variables, which corresponds to the best match between

the template and the scene point patterns. Max-product belief

propagation [17] in a cycle graph like the one shown in Fig. 3

amounts to computing the following messages iteratively:

mi 7! iþ1ðUi \ Uiþ1Þ ¼ max
UinUiþ1

�ðUiÞmi�1 7! iðUi \ Ui�1Þ; ð3Þ

where Ui is the set of singleton variables in clique node i, �ðUiÞ is

the potential function for clique node i, and mi 7! iþ1 is the message

that passed from clique node i to clique node iþ 1. Upon reaching

the convergence monitoring threshold, the optimal assignment

for singleton variable j in clique node i is then computed by

argmaxUinj �ðUiÞmi�1 7! iðUi \ Ui�1Þmiþ1 7! iðUi \ Uiþ1Þ.
Unfortunately, the above result is only shown in [14] when the

graph itself forms a cycle, whereas we only have that the clique graph

forms a cycle. However, it is possible to show that the result still

holds in our case by considering a new graphical model in which

the cliques themselves form the nodes, whose cliques are now just

the edges in the clique graph. The result in [14] can now be used to

prove that belief propagation in this graph converges to the

optimal MAP assignment, which (by appropriately choosing

potential functions for the new graph) implies that belief

propagation should converge to the optimal solution in the original

clique graph also.

To demonstrate this, we need not only to show that belief

propagation in the new model converges to the optimal assign-

ment, but also that belief propagation in the new model is

equivalent to belief propagation in the original model.

Proposition 6. The original clique graph (Fig. 3) can be transformed into

a model containing only pairwise potentials, whose optimal MAP

assignment is the same as the original model’s.

Proof. Consider a “node” C1 ¼ ðX1; X2; X3Þ (in the original clique

graph) whose neighbors share exactly two of its nodes (for

instance, C2 ¼ ðX2; X3; X4Þ). Where the domain for each node

in the original clique graph was simply f1; 2; . . . ; jSjg, the

domain for each “node” in our new graph simply becomes

f1; 2; . . . ; jSjg3.

In this setting, it is no longer possible to ensure that the

assignment chosen for each “node” is consistent with the

assignment to its neighbor, that is, for an assignment ðx1; x2; x3Þ
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Fig. 3. The clique graph obtained from the graph in Fig. 2.

5. Note that if we connected every clique whose nodes intersected, the
clique graph would have the same topology as the graph in Fig. 2; here, we
have only formed enough connections so that the intersection of any two
cliques is shared by the cliques on at least one path between them (similar to
the running intersection property for Junction Trees).



to C1 and ðx02; x03; x4Þ to C2, we cannot guarantee that x2 ¼ x02 or

x3 ¼ x03. Instead, we will simply define the potential functions

on this new graph in such a way that the optimal MAP

assignment implicitly ensures this equality. Specifically, we

shall define the potential functions as follows: For two cliques

CI ¼ ðI1; I2; I3Þ and CJ ¼ ðJ1; J2; J3Þ in the original graph

(which share two nodes, say, ðI2; I3Þ and ðJ1; J2Þ), define the

pairwise potential for the clique (�0I;J ) in the new graph as

�0I;J ðið123Þ; jð123ÞÞ ¼
�Iði1; i2; i3Þ; if ði2; i3Þ ¼ ðj1; j2Þ;
�; otherwise;

�
ð4Þ

where �I is simply the clique potential for the Ith clique in the

original graph; ið123Þ 2 domainðI1Þ � domainðI2Þ � domainðI3Þ
(sim for jð123Þ). That is, we are setting the pairwise potential to

simply be the original potential of one of the cliques if the

assignments are compatible and � otherwise. If we were able to

set � ¼ 0, we would guarantee that the optimal MAP assign-

ment was exactly the optimal MAP assignment in the original

graph—however, this is not possible, since the result of [15]

only holds when the potential functions have finite dynamic

range. Hence, we must simply choose � sufficiently small so

that the optimal MAP assignment cannot possibly contain an

incompatible match—it is clear that this is possible, for

example, � ¼
Q

C maxxC �CðxCÞ
� ��1

will do (if the potentials

are scaled to be at least one).

The result of [14] now implies that belief propagation in this

graph will converge to the optimal MAP assignment, which we

have shown is equal to the optimal MAP assignment in the

original graph.6 tu
Proposition 7. The messages passed in the new model are equivalent to

the messages passed in the original model, except for repetition along

one axis.

Proof. We use induction on the number of iterations. First, we

must show that the outgoing messages are the same during the

first iteration (during which the incoming messages are not

included). We will denote by mi
ðX1 ;X2 ;X3Þ 7! ðX2 ;X3 ;X4Þ the message

from ðX1; X2; X3Þ to ðX2; X3; X4Þ during the ith iteration:

m1
ðX1 ;X2 ;X3Þ 7! ðX2 ;X3 ;X4Þðx2; x3Þ ¼ max

X1

�ðX1 ;X2 ;X3Þðx1; x2; x3Þ; ð5Þ

m1
Xð123Þ ;Xð234Þð Þ 7! Xð234Þ ;Xð345Þð Þðxð234ÞÞ

¼ maxXð123Þ �0Xð123Þ ;Xð234Þ
xð123Þ; xð234Þ
� �

¼ 1�maxX1
�ðX1 ;X2 ;X3Þðx1; x2; x3Þ

¼ m1
ðX1 ;X2 ;X3Þ 7! ðX2 ;X3 ;X4Þðx2; x3Þ:

ð6Þ

This result only holds due to the fact that � will never be

chosen when maximizing along any axis. We now have that the

messages are equal during the first iteration (the only difference

being that the message for the new model is repeated along

one axis).7 Next, suppose that during the ðn� 1Þst iteration, the

messages (for both models) are equal to �ðx1; x2Þ. Then, for the

nth iteration, we have

mn
ðX1 ;X2 ;X3Þ 7! ðX2 ;X3 ;X4Þðx2; x3Þ

¼ max
X1

�ðX1 ;X2 ;X3Þðx1; x2; x3Þ�ðx1; x2Þ
� �

;
ð7Þ

mn
Xð123Þ;Xð234Þð Þ 7! Xð234Þ;Xð345Þð Þðxð234ÞÞ

¼ maxXð123Þ �0Xð123Þ;Xð234Þ
ðxð123Þ; xð234ÞÞ�ðx1; x2Þ

n o
¼ 1�maxX1

�ðX1 ;X2 ;X3Þðx1; x2; x3Þ�ðx1; x2Þ
� �

¼ mn
ðX1 ;X2 ;X3Þ 7! ðX2 ;X3 ;X4Þðx2; x3Þ:

ð8Þ

Hence, the two message passing schemes are equivalent by

induction. tu
We can now state our main result.

Theorem 8. Let G 2 G be a graph generated according to the procedure

described in Algorithm 1. Assume that there is a perfect isometric

instance of T within the scene point pattern S.8 Then, the MAP

assignment x� obtained by running belief propagation over the clique

graph derived from G is such that DðT Þ �Dðx�ðT ÞÞk k2
2¼ 0.

Proof. For the exact matching case, we simply set fð�Þ ¼ �ð�Þ in (2).

Now, for a graph G 2 G given by Algorithm 1, the clique graph

will simply be a cycle, as shown in Fig. 3, and following

Propositions 6 and 7, as well as the already mentioned result in

[14], belief propagation will find the correct MAP assignment

x�, i.e.,

x� ¼ argmax
x

PGðX ¼ xÞ

¼ argmax
x

Y
i;j:ði;jÞ2E

� dðXi;XjÞ � dðxi; xjÞ
� �

;
ð9Þ

where PG is the probability distribution for the graphical model

induced by the graph G. Now, we need to show that x� also

maximizes the criterion which ensures isometry, i.e., we need to

show that the above implies that

x� ¼ argmax
x

PcompleteðX ¼ xÞ

¼ argmax
x

Y
i;j

� dðXi;XjÞ � dðxi; xjÞ
� �

;
ð10Þ

where Pcomplete is the probability distribution of the graphical

model induced by the complete graph. Note that x� must be

such that the lengths of the edges in E are precisely equal to the

lengths of the edges in ET 0 (i.e., the edges induced in S from E

by the map X ¼ x�). By the global rigidity of G, the lengths of �E

must then be also precisely equal to the lengths of �ET 0 . This

implies that
Q

i;j:ði;jÞ2 �E �ðdðXi;XjÞ � dðx�i ; x�j ÞÞ ¼ 1. Since (10) can

be expanded as

x� ¼ argmax
x

( Y
i;j:ði;jÞ2E

� dðXi;XjÞ � dðxi; xjÞ
� �

Y
i;j:ði;jÞ2 �E

� dðXi;XjÞ � dðxi; xjÞ
� �)

;

ð11Þ

it becomes clear that x� will also maximize (10). This proves the

statement. tu
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6. To reiterate, the fact that the dynamic range is finite ensures that belief
propagation converges to a unique fixed point (for graphs with a single
loop) [15]; from this, the results in [14] and [16] guarantee optimality of the
MAP assignment.

7. To be completely precise, the message for the new model is actually
a function of only a single variable—Xð234Þ. By “repeated along one axis,”
we mean that for any given ðx2; x3; x4Þ 2 domainðX2Þ � domainðX3Þ �
domainðX4Þ, the message at this point is independent of x4, which
therefore has no effect when maximizing.

8. In addition, we require that there is only a single isometric instance of
T in S in order to ensure that the optimal MAP assignment is unique.



4 EXPERIMENTS

We have set up a series of experiments comparing the proposed

model to that of [1]. Here, we compare graphs of the type shown in

Fig. 2 to graphs of the type shown in Fig. 1.
The parameters used in our experiments are given as follows:

�. This parameter controls the noise level used in our model.

Here, we apply Gaussian noise to each of the points in T (with

standard deviation � in each axis). We have run our experiments on

a range of noise levels between 0 and 4=256 (where the original

points in T are chosen randomly between 0 and 1). Note that this is

the same as the setting used in [1].

Potential functions  ijðXi¼xi;Xj¼xjÞ¼fðdðXi;XjÞ�dðxi; xjÞÞ.
As in [1], we use a Gaussian function, i.e., exp

ðdðXi;XjÞ�dðxi;xjÞÞ2
2�2

� �
. The

parameter � is fixed beforehand as � ¼ 0:4 for the synthetic data

and � ¼ 150 for the real-world data (as is done in [1]). While this

potential function does not enforce that the chosen mapping is

injective, it ensures that noninjective mappings are discouraged by

having a low potential.

Dynamic range. As mentioned in Section 2, the potential

function �ðxÞ is simply the product of  ijðXi ¼ xi;Xj ¼ xjÞ for all

edges ði; jÞ in x (here, each maximal clique x contains three edges).

The dynamic range of a function is simply defined as its maximum

value divided by its minimum value (i.e., maxx �ðxÞ
minx �ðxÞ ). In order to

prove convergence of our model, it is necessary that the dynamic

range of our potential function is finite [15]. Therefore, rather than

using �ðxÞ directly, we use �0ðxÞ ¼ ð1=dÞ þ ð1� 1=dÞ�ðxÞ. This

ensures that the dynamic range of our model is no larger than d and

that �0 ! � as d!1. In practice, we found that varying this

parameter did not have a significant effect on convergence time.

Hence, we simply fixed a large finite value ðd ¼ 1;000Þ throughout.

MSE-cutoff. In order to determine the point at which belief

propagation has converged, we compute the marginal distribution

of every clique and compare it to the marginal distribution after

the previous iteration. Belief propagation is terminated when this

mean-squared error is less than a certain cutoff value for every

clique in the graph. When choosing the mode of the marginal

distributions after convergence, if two values differ by less than the

square root of this cutoff, both of them are considered as possible

MAP estimates (although this was rarely an issue when the cutoff

was sufficiently small). We found that as jSj increased, the mean

squared error between iterations tended to be smaller and

therefore that smaller cutoff values should be used in these

instances. Indeed, although the number of viable matches increases

as jSj increases, the distributions increase in sparsity at an even

faster rate—hence, the distributions tend to be less peaked on the

average and changes are likely to have less effect on the mean

squared error. Hence, we decreased the cutoff values by a factor of

10 when jSj � 30.9

The clique graph in which messages are passed by our belief

propagation algorithms is exactly that shown in Fig. 3. It is worth

noting, however, that we also tried running belief propagation

using a clique graph in which messages were passed between all

intersecting cliques; we found that this made no difference to the

performance of the algorithm10 and we have therefore restricted

our experiments to the clique graph in Fig. 3 with respect to its

optimality guarantees.

For the sake of runtime comparison, we implemented the

proposed model as well as that of [1] using the Elefant11 belief

propagation libraries in Python. However, to ensure that the

results presented are consistent with those of [1], we simply used

code that the authors provided when reporting the matching

accuracy of their model. Our implementation computes messages

(3) in a random order for all sites during each iteration.
Fig. 4 compares the matching accuracy (proportion of correct

matches) of our model with that in [1] for jSj ¼ 10, 20, 30, and 40
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Fig. 4. Matching accuracy (proportion of correct matches) of our model against

that in [1]. The performance of our model is statistically indistinguishable from that

in [1] for all noise levels. The error bars indicate the average and standard error of

50 experiments.

9. Note that this is not a parameter in [1], in which only a single iteration
is ever required.

10. Apart from one slight difference, including the additional edges
appears to provide convergence in fewer iterations. However, since the
number of messages being passed is doubled, the overall runtime for both
clique graphs was ultimately similar. 11. http://elefant.developer.nicta.com.au/.



(here, we fix jT j ¼ 10). The performance of our algorithm is
indistinguishable from that of the Junction Tree algorithm.

Figs. 5 and 6 show the runtime and matching accuracy
(respectively) of our model, as we vary the mean-squared error
cutoff. Obviously, it is necessary to use a sufficiently low cutoff in
order to ensure that our model has converged, but choosing too
small a value may adversely effect its runtime. We found that the
mean-squared error varied largely during the first few iterations,
and we therefore enforced a minimum number of iterations (here,
we chose at least 5) in order to ensure that belief propagation was
not terminated prematurely. Fig. 5 reveals that the runtime is not
significantly altered when increasing the MSE-cutoff—revealing
that the model has almost always reached the lower cutoff value
after five iterations (in which case, we should expect a speedup of

precisely jSj=5). Furthermore, decreasing the MSE-cutoff does not

significantly improve the matching accuracy for larger point sets

(Fig. 6), so choosing the lower cutoff does little harm if runtime is a

major concern. Alternately, the Junction Tree model (which only

requires a single iteration), took (for S ¼ 10 to 40) 3, 44, 250, and

1,031 seconds, respectively. These models differ only in the

topology of the network (see Section 3) and the size of the

messages being passed; our method easily achieves an order of

magnitude improvement for large networks.12
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Fig. 5. Running-time of our model as the jitter varies, for different MSE-cutoffs.
Speed-ups are almost exactly one order of magnitude.

Fig. 6. Matching accuracy of our model as the MSE-cutoff varies. This figure
suggests that the higher cutoff value should be sufficient when matching larger
point sets.

12. In fact, the speedup appears to be more than an order of magnitude
for the large graphs, which is likely a side effect of the large memory
requirements of the Junction Tree algorithm.



Finally, we present matching results using data from the

CMU house sequence.13 In this data set, 30 points corresponding

to certain features of the house are available over 111 frames.

Fig. 7 shows the 71st and the last (111th) frames from this data

set. Overlayed on these images are the 30 significant points,

together with the matches generated by the Junction Tree

algorithm and our own (matching the first 20 points); in this

instance, the Junction Tree algorithm correctly matched 16 points

and ours matched 17. Fig. 8 shows how accurately points

between frames are matched as the baseline (separation between

frames) varies. We also vary the number of points in the

template set (jT j) from 15 to 30. Our model seems to outperform

the Junction Tree model for small baselines, whereas, for large

baselines and larger point sets, the Junction Tree model seems to

be the best. It is however difficult to draw conclusions from both

models in these cases, since they are designed for the near-

isometric case, which is violated for larger baselines.

5 CONCLUSIONS

We have shown that the near-isometric point pattern matching

problem can be solved much more efficiently than what is

currently reported as the state of the art, while maintaining the

same optimality guarantees for the noiseless case and comparable

accuracy for the noisy case. This was achieved by identifying a

new type of graph with the same global rigidity property of

previous graphs, in which exact inference is far more efficient.

Although exact inference is not directly possible by means of the

Junction Tree algorithm since the graph is not chordal, what we

managed to show is that loopy belief propagation in such a graph

does converge to the optimal solution in a sufficiently small

number of iterations. In the end, the advantage of the smaller

clique size of our model dominates the disadvantage caused by the

need for more than a single iteration.
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