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Lecture 1

Vectors, Functions, and Plots in Matlab

In these notes

�
�

will indicate commands to be entered at the Matlab prompt � in the command window. You do not type
the symbol �.

Entering vectors

In Matlab, the basic objects are matrices, i.e. arrays of numbers. Vectors can be thought of as special
matrices. A row vector is recorded as a 1×n matrix and a column vector is recorded as a m× 1 matrix. To
enter a row vector in Matlab, type the following in the command window:

� v = [0 1 2 3]

and press enter. Matlab will print out the row vector. To enter a column vector type

� u = [9; 10; 11; 12; 13]

You can access an entry in a vector with

� u(2)

and change the value of that entry with

� u(2)=47

You can extract a slice out of a vector with

� u(2:4)

You can change a row vector into a column vector, and vice versa easily in Matlab using

� w = v’

(This is called transposing the vector and we call ’ the transpose operator.) There are also useful shortcuts
to make vectors such as

� x = -1:.1:1

� y = linspace (0,1,11)
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Basic Formatting

To make Matlab put fewer blank lines in its output, enter

� format compact

� pi

� x

To make Matlab display more digits, enter

� format long

� pi

Note that this does not change the number of digits Matlab is using in its calculations; it only changes
what is diplayed.

Plotting Data

Consider the data in Table 1.1.1 We can enter this data into Matlab with the following commands entered

T (C◦) 5 20 30 50 55
µ 0.08 0.015 0.009 0.006 0.0055

Table 1.1: Viscosity of a liquid as a function of temperature.

in the command window:

� x = [ 5 20 30 50 55 ]

� y = [ 0.08 0.015 0.009 0.006 0.0055]

Entering the name of the variable retrieves its current values. For instance

� x

� y

We can plot data in the form of vectors using the plot command:

� plot(x,y)

This will produce a graph with the data points connected by lines. If you would prefer that the data points
be represented by symbols you can do so. For instance

� plot(x,y,’*’)

� plot(x,y,’o’)

� plot(x,y,’.’)

1Adapted from Ayyup &McCuen 1996, p.174.
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4 LECTURE 1. VECTORS, FUNCTIONS, AND PLOTS IN MATLAB

Data as a Representation of a Function

A major theme in this course is that often we are interested in a certain function y = f(x), but the only
information we have about this function is a discrete set of data {(xi, yi)}. Plotting the data, as we did
above, can be thought of envisioning the function using just the data. We will find later that we can also do
other things with the function, like differentiating and integrating, just using the available data. Numerical
methods, the topic of this course, means doing mathematics by computer. Since a computer can only store
a finite amount of information, we will almost always be working with a finite, discrete set of values of the
function (data), rather than a formula for the function.

Built-in Functions

If we wish to deal with formulas for functions, Matlab contains a number of built-in functions, including
all the usual functions, such as sin( ), exp( ), etc.. The meaning of most of these is clear. The dependent
variable (input) always goes in parentheses in Matlab. For instance

� sin(pi)

should return the value of sinπ, which is of course 0 and

� exp (0)

will return e0 which is 1. More importantly, the built-in functions can operate not only on single numbers
but on vectors. For example

� x = linspace (0,2*pi ,41)

� y = sin(x)

� plot(x,y)

will return a plot of sinx on the interval [0, 2π]

Some of the built-in functions in Matlab include: cos( ), tan( ), sinh( ), cosh( ), log( ) (natural
logarithm), log10( ) (log base 10), asin( ) (inverse sine), acos( ), atan( ). To find out more about a
function, use the help command; try

� help plot

User-Defined Anonymous Functions

If we wish to deal with a function that is a combination of the built-in functions, Matlab has a couple of
ways for the user to define functions. One that we will use a lot is the anonymous function, which is a way
to define a function in the command window. The following is a typical anonymous function:

� f = @(x) 2*x.^2 - 3*x + 1

This produces the function f(x) = 2x2 − 3x+ 1. To obtain a single value of this function enter

� y = f(2.23572)
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Just as for built-in functions, the function f as we defined it can operate not only on single numbers but on
vectors. Try the following:

� x = -2:.2:2

� y = f(x)

This is an example of vectorization, i.e. putting several numbers into a vector and treating the vector all at
once, rather than one component at a time, and is one of the strengths of Matlab. The reason f(x) works
when x is a vector is because we represented x2 by x.^2. The . turns the exponent operator ^ into entry-wise
exponentiation, so that [-2 -1.8 -1.6].^2 means [(−2)2, (−1.8)2, (−1.6)2] and yields [4 3.24 2.56]. In
contrast, [-2 -1.8 -1.6]^2 means the matrix product [−2,−1.8,−1.6][−2,−1.8,−1.6] and yields only an
error. The . is needed in .^, .*, and ./. It is not needed when you * or / by a scalar or for +.

The results can be plotted using the plot command, just as for data:

� plot(x,y)

Notice that before plotting the function, we in effect converted it into data. Plotting on any machine always
requires this step.

Exercises

1.1 Find a table of data in an engineering or science textbook or website. Input it as vectors and plot it.
Use the insert icon to label the axes and add a title to your graph. Turn in the graph. Indicate what
the data is and properly reference where it came from.

1.2 Find a function formula in an engineering or science textbook or website. Make an anonymous function
that produces that function. Plot it on a physically relevant domain. Label the axes and add a title to
your graph. Turn in the graph and include the Matlab command for the anonymous function. Indicate
what the function means and properly reference where it came from.
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Lecture 2

Matlab Programs

In Matlab, programs may be written and saved in files with a suffix .m called M-files. There are two types
of M-file programs: functions and scripts.

Function Programs

Begin by clicking on the new document icon in the top left of the Matlab window (it looks like an empty
sheet of paper).

In the document window type the following:

function y = myfunc(x)

y = 2*x.^2 - 3*x + 1;

end

Save this file as: myfunc.m in your working directory. This file can now be used in the command window
just like any predefined Matlab function; in the command window enter:

� x = -2:.1:2; % Produces a vector of x values

� y = myfunc(x); % Produces a vector of y values

� plot(x,y)

Note that the fact we used x and y in both the function program and in the command window was just a
coincidence. In fact, it is the name of the file myfunc.m that actually mattered, not what anything in it was
called. We could just as well have made the function

function nonsense = yourfunc(inputvector)

nonsense = 2* inputvector .^2 - 3* inputvector + 1;

end

Look back at the program. All function programs are like this one, the essential elements are:

• Begin with the word function.

• There is an input and an output.

• The output, name of the function and the input must appear in the first line.

• The body of the program must assign a value to the output variable(s).

• The program cannot access variables in the current workspace unless they are input.

6
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• Internal variables inside a function do not appear in the current workspace.

Functions can have multiple inputs, which are separated by commas. For example:

function y = myfunc2d(x,p)

y = 2*x.^p - 3*x + 1;

end

Functions can have multiple outputs, which are collected into a vector. Open a new document and type:

function [x2 x3 x4] = mypowers(x)

x2 = x.^2;

x3 = x.^3;

x4 = x.^4;

end

Save this file as mypowers.m. In the command window, we can use the results of the program to make
graphs:

� x = -1:.1:1

� [x2 x3 x4] = mypowers(x);

� plot(x,x,’black’,x,x2 ,’blue’,x,x3 ,’green’,x,x4 ,’red’)

Printing, Returning, Capturing, and Printing

Notice that in the examples above, lines ending with a semicolon “;” did not print their results.

Try the following:

� myfunc (3)

� ans^2

Although myfunc returned a value, we did not capture it. By default Matlab captured it as ans so we can
use it in our next computation. However, Matlab always uses ans (for answer), so the result is likely to
get overwritten.

Then try:

� z = 0

� z = myfunc (2)

� z^2

myfunc returned a value that it internally called y and we captured the result in z. We can now use z for
other calculations.

Now make a program

function myfuncnoreturn(x)

y = 2*x.^2 - 3*x + 1

end
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8 LECTURE 2. MATLAB PROGRAMS

and try:

� myfuncnoreturn (4)

� ans^2

� y^2

Although the value of y was printed within the function, it was not returned, so neither the value of y nor
the value of ans was changed. Thus we cannot use the result from the function.

In general, the best way to use a function is to capture the result it returns and then use or print this result.
Printing within functions is bad form; however, for understanding what is happening within a function it is
useful to print, so many functions in this book do print.

Script Programs

Matlab uses a second type of program that differs from a function program in several ways, namely:

• There are no inputs and outputs.

• A script program may use, create and change variables in the current workspace (the variables used
by the command window).

Below is a script program that accomplishes the same thing as the function program plus the commands in
the previous section:

x2 = x.^2;

x3 = x.^3;

x4 = x.^4;

plot(x,x,’black’,x,x2 ,’blue’,x,x3 ,’green’,x,x4 ,’red’)

Type this program into a new document and save it as mygraphs.m. In the command window enter:

� x = -1:.1:1;

� mygraphs

Note that the program used the variable x in its calculations, even though x was defined in the command
window, not in the program.

Many people use script programs for routine calculations that would require typing more than one command
in the command window. They do this because correcting mistakes is easier in a program than in the
command window.

Program Comments

For programs that have more than a couple of lines it is important to include comments. Comments allow
other people to know what your program does and they also remind yourself what your program does if you
set it aside and come back to it later. It is best to include comments not only at the top of a program, but
also with each section. In Matlab anything that comes in a line after a % is a comment.
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For a function program, the comments should at least give the purpose, inputs, and outputs. A properly
commented version of the function with which we started this section is:

function y = myfunc(x)

% Computes the function 2x^2 -3x +1

% Input: x -- a number or vector;

% for a vector the computation is elementwise

% Output: y -- a number or vector of the same size as x

y = 2*x.^2 - 3*x + 1;

end

For a script program, there should be an initial comment stating the purpose of the script. It is also helpful
to include the name of the program at the beginning. For example:

% mygraphs

% plots the graphs of x, x^2, x^3, and x^4

% on the interval [-1,1]

% fix the domain and evaluation points

x = -1:.1:1;

% calculate powers

% x1 is just x

x2 = x.^2;

x3 = x.^3;

x4 = x.^4;

% plot each of the graphs

plot(x,x,’+-’,x,x2 ,’x-’,x,x3 ,’o-’,x,x4 ,’--’)

The Matlab command help prints the first block of comments from a file. If we save the above as
mygraphs.m and then do

� help mygraphs

it will print into the command window:

� mygraphs

� plots the graphs of x, x^2, x^3, and x^4

� on the interval [-1,1]

Exercises

2.1 Write a well-commented function program for the function x2e−x
2

, using entry-wise operations (such
as .* and .^). To get ex use exp(x). Plot the function on [−5, 5] using enough points to make the
graph smooth. Turn in the program and the graph.

2.2 Write a well-commented script program that graphs the functions sinx, sin 2x, sin 3x, sin 4x, sin 5x
and sin 6x on the interval [0, 2π] on one plot. (π is pi in Matlab.) Use a sufficiently small step size
to make all the graphs smooth. Turn in the program and the graph.
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Lecture 3

Newton’s Method and Loops

Solving equations numerically

For the next few lectures we will focus on the problem of solving an equation:

f(x) = 0. (3.1)

As you learned in calculus, the final step in many optimization problems is to solve an equation of this form
where f is the derivative of a function, F , that you want to maximize or minimize. In real engineering
problems the functions, f , you wish to find roots for can come from a large variety of sources, including
formulas, solutions of differential equations, experiments, or simulations.

Newton iterations

We will denote an actual solution of equation (3.1) by x∗. There are three methods which you may have
discussed in Calculus: the bisection method, the secant method and Newton’s method. All three depend on
beginning close (in some sense) to an actual solution x∗.

Recall Newton’s method. You should know that the basis for Newton’s method is approximation of a function
by its linearization at a point, i.e.

f(x) ≈ f(x0) + f ′(x0)(x− x0). (3.2)

Since we wish to find x so that f(x) = 0, set the left hand side (f(x)) of this approximation equal to 0 and
solve for x to obtain:

x ≈ x0 −
f(x0)

f ′(x0)
. (3.3)

We begin the method with the initial guess x0, which we hope is fairly close to x∗. Then we define a sequence
of points {x0, x1, x2, x3, . . .} from the formula:

xi+1 = xi −
f(xi)

f ′(xi)
, (3.4)

which comes from (3.3). If f(x) is reasonably well-behaved near x∗ and x0 is close enough to x∗, then it is
a fact that the sequence will converge to x∗ and will do it very quickly.

The loop: for ... end

In order to do Newton’s method, we need to repeat the calculation in (3.4) a number of times. This is
accomplished in a program using a loop, which means a section of a program which is repeated. The
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simplest way to accomplish this is to count the number of times through. In Matlab, a for ... end

statement makes a loop as in the following simple function program:

function S = mysum(n)

% Gives the sum of the first n integers

% Input: n

% Output: the sum

S = 0; % start at zero

% The loop:

for i = 1:n % do n times

S = S + i; % add the current integer

end % end of the loop

end

Call this function in the command window as:

� mysum (100)

The result will be the sum of the first 100 integers. All for ... end loops have the same format, it begins
with for, followed by an index (i) and a range of numbers (1:n). Then come the commands that are to be
repeated. Last comes the end command.

Loops are one of the main ways that computers are made to do calculations that humans cannot. Any
calculation that involves a repeated process is easily done by a loop.

Now let’s do a program that does n steps (iterations) of Newton’s method. We will need to input the
function, its derivative, the initial guess, and the number of steps. The output will be the final value of x,
i.e. xn. If we are only interested in the final approximation, not the intermediate steps, which is usually the
case in the real world, then we can use a single variable x in the program and change it at each step:

function x = mynewton(f,f1,x0,n)

% Solves f(x) = 0 by doing n steps of Newton ’s method starting at x0.

% Inputs: f -- the function

% f1 -- it ’s derivative

% x0 -- starting guess , a number

% n -- the number of steps to do

% Output: x -- the approximate solution

x = x0; % set x equal to the initial guess x0

for i = 1:n % Do n times

x = x - f(x)/f1(x) % Newton ’s formula , prints x too

end

end

In the command window set to print more digits via

� format long

and to not print blank lines via

� format compact
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12 LECTURE 3. NEWTON’S METHOD AND LOOPS

Then define a function: f(x) = x3 − 5 i.e.

� f = @(x) x^3 - 5

and define f1 to be its derivative, i.e.

� f1 = @(x) 3*x^2

Then run mynewton on this function. By trial and error, what is the lowest value of n for which the program
converges (stops changing). By simple algebra, the true root of this function is 3

√
5. How close is the

program’s answer to the true value?

Convergence

Newton’s method converges rapidly when f ′(x∗) is nonzero and finite, and x0 is close enough to x∗ that the
linear approximation (3.2) is valid. Let us take a look at what can go wrong.

For f(x) = x1/3 we have x∗ = 0 but f ′(x∗) =∞. If you try

� f = @(x) x^(1/3)

� f1 = @(x) (1/3)*x^( -2/3)

� x = mynewton(f,f1 ,0.1 ,10)

then x explodes.

For f(x) = x2 we have x∗ = 0 but f ′(x∗) = 0. If you try

� f = @(x) x^2

� f1 = @(x) 2*x

� x = mynewton(f,f1 ,1 ,10)

then x does converge to 0, but not that rapidly.

If x0 is not close enough to x∗ that the linear approximation (3.2) is valid, then the iteration (3.4) gives
some x1 that may or may not be any better than x0. If we keep iterating, then either

• xn will eventually get close to x∗ and the method will then converge (rapidly), or

• the iterations will not approach x∗.
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Exercises

3.1 Enter: format long. Use mynewton on the function f(x) = x5 − 7, with x0 = 2. By trial and error,
what is the lowest value of n for which the program converges (stops changing). Compute the error,
which is how close the program’s answer is to the true value. Compute the residual, which is the
program’s answer plugged into f . (See the next section for discussion.) Are the error and residual
zero?

3.2 Suppose a ball is dropped from a height of 2 meters onto a hard surface and the coefficient of restitution
of the collision is .9 (see Wikipedia for an explanation). Write a well-commented script program to
calculate the total distance the ball has traveled when it hits the surface for the n-th time. Enter:
format long. By trial and error approximate how large n must be so that total distance stops
changing. Turn in the program and a brief summary of the results.

3.3 For f(x) = x3−4, perform 3 iterations of Newton’s method with starting point x0 = 2. (By hand, but
use a calculator.) Calculate the solution (x∗ = 41/3) on a calculator and find the errors and percentage
errors of x0, x1, x2 and x3. Use enough digits so that you do not falsely conclude the error is zero.
Put the results in a table.

http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/


Lecture 4

Controlling Error and Conditional Statements

Measuring error and the Residual

If we are trying to find a numerical solution of an equation f(x) = 0, then there are a few different ways we
can measure the error of our approximation. The most direct way to measure the error would be as

{Error at step n} = en = xn − x∗

where xn is the n-th approximation and x∗ is the true value. However, we usually do not know the value of
x∗, or we wouldn’t be trying to approximate it. This makes it impossible to know the error directly, and so
we must be more clever.

One possible strategy, that often works, is to run a program until the approximation xn stops changing.
The problem with this is that it sometimes doesn’t work. Just because the program stop changing does not
necessarily mean that xn is close to the true solution.

For Newton’s method we have the following principle: At each step the number of significant digits
roughly doubles. While this is an important statement about the error (since it means Newton’s method
converges really quickly), it is somewhat hard to use in a program.

Rather than measure how close xn is to x∗, in this and many other situations it is much more practical to
measure how close the equation is to being satisfied, in other words, how close yn = f(xn) is to 0. We will
use the quantity rn = f(xn)− 0, called the residual, in many different situations. Most of the time we only
care about the size of rn, so we use the absolute value of the residual as a measure of how close the solution
is to solving the problem:

|rn| = |f(xn)|.

The if ... end statement

If we have a certain tolerance for |rn| = |f(xn)|, then we can incorporate that into our Newton method
program using an if ... end statement:

function x = mynewton(f,f1,x0,n,tol)

% Solves f(x) = 0 by doing n steps of Newton ’s method starting at x0.

% Inputs: f -- the function

% f1 -- it ’s derivative

% x0 -- starting guess , a number

% tol -- desired tolerance , prints a warning if |f(x)|>tol

% Output: x -- the approximate solution

x = x0; % set x equal to the initial guess x0
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for i = 1:n % Do n times

x = x - f(x)/f1(x) % Newton ’s formula

end

r = abs(f(x))

if r > tol

warning(’The desired accuracy was not attained ’)

end

end

In this program if checks if abs(y) > tol is true or not. If it is true then it does everything between there
and end. If not true, then it skips ahead to end.

In the command window define a function and its derivative:

� f = @(x) x^3-5

� f1 = @(x) 3*x^2

Then use the program with n = 3, tol = .01, and x0 = 2. Next, change tol to 10−10 and repeat.

The loop: while ... end

While the previous program will tell us if it worked or not, we still have to input n, the number of steps to
take. Even for a well-behaved problem, if we make n too small then the tolerance will not be attained and
we will have to go back and increase it, or, if we make n too big, then the program will take more steps than
necessary.

One way to control the number of steps taken is to iterate until the residual |rn| = |f(x)| = |y| is small
enough. In Matlab this is easily accomplished with a while ... end loop.

function x = mynewtontol(f,f1,x0,tol)

% Solves f(x) = 0 using Newton ’s method until |f(x)| < tol.

% Inputs: f -- the function

% f1 -- it ’s derivative

% x0 -- starting guess , a number

% tol -- desired tolerance , runs until |f(x)|<tol

% Output: x -- the approximate solution

x = x0; % set x equal to the initial guess x0

y = f(x);

while abs(y) > tol % Do until the tolerence is reached.

x = x - y/f1(x) % Newton ’s formula

y = f(x)

end

end

The statement while ... end is a loop, similar to for ... end, but instead of going through the loop a
fixed number of times it keeps going as long as the statement abs(y) > tol is true.

One obvious drawback of the program is that abs(y) might never get smaller than tol. If this happens, the
program would continue to run over and over until we stop it. Try this by setting the tolerance to a really
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16 LECTURE 4. CONTROLLING ERROR AND CONDITIONAL STATEMENTS

small number:

� tol = 10^( -100)

then run the program again for f(x) = x3 − 5. (You can use Ctrl-c to stop the program when it is stuck.)

One way to avoid an infinite loop is add a counter variable, say i and a maximum number of iterations
to the programs. Using the while statement, this can be accomplished as:

function x = mynewtontol(f,f1,x0,tol)

% Solves f(x) = 0 using Newton ’s method until |f(x)| < tol.

% Safety stop after 1000 iterations

% Inputs: f -- the function

% f1 -- it ’s derivative

% x0 -- starting guess , a number

% tol -- desired tolerance , runs until |f(x)|<tol

% Output: x -- the approximate solution

x = x0; % set x equal to the initial guess x0.

i=0; % set counter to zero

y = f(x);

while abs(y) > tol & i < 1000

% Do until the tolerence is reached or max iter.

x = x - y/f1(x) % Newton ’s formula

y = f(x)

i = i+1; % increment counter

end

end
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Exercises

4.1 In Calculus we learn that a geometric series has an exact sum

∞∑
i=0

ri =
1

1− r
,

provided that |r| < 1. For instance, if r = .5 then the sum is exactly 2. Below is a script program
that lacks one line as written. Put in the missing command and then use the program to verify the
result above. How many steps does it take? How close is the answer to 2?

% Computes a geometric series until it seems to converge

format long

format compact

r = .5;

Snew = 0; % start sum at 0

Sold = -1; % set Sold to trick while the first time

i = 0; % count iterations

while Snew > Sold % is the sum still changing?

Sold = Snew; % save previous value to compare to

Snew = Snew + r^i;

i=i+1;

Snew % prints the final value.

i % prints the # of iterations.

Add a line at the end of the program to compute the relative error of Snew versus the exact value.
Run the script for r = 0.9, 0.99, 0.999, 0.9999, 0.99999, and 0.999999. In a table, report the number
of iterations needed and the relative error for each r.

4.2 Modify your program from exercise 3.2 to compute the total distance traveled by the ball while its
bounces are at least 1 millimeter high. Use a while loop to decide when to stop summing; do not use
a for loop or trial and error. Turn in your modified program and a brief summary of the results.
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Lecture 5

The Bisection Method and Locating Roots

Bisecting and the if ... else ... end statement

Recall the bisection method. Suppose that c = f(a) < 0 and d = f(b) > 0. If f is continuous, then obviously
it must be zero at some x∗ between a and b. The bisection method then consists of looking half way between
a and b for the zero of f , i.e. let x = (a + b)/2 and evaluate y = f(x). Unless this is zero, then from the
signs of c, d and y we can decide which new interval to subdivide. In particular, if c and y have the same
sign, then [x, b] should be the new interval, but if c and y have different signs, then [a, x] should be the new
interval. (See Figure 5.1.)

x0x1 x2a0 b0

a1 b1

a2 b2u

u
u

u

Figure 5.1: The bisection method.

Deciding to do different things in different situations in a program is called flow control. The most common
way to do this is the if ... else ... end statement which is an extension of the if ... end statement
we have used already.

Bounding the Error

One good thing about the bisection method, that we don’t have with Newton’s method, is that we always
know that the actual solution x∗ is inside the current interval [a, b], since f(a) and f(b) have different signs.
This allows us to be sure about what the maximum error can be. Precisely, the error is always less than half
of the length of the current interval [a, b], i.e.

{Absolute Error} = |x− x∗| < (b− a)/2,

where x is the center point between the current a and b.

18
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The following function program (available to download as mybisect.m) does n iterations of the bisection
method and returns not only the final value, but also the maximum possible error:

function [x e] = mybisect(f,a,b,n)

% function [x e] = mybisect(f,a,b,n)

% Does n iterations of the bisection method for a function f

% Inputs: f -- a function

% a,b -- left and right edges of the interval

% n -- the number of bisections to do.

% Outputs: x -- the estimated solution of f(x) = 0

% e -- an upper bound on the error

% evaluate at the ends and make sure there is a sign change

c = f(a); d = f(b);

if c*d > 0.0

error(’Function has same sign at both endpoints.’)

end

disp(’ x y’)

for i = 1:n

% find the middle and evaluate there

x = (a + b)/2;

y = f(x);

disp([ x y])

if y == 0.0 % solved the equation exactly

a = x;

b = x;

break % jumps out of the for loop

end

% decide which half to keep , so that the signs at the ends differ

if c*y < 0

b=x;

else

a=x;

end

end

% set the best estimate for x and the error bound

x = (a + b)/2;

e = (b-a)/2;

end

Another important aspect of bisection is that it always works. We saw that Newton’s method can fail to
converge to x∗ if x0 is not close enough to x∗. In contrast, the current interval [a, b] in bisection will always
get decreased by a factor of 2 at each step and so it will always eventually shrink down as small as you want
it.

http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/
http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/mybisect.m
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Locating the roots (if any)

The bisection method and Newton’s method are both used to obtain closer and closer approximations of a
solution, but both require starting places. The bisection method requires two points a and b that have a root
between them, and Newton’s method requires one point x0 which is reasonably close to a root. How do you
come up with these starting points? It depends. If you are solving an equation once, then the best thing to
do first is to just graph it. From an accurate graph you can see approximately where the graph crosses zero.

There are other situations where you are not just solving an equation once, but have to solve the same
equation many times, but with different coefficients. This happens often when you are developing software
for a specific application. In this situation the first thing you want to take advantage of is the natural domain
of the problem, i.e. on what interval is a solution physically reasonable. If that is known, then it is easy
to get close to the root by simply checking the sign of the function at a fixed number of points inside the
interval. Whenever the sign changes from one point to the next, there is a root between those points. The
following program will look for the roots of a function f on a specified interval [a0, b0].

function [a,b] = myrootfind(f,a0,b0)

% function [a,b] = myrootfind(f,a0,b0)

% Looks for subintervals where the function changes sign

% Inputs: f -- a function

% a0 -- the left edge of the domain

% b0 -- the right edge of the domain

% Outputs: a -- an array , giving the left edges of subintervals

% on which f changes sign

% b -- an array , giving the right edges of the subintervals

n = 1001; % number of test points to use

a = []; % start empty array

b = [];

% split the interval into n-1 intervals and evaluate at the break points

x = linspace(a0,b0,n);

y = f(x);

% loop through the intervals

for i = 1:(n-1)

if y(i)*y(i+1) < 0 % The sign changed , record it

a = [a x(i)];

b = [b x(i+1)];

end

end

if size(a,1) == 0

warning(’no roots were found’)

end

end

The final situation is writing a program that will look for roots with no given information. This is a difficult
problem and one that is not often encountered in engineering applications.

Once a root has been located on an interval [a, b], these a and b can serve as the beginning points for the
bisection and secant methods (see the next section). For Newton’s method one would want to choose x0
between a and b. One obvious choice would be to let x0 be the bisector of a and b, i.e. x0 = (a+ b)/2. An
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even better choice would be to use the secant method to choose x0.

Exercises

5.1 Modify mybisect to solve until the absolute error is bounded by a given tolerance. Use a while loop
to do this. Run your program on the function f(x) = 2x3 + 3x− 1 with starting interval [0, 1] and a
tolerance of 10−8. How many steps does the program use to achieve this tolerance? (You can count
the step by adding 1 to a counting variable i in the loop of the program.) How big is the final residual
f(x)? Turn in your program and a brief summary of the results.

5.2 Perform 3 iterations of the bisection method on the function f(x) = x3 − 4, with starting interval
[1, 3]. By hand, but use a calculator.) Calculate the errors and percentage errors of x0, x1, x2, and
x3. Compare the errors with those in exercise 3.3.

http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/


Lecture 6

Secant Methods

In this lecture we introduce two additional methods to find numerical solutions of the equation f(x) = 0.
Both of these methods are based on approximating the function by secant lines just as Newton’s method
was based on approximating the function by tangent lines.

The Secant Method

The secant method requires two initial approximations x0 and x1, preferably both reasonably close to the
solution x∗. From x0 and x1 we can determine that the points (x0, y0 = f(x0)) and (x1, y1 = f(x1)) both
lie on the graph of f . Connecting these points gives the (secant) line

y − y1 =
y1 − y0
x1 − x0

(x− x1) .

Since we want f(x) = 0, we set y = 0, solve for x, and use that as our next approximation. Repeating this
process gives us the iteration

xi+1 = xi −
xi − xi−1
yi − yi−1

yi (6.1)

with yi = f(xi). See Figure 6.1 for an illustration.

u
xi

u

xi−1xi+1

Figure 6.1: The secant method in the case where the root is bracketed.
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For example, suppose f(x) = x4 − 5, which has a solution x∗ = 4
√

5 ≈ 1.5. Choose x0 = 1 and x1 = 2 as
initial approximations. Next we have that y0 = f(1) = −4 and y1 = f(2) = 11. We may then calculate x2
from the formula (6.1):

x2 = 2− 2− 1

11− (−4)
11 =

19

15
≈ 1.2666....

Pluggin x2 = 19/15 into f(x) we obtain y2 = f(19/15) ≈ −2.425758.... In the next step we would use x1 = 2
and x2 = 19/15 in the formula (6.1) to find x3 and so on.

Below is a program for the secant method (available to download as mysecant.m). Notice that it requires
two input guesses x0 and x1, but it does not require the derivative to be input.

function x = mysecant(f,x0,x1,n)

% Solves f(x) = 0 by doing n steps of the secant method

% starting with x0 and x1.

% Inputs: f -- the function

% x0 -- starting guess , a number

% x1 -- second starting guess

% n -- the number of steps to do

% Output: x -- the approximate solution

y0 = f(x0);

y1 = f(x1);

for i = 1:n % Do n times

x = x1 - (x1 -x0)*y1/(y1 -y0) % secant formula.

y=f(x) % y value at the new approximate solution.

% Move numbers to get ready for the next step

x0=x1;

y0=y1;

x1=x;

y1=y;

end

end

The Regula Falsi (False Position) Method

The Regula Falsi method is a combination of the secant method and bisection method. As in the bisection
method, we have to start with two approximations a and b for which f(a) and f(b) have different signs. As
in the secant method, we follow the secant line to get a new approximation, which gives a formula similar
to (6.1),

x = b− b− a
f(b)− f(a)

f(b) .

Then, as in the bisection method, we check the sign of f(x); if it is the same as the sign of f(a) then x
becomes the new a and otherwise let x becomes the new b. Note that in general either a → x∗ or b → x∗

but not both, so b− a 6→ 0. For example, for the function in Figure 6.1, a→ x∗ but b would never move.

http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/
http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/mysecant.m
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Convergence

If we can begin with a good choice x0, then Newton’s method will converge to x∗ rapidly. The secant method
is a little slower than Newton’s method and the Regula Falsi method is slightly slower than that. However,
both are still much faster than the bisection method.

If we do not have a good starting point or interval, then the secant method, just like Newton’s method, can
fail altogether. The Regula Falsi method, just like the bisection method, always works because it keeps the
solution inside a definite interval.

Simulations and Experiments

Although Newton’s method converges faster than any other method, there are contexts when it is not
convenient, or even impossible. One obvious situation is when it is difficult to calculate a formula for f ′(x)
even though one knows the formula for f(x). This is often the case when f(x) is not defined explicitly,
but implicitly. There are other situations, which are very common in engineering and science, where even
a formula for f(x) is not known. This happens when f(x) is the result of experiment or simulation rather
than a formula. In such situations, the secant method is usually the best choice.

Exercises

6.1 Perform 3 iterations of the secant method on the function f(x) = x3− 4, with starting points x−1 = 1
and x0 = 3. (By hand, but use a calculator.) Calculate the errors and percentage errors of x1, x2,
and x3. Compare the errors with those in exercise 3.3 and 5.2.

6.2 Perform 3 iterations of the Regula Falsi method on the function f(x) = x3 − 4, with starting interval
[1, 3]. (By hand, but use a calculator.) Calculate the errors and percentage errors of x1, x2, and x3.
Compare the errors with those in exercises 3.3 and 5.2.

6.3 Modify the program mysecant.m to iterate until the absolute value of the residual is less than a given
tolerance. (Let tol be an input instead of n.) Modify the comments appropriately. Test program on
the function in the exercises above and then turn in the program.

http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/mysecant.m


Lecture 7

Symbolic Computations

The focus of this course is on numerical computations, i.e. calculations, usually approximations, with floating
point numbers. However, Matlab can also do symbolic computations, which means exact calculations using
symbols as in Algebra or Calculus.

Note: To do symbolic computations in Matlab one must have the Symbolic Toolbox.

Defining functions and basic operations

Before doing any symbolic computation, one must declare the variables used to be symbolic:

� syms x y

A function is defined by simply typing the formula:

� f = cos(x) + 3*x^2

Note that coefficients must be multiplied using *. To find specific values, you must use the command subs:

� subs(f,pi)

This command stands for substitute, it substitutes π for x in the formula for f . If we define another function:

� g = exp(-y^2)

then we can compose the functions:

� h = compose(g,f)

i.e. h(x) = g(f(x)). Since f and g are functions of different variables, their product must be a function of
two variables:

� k = f*g

� subs(k,[x,y],[0,1])

We can do simple calculus operations, like differentiation:

� f1 = diff(f)

� k1x = diff(k,x)

indefinite integrals (antiderivatives):

25
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� F = int(f)

and definite integrals:

� int(f,0,2*pi)

To change a symbolic answer into a numerical answer, use the double command which stands for double
precision, (not times 2):

� double(ans)

Note that some antiderivatives cannot be found in terms of elementary functions; for some of these the
antiderivative can be expressed in terms of special functions:

� G = int(g)

and for others Matlab does the best it can:

� int(h)

For definite integrals that cannot be evaluated exactly, Matlab does nothing and prints a warning:

� int(h,0,1)

We will see later that even functions that don’t have an antiderivative can be integrated numerically. You
can change the last answer to a numerical answer using:

� double(ans)

Plotting a symbolic function can be done as follows:

� ezplot(f)

or the domain can be specified:

� ezplot(g,-10,10)

� ezplot(g,-2,2)

To plot a symbolic function of two variables use:

� ezsurf(k)

It is important to keep in mind that even though we have defined our variables to be symbolic variables,
plotting can only plot a finite set of points. For intance:

� ezplot(cos(x^5))

will produce the plot in Figure 7.1, which is clearly wrong, because it does not plot enough points.
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Figure 7.1: Graph of cos(x5) produced by the ezplot command. It is wrong because cosu should
oscillate smoothly between −1 and 1. The problem with the plot is that cos(x5) oscillates extremely
rapidly, and the plot did not consider enough points.

Other useful symbolic operations

Matlab allows you to do simple algebra. For instance:

� poly = (x - 3)^5

� polyex = expand(poly)

� polysi = simplify(polyex)

To find the symbolic solutions of an equation, f(x) = 0, use:

� solve(f)

� solve(g)

� solve(polyex)

Another useful property of symbolic functions is that you can substitute numerical vectors for the variables:

� X = 2:0.1:4;

� Y = subs(polyex ,X);

� plot(X,Y)

http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/
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Exercises

7.1 Starting from mynewton write a well-commented function program mysymnewton that takes as its
input a symbolic function f and the ordinary variables x0 and n. Let the program take the symbolic
derivative f ′, and then use subs to proceed with Newton’s method. Test it on f(x) = x3 − 4 starting
with x0 = 2. Turn in the program and a brief summary of the results.

7.2 Find a complicated function in an engineering or science textbook or website. Make a well-commented
script program that defines a symbolic version of this function and takes its derivative and indefinite
integral symbolically. Plot the function, its derivative and antiderivative on the same plot for the
relevant domain of the function. In the comments of the script describe what the function is and
properly reference where you got it. Turn in your script and the plot.



Review of Part I

Methods and Formulas

Solving equations numerically:

f(x) = 0 — an equation we wish to solve.

x∗ — a true solution.

x0 — starting approximation.

xn — approximation after n steps.

en = xn − x∗ — error of n-th step.

rn = yn = f(xn) — residual at step n. Often |rn| is sufficient.

Newton’s method:

xi+1 = xi −
f(xi)

f ′(xi)

Bisection method:

f(a) and f(b) must have different signs.
x = (a+ b)/2
Choose a = x or b = x, depending on signs.
x∗ is always inside [a, b].
e < (b− a)/2, current maximum error.

Secant method:

xi+1 = xi −
xi − xi−1
yi − yi−1

yi

Regula Falsi

- a hybrid between secant and bisection methods.

x = b− b− a
f(b)− f(a)

f(b)

Choose a = x or b = x, depending on signs.

29
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Convergence:

Bisection is very slow.
Newton is very fast.
Secant methods are intermediate in speed.
Bisection and Regula Falsi never fail to converge.
Newton and Secant can fail if x0 is not close to x∗.

Locating roots:

Use knowledge of the problem to begin with a reasonable domain.
Systematically search for sign changes of f(x).
Choose x0 between sign changes using bisection or secant.

Usage:

For Newton’s method one must have formulas for f(x) and f ′(x).
Secant methods are better for experiments and simulations.
Bisection and Regula Falsi are slower, but keep the root within the current bounds.

Matlab

Commands:

v = [0 1 2 3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Make a row vector.
u = [0; 1; 2; 3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Make a column vector.
w = v’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transpose: row vector ↔ column vector
x = linspace(0,1,11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Make an evenly spaced vector of length 11.
x = -1:.1:1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Make an evenly spaced vector, with increments 0.1.
y = x.^2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Square all entries.
plot(x,y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . plot y vs. x.
f = @(x) 2*x.^2 - 3*x + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Make an anonymous function.
y = f(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A function can act on a vector.
plot(x,y,’*’,’red’) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A plot with options.
Control-c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stops a computation.

Program structures:

for ... end example:

for i=1:20

S = S + i;

end
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if ... end example:

if y == 0

disp(’An exact solution has been found’)

end

while ... end example:

while i <= 20

S = S + i;

i = i + 1;

end

if ... else ... end example:

if c*y>0

a = x;

else

b = x;

end

Function Programs:

• Begin with the word function.

• There are inputs and outputs.

• The outputs, name of the function and the inputs must appear in the first line.
i.e. function x = mynewton(f,x0,n)

• The body of the program must assign values to the outputs.

• Internal variables are not visible outside the function.

• A function program may use variables in the current workspace unless they are inputs.

Script Programs:

• There are no inputs and outputs.

• A script program may use, create and change variables in the current workspace.

Symbolic:

syms x y

f = 2*x^2 - sqrt(3*x)

subs(f,sym(pi))

double(ans)

g = log(abs(y)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Matlab uses log for natural logarithm.
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h(x) = compose(g,f)

k(x,y) = f*g

ezplot(f)

ezplot(g,-10,10)

ezsurf(k)

f1 = diff(f,’x’)

F = int(f,’x’) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . indefinite integral (antiderivative)
int(f,0,2*pi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . definite integral
poly = x*(x - 3)*(x-2)*(x-1)*(x+1)

polyex = expand(poly)

polysi = simple(polyex)

solve(f)

solve(g)

solve(polyex)


