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Abstract. This paper describes our submission to the 1st 3D Face
Alignment in the Wild (3DFAW) Challenge. Our method builds upon
the idea of convolutional part heatmap regression [1], extending it for
3D face alignment. Our method decomposes the problem into two parts:
(a) X,Y (2D) estimation and (b) Z (depth) estimation. At the first stage,
our method estimates the X,Y coordinates of the facial landmarks by
producing a set of 2D heatmaps, one for each landmark, using convo-
lutional part heatmap regression. Then, these heatmaps, alongside the
input RGB image, are used as input to a very deep subnetwork trained
via residual learning for regressing the Z coordinate. Our method ranked
1st in the 3DFAW Challenge, surpassing the second best result by more
than 22%. Code can be found at http://www.cs.nott.ac.uk/~psxab5/

Keywords: 3D face alignment, Convolutional Neural Networks, Con-
volutional Part Heatmap Regression

1 Introduction

Face alignment is the problem of localizing a set of facial landmarks in 2D images.
It is a well-studied problem in Computer Vision research, yet most of prior
work [2, 3], datasets [4, 5] and challenges [5, 6] have focused on frontal images.
However, under a totally unconstrained scenario, faces might be in arbitrary
poses. To address this limitation of prior work, recently, a few methods have
been proposed for large pose face alignment [7–10]. 3D face alignment goes one
step further by treating the face as a full 3D object and attempting to localize
the facial landmarks in 3D space. To boost research in 3D face alignment, the 1st
Workshop on 3D Face Alignment in the Wild (3DFAW) & Challenge is organized
in conjunction with ECCV 2016 [11]. In this paper, we describe a Convolutional
Neural Network (CNN) architecture for 3D face alignment, that ranked 1st in
the 3DFAW Challenge, surpassing the second best result by more than 22%.

Our method is a CNN cascade consisting of three connected subnetworks, all
learned via residual learning [12, 13]. See Fig. 1. The first two subnetworks per-
form residual part heatmap regression [1] for estimating the X,Y coordinates of
the facial landmarks. As in [1], the first subnetwork is a part detection network
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trained to detect the individual facial landmarks using a per-pixel softmax loss.
The output of this subnetwork is a set of N landmark detection heatmaps. The
second subnetwork is a regression subnetwork that jointly regresses the landmark
detection heatmaps stacked with image features to confidence maps represent-
ing the location of the landmarks. Then, on top of the first two subnetworks,
we added a third very deep subnetwork that estimates the Z coordinate of each
fiducial point. The newly introduced network is guided by the heatmaps pro-
duced by the 2D regression subnetwork and subsequently learns where to “look”
by explicitly exploiting information about the 2D location of the landmarks. We
show that the proposed method produces remarkable fitting results for both X,Y
and Z coordinates, securing the first place on the 3DFAW Challenge.

This paper is organized as follows: section 2 describes our system in detail.
Section 3 describes the experiments performed and our results on the 3DFAW
dataset. Finally, section 4 summarizes our contributions and concludes the paper.

2 Method

z

x,y

x,y,z

Fig. 1: The system submitted to the 3DFAW Challenge. The part detection and
regression subnetworks implement convolutional part heatmap regression, as de-
scribed in [1], and produce a series of N heatmaps, one for the X,Y location of
each landmark. They are both very deep networks trained via residual learn-
ing [13]. The produced heatmaps are then stacked alongside the input RGB
image, and used as input to the Z regressor which regresses the depth of each
point. The architecture for the Z regressor is based on ResNet [13], as described
in section 2.2

.

The proposed method adopts a divide et impera technique, splitting the 3D
facial landmark estimation problem into two tasks as follows: The first task
estimates the X,Y coordinates of the facial landmarks and produces a series of
N regression heatmaps, one for each landmark, using the network described in
section 2.1. The second task, described in section 2.2, predicts the Z coordinate
(i.e. the depth of each landmark), using as input the stacked heatmaps produced
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by the first task, alongside the input RGB image. The overall architecture is
illustrated in Fig.1.

2.1 2D (X,Y) landmark heatmap regression

The first part of our system estimates the X,Y coordinates of each facial land-
mark using part heatmap regression [1]. The network consists of two connected
subnetworks, the first of which performs landmark detection while the second
one refines the initial estimation of the landmarks’ location via regression. Both
networks are very deep been trained via residual learning [12,13]. In the follow-
ing, we briefly describe the two subnetworks; the exact network architecture and
layer specification for each of them are described in detail in [1].

Landmark detection subnetwork. The architecture of the landmark de-
tection network is based on a ResNet-152 model [12]. The network was adapted
for landmark localization by: (1) removing the fully connected layer alongside
the preceding average pooling layer, (2) changing the stride of the 5th block from
2 to 1 pixels, and (3) adding at the end a deconvolution [14] followed by a fully
convolutional layer. These changes convert the model to a fully convolutional
network, recovering to some extent the lost spatial resolution. The ground truth
was encoded as a set of N binary maps (one for each landmark), where the values
located within the radius of the provided ground truth landmark are set to 1,
while the rest to 0. The radius defining the “correct location” was empirically
set to 7 pixels, for a face with a bounding box height equal to approximately
220 pixels. The network was trained using the pixel wise sigmoid cross entropy
loss function.

Landmark regression subnetwork. As in [1], the regression subnetwork
plays the role of a graphical model aiming to refine the initial prediction of the
landmark detection network. It is based on a modified version of the “hourglass
network” [15]. The hourglass network starts from the idea presented in [16],
improving a few important concepts: (1) it updates the model using residual
learning [12, 13], and (2) introduces an efficient way to analyze and recombine
features at different resolutions. Finally, as in [1], we replaced the original nearest
neighbour upsampling of [15] by learnable deconvolutional layers, and added
another deconvolutional layer in the end that brings the output to the input
resolution. The network was then trained using a pixel wise L2 loss function.

2.2 Z regression

In this section, we introduce a third subnetwork for estimating the Z coordinate
i.e. the depth of each landmark. As with the X,Y coordinates, the estimation of
the Z coordinate is performed jointly for all landmarks. The input to the Z regres-
sor subnetwork is the stacked regression heatmaps produced by the regression
subnetwork alongside the input RGB image. The use of the stacked heatmaps
is a key feature of the subnetwork as they provide pose-related information (en-
coded by the X,Y location of all the landmarks) and guide the network where
to “look”, explicitly showing where the depth should be estimated.
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Fig. 2: The architecture of the Z regression subnetwork. The network is based
on ResNet-200 (with preactivation) and its composing blocks. The blocks B1-B6
are defined in Table 1. See also text.

.

Table 1: Block specification for the Z regression network. Torch notations (chan-
nels, kernel, stride) and (kernel, stride) are used to define the conv and pooling
layers. The bottleneck modules are defined as in [13].

B1 B2 B3 B4 B5 B6
1x conv layer
(64,7x7,2x2)
1x pooling
(3x3, 2x2)

3x bottleneck
modules
[(64,1x1),
(64,3x3),
(256,1x1)]

24x
bottleneck
modules
[(128,1x1),
(128,3x3),
(512,1x1)]

38x
bottleneck
modules
[(256,1x1),
(256,3x3),
(1024,1x1)]

3x bottleneck
modules
[(512,1x1),
(512,3x3),
(2048,1x1)]

1x fully
connected
layer (66)

We encode each landmark as a heatmap using a 2D Gaussian with std=6
pixels centered at the X,Y coordinates of that landmark. The proposed Z re-
gression network is based on the latest ResNet-200 network with preactivation
modules [13] modified as follows: in order to adapt the model for 1D regression,
we replaced the last fully connected layer (used for classification) with one that
has N output channels, one for each landmark. Additionally, the first convolu-
tional layer of the network was modified to accommodate 3+N input channels.
The network is described in detail in Figure 2 and Table 1. All newly intro-
duced filters were initialized randomly using a Gaussian distribution. Finally,
the network was trained using the L2 loss:

l2 =
1

N

N∑
n=1

(z̃n − zn)2, (1)

where z̃n and zn are the predicted and ground truth Z values (in pixels) for the
nth landmark.

2.3 Training

For training, all images were cropped around an extended (by 20-25%) bounding
box, and then resized so that the final cropped image had a resolution of 384x384
pixels. While batch normalization is known to prevent overfitting to some extent,
we additionally augmented the data with a set of image transformations applied
randomly: flipping, in-plane rotation (between −35o and 35o), scaling (between
0.85 and 1.15) and colour jittering. While the entire system, shown in Fig.1,
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can be trained jointly from the beginning, in order to accelerate convergence we
trained each task independently.

For 2D (X,Y) landmark heatmap regression, the network was fine-tuned from
a pretrained model on the large ImageNet [17] dataset, with the newly introduced
layers initialized with zeros. The detection component was then trained for 30
epochs with a learning rate progressively decreasing from 1e − 3 to 2.5e − 5.
The regression subnetwork, based on the ”hourglass” architecture was trained
for 30 epochs using a learning rate that varied from 1e − 4 to 2.5e − 5. During
this, the learning rate for the detection subnetwork was frozen. All the newly
introduced deconvolutional layers were initialised using the bilinear upsampling
filters. Finally, the subnetworks were trained jointly for 30 more epochs.

For Z regression, we again fine-tuned from a model previously trained on Im-
ageNet [17]; this time we used a ResNet-200 network [13]. The newly introduced
filters in the first convolutional layer were initialized from a Gaussian distribu-
tion with std=0.01. The same applied for the fully connected layer added at
the end of the network. During training, we used as input to the Z regression
network both the heatmaps generated from the ground truth landmark locations
and the ones estimated by the first task. We trained the subnetwork for about
100 epochs with a learning rate varying from 1e− 2 to 2.5e− 4.

The network was implemented and trained using Torch7 [18] on two Titan
X 12Gb GPUs using a batch of 8 and 16 images for X,Y landmark heatmap
regression and Z regression, respectively.

3 Experimental results

In this section, we present the performance of our system on the 3DFAW dataset.
Dataset. We trained and tested our model on the 3D Face Alignment in the

Wild (3DFAW) dataset. [19–22] The dataset contains images from a wide range
of conditions, captured in both controlled and in-the-wild settings. The dataset
includes images from MultiPIE [19] and BP4D [21] as well as images collected
from the Internet. All images were annotated in a consistent way with 66 3D
fiducial points. The final model was trained on the training set (13672 images)
and the validation set (4725 images), and tested on the test set containing 4912
images. We also report results on the validation set with a model trained on the
training set, only.

Metrics. Evaluation was performed using two different metrics: Ground
Truth Error(GTE) and Cross View Ground Truth Consistency Error(CVGTCE).

GTE measures the average point-to-point Euclidean error normalized by the
inter-ocular distance, as in [5]. GTE is calculated as follows:

E(X,Y) =
1

N

N∑
n=1

‖xn − yn‖2
di

, (2)

where X is the predicted set of points, Y is their corresponding ground truth
and di denotes the interocular distance for the ith image.
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CVGTCE evaluates the cross-view consistency of the predicted landmarks of
the same subject and is defined as follows:

Evc(X,Y, T ) =
1

N

N∑
n=1

‖sRxn − yn‖2
di

, (3)

where P = {s,R, t} denotes scale, rotation and translation, respectively. CVGTCE
is computed as follows:

{s,R, t} = argmin
s,R,t

N∑
n=1

∥∥yk − (sRxk + t)
∥∥2
2
. (4)

Results. Table 2 shows the performance of our system on the 3DFAW test
set, as provided by the 3DFAW Challenge team. As it can be observed, our
system outperforms the second best method (the result is taken from the 3DFAW
Challenge website) in terms of GTE by more than 22%.

Table 2: Performance on the 3DFAW test set.
Method GTE (%) CVGTCE

(%)

Ours 4.5623 3.4767

Second best 5.8835 3.9700

In order to better understand the performance of our system, we also report
results on the validation set using a model trained on the training set, only.
To measure performance, we used the Ground Truth Error measured on (X,Y),
(X,Y,Z), X alone, Y alone and Z alone, and report the cumulative curve corre-
sponding to the fraction of images for which the error was less than a specific
value. Results are reported in Fig.3 and Table 3. It can be observed that our
system performs better on predicting the X and Y coordinates (compared to Z),
but this difference is quite small and, to some extent, expected as Z is estimated
at a later stage of the cascade. Finally, Fig.4 shows a few fitting results produced
by our system.

4 Conclusions

In this paper, we proposed a two-stage CNN cascade for 3D face alignment. The
method is based on the idea of splitting the 3D alignment task into two separate
subtasks: 2D landmark estimation and 1D (depth) estimation, where the first
one guides the second. Our system secured the first place in the 1st 3D Face
Alignment in the Wild (3DFAW) Challenge.
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a) xy. b) xyz.

c) x. d) y. e) z.

Fig. 3: GTE vs fraction of test images on the 3DFAW validation set, on (X,Y),
(X,Y,Z), X alone, Y alone and Z alone.

Table 3: Performance on the 3DFAW validation set, on (X,Y), (X,Y,Z), X alone,
Y alone and Z alone.

Axes GTE (%)

xy 3.6263

xyz 4.9408

x 2.12

y 2.48

z 2.77
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Fig. 4: Fitting results produced by our system on the 3DFAW test set. Observe
that our method copes well with a large variety of poses and facial expressions
on both controlled and in-the-wild images. Best viewed in colour.

.



Title Suppressed Due to Excessive Length 9

References

1. Bulat, A., Tzimiropoulos, G.: Human pose estimation via convolutional part
heatmap regression. In: ECCV. (2016)

2. Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by explicit shape regression.
In: CVPR. (2012)

3. Xiong, X., De la Torre, F.: Supervised descent method and its applications to face
alignment. In: CVPR. (2013) 532–539

4. Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: A semi-automatic
methodology for facial landmark annotation. In: CVPR-W. (2013)

5. Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild
challenge: The first facial landmark localization challenge. In: CVPR. (2013) 397–
403

6. Shen, J., Zafeiriou, S., Chrysos, G., Kossaifi, J., Tzimiropoulos, G., Pantic, M.:
The first facial landmark tracking in-the-wild challenge: Benchmark and results.
In: ICCV-W. (2015)

7. Jourabloo, A., Liu, X.: Pose-invariant 3d face alignment. In: CVPR. (2015) 3694–
3702

8. Jourabloo, A., Liu, X.: Large-pose face alignment via cnn-based dense 3d model
fitting, CVPR (2016)

9. Zhu, S., Li, C., Change Loy, C., Tang, X.: Face alignment by coarse-to-fine shape
searching. In: CVPR. (2015) 4998–5006

10. Bulat, A., Tzimiropoulos, G.: Convolutional aggregation of local evidence for large
pose face alignment. In: BMVC. (2016)

11. : 1st Workshop on 3D Face Alignment in the Wild (3DFAW) & Challenge. http:

//mhug.disi.unitn.it/workshop/3dfaw/ Accessed: 2016-08-30.
12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

arXiv preprint arXiv:1512.03385 (2015)
13. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.

arXiv preprint arXiv:1603.05027 (2016)
14. Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid

and high level feature learning. In: ICCV, IEEE (2011) 2018–2025
15. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose esti-

mation. arXiv preprint arXiv:1603.06937 (2016)
16. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic

segmentation. In: CVPR. (2015) 3431–3440
17. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale

hierarchical image database. In: CVPR, IEEE (2009) 248–255
18. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: A matlab-like environment

for machine learning. In: NIPS-W. Number EPFL-CONF-192376 (2011)
19. Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-pie. Image and

Vision Computing 28(5) (2010) 807–813
20. Yin, L., Chen, X., Sun, Y., Worm, T., Reale, M.: A high-resolution 3d dynamic fa-

cial expression database. In: Automatic Face & Gesture Recognition, 2008. FG’08.
8th IEEE International Conference On, IEEE (2008) 1–6

21. Zhang, X., Yin, L., Cohn, J.F., Canavan, S., Reale, M., Horowitz, A., Liu, P.,
Girard, J.M.: Bp4d-spontaneous: a high-resolution spontaneous 3d dynamic facial
expression database. Image and Vision Computing 32(10) (2014) 692–706

22. Jeni, L.A., Cohn, J.F., Kanade, T.: Dense 3d face alignment from 2d video for
real-time use. Image and Vision Computing (2016)

http://mhug.disi.unitn.it/workshop/3dfaw/
http://mhug.disi.unitn.it/workshop/3dfaw/

	Two-stage Convolutional Part Heatmap Regression for the 1st 3D Face Alignment in the Wild (3DFAW) Challenge

