
NOTE 4: DYNAMICAL DEGREES AND ENTROPY

In this lecture, we will introduce and discuss some dynamical-system-theoretic invariants associated
to an endomorphism f : X→ X of a compact Kähler manifold X such as the dynamical degree and the
entropy. Before we start, we first remark that such an endomorphism, if surjective, is always finite.

Proposition 1. A surjective endomorphism f : X→ X of a compact Kähler manifold is finite.

Proof. Since f : X → X is a surjective endomorphism, it is generically finite. So f∗ ◦ f ∗ : H•(X,Q) →
H•(X,Q) is an isomorphism (which is the multiplication by deg( f )). It follows that f∗ : H•(X,Q) →
H•(X,Q) is surjective, hence an isomorphism. If f is not finite. Then there exists a subvariety Y ⊂ X such
that dim Y > dim f (Y). So f∗[Y] = 0 and therefore [Y] = 0, which is impossible because X is a compact
Kähler manifold. �

1. Dynamical degrees: definition

Let f : X→ X be a surjective endomorphism of a compact Kähler manifold. The topological degree
of f is defined to be the cardinal of f−1(x) where x is a general point of X. This notion can be generalized
to the notion of dynamical degree which we now define. Fix a Kähler class ω of X and let 0 ≤ p ≤ dim X
be an integer. Let

δp( f ) =

∫
X

f ∗ωp
∧ ωn−p.

The p-th dynamical degree is defined to be

dp( f ) = lim
k→∞

(
δp( f k)

) 1
k

where f k denotes the k-th iterate of f . The above limit exists thanks to the following lemma.

Lemma 2. There exists C > 0 which depends only on X and ω such that for all surjective endomorphisms
f , 1 : X→ X, we have

δp( f ◦ 1) ≤ Cδp( f ) · δp(1).

Exercise 3. Here are some examples of dynamical degrees.

i) Show that d0( f ) = 1.
ii) Show that if p = dim X, then dp is the topological degree of f .

iii) Let f : Pn
→ Pn be an endomorphism of Pn. Then there exists homogeneous polynomials f0, . . . , fn in n + 1

variables of degree d such that f (x) = [ f0(x), . . . , fn(x)] and we call d the algebraic degree of f . Show that
d = d1( f ). (Hint: what is the degree of the pre-image of a hyperplane of Pn?)

In order to prove Lemma 2, we shall first introduce the notion of smooth positive (k, k)-forms on a
compact Kähler manifold and recall some of their basic properties. The reader is referred to [2, Chapter
III.1 and III.2] for further details, in which the more general (and natural) notion of positive currents is
defined. For the purpose of our lecture, we only need to work with smooth positive (k, k)-forms.

Let X be a complex manifold and u a smooth (k, k)-form on X. We say that u is strongly positive if for
every p ∈ X, up lies in the convex cone generated by

(iθ1 ∧ θ1) ∧ · · · ∧ (iθk ∧ θk)

where each θl is a linear form on TX,p ⊗C of type (1, 0) (here, TX,p is the real tangent space at p ∈ X of X as
a smooth manifold). A smooth (l, l)-form v on X is called positive if for every strongly positive (k, k)-form
u on X with k + l = dim X, there exists a continuous function f : X→ R≥0 such that

u ∧ v = f · volX
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where volX is a volume form of X. Let

(S)Posk(X) =
{
[α] ∈ Hk,k(X,R) | α is a closed (strongly) positive (k, k)-form

}
.

The subsets SPosk(X) and Posk(X) are both closed convex cone of Hk,k(X,R) with nonempty interior
and which does not contain any nonzero linear subspace. Clearly, SPosk(X) ⊂ Posk(X) and the wedge
products of Kähler forms lie in the interior of SPosk(X). Also, both SPosk(X) and Posk(X) are preserved
under proper pushforwards.

Lemma 4. For every α ∈ Posn−k(X), let ‖α‖ =
∫

X α∧ω
k. There exists C > 0 (which depends only on X) such that

‖ f∗α‖ ≤ C‖α‖ · δk( f ).

Proof. By definition, Posn−k(X) is in the dual (by the Poincaré duality) of SPosk(X) in Hk,k(X,R). For every
Kähler class ω, since ωk is in the interior of SPosk(X), we have ‖α‖ =

∫
X α∧ω

k > 0 for every α ∈ Posn−k(X).
If follows that the subset of Posn−k(X) consisting of elements β ∈ Posn−k(X) such that ‖β‖ = 1 is bounded,
so there exists C� 0 such that

ωn−k
−

1
C
α
‖α‖
∈ Posn−k(X)

for every α ∈ Posn−k(X). Thus C‖α‖ · f∗(ωn−k) − f∗α ∈ Posn−k(X), so

‖ f∗α‖ =

∫
X

f∗α ∧ ωk
≤ C‖α‖

(∫
X

f∗(ωn−k) ∧ ωk
)

= C‖α‖ · δk( f ).

�

Proof of Lemma 2. Since [ω]n−k
∈ Posn−k(X), we have 1∗([ω]n−k) ∈ Posn−k(X) as well. Applying Lemma 4

to α = 1∗([ω]n−k) yields

δk( f ◦ 1) =

∫
X

f∗1∗(ωn−k) ∧ ωk
≤ C

(∫
X
1∗(ωn−k) ∧ ωk

)
δk( f ) = Cδk( f ) · δk(1).

�

Exercise 5. Show that dp( f ) is independent of the choice of the Kähler class ω.

Remark 6. In the definition of dynamical degree, instead of δp( f ) =
∫

X f ∗ωp
∧ ωn−p, if we define

δp( f ) =

∫
X

f ∗(ω1 ∧ · · · ∧ ωp) ∧ (ωp+1 ∧ · · · ∧ ωn)

where the ωi’s are Kähler forms, then the limit limk→∞

(
δp( f k)

) 1
k still exists and coincides with dp( f ) by

the same type of argument.

2. The sequence of dynamical degrees is log-concave

Let S be a smooth projective surface. The Hodge index theorem for S implies that if C and D are two
nef divisors on S, then

(C ·D)2
≥ (C2)(D2).

Here we state a generalization of the above inequality for compact Kähler manifolds of arbitrary
dimension and refer to [3, Section 5] for a proof. The projective case was due to Khovanskii and Teissier
and the general case due to Demailly.

Theorem 7. Let X be a compact Kähler manifold of dimension n. For all ω1, . . . , ωn ∈ K (X), we have

ω1 ∧ · · · ∧ ωn ≥ (ωn
1)

1
n · · · (ωn

n)
1
n .

The following is a particular case of the Khovanskii-Teissier-Demailly inequality:

Corollary 8. Let ω1 and ω2 be two nef classes on a compact Kähler manifold X of dimension n. If we define
δp = ωp

1 ∧ ω
n−p
2 , then we have the following log-concave inequality:

δ2
p ≥ δp−1 · δp+1.



NOTE 4: DYNAMICAL DEGREES AND ENTROPY 3

It follows from Corollary 8 that the sequence {dp( f )} of dynamical degrees is log-concave:

Corollary 9. Let f : X→ X be an endomorphism of a compact Kähler manifold. We have

dp( f )2
≥ dp−1( f ) · dp+1( f ).

Exercise 10. Note that since δp( f ) ≥ 0, we have dp( f ) ≥ 0. Show that dp( f ) ≥ 1 for every p. (Hint: Compute
d0( f ) then use the log-concavity of dp( f ) to conclude.)

3. Dynamical degrees as spectral radii and comparison to the logarithmic volume growth

Let f : X→ X be an endomorphism of a compact Kähler manifold X. Since f ∗ : H•(X,C)→ H•(X,C) is
a morphism of Hodge structures, we have f ∗(Hp,p(X)) ⊂ Hp,p(X) for every p. Let rp( f ) denote the spectral
radius of f ∗

|Hp,p(X).

Proposition 11. Let f : X→ X be an endomorphism of a compact Kähler manifold X. We have dp( f ) = rp( f ).

Proof. Fix a Kähler class ω on X. Choose a norm N : Hp,p(X) → R such that for every λ ∈ Hp,p(X), we
have

N(λ) ≥
∣∣∣∣∣∫

X
λ ∧ ωdim X−p

∣∣∣∣∣ .
Then

rp( f ) = lim
k→∞

sup
λ∈Hp,p(X)

N
(
( f k)∗λ

) 1
k
≥ lim

k→∞

(∫
X

( f k)∗ωp
∧ ωdim X−p

) 1
k

= dp( f ).

To prove that rp( f ) ≤ dp( f ), let {ei} (resp. { fi}) be a basis of Hp,p(X,R) (resp. Hn−p,n−p(X,R)) such that
ei ∈ SPosp(X) (resp. fi ∈ Posn−p(X)) for every i. Let C,C′ > 0 such that C · ωp

− ei ∈ SPosp(X) and
C′ · ωn−p

− fi ∈ Posn−p(X) for every i. Then∣∣∣∣∣∫
X

( f k)∗ei ∧ f j

∣∣∣∣∣ =

∫
X

( f k)∗ei ∧ f j ≤ C · C′
∫

X
( f k)∗ωp

∧ ωn−p

for every i and j. Therefore rp( f ) ≤ dp( f ). �

We can also compare the dynamical degrees with the growth of the volume of the graph of f k. Fix a
Kähler metric ω on X and let Xk be endowed with the metric ωk := pr∗1ω ⊕ · · · ⊕ pr∗kω. Let

Γk =
{(

x, f (x), . . . f k−1(x)
)
| x ∈ X

}
⊂ Xk,

and let
lov( f ) = lim sup

k→∞

1
k

log vol(Γk)

where the volume is defined with respect to the metric ωk.

Exercise 12. Let f : X→ X be an endomorphism of a compact Kähler manifold. Show that

lov( f ) = max
0≤p≤n=dim X

log dp( f ).

Hint: First show that

vol(Γk) =
1
n!

∫
Γk

ωn
k =

1
n!

∑
0≤ j1,..., jn≤k−1

∫
X

( f j1 )∗ω ∧ · · · ∧ ( f jn )∗ω

and therefore lov( f ) ≥ dp( f ) for every 0 ≤ p ≤ dim X. To prove the other inequality, prove by induction that for
every ε > 0, there exists c > 0 such that for every j1 ≥ · · · ≥ jn ≥ 0,∫

X
( f j1 )∗ω ∧ · · · ∧ ( f jn )∗ω ≤ c

(
max
0≤p≤n

dp + ε

) j1

.

Remark 13. The dynamical degrees can be defined more generally for meromorphic dominant self-maps
f : Xd X of a compact complex manifold and in this case, we still have lov( f ) = max0≤p≤dim X log dp( f ) [4].
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4. Topological entropy

Let (X, d) be a compact metric space and f : X→ X a continuous map (for the topology induced by d).
For any positive integer n and any pair of points x, y ∈ X define

dn
f (x, y) = max

i=0,...,n
d
(

f i(x), f i(y)
)
,

which is a metric on X. For every ε > 0, let N( f ,n, ε) be the minimal number of balls of radius ε for the
metric dn

f covering X. Let

h( f , ε) = lim sup
n→∞

1
n

log N( f ,n, ε).

The topological entropy is defined to be

h( f ) = lim
ε→0

h( f , ε) ∈ R ∪ {∞}.

The limit exists because ε 7→ h( f , ε) is non-decreasing. Roughly speaking, a map f has high entropy if
for every pair of points x, y ∈ X which are closed to each other, the growth of the distance between them
after iterations of f is fast.

Exercise 14. Prove the following statements:

i) The topological entropy h( f ) does not depend on the metric d if the induced topology is the same.
ii) If Y ⊂ X is a subset such that f (Y) = Y, then h( f|Y) ≤ h( f ).

iii) If there exist a surjective continuous map φ : X → B to another metric space B such that f descends to a
continuous map 1 : B→ B (namely, there exists 1 : B→ B such that

X X

B B

f

φ φ

1

is commutative), then h(1) ≤ h( f ).
iv) If f is of finite order, then h( f ) = 0.
v) Let X and Y be metric spaces. Given continuous maps f : X→ X and 1 : Y→ Y, we have h( f×1) = h( f )+h(1).

In the Kähler situation, we have the following upper bound of the entropy due to Gromov.

Proposition 15 (Gromov [6]). Let f : X→ X be a holomorphic map of a compact Kähler manifold X. We have

h( f ) ≤ lov( f ).

In particular, h( f ) is always finite.

Sketch of the proof. Fix a Kähler metric ω and endow Xn with the product metric. Let dens( f ,n, ε) :=
lim infz∈Γn vol(B(z, ε) ∩ Γn) and

ldens( f ) := lim
ε→0

lim
n→∞

(1
n

log dens( f ,n, ε)
)
.

Since vol(Γn) ≥ N( f ,n, 2ε) · dens( f ,n, ε), we have

lov( f ) ≥ h( f ) + ldens( f ),

so it suffices to prove that ldens( f ) ≥ 0. To this end, we prove the auxiliary result that for every K > 0,
ε > 0, and n ∈ Z>0, there exists a constant C > 0 such that vol(Bε∩V) ≥ C for every Riemannian manifold
M with sectional curvature ≤ K and every minimal submanifold (in the sense that they have vanishing
mean curvature) V ⊂M of dimension n. Since complex submanifolds of a Kähler manifold are minimal,
we can apply the above result and obtain that limn→∞

(
1
n log dens( f ,n, ε)

)
≥ 0. �

Every continuous map f : X → X induces a linear map f ∗ : H•(X,C) → H•(X,C) by pulling back
cohomological classes. Let r( f ) denote the spectral radius of f ∗. In the Kähler situation, we have a lower
bound of h( f ) in terms of r( f ) due to Gromov and Yomdin.
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Theorem 16 (Gromov-Yomdin [5]). Let X be a compact Kähler manifold and f : X → X a holomorphic map.
Then

h( f ) ≥ log r( f ).

Combining Proposition 11, Exercise 12, Proposition 15, and Theorem 16, we obtain a chain of equalities
for h( f ) and the upper bound and the lower bound of h( f ) mentioned earlier turn out to coincide.

Corollary 17. Let X be a compact Kähler manifold and f : X→ X a surjective holomorphic map. Then

h( f ) = lov( f ) = max
0≤p≤dim X

log dp( f ) = max
0≤p≤dim X

log rp( f ) = log r( f ).

Exercise 18.

i) What is the entropy of the automorphism of a curve?
ii) Let f : X→ X be a surjective endomorphism of a compact Kähler manifold. Show that h( f ) > 0 if and only if

d1( f ) > 1. In particular, an automorphism f : X→ X of a projective manifold with ρ(X) = 1 has vanishing
entropy.

Remark 19. If f : Xd X is only a dominant meromorphic map, then by [4]

h( f|U) ≤ lov( f ) = max
0≤p≤dim X

dp( f ).

where U = X\ ∪k∈Z f k(I f ) and I f ⊂ X is the indeterminacy locus of f . The dynamical degrees dp( f ) are
birational invariants but not h( f ) [7]. In particular, the above inequality can be strict.

5. Endomorphisms fixing a Kähler ray

The work of Gromov and Yomdin (or more precisely Corollary 17) provides a way to compute the
entropy of an endomorphism of a compact Kähler manifold and in some cases, the computation is easy.
As an example, we compute the entropy of an endomorphism fixing a Kähler ray.

Proposition 20. Let X be a compact Kähler manifold and f : X → X a surjective holomorphic map such that
f ∗ω = qω for some Kähler class ω and some real number q > 0. Then f is finite and deg f = qdim X (in particular,
q > 1). Moreover, h( f ) = dim X · log q.

Proof. First we prove the following statement observed by Serre.

Lemma 21 (Serre). Under the same hypothesis of the proposition, the absolute value of the eigenvalues of
f ∗ : Hk(X,C)→ Hk(X,C) is qk/2.

Proof. Let Q be a bilinear form on Hk(X,C) defined by

Qk(α, β) =

∫
Ln−k(α) ∧ β =

∫
ωn−k

∧ α ∧ β.

and let

Hk(α, β) =


√
−1 ·Qk(α, β̄) if k is odd;

Qk(α, β̄) if k is even.

Then Hk is a Hermitian form. Let 1k : Hk(X,C)
f ∗
−→ Hk(X,C)

·q−k/2

−−−→ Hk(X,C). Then Hk
(
1k(α), 1k(β)

)
=

Hk(α, β) and 1k preserves the Hodge decomposition and the Lefschetz decomposition. As these two
decompositions are orthogonal with respect to Hk and the restriction of Hk to each of the summands Hp,q

prim

is either definite positive or definite negative, the restriction of 1k to Hp,q
prim is a unitary transformation of

Hp,q
prim. Therefore the eigenvalues of 1k has absolute value 1, which proves the lemma. �

Therefore deg f = qdim X. As q > 1, by Corollary 17 we have

h( f ) = max
0≤k≤dim X

log qk = dim X · log q.

�
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Remark 22. By Proposition 20, we see that if f : X → X is an endomorphism preserving a Kähler ray,
then h( f ) = 0 if and only if f is an automorphism. The "if" direction also follows from Fujiki-Lieberman’s
theorem together with Corollary 17. The "only if" part has a far reaching generalization which holds
for every smooth compact oriented manifold due to Misiurewicz and Przytycki [8, Theorem 8.3.1]: they
showed that for every f : X→ X self-map of class C 1 of a smooth compact oriented manifold, we have
h( f ) ≥ | log deg( f )|.

Remark 23. Let f : X→ X be an endomorphism of a compact Kähler manifold. By Proposition 20, if f
is an automorphism and r1( f ) , 1, then f ∗ has no eigenvectors in K (X). However since f ∗ preserves
K (X), according to a Perron-Frobenius-type theorem [1], we can always find α ∈ K (X)\{0} such that
f ∗α = r1( f )α. If r1( f ) , 1 (or equivalently, h( f ) > 0 by Exercise 18), then necessarily α ∈ ∂K (X).
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