
Study on application of Machine Learning Intelligence for Nonlinear Dynamical Systems 

Abstract: 

In the literature, machine learning has been referred to as deeply structured learning, hierarchical learning 
and feature based learning which can provide computational models from high-level data abstractions. 

One of the most used learning structures is the multiple-layered models of inputs, commonly known as 

neural networks, which comprise multiple levels of non-linear operations. The machine learning 

algorithms are able solve many problems around fault detection, isolation and recovery. 

There has been a growing interest in using learning architectures in advanced robotics applications, e.g., 
object detection, scene semantic segmentation, and grasping. The real-time learning of high-dimensional 

features for robotics applications via machine learning techniques is another important topic. In addition, 

other topics in robotics such as obstacle detection and context-dependent social mapping are also being 

addressed by researchers through machine learning methods. 

Machine learning algorithms provide real time driving decisions for automated vehicles (self-driving 

vehicles or driverless cars) from integration of numerous sensors onboard the vehicle. The advancement 

of autonomous navigation and situational awareness systems adapt neural networks for analyzing the 

multi-modal sensor inputs. 

We observe that machine learning algorithms influence largely in decision making process. But, there is 
need to understand the control system consequences for adapting the outcome of the machine learning 

algorithm. This proposal presents the detailed study on the influences of machine learning architectures 

and algorithms for modeling and control of nonlinear dynamical system. 

Research Outcome: 

· Knowledge on machine learning architectures (Support Vector Machines (SVMs), Conditional Random 

Field, supervised neural network) 

· Understanding the constraints on applicability of ML architectures for nonlinear dynamical system 

· Study on real time control of nonlinear dynamical system with ML algorithm in closed loop. 
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1.0 Abstract  

The current machine learning algorithms influence largely in decision making process or applied 

to static systems (pattern recognition). But, there is need to understand the control system 

consequences in terms of system stability for adapting the machine learning algorithm in the 

closed loop control. This work presents the study on the influences of machine learning 

architectures and algorithms for modeling and control of nonlinear dynamical system. This 

research attempts to investigate the evolution of learning based controller design for nonlinear 

dynamical system specifically a robotic manipulator. The effort to understand the applicability of 

machine learning principles and adaptive control theory for identification and control through 

neural networks as the learning systems of the system being identified and controlled is studied.  

Keywords: System identification and Control, adaptive control, Neural Networks, Robot 

Manipulators   

Nomenclature  

ANN Artificial Neural Network  

ARMA Autoregressive Moving Average Model 

ARX Auto-Regressive with eXogenous  

BPTT Back Propagation Through Time 

CAMC Cerebellar model articulation controller 

DARPA Defense Advanced Research Projects Agency  

DOF  Degrees of freedom 

DSP Digital Signal Processing  

FMLP Feedforward Multilayer Perceptron Model  

FFN Feedforward net  

FARNN Fully Automated Recurrent Neural Network  

GRU  Gated Recurrent Units  

GRBF Gaussian Radial Basis Functions  

GRNN General Regression NN 

GRRMLP Globally Recurrent Multilayer Perceptron Model 

LAGRs Learning applies to ground robots  

LIP Linear In Parameter  

LPAC Linear perturbation adaptive control 

LTI  Linear Time Invariant  
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LSTM Long Short-Term Memory  

MBRNN Model Based Recurrent Neural Networks  

MRAC Model Reference Adaptive Control Approach  

MIMO Multi Input Multi Output 

MNN Multilayer Neural Network 

MLP  Multilayer Perceptron  

NN Neural Networks  

NARX Nonlinear Auto-Regressive with eXogenous  

PMDC  Permanent Magnet Direct Current  

PE Persistence of excitation  

PD  Proportional Derivative  

PID Proportional Integral Derivative  

RBF Radial Basis Functions  

RBFN Radial Basis Functions Networks 

RTRL Real Time Recurrent Learning 

RFMLP Recurrent Feedforward Multilayer Perceptron Model 

RMLP Recurrent Multilayer Perceptron Model 

RNN Recurrent neural Network  

RLS Recursive Least Square 

STAC Self-Tuning Adaptive Control  

SHL Single Hidden Layer  

SISO Single input and single output  

SLS Supervised Learning System  

TFFMLP Teacher Forcing Feedforward Multilayer Perceptron Model 

TFRMLP Teacher Forcing Recurrent Multilayer Perceptron Model 

ULN Universal Learning Networks 

WNN Wavelet NN 

WDEKF Weight-Decoupled Extended Kalman filter  

 

 

1.1 Introduction  

Learning applies to ground robots (LAGRs) program by Defense Advanced Research Projects 

Agency (DARPA), RobotCub project, dynamic robot control project on ping-Pong playing robot 

at Bell labs, wide use of Unimate Puma 550 series, Google Brain Team executing reinforcement 

learning experiments on robot manipulators has shown the advent of large number of robot 

manipulators designed over the last half century as the standard platforms for research and 

development efforts and industrialization [1]. There is an abundance need for the robotic 

manipulators in the areas of space (space debris removal, On orbit servicing), robotic surgeries, 

prosthetics and manufacturing process. Smart robotics was considered to be the major driving 

factor for the migration of Industry 3.0 (i.e. mass manufacturing) to Industry 4.0 (i.e. customized 
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or social manufacturing) [2]. Hence, many researchers have been applying the identification and 

control theory to robotic manipulators. A robot manipulator is said to possesses highly complex 

nonlinear robot dynamics. The uncertainties associated with manipulator which is capable of 

handling variable loads can be; apriori unknown mass properties of the load or its exact position 

in the end effector. The robot control problem is generally defined as the computation of joint 

torques or actuator inputs so that the joint motions (position and velocity vectors of the joints) 

closely track a desired trajectory [3]. As the manipulators in practical possess nonlinear 

dynamics, linearization of the system may simplify the mathematical representation of the 

system. However, the controller developed for the linear system cannot assure the desired 

performance when applied in practical. Hence, it is required to develop control strategies for 

stabilizing the nonlinear dynamical systems considering the nonlinearities of the system [4]. 

Many researchers have made a tremendous effort in ensuring the design of controllers to develop 

accurate robot manipulators used for numerous applications. This research attempts to 

investigate the evolution of learning based controller design for nonlinear dynamical system 

specifically a robotic manipulator.  

The learning-based systems had an evolutionary beginning in 1962, when American scientist F. 

Rosenblatt had introduced the concept of learning in his book Principles of Neurodynamics. He 

dealt with physico-mathematical models for the psychological functioning of the brain as 

expressed in terms of the known principles of neuroanatomy and physiology. He was successful 

in constructing a number of computer oriented realizations of brain models with formal training 

methods (reviewed by A. A. Mullin [5]). His work was a source of inspiration for a new 

approach to the simulation of the functions of the brain. Additionally, the work in probabilistic 

iterative methods for stochastic approximation and problems of identification, filtering and 

control to be solved with adaptive techniques was inspired by the book by Ya. Z. Tsypkin’s, 

Adaptation and Learning in automatic Systems (reviewed by B. L. Deekshatulu [6] and K. S. 

Narendra[7]). Inspired by learning-based systems, Arimoto. et.al [8] proposed the three models 

which uses feedforward signals for learning of specific tasks without explicitly updating the 

system dynamics. The interactive learning control schemes was applied for linear and nonlinear 

dynamical systems, specifically for controlling the robotic manipulators. Slotine et al.  derived 

the adaptive robot control algorithm with the unknown manipulator and payload parameters 

being estimated online [9]. Many experiments conducted by K J Astrom and others in 80’s 
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designed adaptive control laws assuming the order of the system is known a priori, this 

assumption was considered unrealistic due to the presence of unmodelled dynamics [10]. The 

adaptive control techniques were designed to handle the anomaly situations occurred due to 

interaction between disturbances and unmodeled dynamics [4], [9], [11]. The application of 

conventional model based adaptive and robust control techniques for nonlinear systems with 

parametric uncertainties is still an ongoing research. However, the system model for the 

development of the adaptive control law and accuracy of the model impacting the overall 

performance of the nonlinear dynamical system to achieve desired trajectory tracking is the 

primary objective to be addressed. The model free controller designs were the possibility to 

satisfy the primary objective for the systems with nonlinearities and unmodelled dynamics [12], 

[13]. However, the stability proofs of controllers to satisfy the insensitivity to parameter 

uncertainties and insensitivity to unmodelled dynamics with faster convergence rates and less 

computational load is the objective of research for model free controllers.  

However, learning based model free controllers design were attractive because it does not require 

a structural or parameterized model of the system dynamics.  The functions of biological process 

are adapted to learn about the system to improve the performance. Model free learning 

controllers was tried to be implemented with fuzzy logic control, neural networks (NN) and 

genetic algorithm. It was generally understood that NNs provide an elegant extension of the 

adaptive control techniques. However, genetic algorithm can be used to optimize control 

parameters of NNs. The NNs in controls was initially proposed by Werbos, Narendra and Slotine 

[12]–[15][16]. The NN is formed from compositions and superpositions of a single, simple 

nonlinear activation or response function [17][18]. The output of the network is the value of the 

function that results from that composition and superposition of the nonlinearities. Norgaard et 

al., [19] provided the MATLAB based tools for system identification and control with NNs.  

This study is focused on the development of control laws for nonlinear dynamical systems 

adapting biological signal processing-based learning methods usually referred as NNs and its 

recent developments on integrating the conventional control strategies with learning-based 

approximation models [13], [20]–[34].  Training the networks is considered as the vital 

component for design of stable controller. The most widely used  network training algorithm, 

back-propagation was designed and published by Paul Werbos [13]. With conventional back 
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propagation through time (BPTT) [35], [36] or real time recurrent learning (RTRL) the 

development of training large scale complex NNs has become very slow or even stagnated due to 

computation requirement and vanishing gradient problem. The resutls firstly from the 

computational powers needed bytraining NNs by computing their weights through back 

propagation, especially when the networks have multiple layers and vast numbers of hidden 

nodes. Secondly, the vanishing gradient problem: the gradient of errors will vanish gradually 

through the back-propagation process. However, vanishing gradient problem is a problem of 

concern as the processing units with high computational powers are available. The vanishing 

gradient problem was firstly addressed by Hochreiter [37]. This led to the numerous works in the 

area of deep learning with NN structures with reasonable training speeds.  The three classes of 

NNs such as multilayer neural networks (MNN), recurrent neural networks (RNN)  and recently 

Long Short term memory network (LSTM) are used in many applications[38][39][36]. MNN, 

RNN and RFBN’s have been used in identification and control of static and dynamic nonlinear 

systems [22], [23], [25], [26], [40], [41]. Additionally, recurrent networks are well known for its 

application in associative memories for solutions of time series optimization problems.  

The adaptive control methods have focused on the process of controlling engineering systems to 

solve the problem of tracking control parameters in the presence of uncertainties in system 

models, changes in the environment, and other unforeseen variations. The approach used for 

accomplishing tracking is to learn the underlying parameters through an online estimation 

algorithm. Stability theory is employed for enabling guarantees for the evolution of the control 

parameters and convergence of tracking errors to zero. On the other hand, machine learning has 

objectives focused on the processes improvisation through knowledge and the principles that 

govern learning systems. Both Adaptive control theory and principles of the machine learning go 

hand in hand for accomplishing this process of automatic improvement of the system through 

learning parameters of the model using input-output data and application of the optimization 

theory to reduce the approximation and control errors at optimal rates often inspired by gradient 

descent [42].  The effort to understand the applicability of machine learning principles and 

adaptive control theory for identification and control through neural networks as the learning 

systems of the system being identified and controlled is studied in future sections of the report.  

1.2 Adaptive Control systems for robotic manipulators 
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Arimoto et.al [8] proposed three data based interactive learning control schemes for linear and 

nonlinear dynamical systems in 1985 and applied the work for controlling the nonlinear robotic 

manipulators that had a serial link manipulators. His work considers the use of feedforward 

signals for learning of specific tasks without explicitly updating the system dynamics. However, 

in early 80’s researchers had presented the feedforward control approach for direct drive arm for 

system with slow and fast movements of the links. Atkenson et al. [11] presented experimental 

results of using an estimated dynamic model of the manipulator for dynamic feedforward 

compensation for trajectory control of serial link direct drive arm  with fast movements. The 

feedforward control was affected by the accuracy of the manipulator dynamic model and the 

paper noted that the unmodelled dynamics resulted in poor trajectory tracking performance. 

Atkenson et al. assumed the inertia of the link to be much smaller that other links of the arm, the 

unmodelled dynamics such as the non-ideal dynamics of the motor and the friction of the 

bearings were dominated by the modelled rigid model dynamics clearly indicating the need of 

complete modelling of the link 3 to improve trajectory following. The feedforward control 

demands for the precise estimation of the nonlinear multi-link dynamics parameters such as 

inertia matrix, vector of Coriolis and centripetal terms, gravity vector and friction terms of each 

link. The estimation of the parameters involved linearizing the Newton-Euler equations for an n 

degree of freedom (DOF) manipulator in terms of unknown inertial parameters. Atkenson et al. 

used least squares algorithms to compute the estimates of the multi-link dynamics parameters. 

The accuracy of the estimated parameters was verified by comparing the measured joint torques 

to the torques computed from the estimated parameters. This work clearly indicated the effect of 

unmodelled dynamics and accuracy of estimated feedforward parameters on the precision of 

trajectory control of nonlinear dynamical system.  

The parallel experiments by Astrom [4] on adaptive controller performance under the effect of 

anomaly such as interaction between disturbances and unmodelled dynamics provided the 

influence of model reference adaptive control system on single input single output (SISO) 

continuous time system.  Researchers has provided the stability proofs for simple adaptive 

algorithms considering the order of the plant is known. However, many pointed that the 

assumption on order of the plant is highly unrealistic due to the presence of unmodelled 

dynamics. The experiments by Astrom [4] indicated that the equilibrium is non-unique, and that 

small disturbances may make the move the equilibrium until the system becomes unstable.  The 
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author have noted that while the equilibrium is the globally stable for the nominal plant, stability 

cannot be guaranteed in the presence of unmodeled dynamics The need was to determine the 

adjustable feedback gain parameters of the SISO system. The rate of change of the parameters 

was adjusted with adaptive gain and the proper gain adjustments was possible with bounded 

input and output of the nonlinear SISO system and the type of excitation (step or sinusoidal) 

applied to the system. The relationship between the adaptable gains and the stability boundaries 

in presence of unmodeled dynamics indicate the importance of initial values of the adaptable 

gains and its convergence towards equilibrium set (not point) to provide stable closed loop 

system. However, the performance of adaptable gains under the effect of disturbances is 

expected to drift. When measurement noise was included as disturbance in the system, the 

adjustable gains tend to oscillate in the neighborhood of the equilibrium set, hence leading to the 

drift of the adaptable gains i.e., closed loop gain increases as long as there are disturbances 

affecting the system. His experiment provided a thumb rule indicating the crude estimate of the 

drift rate of the adaptable gains drift to infinity at a rate proportional to √𝑡3
, t being the time of 

execution and indicated that the generic case of unmodelled dynamics the increased adaptable 

gain will provide unstable closed loop system. K J Astrom provides an insight that local stability 

is related to persistent excitation because of guaranteed unique equilibrium, however to achieve a 

stable equilibrium the necessary condition is that the excitation is in the proper frequency range 

where the range depends on the model developed and the true dynamics of the system being 

modelled.  

Further, the survey conducted by Hisa [ref], resulted in categorizing control schemes as the fixed 

or non-adaptive and adaptive control and further categorizing adaptive control systems into 

model-reference adaptive control, self-tuning adaptive control and linear perturbation adaptive 

control applied to robot manipulators. Hisa highlighted the necessity to consider the payload 

parameters; actuator dynamics (robot joints drivers); nonlinear motor and friction torques in the 

robot manipulator dynamics. If a robot manipulator such as three link direct drive arm is 

considered the robot control is required to compute the joint torques or the actuator inputs such 

that the joint motions closely track the desired trajectories. The classical controllers controlling 

each joint individually fail to consider the nonlinearities of the process and the dynamic coupling 

between the joint motions. It is addressed that the high accuracy positioning of the end effectors 

of the manipulators in the inertial space is achieved by considering the nonlinearities and joint 
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couplings in controller design. However, fixed/ non-adaptive controllers can be the best choice if 

exact knowledge and explicit use of the complex system dynamics and system parameters are 

available. Further, considering the performance degradation leading to instability due to system 

model uncertainties, the adaptive control schemes with automatic compensation of the 

uncertainties by adjustable gains was highlighted. Hisa, listed the considerable uncertainties in 

all robot dynamic models which are either impossible to know precisely or some can vary 

unpredictably viz. mass and inertia, variable payloads, elasticities and backlashes of gear trains. 

In addition to the uncertainties, the actuator limitations such as saturation, minimum response 

and loadings also be accounted in control design.  Hisa, clearly pointed out the objectives for the 

design of robot controllers followed by the control community working towards adaptive 

schemes for robot control; which are stated as insensitivity to parameter uncertainties, 

insensitivity to unknown payload variations, decoupled joint response and low demand for online 

computations. It is required to further analyze if these objectives were able to be satisfy one or 

more objectives by the researchers.  

• Model reference adaptive control 

 The adaptation algorithm of MARC approach is designed based on asymptotic stability 

requirement, which are analyzed using Lyapunov stability criterion and hyperstability criterion. 

The Lyapunov MARC design approach, had time varying adjustable feedback and feedforward 

gain matrices derived from the state errors, with the goal of asymptotic zeroing of the error and 

minimization of a performance index based on Lyapunov stability criterion [43]. Durrant-Whyte, 

demonstrated the insensitivity of his algorithm to load variations and uncertain dynamics 

knowledge. His work formulated the Pennsylvania Anthropomorphic Robot Manipulator as an 

open kinematic chain actuated by DC servo motors. The servo motors were represented by a 

second order model with   input voltage, torque constant, terminal resistance, actuator-link gear 

ratio, actuator inertia, actuator damping, back EMF, link side displacement and the random 

motor disturbance at about 2% of stall torques, including friction and dynamic effects to the link 

side as inputs to the model.  The quasi linear formulation of the manipulator feedforward block 

was derived for n joints, including all loads and actuator dynamics which included non-linear 

motor, friction torques and torques associated with the motion of the link structure. His 

simulations were conducted for unloaded and loaded (5 kg load at the end effector) motion, the 
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adaptive algorithm was capable of automatic selection of reference model and initial gains. The 

author proves the convergence of the manipulator’s position tracking the desired position, 

satisfying the objectives such as insensitivity to parameter uncertainties, insensitivity to unknown 

payload variations, decoupled joint response and low demand for online computations. The work 

also provided the insight that algorithm is consuming less computation time thus allowing for 

high sampling rates (ARM Architecture: processing unit). However, both unloaded and loaded 

motion converged within 2 secs with no significant convergence time difference between the two 

cases. The results do not provide any insight on time of convergence requirements. It is also 

essential to understand the role of convergence times in the adaptive control schemes of robotic 

manipulators. 

Lim et al. developed different controllers for three joint revolute robot manipulator systems 

(nonlinear time varying) based on the general adaptive control theory using Lyapunov direct 

method. This work aimed at improving the transient response and convergence speed [44]. The 

large state error and/or oscillation occurring during transient time is addressed by introducing 

approximate auxiliary control input. The reason of choosing adaptive control over robust and 

decoupled control methods related to the reduced computing time of former methods in 

generation of nominal torques of the joints. Lim et al. observed the need for decoupling the 

dynamic equations of the manipulator and implemented control schemes with decoupled model 

matching. However, his simulation results showed better transient response compared to the 

controller design presented by Durrant-Whyte. His research indicated the need for advancements 

in computation powers to develop robust control schemes for manipulator design with real time 

online computation of dynamic coefficients which were used in the nominal feedback controller 

gains to enhance the overall performance of the manipulator.   

Further researchers classified the adaptive control into direct and indirect methods. K. S. 

Narendra et.al [45], initially defined the classification of two methods of adaptive control 

problem such as indirect and direct control methods for linear time invariant plants. The purpose 

of his work was to understand that if there exists a controller structure (direct/indirect) which can 

generate the appropriate control input, additionally understanding the generation of adaptive laws 

and stability proofs that the control parameters with arbitrary initial conditions can converge to 

desired values with required accuracy.  If in the problem the plant model (parameters and /or 
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state variables of the unknown plant) is identified/estimated online and if these in turn are used to 

adjust the parameters of the controller, the method is defined as indirect adaptive control method 

(self-tuning regulators). If in a problem there exist a model (number of poles > number of zeros) 

of the desired performance, the control parameters are adjusted so that the error between the 

plant output and reference model output tends to zero asymptotically such method is defined as 

direct adaptive control method. Additionally, identification error in indirect control and control 

error in direct control are used to update the control parameters [46]. However, for both methods 

the fact is that the plant is essentially a black box and only the input is accessible for control 

purposes. K.S. Narendra’s work clearly defined a building block to classify the adaptive control 

law development into two different methods, but it was essential to project the work in the area 

of robotic manipulators which are highly nonlinear by nature of dynamics. Researchers 

considered the indirect adaptive control which requires parameter identification as difficult to 

achieve for robotic manipulators because of large number of parameters. Hence, the direct 

method was a good option as it provides robot controller with relatively simple adaptive laws, 

computed at reasonable cost. The parameter adaptation mechanism was developed using 

Lyapunov stability or Popov hyperstability that guarantees overall system stability.  

Hyperstability MRAC design approach discussed in Hisa’s survey provided an alternating way 

of designing an adaptive control law using stability condition. In comparison of adjustable 

feedback and feedforward gain matrices with Lyapunov design the derived gain matrices using 

hyperstability theory were divided into an adjustable part and a fixed part. However, the 

qualitative difference in performance were not recorded. The simplified MRAC design presented 

by Dubowsky and DesForges addressed the design of adaptation laws by gradient search 

techniques which resulted in very simple adaptive laws, however the global stability was not 

always guaranteed. Another MRAC scheme developed by Horwitz and Tomizuka is applied to 

adaptively compensate the nonlinearities and decoupling the joint motions. The joint dynamics 

were modelled by a double integrator and used simple fixed Proportional Integral Derivative 

(PID) for feedback control. The system also had manipulator model without gravity force effects. 

The control law with adaptively estimated parameters ensured adaptive system stability. The 

design of the adjustment algorithm for adaptively estimated model parameters is investigated 

using hyperstability technique[3].  
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• Self-tuning adaptive control 

Another popular approach for robot controller design is the self-tuning adaptive control (STAC)  

[10].  If the plant is represented by linear discrete time models for digital implementation, the 

adaptive controller designed for such plant is defined as STAC. Yuh presented a discrete model 

reference adaptive control to the flexible link of robot mechanisms. The controller was 

developed in the perspective to overcome the inaccuracy due to structural vibrations of the 

mechanisms. The results were presented for nonlinear flexible link model equations. His work 

was restricted to control of the angle of the joint, additionally unlike other researchers work 

mentioned above, he added process noise to the dynamic equation of the manipulator. His work 

lacked to provide the stability proofs for the adaptive controller developed. The effect of 

unmodelled flexible dynamics with candidate mode frequencies was derived using the Bernoulli-

Euler beam equations with appropriate boundary conditions, assuming the links are made of 

Aluminum. However, many researchers recommended applying STAC on slowly time varying 

plants. The discrete time plant model must be established through the system identification 

technique using sampled input-output data of robot model dynamics for STAC problem. The 

modelling of the robot for STAC technique can be a linear but time varying process and/or mth 

order scalar difference equation of the Autoregressive Moving Average Model (ARMA) type 

process.  Since the model parameters are in general time varying, they are recursively estimated 

online. The parameter estimation from the input-output data measurements are performed using 

least squares estimation algorithm. The robot controllers designed with STAC technique also 

was effectively implemented for joint velocity control instead of position control, this led to 

simpler adaptation algorithm as the controller parameters were directly related to the system 

model parameters [3].  

• Linear perturbation adaptive control 

The yet another approach for robot controller design is the linear perturbation adaptive control 

(LPAC). If a nominal robot model is available, instead of assuming the robot dynamic equation 

parameters are completely unknown. Then the nominal values of the model parameters are 

determined using inertia and gravity loading functions. With this type of plant model, the 

adaptive control is designed using linearized perturbed state equation formed using Taylor series 

and neglecting the higher order terms with the control objective to determine the control error to 
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make system asymptotically stable [3]. Previously, Arimoto et al. had developed the adaptive 

control design techniques for the trajectory control using the nominal plant model which 

included the approximate inertial and gravity leadings. They used the MRAC Lyapunov design 

technique for deriving the gain matrices of the adaptation law  [47]. LPAC shows advantage in 

using the simple plant model but the adaptive controller with perturbation model parameters 

being estimated online slows down the adaption rate in real time applications, hence the simpler 

decoupled adaptive controllers are much preferred for robotic manipulators. Additionally, Hisa’s 

survey indicated that the selection of number of parameters characterizing the controller 

performance in the control design is proportional to the computational load on the processing 

unit.  

• Advanced Adaptive controllers 

The advanced adaptive controllers are expected to provide the elegant adaptive control laws with 

the stability proofs with the reduced computational load. J.J.E. Slotine et al.  attempts to derive 

computationally simple adaptive robot control algorithm which consists of Proportional and 

Derivative (PD) feedback controller and full dynamics feedforward compensation (inertial, 

centripetal and Coriolis, and gravitational torques), with the unknown manipulator and payload 

parameters being estimated online [9]. His work analyzed the dependence of the system 

dynamics on the unknown parameters can be made linear in terms of suitably selected set of 

robot and load parameters for a two-link manipulator. The controller was designed considering 

the known desired trajectory (position, velocity and acceleration of joints), with some or all 

manipulator parameters being unknown. The control objective was to produce the actuator 

torques and development of estimation law for the unknown parameters such that the 

manipulator tracks the desired trajectory after an initial adaptation process. A simple globally 

stable adaptive controller for position and velocity control of the manipulator was designed from 

a Lyapunov stability analysis. However, the adaptive controller resulted in a non-zero position 

errors. The positional errors were forced to converge by restricting the error residuals to lie on a 

sliding surface.  

Slotine et al. discussed the implementation which highlighted the detailed design considerations 

of the controller. Firstly, even though the convergence of the trajectory tracking was guaranteed, 

it was observed that the parameter estimates themselves do not necessarily converge to their 
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exact values. Hence to guarantee parameter convergence, the desired trajectory must be 

“sufficiently rich” so that only the true set of parameters can yield exact tracking. The practical 

implementation of the adaptive controller as the error terms vary much faster than the dynamic 

coefficients matrices, the controller parameters are updated at slower rate compared to reference 

trajectory generation. The choice of the adaptation gain matrix is generally such that the 

adaptation process is slower than the control bandwidth. He even introduced a recursive Newton-

Euler method as an alternative way of implementing the control and adaptation laws, which 

usually needs a number of operations proportional to the number of links. Additionally, they 

simplify the adaptation algorithm by not explicitly estimating all unknown parameters. If some 

parameters have relatively minor importance in the dynamics, then they design the controller 

robust to the uncertainty on these parameters rather than explicitly estimating then online. A 

sliding control term is incorporated into the torque input to account for of disturbances  and the 

effects of uncertainties on the non-estimated parameters . Additionally, the adaptation algorithm 

avoided long term drift of the estimated parameters and undesirable control chattering. The 

simulation study was performed for a desired joint trajectory (with a 5th order polynomials) using 

PD Controller, PD Controller and full dynamics feedforward compensation and adaptive 

controller with sliding control term, the position errors of the adaptive controller is minimum 

with the smaller magnitudes of actuator torques. But still the need for specific choices of the 

adaptation gain matrix that yield optimal convergence rates while still avoiding the excitation of 

high-frequency unmodelled dynamics is required.  

Rokui et al. provided indirect adaptive feedback linearized controller for a single-link flexible 

manipulator modeled in discrete time [48]. The authors used the discrete time model to obtain 

the associated internal and zero dynamics. The unknown payload is identified by using a new 

regressor form of the system dynamics and the multi-output recursive least square (RLS) 

algorithm. The output re-definition strategy is employed to guarantee that the map between the 

hub and the new output to be minimum phase. Stability analysis of the adaptive controlled closed 

loop system is guaranteed by applying Lyapunov analysis.  

The above study clearly indicated the need for the system model for the development of the 

adaptive control law and accuracy of the model impacting the overall performance of the 

nonlinear dynamical system. The adaptive controller was derived both in continuous and discrete 
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domain. However, the discrete time controllers are not extensively developed with the stability 

proofs. The need of controllers to satisfy the insensitivity to parameter uncertainties and 

insensitivity to unmodelled dynamics with faster convergence rates and less computational load 

is being studied.  

1.3 Learning based controllers for robotic manipulators  

In 1962, Rosenblatt [ref],  Tsypkin [ref] and other literature [49] introduced the concept of 

learning and adaptation.  This work inspired many to work in learning control system.  

The control objectives of NN-based controller design are similar to adaptive controller discussed 

by researchers mentioned above.  The objectives are ability for adaptation in real time to new 

environments (eg. payload parameters) without instability; ability to handle nonlinearities and 

noise, ability to plan or optimize over time (as required with complex tasks); parallel control of 

multiple actuators, adaptable for parallel computing; coupling between a slower controller and 

faster subordinate system, similar to the implementation presented by [9] for adaptive 

controllers.  

Werbos [12], discussed application of the artificial neural networks (ANN) for control and 

system identification of systems  for robotic systems. ANN based adaptive systems are classified 

into supervised and unsupervised learning systems. In supervised learning, the ANN performs a 

mapping from a set of independent variables (inputs) to a set of dependent variables 

(outputs/targets). The ANN contains a set of connection weights, which needs to be estimated 

recursively so as to minimize the squared error between the ANN outputs and desired outputs 

outside of the training set. The adaptive controller design implements similar approach for 

adaptation laws developed by STAC problem approach mentioned by [10]. The problem of 

minimizing square error from the adaptation of parameter estimates in real time is very different 

to the static database. The immediate step is to calculate the rate of change of the error with 

respect to all parameters. Normally, the procedure is named as backpropagation [13] which 

essentially calculates all the required derivatives at every instant; applicable for any system not 

restrictively ANN which has a differentiable network or model. However, speeding up the rate at 

which backpropagation is repeated can minimize the error faster but asks for parallel 

implementation and directly influence the computational load leading to the requirement of high 

processing platforms [50]. The difference between O(N2) cost and O(N) cost (N being the 
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number of samples) decides the network sizes and its computational platform requirements. 

Supervised learning is identical to the classic problem of nonlinear regression. SLS are 

commonly used to solve classification problems, by letting the inputs be the patterns to be 

classified and the desired outputs be the correct classifications [12] [51]. However, in 

reinforcement learning systems the system is given a reward for its output without being 

explicitly told the desired output [52]. By contrast, in unsupervised learning, the systems “learns” 

by observing their environment over time where there exist no desired output/s. This scheme is 

typically designed to act as associative or content addressable memories, as feature detectors or 

forecasting networks [12][51].  

Werbos presented five approaches to ANN design for control of robots. (I) The NN learn from 

the desired actions as a function of the sensor inputs, it learns from the mapping from the sensor 

reading to the desired outputs, named as supervised control system. (II) The robot learns to 

follow trajectory planned by a planning system. The problem is to learn the mapping from spatial 

coordinates back to the actuator signals (joint angles control), along with SLS to learn the 

mapping. The method is named is direct inverse control. (III) A NN learns to minimize or 

maximize any performance criterion, till a model of the system to be controlled is developed. 

The method is popularly known as backpropagation through time (BPTT). The application of 

BBPT to adapt the control network for robot arm (developed at MIT and Japan’s Bell Labs). 

This involved defining the performance criterion representing the deviation from the desired 

trajectory to the actual trajectory, along with a measure of smoothness of motion. Followed by 

adapting a network to describe the dynamics of the arm. (IV) Neural adaptive control, a 

conventional adaptive control replaced by NNs replacing some of the usual linear mappings[14]. 

(V) Adaptive critics system (a complex subject), class of designs which tries to perform 

optimization over time[53]. Allowing explicitly for the possibility of noise, and also allowing 

true real-time learning. The adaptive critic designs can be defined as designs which try to 

approximate Bellman equation of dynamic programming. The search for good approximations to 

dynamic programming. Adaptive critics involve a 2- network design, critic network and action 

network[52], [54]–[56][2].  

F.J.Pineda defined NN approach as a paradigm for computation in which the traditional 

paradigm of a finite state machine performing sequential instructions in a discrete state space is 
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replaced with the paradigm of a dynamical system, in a discrete or continuous state space, which 

evolves under the control of certain class of dynamics [57]. The dynamics of the NN has three 

salient features. Firstly, the dynamical system has many degrees of freedom. As per Pineda, most 

simulations of these systems were limited to 105 neurons while human brain has 1011neurons. 

The activity level and the time derivative of the activity of the neurons are the coordinates in the 

phase space/state space of the system. The second feature is nonlinearity, which is essential to 

build a computing machine. The third feature is dissipative, which is characterized by the 

convergence of the state space volume onto a manifold of lower dimensionality as time 

increases. Pineda, stated that systems whose flow exhibits the property of global asymptotic 

stability (systems achieve steady state for any choice of initial condition) play a particularly 

important role in NN modelling.  

If NNs are used the work is to determine an adaptive algorithm or rule to adjust the parameters of 

the network based on the given set of input-output pairs. If the weights of the networks are 

considered as elements of a parameter vector, the learning process involves the determination of 

the new parameter vector which optimizes a performance function based on the output error. 

Backpropagation is the most commonly used method for determining the parameter vector which 

optimizes a performance function/ cost function. The adjustment of parameters is carried out by 

determining the negative gradient of cost function in parameter space (cost function w.r.t 

parameter), the procedure commonly followed is to adjust it at every instant based on the error at 

that instant and a small step size [13], [14], [58]. 

However, before controlling the system we need to understand the system being controlled. The 

model of the system can be deterministic or stochastic. The quality of the NN controller depends 

on the quality of the system model, like adaptive controllers. The attempt to understand the 

development of NN based model when an explicit model of the system is unavailable / difficult 

to arrive at. This problem is called as system identification, the NN developed is named as 

identifier network[54].  The two-part networks are applied to many applications as identifier 

networks, major disadvantages are a stochastic model with uncorrelated noise which cannot 

approximate even vector-ARMA process and robustness over time. The problem of allocating 

noise in maximum likelihood context is tough, as the requirement is to approximate true 
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nonlinear filtering. The encoders and decoders schemes and Competitive learning schemes are 

suggested for nonlinear maximum likelihood case (stochastic process approximation)[59].  

The identification and control of dynamical systems using neural networks (NNs) by K.S. 

Narendra et al. was an initial advancement towards development of identification as well as 

controller structures using NNs for adaptive control of unknown nonlinear dynamical systems. 

The work presented is considered as the significant research work in the area of identification 

and control of nonlinear dynamical system providing an elegant extension to the adaptive control 

systems theory [14]. The paper has more importance due to the consideration of discrete time 

system representation by difference equations for easy implementation. The controller and 

identification model were developed using multilayer and recurrent networks interconnected in 

novel configurations. Both static and dynamic back-propagation methods are used for adaptation 

of parameters. The paper presented a perspective method for the dynamic adjustment of the 

parameters based on back propagation; named as dynamic backpropagation.  

K.S. Narendra et al. provided a detailed insight on identification of the system which is the basis 

for understanding the future research in this area. His research identified that the conventional 

system identification started with system characterization where the problem of characterization 

is concerned with the mathematical representation of a system. The problem involves mapping of 

input space to output space using the model of the system expressed as operator which belongs to 

the larger class of operators. The problem of identification is to approximately identify the 

operator which is close enough to the model of the system expressed as operator as well as which 

belongs to the approximately identified larger class of operators. In static systems the input space 

and output space are subsets of real space of different dimensions. However, the dynamical 

systems are generally assumed to be bounded Lebesgue integral functions on the interval. As per, 

K.S. Narendra et al. the operator is defined implicitly by the specified input-output pairs. The 

choice of the approximate model of the system expressed as operator as well as specific method 

used to determine its approximate larger class of operators depends on factors related to accuracy 

desired as well as the analytical tractability. These include  

• the adequacy of the model of approximate larger class of operators represent larger class of 

operators,  

• its simplicity,  
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• the ease with which it can be identified,  

• how readily it can be extended if it does not satisfy specifications and  

• finally, the approximate larger class of operators chosen to be used online or offline.  

In practical applications many of these decisions depends on the prior information that is 

available concerning the plant to be identified.  

K.S. Narendra et al. described the problem of the pattern recognition is a typical example of 

identification of static systems. The compact input set of pattern vectors are mapped onto the 

output class of elements in the output space by a decision function expressed as larger class of 

operators. In dynamical systems, the larger class of operators defining a given plant is implicitly 

defined by the input-output pairs as function of bounded parameter time.  However, in both cases 

the objective is to determine the larger class of operators so that normalized identification error is 

within a permissible bound.  

The famous approximation theorem of Weierstrass states that any function in the space of the 

continuous real valued functions can be approximated arbitrary closely by a polynomial. K.S. 

Narendra et al. indicated that Weierstrass’s theorem and its generalization to multiple dimensions 

finds wide application in the approximation of continuous functions using polynomials. A 

generalization of Weierstrass’s theorem due to Stone, called the Stone- Weierstrass’s theorem 

can be used as the starting point for all the approximation procedures for dynamical systems[60].  

Using Stone-Weierstrass theorem it can be shown that a given nonlinear functional under certain 

conditions can be represented by a corresponding series such as the Volterrra series or the 

Wiener Series. K.S. Narendra et al. claims that very few series found wide applications in the 

identification of large classes of practical nonlinear systems. Hence, K.S. Narendra et al. worked 

on the representations which permit online identification and control of dynamic systems in 

terms of finite dimensional nonlinear difference or differential (discrete or continuous) equations.  

K.S. Narendra et al. describes the identification problem of the unknown system considering 

input and output of a time invariant, causal discrete time dynamical plant. Where, he considers 

the input is uniformly bounded function of time and the plant is assumed to be stable with known 

parameterization but with unknown values of the parameters. The objective was to construct a 

suitable identification model which when subjected to the same input as the plant, produces an 
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output; such that so that normalized identification error is within a permissible bound. K.S. 

Narendra et al. defines parallel identification model and series parallel identification model 

which might help us in understanding the future implementations. Parallel identification model is 

the output of the identification model at an instant is a linear combination of its past values as 

well as those of the input. Series parallel identification model is a linear combination of the past 

values of the input and output of the plant. Series parallel model is preferred for the generation of 

the stable adaptive laws.  

K.S. Narendra et al. describes the control problem of the unknown system as the dynamical 

system with one or more variables are kept within prescribed limits, with the known state 

transition matrix and output matrix, the problem of control is to design a controller which 

generates the desired control input based on all the information available at the instant. For the 

control of nonlinear plants even when the state transition matrix is known, and the state vector is 

accessible, the determination of control vector for the plant to have a desired trajectory is 

considered to be difficult. Hence, K.S. Narendra et al. assumed the existence of suitable inverse 

operators for the generation of the control input. If a controller structure is assumed to generate 

the input control vector, further assumptions were made to assure the existence of a constant 

control parameter vector to achieve the desired objective. The choice of structures for identifiers 

and controllers in the nonlinear case was motivated by the linear models.   

K. S. Narendra et al. used two classes of neural networks; multilayer neural networks (MNN) 

and recurrent neural networks (RNN) and indicated that a unified treatment of the two, which 

might deal with more complex systems. The MNN (versatile nonlinear maps) with an input 

layer, two hidden layers and an output layer, with three weight matrices and a diagonal nonlinear 

operator with identical sigmoidal (activation function) elements following each of the weight 

matrices is used[61]. The weights of the network are adjusted using adaptive rules to minimize a 

suitable function of the error between the output of the network and a desired output. K. S. 

Narendra et al. mentioned that a discontinuous mapping such as a nearest neighbor rule can be 

used at the last stage to map the inputs sets into points in a range space corresponding to output 

classes.  Recurrent networks (associative memory) was introduced in the works of Hopfield [62]. 

The Hopfield network consists of a single layer network included in feedback configuration with 

a time delay representing a discrete time dynamical system. For recurrent networks, the set of 
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initial conditions in the neighborhood of initial state which can converge to the same equilibrium 

state is then identified with the state. Pineda, also stated that Hopfield model guarantee to be 

globally asymptotically stable, as it can minimize an energy function [57].  

K. S. Narendra et al. presented static and dynamic back propagation methods for the developed 

NNs [63].  Pineda, claimed that for RNNs, the identification of stable fixed points with 

computational objects (memories), is one of the fundamental requirement which is satisfied by 

the control of the locations of the fixed points of the NNs[57]. Hence, a learning algorithm is a 

rule or dynamical equation which changes the locations of fixed points to encode information. 

Pineda also suggested the use of gradient descent to minimize the function of system parameters 

and defined the dynamics of the network based on coupled differential equations having logistic 

activation functions. The research by Pineda, addressed forward propagation was widely used in 

feedforward networks and it used 𝛿 rule as a learning rule as well as its adaptability to recurrent 

networks. Recurrent back-propagation algorithm was developed to ensure substantial self-

excitation leading to oscillatory solutions as compared to feedforward networks with constant 

excitation where solution exponentially decaying to constants[57].  Pineda also tries to find a 

learning algorithm to adjust the parameters such that the fixed initial state and a given set of 

input values result in a fixed point, whose components along the output units have a desired set 

of values.  The necessary condition for the learning algorithm is to reach steady state and achieve 

global asymptotic stability of system. Hopfield’s equations were globally asymptotically stable 

considering symmetric parameter space with zero diagonal elements and the same was proved 

using Lyapunov functions. A general theorem concerning the stability of the networks with 

symmetric weights was given by Cohen and Grossberg[49][64]. Philip Tai et.al. presented a 

detailed survey on the applications of neural networks to control systems [65].  His work 

highlights the algorithms and techniques developed by several researchers using NNs. The use of 

NNs for system identification, adaptive control, modeling of chemical processes, optimization, 

fault detection and control of robotic manipulators is described. 

K. S. Narendra et al. state that for identification and control problem the inputs rather than initial 

conditions represent the patterns to be classified. Hence, recurrent networks with or without 

constant inputs are nonlinear dynamical systems and the asymptotic behavior of the such systems 

depends both on the initial conditions as well as the specific input used. In both cases, the 
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asymptotic behavior depends on the nonlinear map (with activation functions) represented by the 

NN used in the feedback loop. The two-layer recurrent networks and more general forms of 

recurrent networks are constructed by including multilayer networks in the feedback loop of 

recurrent networks [66][67].  If a time delay element is added in the feedback path of the 

multilayer NN layer results in a recurrent network.  

The basic building blocks of the general recurrent network is delay, summation and the nonlinear 

operator (with activation functions). In continuous time networks, the delay operator is replaced 

by an integrator or multiplication by a constant.  K. S. Narendra et al. presented four generalized 

NNs constructed by connecting the transfer matrices of linear systems and nonlinear operators in 

cascade and feedback configurations, such that these generalized NNs form the building blocks 

for the more complex NN systems for identification and control of the class of nonlinear 

dynamical systems. The research of Kurt Hornik et al. showed using the Stone– Weiersrass 

theorem, that a layer network with an arbitrarily large number of nodes in the hidden layer can 

approximate any continuous functions  [68]. This research motivated K. S. Narendra et al. that 

the class of generalized networks defined can deal with large class of generalized networks. 

Further, K.S. Narendra’s work on representing a nonlinear dynamic plant with recurrent 

networks containing multilayer networks (four generalized NNs) represents an important area of 

research for the study of the stability properties.  

K. S. Narendra et al. introduced the four models in discrete time to characterize plants using 

nonlinear difference equations for the representation of SISO plants which can be generalized to 

the multivariable case, where generalized NNs having multilayer NNs can be constructed to 

approximate these models. The properties of the models are described in the paper. The 

assumption that the functions of the models belong to a known class of functions generated by a 

network containing N layers, so that the plant can be represented by any one of the four 

generalized NNs or by a combination of generalized NNs. Thus, motivating the choice of the 

identification models and allows the statement of well posed identification problems. The 

identification models have the same structure as the plant but contain NNs with adjustable 

parameters. It is assumed that the plants being characterized has bounded outputs for the class of 

permissible inputs. They earlier mentioned the two categories of identification models such as 

parallel model and series parallel model. K. S. Narendra et al. claims that parallel identification 
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model could not guarantee that the parameters will converge, or the output error will tend to 

zero. They suggest that series-parallel model of identification model (the output of the plant is 

fed back into the identification model) with static back propagation can be used to adjust the 

parameters reducing the computational overhead. The nonlinear plant identification using one of 

the four characterization models were presented. The NNs for series parallel identification model 

used static backpropagation was applied to five problems and the sixth problem used dynamic 

back propagation. The plant model was developed from one of the four characterization models 

presented in the paper. The choice of number of NN is proportional to number of unknown 

functions. The performance criterion of the NN’s was to minimize the squared identification 

error; identification error defined as the error between the identification model and the 

characterized plant model asymptotically. The general NN structure is represented as 

𝔑𝑖1𝑖2 ,.....,𝑖𝑁+1

𝑁 : N: layers, 𝑖1 :inputs, 𝑖𝑁+1: outputs, (N-1): hidden layers. The identification models 

had 4-layer networks (N=3),  𝑖1 :inputs were dependent on the inputs of the unknown function 

and  𝑖𝑁+1: outputs were dependent on the outputs of the unknown function, 2 hidden layers with 

20 and 10 nodes. The static propagation was performed with 0.25 step size and the dynamic 

propagation was performed with 0.01 step size. Hence, the methods for identifying nonlinear 

plants using delayed values of both plant input and output with adequate accuracy was presented 

by the authors.  

After identification K. S. Narendra et al. presented the methodology for the adaptive control of 

Nonlinear systems using NNs. The controller model presented by authors shows that the 

controller whose output is the controller input to the plant and whose inputs are delayed values of 

the plant input and output. As the methods for directly adjusting the control parameters based on 

the output error (between the plant and the reference model outputs) are not available for the 

unknown nonlinear plant. Hence the adaptive control of nonlinear plants is arrived from the 

indirect control methods [45]. It is suggested by authors, that for offline control, identification of 

the model is performed initially, once the weights in the identification model are adjusted and 

had been identified to the desired level of accuracy, the control action can be initiated so that the 

output of the plant follows the output of a stable reference model. For online control, 

identification and control is performed simultaneously at same/different discrete time intervals, 

over which the identification and control parameters are to be updated have to be chosen 

properly. The simulations suggested that for stable and efficient online control, the identification 
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must be sufficiently accurate before control action is initiated and hence the discrete time 

intervals for the parameters update for NN Controller and NN Identifier should be chosen 

appropriately. It is advised to update the parameters of NN designed for controller at slower rate 

compared to the parameter update of NN used for identification.  The NNs structure 

specifications designed for controller and learning of NN controllers are not presented in the 

paper. Paper also does not provide the justification towards the selection of number of nodes for 

the hidden layers.  

Chu et al. present two approaches for utilization of NNs in identification of dynamical systems, 

(I)A Hopfield network is used to implement a least squares estimation for time varying and time 

invariant systems and (II) Utilizes a set of orthogonal basis function and Fourier analysis to 

construct a dynamic system in terms of its Fourier Coefficients[69]. The Widrow’s adaptive 

linear combiner is useful in conducting Fourier analysis.  

Researchers worked towards development of NN architectures for control purposes as well the 

methods to tune the network parameters to ensure the design of stable controller. The principle in 

NN models are an adaptation of the natural set of neurons, where each neuron predicts an output 

by weighing up the evidence of truths from fed inputs and shifting the gradient of the resulting 

function based on an additive bias term, a squashing unit applies a nonlinear transformation to 

the linearly combined inputs to produce a desired bounded, and constant nonlinear output. By 

combining a large sum of these simple component connections across the input space and 

forwarding them through the layers of the network neuron nodes, we obtain a function which 

approximates the continuous function to an acceptable bounded error, given that there are 

enough nodes in the network layers.  The NN with offline adjusted parameters was commonly 

used as the nonlinear control law of the process to be controlled.  Commonly, the offline 

estimation techniques for adjusting the parameters of the network using gradient descent 

optimization methods was presented in the early literature. It was observed that online tuning of 

parameters introduced high dimensional nonlinearity, even to the linear time invariant (LTI) 

systems with the linear feedback control. Thus, the control community practicing the formal 

stability theory considered the application of gradient optimization techniques introduces the 

instability mechanisms to the process being controlled. Hence, methods based on Lyapunov 

stability theory was introduced to tune network parameters to obtain stable network architectures 
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which avoids iterative training procedures. The NN based direct adaptive tracking control 

architecture was proposed for a class of continuous time nonlinear dynamic systems by Slotine 

et.al [15] .It was suggested that the process of learning and control were never to be carried out 

simultaneously to ensure proper functioning of dynamics of the system being controlled.  The 

controller design emphasized on tuning the parameters based on the deviations measured from 

the process to its desired performance. The controller design using nonlinear network structures, 

which included both NNs and fuzzy logic systems F. L. Lewis [70] is also a major field of study. 

Sanner and Slotine’s work addresses the direct adaptive tracking control using NNs as controller 

structures. Additionally, his work highlights the NN architecture for continuous time nonlinear 

dynamical systems for which an explicit linear parameterization of the uncertainty in the 

dynamics is either unknown or impossible [15]. The structure proposed is direct adaptive 

controllers; hence no explicit attempt to determine a model of the process dynamics is made. The 

controller directly tune its adjustable parameters in response to measured deviations of the 

process from its desired behavior. Slotine et al. suggested the NN architecture with Gaussian 

Radial Basis Functions (GRBF) to adaptively compensate for the plant nonlinearities[71][72]. 

They also suggested gradient descent methods for the adjustment of the parameters but found no 

systematic way of ensuring when these methods can be successful. It was not recommended to 

perform learning and control simultaneously unless the system ensures the network training 

algorithm does not couple destructively with the natural dynamics of the process being 

controlled.  Slotine et al.’s research was to develop stable adaptive architectures capable of 

exploiting analog network designs for the control of continuous-time nonlinear dynamic systems. 

The two major aspects of the research were (I) hardware implementation of the NNs for solving 

real-time control problems (II) treating the problem in the context of adaptive systems theory, 

avoiding iterative training procedures in favor of provably stable techniques for continuously 

tuning the network parameters. It is shown that application of Lyapunov stability theory 

guarantees a given level of performance for the system, but also highlights the relation between 

performance and the various free parameters in the network. Slotine et al. mainly views NNs 

only as a method of implementing function approximation strategies in a massively parallel, 

analog computing paradigm offered by these models, especially if implemented in electronic or 

optical hardware.  
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Slotine et al. applies multivariable Fourier analysis and Whittaker/Shannon sampling theory, on 

networks of GRBF, arranged on a regular lattice on 𝑅𝑛, can uniformly approximate sufficiently 

smooth functions on closed, bounded subsets. (In the design of Radial Basis Functions(RBF) 

networks it is common to establish a one to one correspondence between nodes in the hidden 

layer and the points in the training set). Gaussian rabial basis functions are particularly attractive: 

they are bounded, strictly positive and absolutely integrable on 𝑅𝑛, and they are their own 

Fourier transforms (modulo a scale factor). Authors suggested a constructive procedure for 

selecting the centers and variances of a finite number of Gaussian nodes so that the resulting 

network is capable of uniformly approximating the required function to a chosen tolerance 

everywhere on a prespecified subset. It was also highlighted that, as the network consist of only a 

finite number of nodes, its approximation capabilities can be guaranteed only on a subset of the 

entire plant state space.  

Slotine et.al. presented an adaptive component and nonadaptive component in controller design. 

The nonadaptive component is designed with a constant gain PD controller and a sliding 

controller in the algorithm to ensure global stable control strategy.  A smooth transition between 

the adaptive to nonadaptive modes of operation has been designed for the regions of the state 

space where the network has poor approximating capability. Slotine et al. work provides the 

scalability to large classes of multi input and input-output linearizable dynamic systems. The 

work mainly focuses on the approximation problem, highlighting the critical feature as the ability 

to place prior bounds on the degree of uniform approximation accuracy a tuned network can 

guarantee.   

Sanjay Mistry et al. investigated NN designs with static, dynamic gradient updates for 

identification and control of time varying and time invariant load cases of a four bar linkage 

system driven by permanent magnet DC motor (PMDC) through a flexible coupling, described 

by nonlinear dynamical differential equations [73]. This paper has presented the implementation 

of K.S. Narendra et al. , a series-parallel NN identifier is modeled for continuous time systems 

[14]. Mistry et al. provides the explanation for the use of neural identifier can reduce the system 

sensitivity to sensor degradation and noise through reduced dependence on feedback and 

increases use of its predicted output. Authors presented a NN identifier and three NN Controller 

designs. (I) Static Neural Control with the static back propagation technique, with one controller 



26 
 

NN; (II) Single Dynamic Neural Control is designed considering dynamic update scheme 

representing indirect control using single controller NN; (III) multiple feedforward and feedback 

networks to incorporate prior information about system structure. The selection of the number 

and type of inputs is motivated by the ARMA modelling approach for nonlinear systems. The 

inputs to the identifier are selected by making a discrete linear approximation of the plant and 

then adding additional past values to accommodate nonlinearities and neglected higher order 

dynamics. The NN identifier structure used four past values of the actual plant outputs for Time 

varying case and two previous inputs for time invariant case, one present and one past input to 

the plant and the present angular position of link.  Time invariant load case was simulated with 

online NN identifier along with Static Controller/ Single dynamic neural controller. The NN 

structure 𝔑4,20,10,1
3 ; learning rate 0.001 and sampling frequency 155Hz, finished identification 

task in 15000secs. Static Controller and Single dynamic neural controller structure 𝔑4,20,10,1
3  

were designed with learning rate 0.001 and sampling frequency 155Hz & 75 Hz respectively. 

Feedback -Feedforward control was not performed. Time variant load case was simulated with 

online NN identifier along with Static Controller/ Single dynamic neural controller/Feedback-

feedforward controller.  The NN structure 𝔑7,40,20,1
3 ; learning rate 0.001 and sampling frequency 

80Hz, identification completion time was not specified. Static Controller and Single dynamic 

neural controller structure 𝔑8,40,20,1
3  were designed with learning rate 0.001 and sampling 

frequency 77Hz & 12 Hz respectively. Feedback -Feedforward control was performed with 3 

identical Feedforward NNs with structure 𝔑1,10,5,1
3  and feedback neural controller structure 

𝔑6,10,5,1
3  were designed with learning rate 0.001 and sampling frequency 23Hz. Feedforward and 

feedback learning controller includes multiple NNs to learn dynamic characteristics of the 

system including the inertial terms, the centrifugal and Coriolis terms, the gravity terms, the 

friction terms, and even the unmodeled dynamics. The activation function 𝑓(𝑥) =
(1−𝑥2)

2
 is used. 

The authors show that the dynamic neural schemes are found to consistently perform much better 

as compared to the static address that NN identifiers can be trained in advance. Reduced order 

linear observers are also being investigated for use in dynamic schemes for the time invariant 

load case for improved convergence and learning features. Authors suggest that a priori 

knowledge about the system structure can be incorporated into feedforward NN and is suggested 

to be more adaptable to robotics application. The time invariant load cases are less complex 
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compared to time variant load cases; the sampling frequency is limited for the time varying case 

for this reason, allowing for only lower velocity set points; The learning time for the time 

invariant system is found to be approximately 10 times shorter as compared to the time varying 

case. Time varying case still needs accurate identifier for stability.  The authors address the 

theoretical issues of error convergence and stability, which still needs to be established for NN 

designs. The topics of research as per the author is generating good partial derivatives, parameter 

convergence and disturbance rejection.  

Kawato et at used hierarchical NN model to control the movements of robot arms. The objective 

of their study was to determine a desired trajectory in the visual coordinates, and transformation 

of the same to the joint coordinates and determination of the motor commands [74]. This work 

provided was an extension of the learning control of the robotic manipulator by an inverse 

dynamics model developed with three-layer neural network which did not consider any a priori 

knowledge of the dynamical structure of the controlled object. The improvised hierarchical NN 

model provided a feedforward control method for large scale complex system. Saad et al. 

presented studies on trajectory tracking problem to control SCARA robot the nonlinear dynamic 

model of a robot using neural networks implemented in a DSP based controller[75]. Saad’s work 

provides detailed implementation details two DOF direct drive SCARA experimental setup to 

test the tracking performances. The discrete dynamics of the plant model is considered. The 

estimation of the inverse dynamics is performed using NN without any need of parametric 

model-based dynamics. A simple four-layer MNN is used with each node activated with 

nonlinear sigmoidal function as similarly applied by K.S. Narendra et al.[14]. The Multilayer 

recurrent networks are used to estimate the dynamics of the system and the inverse dynamic 

method. Another Multilayer recurrent NN is used to estimate the joint accelerations. The training 

state considered large number of input-output measurements around 5000 samples. The training 

is performed offline using backpropagation using the Brayden-Fletcher-Goldfarb-Swann (BFGS) 

minimization algorithm. The objective is to minimize the quadratic error using variable step 

gradient method.  Author claims that there is no need to estimate the parameters of the system as 

in case of direct and indirect adaptive controls as they are computationally expensive to be 

applied in real time. The control process is applied to a two DOF SCARA robot using DSP 

controller. The trajectory tracking error are within ±10   and torques expected at manipulator 

joints were free of chattering. However, the NN structure implementation details were not clearly 
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specified and the performance was not compared with any previous methods to quantify the 

result. Still the faster NN convergence criteria was not discussed.  

As RNN was used extensively for the identification and control applications. The learning 

algorithms used for RNN are usually based on computing the gradient of a cost function with 

respect to the weights of the network. One of the learning algorithm, BPTT is a generalization of 

back propagation for static networks in which one stores the activations of the units while 

forward propagation. The backward phase is also backward in time and recursively uses these 

activations to compute the required gradients. Unfortunately, the networks it can deal with have 

limited storage capabilities for dealing with general sequences, thus limiting their 

representational power. [76] discussed the long-term storage of definition bits of information into 

the state variable of the dynamic system referred to as information latching. They suggested the 

use of hyperbolic attractors (Eg: Hyperbolic tangent functions) (activation functions) to store 

state information. The paper presents the results for problems of vanishing gradient problem for 

an RNN (unfolded in time is just a very deep feedforward network with standard weights).  The 

alternate algorithms to gradient descent such as time-weighted pseudo Newton and the discrete 

error propagation algorithms was suggested by authors.   

The paper by Jin et al. [77] proposed a fast neural learning and control of general class of 

discrete time nonlinear systems. The paper addresses the problem of simultaneous online 

identification and control in NN based adaptive control systems. The paper uses MNN with 

feedforward connections. A suitable extension of the concept of input-output linearization of 

discrete time nonlinear systems is used to develop the control schemes for both output tracking 

and model reference control purposes. The paper highlights that the main drawback with 

simultaneous identification and control is the extremely slow convergence of the back-

propagation algorithm. Hence, the authors suggest fully decoupled weight learning algorithm, 

derived based on the extended Kalman filter for MNNs. The multilayered feedforward network 

the neurons are organized into layers with no feedback or lateral connections. Authors adapted 

hyperbolic tangent sigmoidal function as activation functions in this paper. The author with the 

aim of fast convergence of learning introduces a fully decoupled recursive estimation learning 

algorithm named as weight-decoupled extended Kalman filter (WDEKF). WDEKF shows 

advantages associated with the computation, storage and it can be integrated into the parallel 
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structure of the network is similar to the conventional back propagation. However, WDEKF is 

computationally complex than the gradient descent based back propagation algorithm. The 

authors are yet to provide the theoretical analysis of the convergence of the weight learning 

algorithm, and the stability of the adaptive control schemes.  

Branko proposed a new very fast algorithm for synthesis of a new structure of discrete time NNs 

and implemented to control RRTR robot structure [78]. Branko suggested that a generalization of 

NN models can be helpful in the classification and categorization of NN. He mentioned that in 

the field of identification and control of dynamical systems specifically for robot systems there 

exist four possibilities in learning a dynamic system such as (I) multilayer feedforward net with 

pattern learning (FFN-pattern), multilayer feedforward net with batch learning (FFN-batch), 

feedforward net with external recurrence and pattern learning (RecN-pattern), and feedforward 

net with external recurrence and batch learning (RecN-batch). The paper presents five main 

objectives (I) Suggests combinations of feedforward and feedback NN models; (II) Introduction 

to combination of input, interaction and output activation functions; (III) Use of input and 

interaction time varying signal distribution results in relatively small number of neurons in NN 

models with large classification and learning power and applications of time varying input and 

interaction activation functions; (IV) The fourth objective I to develop time discrete NN model 

with time delay elements (or memory) in both feedforward and feedback structures; (V) 

realization of one step learning iteration approach; aiding online learning. The paper contributed 

in deriving a new algorithm for one step learning in the supervised learning process and a new 

algorithm for direct inverse modeling in the case where a number of system inputs are different 

to a number of system outputs.  

K. S. Narendra presented a survey on Neural networks for control [79]. His work highlighted the 

neural structures such as MNN and radial basis function network (RBFN) used for 

approximating continuous functions using input-output data. Paper provides the features of both 

the networks. Paper indicates that the massively parallel nature of the MNN permits computation 

to be performed at high rates; as they can approximate nonlinear maps to any desired degree of 

accuracy when applied to identification and control problems[80], [81]. The NN’s are 

advantageous as approximation functions compared to conventional methods such as 

polynomials, trigonometric series, splines and orthogonal functions. NN’s architecture is more 
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fault intolerant; less sensitive to noise and easy hardware implementation. Barron’s [82] work 

provided partial theoretical justification for using NN and a measure of boundedness. Barron’s 

view is that as the dimensionality of input space (input vector) increases, it is clear that MNN are 

preferable to approximation schemes in which the adjustable parameters arise linearly. However, 

for practical controllers for dynamical system, both MNN and RBFN require substantially fewer 

parameters for a desired degree of accuracy.  The theoretical principles for the design of 

identifiers especially nonlinear ARMA (NARMA) with two different variants (NARMA L1 & 

NARMA L2) and controllers using NNs was proposed [83]. He provides the implicit function 

theorem the properties of the linearized system around the equilibrium state can be extended to 

the nonlinear domain; allowing for disturbance rejection, decoupling of multivariable systems, 

and adaptation using multiple models. He states that static backpropagation is adequate for 

identification, but the adjustment of controller parameters in the feedback loop requires dynamic 

gradient methods. Multilayer Perceptron provide an input-output representation of the plant in 

ARMA form for the plants where inputs and outputs are available as network inputs. The spacial 

aspects of the system is represented using Cerebellar model articulation controller (CAMC), it 

noted for fast online learning. Both networks provide static mapping between inputs and outputs. 

Chengyu et al.  also suggest the need for dynamic systems to represent the autoregressive aspect 

of dynamic systems. Authors introduced a method incorporating the analytical knowledge of the 

plant in a RNN to develop Model Based Recurrent Neural Networks (MBRNN) for modeling 

nonlinear dynamic systems [84]. Hirasawa et al. presented a new control method of nonlinear 

systems based on impulse responses of Universal Learning Networks (ULN) [85]; considered as 

superset of NNs. ULNs consist of a number of interconnected nodes where the nodes may have 

any continuously differentiable nonlinear functions and each pair of nodes can be connected by 

multiple branches with arbitrary time delays. Author’s prove that dynamics of higher quality 

such as quick response, quick damping and small steady state error can be achieved easily by the 

proposed control method.  

Adding a new dimension to the study of the identification of the system was the study provided 

by [86] on the comparison of traditional and NN approaches for Stochastic Nonlinear system 

identification. Traditional and biologically inspired model structures are compared for their 

effectiveness to identify the complex stochastic multi input multi output (MIMO) nonlinear 

system. The two NN models, the state space and input-output model structures were considered 
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for the study. The conventional models considered are Auto-Regressive with eXogenous Input 

model (ARX) and the Nonlinear ARX (NARX). The NN structures such as the Feedforward 

Multilayer Perceptron (FMLP) with or without teacher forcing i.e., past observations are used for 

the teacher forcing FMLP (TFFMLP), and past estimates are used for the recurrent FMLP 

(RFMLP), in the approximation of function[63]. In addition to FMLP, the Recurrent Multilayer 

Perceptron (RMLP) model structure allows for feedforward links among the nodes of 

neighboring layers, and recurrent and crosstalk links within the hidden layers which carry time 

delayed signals; the observations are provided to the input layer for teacher forcing RMLP 

(TFRMLP) model; and the estimates are fed back for globally recurrent RMLP (GRRMLP) 

model structure. The simulations results provided by the paper indicated that that the NARX, 

FLMP and the RMLP models are good candidate structures for low noise nonlinear system 

identification, while the FMLP model structures is not as effective as the RMLP and the NARX 

models. However, for the high noise environment case the RMLP model is the most effective.  

Schroder et al. presented intelligent identification, modeling, observation and control of 

nonlinear plants and to use a priori knowledge of the nonlinear plant about the structure, the 

relevant order, the parameters and knowledge of the nonlinearities placement [87]. A systematic 

method to design a stable observer for systems with a known linear part and an unknown 

nonlinearity. The function approximator, RBFN and the general regression NN (GRNN) are 

used; another type of multidimensional approximation is fuzzy logic. The paper provided the 

identification of a static nonlinearity considering the structure and the parameters of the linear 

section of the plant are known. Lyapunov based adaptation law guaranteed stable learning and 

parameter convergence. Author’s claim that the observer approach presented can be used in 

practical applications to improve the controller’s performance. Hence, making the identification 

problem possible for all linear parameters and nonlinear characteristics simultaneously in case 

not all system states are measurable.  

A NN based adaptive controller with an observer was proposed for the trajectory tracking of 

robotic manipulators with unknown dynamic nonlinearities; with an assumption that the robotic 

manipulator has only joint angle position measurements[88]. Linear observer was used to 

estimate the robot joint angle velocity. NN’s were employed to improve the control performance 

of the controlled system through approximating the modified robot dynamics function. The 
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simulations were performed on two link manipulators with unknown dynamics. Authors 

discussed about the MLN based NN based adaptive controller and conventional controller with 

an observer for robot trajectory tracking. This paper had time varying learning rates to improve 

the adaptation quality in the initial learning phase. Authors claim that the time varying learning 

rates will not influence the system stability if appropriate learning rates are chosen. The online 

tuning laws for the MLN provide good approximation to the modified dynamics functions. The 

feedforward and feedback through NN were observed to be 1.4 msec when executed on PC-200 

using VC 6.0 language. The sampling frequency 200 Hz. The stability and tracking error 

convergence are proved by Lyapunov approach. Author’s present a systematic approach to deal 

with the trajectory tracking control for a robot with unknown dynamics nonlinearities using an 

observer.  

Srivastava et al. presented the new way of function approximation using wavelets along with 

NNs to form the wavelet NN (WNN) [89]. Considering the existence of two different WNN 

architectures: (I) Fixed wavelet bases possessing fixed dilation and translation parameters. With 

only output layer weights being adjustable. (II) Variable wavelet basis whose dilation and 

translation parameters and output layer weights are adjustable. As the choice of the wavelet basis 

to be selected approximately because its selection can be critical to approximation performance. 

[38] presented the concept of using LSTM NNs for dynamic system identification.  He addressed 

two problems (I) vanishing gradient problem and (II) speed of convergence of the identification 

error. The first problem is mainly solved by the LSTM structure itself and the second one was 

conquered by using a convex-based LSTM neural networks structure[59].  

Daachi et al. proposed a NN adaptive controller to achieve end-effector tracking of redundant 

robot manipulators. The unknown model of the system is approximated by a decomposed 

structure NN. Each NN approximates a separate element of the dynamical model. These 

approximations were used to derive an adaptive stable control law. The parameter adaptation 

algorithm was derived from the stability study of the closed loop system using Lyapunov 

approach with intrinsic properties of robot manipulators. Two control strategies are considered. 

(I) the aim of the controller is to achieve good tracking of the end-effector regard- less the robot 

configurations. (II) the controller is improved using augmented space strategy to ensure 

minimum displacements of the joint positions of the robot [90].  
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Jeen-Shing et al. presented a fully automated recurrent neural network (FARNN) which is 

capable of self-structuring its network in a minimal representation with satisfactory performance 

for unknown dynamic system identification and control [91]. The novel recurrent network, 

consisting of a fully-connected single-layer NN and a feedback interconnected dynamic network, 

was developed to describe an unknown dynamic system as a state-space representation. 

Additionally, a fully automated construction algorithm was devised to construct a minimal state-

space representation with the essential dynamics captured from the input–output measurements 

of the unknown system. The construction algorithm integrates the methods of minimal model 

determination, parameter initialization and performance optimization into a systematic 

framework that totally exempt trial-and-error processes on the selections of network sizes and 

parameters. 

Rahmani et al. presented adaptive NN output feedback control for flexible multi-link robots[92]. 

The approach suitable for highly uncertain systems with arbitrary but bounded dimension. The 

problem of trajectory tracking is solved through developing a stable inversion for robot dynamics 

using only joint angles measurement and a linear dynamic compensator to stabilize the tracking 

error for the nominal system. The authors also introduced a high gain observer to provide an 

estimate tracking error dynamic. A linear in parameter (LIP) NN approximates and eliminate the 

effect of the unobservable elastic subsystem in the robot dynamics.   

The efforts towards the modifications to standard gradient as an essential element of the 

optimization problem of the adaptive control theory is studied by many researchers. The seminal 

accelerated gradient method proposed by Yurii Nesterov, in his work “A method of solving a 

convex programming problem with convergence rate 𝑜(1/𝑘2)”. Nesterov’s original method, or a 

variant are the standard methods for training deep neural networks. The research on accelerated 

methods for the time varying parameter update in both continuous time and discrete time 

domain.   Gaudio et al. presented work on accelerated learning in the presence of time varying 

features with applications to machine learning and adaptive control [93]. The paper aims to 

develop algorithms for the machine learning problems when time varying features are present, 

considering that the gradient descent methods are unstable or weakens the convergence 

guarantees. They propose a new class of online accelerated algorithms that are inspired by ‘high 
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order tuners’ used in adaptive control. High order tuners consider the time variation of the 

features and provide guarantees of stability and convergence.  

1.4 Common Criteria of Conventional Adaptive control and learning based controllers 

Adaptive control and machine learning have evolved in parallel over the past few decades, with 

significant similarity in goals, problem statements and tools. Machine learning as a field has 

focused on static systems that improve through experience. The process of learning is captured in 

the form of a parameterized model, whose parameters are learned in order to approximate a 

function. Optimization methods are commonly employed to reduce the function approximation 

error using any and all available data. The field of adaptive control, on the other hand, has 

focused on the process of controlling engineering systems in order to accomplish regulation and 

tracking of critical variables of interest (e.g. speed in automotive systems, position and force in 

robotics, Mach number and altitude in aerospace systems, frequency and voltage in power 

systems) in the presence of uncertainties in the underlying system models, changes in the 

environment, and unforeseen variations in the overall infrastructure. The approach used for 

accomplishing such regulation and tracking in adaptive control is the learning of underlying 

parameters through an online estimation algorithm. Stability theory is employed for enabling 

guarantees for the safe evolution of the critical variables, and convergence of the regulation and 

tracking errors to zero. 

Learning parameters of a model in both machine learning and adaptive control occurs using 

input-output data. In both cases, the main algorithm used for updating the parameters is based on 

a gradient descent-like algorithm. Related tools of analysis, convergence, and robustness in both 

fields have a tremendous amount of similarity. As the scope of problems in both fields increases, 

the associated complexity and challenges increase as well.  

Adaptive control main objective is to carry out problems such as estimation or tracking in the 

presence of parametric uncertainties. The underlying model that relates inputs, outputs and the 

unknown parameter is assumed to stem from either the underlying physics or from the data 

driven approaches. In a control problem the goal is to determine a control input so that the output 

follows a desired output. The control problem consists of constructing an output tracking error 

alongside establishing a relationship between the output tracking error and adaptation parameter 

of the controller. Gradient rule is used to minimize the output error and optimize the adaptation 
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parameter leading to minimize the output error. Gradient based methods to solve for estimates of 

unknown parameters via back propagation, in what would develop into the foundations of NNs. 

NNs in control systems has expanded to include stabilizing nonlinear dynamical systems. Design 

and analysis of stable controllers based on neural networks was taken up by the adaptive control 

community due to the similarities of gradient-like update laws used in neural networks and 

adaptive control. The adaptive control community developed a well-established literature for the 

use of neural networks in nonlinear dynamical systems in the 1990s [54–58].  

Machine learning considers the supervised learning problems, with regressors and classifiers. A 

typical approach taken to perform classification or regression is to choose an output estimator 

(NN) parameterized with adjustable weights. Like adaptive control problem the weights are 

adjusted using the output error. The use of NNs in the machine learning community greatly 

expanded as of recent due to the increase in computing power available and an increase in 

applications[94][51]. RNN while often similar in structure to nonlinear dynamical systems, have 

historically been trained in a manner like feed-forward neural networks using BPTT. MNN, 

RNN and RFBN’s have been commonly used in identification and control of static and dynamic 

nonlinear systems[22], [23], [25], [26], [40], [41] and is listed in Table 1.   

Table 1: Neural Network architectures used in commonly used in identification and control 

of static and dynamic nonlinear systems 

Network Architectures   References  

Multi-layer networks 

(static nonlinear maps) 

[14], [17], [18], [61], [73], [75], [77], [81], [95]–[98][88] 

Recurrent neural networks 

(nonlinear dynamic 

feedback systems) 

(discrete dynamical 

system) 

[14], [57], [66], [67], [84], [91][91] 

Radial Basis Function 

Network (RBFN)  

[79][15] [80][92][87], [99][2] 

The similarities with the update laws, robustness of the update laws, adaptive gains and step 

sizes are discussed further. The goal of the adaptive control is to design a rule of adjust 

parameters/weights in an online continuous manner using knowledge of output measurements 

and output error such that error tends to zero. The gradient like update laws are commonly used 

for system which can derive a linear relationship between the output error and adaptation 

parameter. If a time varying dynamic error models a stability approach rather than gradient based 
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is derived using Lyapunov methods[15]. Most of the learning algorithms with NN architectures 

uses training algorithms use time varying update law in discrete time which adapts gradient 

descent method listed in the Table 2 and various activation functions listed in Table 3; the 

selection of the activation functions is purely based on the speed of convergence of the learning 

process and the accuracy of the estimation observed. 

The adaptive parameter update law must ensure robustness in the presence of bounded 

disturbances. The parameter update laws are equipped with tunable parameters that scales the 

parameter update law to achieve robustness. Adaptive control method also employs “dead zone” 

for the update laws to increase the robustness against disturbances[100]. Similar to conventional 

adaptive control machine learning / learning methods uses regularization to cope with overfitting 

by including the constraints on the optimization problem. The training processes is often stopped 

early to deal with overfitting[101], [102]. Early stopping is often seen to be needed for training 

NN due to their large number of parameters and can act as regularization.  

Table 1: Training algorithms commonly used to train NN 

Training algorithms  

BPTT, Static and dynamic back propagation, 

Backpropagation using the Brayden-Fletcher-

Goldfarb-Swann (BFGS) minimization 

[6], [13], [14], [57], [58], [62], [103][63][75] 

Weight-decoupled extended Kalman filter 

(WDEKF) 

[77] 

Table 2: Activation Functions commonly used to train NN 

Activation Functions   

Logistic functions  
𝑓(𝑥) =

1

(1 + 𝑒(−𝑥))
 

[17], [18], [57], [78], [82] 

Nonlinear Sigmoidal 

functions  𝜎(𝑥) =
(1 − 𝑒(−𝑥))

(1 + 𝑒(−𝑥))
 

𝜎(𝑥) =
(1 − 𝑒(−2𝑥))

(1 + 𝑒(−2𝑥))
 

 

[14], [73], [75], [82][98] 

Radial Basis Functions  𝑅𝑖(𝑢)

= 𝑒𝑥

𝑝

[− ∑
(𝑢𝑗 − 𝑐𝑖𝑗)

2

2𝜎𝑖𝑗
2

𝑛

𝑗=1

] 

𝑢 ∈ ℝ𝑛: input  

𝑐𝑖
𝑇 = [𝑐𝑖1, ⋯ 𝑐𝑖𝑛]; center 

of the ith receptive field  

[15], [71], [72], [79], [80] 
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𝜎𝑖𝑗 : width of the receptive 

field 

General  
𝑓(𝑥) =  

(1 − 𝑥2)

2
 

[73] 

Hyperbolic tangent 

sigmoidal function 𝑡𝑎

𝑛

ℎ(𝑥) =  
𝑒𝑥 −  𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

[77] 

Logistic functions  
𝑓(𝑎) =

1

(1 + 𝑒(−1.5a))
 

[88] 

 

Adaptive control methods employ a compact region apriori for the parameters to be updated such 

that during the learning process the parameters are not allowed to leave that region. In physical 

systems there are natural constraints which may aid in the design of that region and for non-

physical systems the constraints are often engineered by the algorithm designer. A continuous 

projection algorithm is commonly employed to provide robustness of the adaptive update law in 

the presence of unmodeled dynamics [104]. Similarly, learning theory has witnessed project 

gradient descent methods [105], [106].  

There also exists the parameter update laws for the algebraic error model which has the property 

to alter the gain of the standard update law as function of the time varying regressors in Adaptive 

control methods. The learning methods also posses the adaptive step size methods due the ability 

of learning algorithms to handle sparse and small gradients by adjusting the step size as a 

function of features as they are processed online. A common update law for adaptive step size 

methods can be similar to both conventional adaptive laws and the learning methods as presented 

by the following parameterizations (I) projected gradient descent (II) ADAGRAD (III) ADAM. 

It can be noted that the normalization in these update laws is a function of the gradient, which 

can be compared to the normalization by the regressor [107]–[109].  

The stability and convergence tools in adaptive control is developed around Lyapunov functions 

and the learning methods online efficiency is analyzed using the notion of regret; where regret is 

seen to map the sum of the time varying convex costs associated with the time varying 

parameter, minus the cost of the best static parameter estimate [106].  

The plant models used to design the adaptive controllers, are sometimes linearized 

approximations with a certain amount of modelling errors. The robustness to unforeseen 

perturbations such as unmodelled dynamics and unseen data can vary the operating point. This 
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adds on the requirements of the design of stabilizing controllers to adapt for parametric 

uncertainties as well as to be robust for the unmodelled dynamics. In addition, constraints on the 

state and input may also be present in adaptive control problems. Analysis is said to be difficult 

when considering such unmodeled dynamics and constraints, resulting in non-global guarantees. 

Most of the authors have produced the variations in the modification in adaptative control laws 

to ensure robustness to unmodeled dynamics and constraints as well as adapt for parametric 

uncertainties. The robustness to modelling errors exists in machine learning in which an 

estimator is constructed from a finite training data set or real time data generated by the system; 

along with a finite number if tunable parameters. It is then desired that this estimator produces a 

low prediction error based on a test data set consisting of not just known data, but unseen data as 

well. The generalization in learning thus refers to the low loss when applied to new data. In 

particular it can be seen that in specific cases, generalization pertains to stability, where 

algorithms that are stable and train in a small amount of time result in a small generalization 

error[110], [111]. 

Persistence of excitation (PE) of the system regressor in adaptive control is a condition that has 

been shown to be necessary and sufficient for parameter convergence[112]. A detailed 

exposition of system identification and parameter convergence in both deterministic and 

stochastic cases has been presented by many researchers. Another way to think of the PE 

condition is that it leads to a perfect test error, since it provides for convergence of the parameter 

error to zero, and therefore zero output/state error once transients decay to zero. In the absence of 

PE, standard adaptive control algorithms converge to one of the many local minima in the 

parameter space. Many machine learning problems consider the parameter estimates can be 

guaranteed to converge to their true values when stochastic perturbations are present. In this 

context, significant improvements may be possible by leveraging well known concepts in system 

identification[101]. For example Sarah.et.al. purposely includes a Gaussian random input into a 

dynamical system in order to provide for PE by construction [113]. Such stochastic perturbations 

can guarantee a PE condition only in the limit, when infinite samples can be obtained. In order to 

address the realistic case of finite samples, approaches in machine learning algorithms for system 

identification and control have attempted to obtain performance bounds with probability[114]. In 

many, machine learning methods, including reinforcement learning, there exist explicit 

modifications to update laws to promote exploration of the parameter (weight) space. These 
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modifications include restarting trajectories with random initial conditions, adding random 

perturbations to algorithms, and driving the system towards a non-zero error regions. This 

preference of exploration and learning over stability is motivated by the desire to find optimal 

parameters of a system.  

Given the enormous number of similarities in problem statements, tools, concepts, and 

algorithms, it is natural to examine what the benefits are that accrue by combining insights 

obtained in these two different communities; conventional adaptive control and machine learning 

methods.  

 

Conclusion  

As applications become more complex, the processes to be controlled are increasingly 

characterized by poor models, distributed sensors and actuators, multiple subsystems, high noise 

levels and complex information patterns. The difficulties encountered in designing controls for 

such processes can be broadly classified under three headings (1) complexity (2) nonlinearity (3) 

uncertainty. This research attempted to investigate the evolution of learning based controller 

design for nonlinear dynamical system specifically a robotic manipulator. Starting with applying 

identifier NN’s as parameterized nonlinear maps; conclusive proofs for MNNs capability of 

approximating any continuous function on a compact set with precision; and further 

improvisation of MNNs with dynamics components to be compatible for dynamical systems.  

The use of NN structures in control problems has entered the mainstream of control theory as a 

natural extension of adaptive control systems. The recent developments show the use of MNN, 

RNN and RBFN’s in identification and control of static and dynamic nonlinear systems. NN 

applications in closed loop control are fundamentally different from the open loop applications. 

In control applications it is necessary to show the stability of the tracking error as well as 

boundedness of the NN weight estimation errors.   
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