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Mathematical Models of Systems

Exercises

E2.1 We have for the open-loop

and for the closed-loop
e=r—y and y=e>.

So,e=r—e?ande’+e=r=0.

40

35+

30

251

open-loop

closed-loop

FIGURE E2.1
Plot of open-loop versus closed-loop.

For example, if 7 = 1, then e? + e — 1 = 0 implies that e = 0.618. Thus,
y = 0.382. A plot y versus r is shown in Figure E2.1.
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Exercises 23

E2.2 Define
f(T) = R = Roe™*'"
and
AR=f(T)— f(Ty), AT =T —1Ty .
Then,
AR = J(T) - f(Ty) = OF AT 4.
T=Tp=20°
where
g—;: e —0.1Rge "0 = 135,

when Ry = 10,000€2. Thus, the linear-approximation is computed by
considering only the first-order terms in the Taylor series expansion, and
is given by

AR = —135AT .

E2.3 The spring constant for the equilibrium point is found graphically by
estimating the slope of a line tangent to the force versus displacement
curve at the point ¢y = 0.5cm, see Figure E2.3. The slope of the line is

K~1.
2
1.5+ .
1L Spring breaks |
05 .
O . -
G
g 05 .
8
-1+ -
1.5 .
2+ -
251 Spring compresses b
-3 i i i i i i i i i
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 25 3
y=Displacement (cm)
FIGURE E2.3

Spring force as a function of displacement.
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24 CHAPTER 2 Mathematical Models of Systems

E2.4 Since
1
R(S) = ;
we have
6(s + 50)
Y(s) = .
) = 300 + 10)

The partial fraction expansion of Y(s) is given by

_A1+ Ay . As
s s+30  s+10

Y(s)

where
Ai=1, Ay =02and A3=-12.
Using the Laplace transform table, we find that
y(t)=1+0.2e 30 — 127100

The final value is computed using the final value theorem:

i . 6(s + 50)
Ay = i s | e s + 3007 | ~

E2.5 The circuit diagram is shown in Figure E2.5.

R2
AA'AY
v
A4 SH
o + +
+
Vin VO

i|-e

FIGURE E2.5
Noninverting op-amp circuit.

With an ideal op-amp, we have

Vo = A(vip, —v7),
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Exercises 25

where A is very large. We have the relationship

Ri+ R» o
Therefore,
R
Vo = A(’Um — RITIszo),
and solving for v, yields
A
Vo = 7AR1 Vin-
L+ 7vm

Since A > 1, it follows that 1+ A8 ~ _Af

€A Tl ~ Tl Fhen the expression for
v, simplifies to

s b R
o~ Rl n-
E2.6 Given
y=fx)=¢€"

and the operating point x, = 1, we have the linear approximation

b= @) = o)+ X

GRS R

T=x,

where

daf

=e, and x—x,=x—1.
dx

f(l'O) =6

r=x0=1
Therefore, we obtain the linear approximation y = ex.

E2.7 The block diagram is shown in Figure FE2.7.

+ E3(s)
R(s) Gy(s) |—»{ Gy(s) > 1(s)

I
=
n
<

7 Y

FIGURE E2.7
Block diagram model.
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26 CHAPTER 2 Mathematical Models of Systems

Starting at the output we obtain
I(s) = G1(s)Ga(s)E(s).
But E(s) = R(s) — H(s)I(s), so
I(s) = G1(s)G2(s) [R(s) — H(s)I(s)].
Solving for I(s) yields the closed-loop transfer function

I(s) _ G1(s)Ga(s)
R(s) 14 Gi(s)Ga(s)H(s)

E2.8 The block diagram is shown in Figure E2.8.

Ha(s) ¢
. 8 A(s) Z(s) 1
R(s)—th K _’OWQ_’ Gy() s Gj(s) ‘. > Y(s)
1 H3(s) }e
Hy(s) ¢

FIGURE E2.8
Block diagram model.

Starting at the output we obtain
1 1
Y(s) = gZ(s) = ;GQ(S)A(S).

But A(s) = G1(s)[—Ha(s)Z(s) — Hs(s)A(s) + W(s)] and Z(s) = sY(s),

Y(s) = —G1(s)Ga(s)Ha(s)Y (s) — G1(s)Hs(s)Y (s) + %Gl(s)Gg(s)W(s).
Substituting W (s) = KE(s) — Hi(s)Z(s) into the above equation yields

Y(s) = —G1(s)Ga(s)Ha(s)Y (s) — G1(s)Hs(s)Y (s)
+ G1()G(s) [KE(s) — Hi()2(s)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Exercises 27

and with F(s) = R(s) — Y (s) and Z(s) = sY(s) this reduces to
Y(s) = [=G1(s)Ga(s) (Ha(s) + Hi(s)) — Gi(s)Hs(s)
S GUHG)KTY (5) + G (5)Gals) K R(s).

Solving for Y'(s) yields the transfer function

B KG1(s)Ga(s)/s
N 1+ Gl (S)GQ(S) [(HQ(S) + Hl(s)] + Gl (S)Hg(s) + KGl (S)GQ(S)/S'

E2.9 From Figure E2.9, we observe that

T(s)

Fy(s) = Ga(s)U(s)
and
Fr(s)=G3(s)U(s) .

Then, solving for U(s) yields

1
U(S) = GQ(S) Ff(s)
and it follows that
Fals) = G2U(6)

Again, considering the block diagram in Figure E2.9 we determine
Fy(s) = G1(s)Ga(s)[R(s) — Ha(s)Fy(s) — Ha(s)FR(s)] -
But, from the previous result, we substitute for Fr(s) resulting in
Fy(s) = G1(s)Ga(s)R(s)—=G1(s)Ga(s) Ha(s) Fy (s)—=G1(s) Ha(s)Gs(s) Fy(s) -
Solving for F(s) yields

G1(s)Ga(s)

Fy(s) = 1+ G1(s)Ga(s)Ha(s) + G1(s)G3(s)Ha(s) Rle) -
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28 CHAPTER 2 Mathematical Models of Systems

Hy(s)

UGs) Go(s) »Fp(s)

R(s) —>O—{ Gy(s)

UGs)

v

G3(s) » FR(s)

Hy(s)

FIGURE E2.9
Block diagram model.

E2.10 The shock absorber block diagram is shown in Figure E2.10. The closed-
loop transfer function model is

Ge(8)Gp(5)G(5)

T(s) = .
1+ H(s)Ge(s5)Gp(s)G(s)
PI
Controller Gear Motor Pisrgr?i;:tr;?n
+

R(s) Gls) > Gp(s) »> G(s) > Y(s)
Desired piston - Piston
travel travel

Sensor

- H(s)
Piston travel

measurement

FIGURE E2.10
Shock absorber block diagram.

E2.11 Let f denote the spring force (n) and x denote the deflection (m). Then
Af
= Ay
Computing the slope from the graph yields:
(a) o =—0.14m — K = Af/Az =10n / 0.04 m = 250 n/m
(b) 2o =0m — K =Af/Az =10n / 0.05 m = 200 n/m
(¢c) 2, =0.35m - K =Af/Az = 3n / 0.05 m = 60 n/m
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E2.13

E2.14

Exercises 29

The signal flow graph is shown in Fig. E2.12. Find Y (s) when R(s) = 0.

Y (s)

FIGURE E2.12
Signal flow graph.

The transfer function from Ty(s) to Y(s) is

¥ (s) = G(s)Ty(s) — K1K2G(s)Ty(s)  G(s)(1 — K1K2)Ty(s)
8= 1 - (—K2G(9)) T 1+ K.G(s) '

If we set
K\Ky,=1,

then Y (s) = 0 for any Tj(s).
The transfer function from R(s), Ty(s), and N(s) to Y (s) is

K 1 K
Vis)a foo b B S o I (S DY
(5) L?+103+K]R(3)+L2+103+K] als) L?+103+K] (5)
Therefore, we find that

1 K

YO ITs) = gy x4 YONG) = G957k

Since we want to compute the transfer function from Ra(s) to Yi(s), we
can assume that R; = 0 (application of the principle of superposition).
Then, starting at the output Y7 (s) we obtain

Yi(s) = Ga(s) [-Hi(s)Y1(s) + Ga(s)Gs(s)W (s) + Go(s) W (s)],
[1+ Gs(s)Hi(s)] Yi(s) = [G3(s)Ga(s)Gs(s)W (s) + Ga(s)Go(s)] W (s).
Considering the signal W (s) (see Figure E2.14), we determine that
W(s) = Gs(s) [Ga(s) Ra(s) — Ha(s)W (s)],
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30 CHAPTER 2 Mathematical Models of Systems
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FIGURE E2.14
Block diagram model.

(14 G5(s)Ha(s)] W(s) = G5(s)Ga(s)Ra(s).

Substituting the expression for W (s) into the above equation for Y;(s)
yields

Yl(s) R GQ(S)Gg(S)G4(S)G5(S)Gg(s) + Gg(S)G4(S)G5(S)G9(S)
Ro(s) 14 G3(s)Hi(s) + Gs(s)Ha(s) + Gs(5)Gs(s) H1(s)Ha(s)

E2.15 For loop 1, we have

diq 1
Ryi1 + L1 Cl /(21 — Zg)dt + RQ(Zl — ’LQ) (t) .

And for loop 2, we have

1
/ngt + L2— + Ro(io —i1) + a /(22 —id1)dt =0.

E2.16 The transfer function from R(s) to P(s) is
P(s) 4.2

R(s) s3+2s244s+42"°

The block diagram is shown in Figure E2.16a. The corresponding signal
flow graph is shown in Figure E2.16b for

4.2
s34+ 252+ 45 +4.2

P(s)/R(s) =
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V‘] (S) VZ(S) 06 q(S) 1
R(s > > = o = » P
) - 7 s §2+2s+4 (s)
(a)
06 !
V] Vz < 2 +2s+4
R(s) ! 4 P(s)
(b)
FIGURE E2.16

(a) Block diagram, (b) Signal flow graph.

E2.17 A linear approximation for f is given by

Af = g Ax = 2kx,Ax = kAx
o |,_,,

where z, =1/2, Af = f(x) — f(x,), and Az =z — z,.

E2.18 The linear approximation is given by

Ay = mAx
where
m = %
B ax T=xo ‘

(a) When z, = 1, we find that y, = 2.4, and y, = 13.2 when z, = 2.

(b) The slope m is computed as follows:

_ %

2
m= - =1+4.2x] .

r=xo

Therefore, m = 5.2 at z, = 1, and m = 18.8 at z, = 2.
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32 CHAPTER 2 Mathematical Models of Systems

E2.19 The output (with a step input) is

28(s+1)

YO = ey

The partial fraction expansion is
2 4.8 2.8

Y(s) = - — .
(5) s s+7+s—|—2

Taking the inverse Laplace transform yields
y(t) =2 —4.8¢" " +2.8e7 2

E2.20 The input-output relationship is

Vo AK —1)
v 14+ AK
where
41
2+ 2y

Assume A > 1. Then,

where

R1 R2

Iy = ——— d Zo=—1—.
3 RlClS +1 an 2 RQCQS +1

Therefore,

V(s)  Ri(RyChs+1)  s+2

VO(S) o Rg(Rlcls + 1) 2(8 + 1) ‘

E2.21 The equation of motion of the mass m, is
medp + (bg + bs)dp + kaxp = badin, + kaZin -
Taking the Laplace transform with zero initial conditions yields
[mes® + (ba + bs)s + kal Xp(s) = [bas + ka] Xin(s) -
So, the transfer function is

X, (s) bas + kq 0.65s + 1.8

Xin(s)  mes?2+ (bg+bs)s+kg s2+1.55s+1.8 "
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Exercises 33

E2.22 The rotational velocity is

2(s+4) 1

BRI

Expanding in a partial fraction expansion yields

81 1 1 3 1 13 1

W) =55t w545 2GFIE Ssrl

Taking the inverse Laplace transform yields

8 1 _, 3, _, 13 _,
t)= -+ — — —te™" — — )
w=gt+gpe —a ~F°
E2.23 The closed-loop transfer function is
Y(S) - K1K2

R(s) () =5 (K1 + K2R3+ K1Ko)s + K1 KoK
E2.24 Let 2 = 0.6 and y = 0.8. Then, with y = az>, we have
0.8 =a(0.6)% .
Solving for a yields a-=3.704.A linear approximation is
Y — Yo = 3axi(x — x,)
or y = 4x — 1.6, where y, = 0.8 and z, = 0.6.

E2.25 The closed-loop transfer function is

Y(s) ... 10
R(s) T(s) = s2+21s+10 °

E2.26 The equations of motion are
mix1 + k‘(l’l — :L'g) =F
Molo + k(xg — 1‘1) =0.

Taking the Laplace transform (with zero initial conditions) and solving
for Xy(s) yields

k
(mas? + k)(mys? + k) — k2

Xo(s) = F(s) .

Then, with m; = my = k = 1, we have

1

Xa(s)/F(s) = 2 E12)
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34 CHAPTER 2 Mathematical Models of Systems

E2.27 The transfer function from Ty(s) to Y(s) is

GQ(S)

V() Tals) = T G ol (s)

E2.28 The transfer function is

VO(S) o R2R4C R2R4

— 46.08s + 344.91 .
V(s)  Rs = RiRs ot

E2.29 (a) If

1

G(S) = m and H(S) = 2s + 15 s

then the closed-loop transfer function of Figure E2.28(a) and (b) (in
Dorf & Bishop) are equivalent.

(b) The closed-loop transfer function is

1
Tg)= o
) s2+17s+ 65
E2.30 (a) The closed-loop transfer function is
G(s) 1 15 15
g —o= h G = ——"—".
(s) 1+G(5)s  s(s2+5s+30) ¢ (s) s2+5s+15
0.7
0.6~
0.5
S o4
:
0.3
0.2
0.1
0 ‘ ‘ ‘ ‘
0 0.5 1 15 2 25
Time (seconds)
FIGURE E2.30

Step response.
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Exercises

(b) The output Y'(s) (when R(s) =1/s) is

_ 05 N —0.25 + 0.1282j N —0.25 — 0.1282;
s 5+25—-4.8734  s+2.5+4.87345

Y (s)

or

1/1 s+5
Y(s)=- (-T2
(5) 2 (s 32+53+3O)

(¢) The plot of y(t) is shown in Figure E2.30. The output is given by
y(t) = 0.5(1 — 1.1239e %% sin(4.8734t + 1.0968));

E2.31 The partial fraction expansion is
Vis) =

where p; =4 — 225 and p2 = 4 + 22j. Then, the residues are

a b
_|_
S+ p1 S+ p2

a=-=11.37j b= 11.37j .

The inverse Laplace transform is

o(t) = —11.375eTH220 411375617220t = 92 73¢ 4 5in 22t .
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36 CHAPTER 2 Mathematical Models of Systems

Problems

P2.1 The integrodifferential equations, obtained by Kirchoff’s voltage law to
each loop, are as follows:

d(iy —i2)

gt Ry (iy —i2) = v(t) (loop 1)

1
Roiq + a /ildt + L

and

d(ia —i1)

Rsio + Ci /igdt + Ri(iag —i1) + Ly 7

2

=0 (loop2).

P2.2 The differential equations describing the system can be obtained by using
a free-body diagram analysis of each mass. For mass 1 and 2 we have

Mgy + ki2(y1 — y2) + by1 + kiyr = F(t)
Majjp + E1a(y2 —y1) =0 .

Using a force-current analogy, the analagous electric circuit is shown in
Figure P2.2, where Cz — M; s Li— 1/](31 s Ly — 1/](312 s and R — 1/b .

F() D C, — R

FIGURE P2.2
Analagous electric circuit.

P2.3 The differential equations describing the system can be obtained by using
a free-body diagram analysis of each mass. For mass 1 and 2 we have

M3y + kxq —|—k‘(3§‘1 —:L'g) = F(t)
Mo+ k(zg — 1) + bia =0 .

Using a force-current analogy, the analagous electric circuit is shown in
Figure P2.3, where

C—-M L—1/k R—1/b.
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Problems 37

ro(D L3 —=. =c §R

FIGURE P2.3
Analagous electric circuit.

P2.4 (a) The linear approximation around v;, = 0 is v, = 0v;,, see Fig-
ure P2.4(a).
(b) The linear approximation around v;, = 1 is v, = 2v;, — 1, see Fig-
ure P2.4(b).
(a) (b)
0.4 T T T 4 T T
35F :
03} .
3r 7
02t . /
/
251 S
/
01 b . /
2t / .
/
4
e o - i o — e 15} 4 :
linear approximation
‘I, -
_0’| = m
4
05 4 .
/
02 . f
of / :
/
03 F 1 /
-05 , linear approximation -
/
04 ; ; ; p v ;
-1 -05 0 05 1 -1 0 1 2
vin vin
FIGURE P2.4

Nonlinear functions and approximations.
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38 CHAPTER 2 Mathematical Models of Systems

P2.5 Given
Q=K(P —P)Y?.

Let 0P = P, — P, and 0P, = operating point. Using a Taylor series
expansion of (), we have

oQ

Q=0Q,+ —= §P —G6P,) +---
O6P | sr, )
where
oQ K
o= K&PY/? d == = —§p Y2,
“ o A G5B, 2

Define AQ = Q — Q, and AP = §P — §P,. Then, dropping higher-order
terms in the Taylor series expansion yields

AQ=mAP
where
oK
YT

P2.6 From P2.1 we have

d(iy —i2)

I + Rl(il — ig) = v(t)

1
Rsi + a/ildt + L

and

d(ig —i1)

7 =0.

1
R3io + ? /’ith + Rl(ig — il) + L
2

Taking the Laplace transform and using the fact that the initial voltage
across (Y is 10v yields

1
R+ 5+ Lis+ Rila(s) + [=Ry = Lys]la(s) = 0
1
and

1 10
[—Rl — Lls]Il(S) + [Llé’ + R3 + ——+ R1]12(3) = -
(s s

Rewriting in matrix form we have

Ry+ g+ Lis+ R —Ry — Lys

—Ri — Lis L18+R3+CL2S+R1
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Problems 39

Solving for Iy yields

L(s) \ 1| Lis+Rs+ g+ R Ry + Lys 0
I(s) A Ry + Lis Ry+ = +Lis+R ~10/s
or
—10(Ry +1/Cis+ Lis+ R
h(s) = —Rt et et )
where

1 1
A= (Ry+—=—+Lis+R)(L1s+ R3+ — + Ry) — (R + Lys)* .
Cis Css

P2.7 Consider the differentiating op-amp' circuit in Figure P2.7. For an ideal
op-amp, the voltage gain (as a function of frequency) is

ZQ(S)
Va(s) = =
2(8) Zl(s)vl(s)’
where
Ry
] = —
" 14 R Cs

and Zy = Ry are the respective circuit impedances. Therefore, we obtain

Ry(1+ RCs)

Vao(s) = — [ ] Vi(s).

Ry
VA
1 VA
2
C R,
+ N +
Vi(s) V,(s)
O _L O

FIGURE P2.7
Differentiating op-amp circuit.
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40 CHAPTER 2 Mathematical Models of Systems

P2.8 Let
G1+Cs —C's -G
A= —C's Gy +2Cs —C's
-G —C's Cs+Gq
Then,
Aij V3 A13[1/A
;= I — =
Visxh o g EAh/A

Therefore, the transfer function is

—Cs 20s+ Gy
Vs Ajg =Gy —Cs
1 tl 2Cs+ Go —C's
—C's Cs+ Gy
Pole-zero map (x:poles and o:zeros)
3 T T T
PAS o il
1+ ]
ﬁ
o) or x X il
£E
_’| - -
-2+ o) —
-3 i i i i i i i
-8 -7 6 -5 -4 3 2 -1 0
Real Axis
FIGURE P2.8

Pole-zero map.
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B C2R1R282+2CR28+ 1
N C2R1Rys? + (2Ry + R1)Cs+1 '

Using Ry = 1.0, Ry = 0.5, and C' = 0.5, we have

s +4s+8  (s+2+25)(s+2—2j)
s2+85+8  (s+4+V8)(s+4—8)

T(s) =

The pole-zero map is shown in Figure P2.8.

P2.9 From P2.3 we have

Mz, + kxy + k(z1 — x2) = F(t)
Mi’g—kk‘(l’g —$1)+bi’2 =0.

Taking the Laplace transform of botl equations and writing the result in

matrix form, it follows that
Xa(s) \ [ F(s)
Xs(s) 0o /)

Pole zero map

Ms? + 2k <k
—k Ms%2+bs+k

0.4 T
x
03 n
02 o o
x
0.1 - n
k)
<
- OF ﬁ
@
£
-0.1 [ n
x
-02 - 6} n
-03 - n
x
04 I I I I I
-0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0
Real Axis
FIGURE P2.9

Pole-zero map.
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(v )=
Xo(s) A

where A = (Ms? + bs + k)(Ms? 4 2k) — k? . So,

or

Ms?+bs+k k
k Ms? + 2k

8

~ Xi(s) Ms*+bs+k
G =T = A '

When b/k =1, M =1, b*/Mk = 0.04, we have

- 5% +0.04s + 0.04
— s140.04s3 4+ 0.12s2 + 0.0032s + 0.0016

G(s)
The pole-zero map is shown in Figure P2.9.
P2.10 From P2.2 we have

Mgy + k12(ys —v2) +0y1 + kiyr = F(t)
Moaijs + ki2(y2 —y1) =0 .

Taking the Laplace transform of both equations and writing the result in
matrix form, it follows that

M,s? +bs+ ki + kio —k19 Yi(s) B F(s)
[ ~k1o Mys? + ko ( Ya(s) ) - ( 0 )
or
Yi(s) 1 Mys? + k1o k192 F(s)
( Ya(s) ) A Ry My tbs+E R ( 0 )
where

A= (M282 + k‘lg)(M182 +bs+ k1 + ki2) — k‘%z .
So, when f(t) = asinw,t, we have that Y7(s) is given by

aM2w0(32 + ]{712/M2)

() = T oAl

For motionless response (in the steady-state), set the zero of the transfer
function so that

]{712 ]{712
(32+E):s2+w§ or wﬁ:ﬁz.
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P2.11 The transfer functions from V,(s) to Vy(s) and from Vy(s) to 6(s) are:

K Ko

(Lgs + Ry)(Les + Re)
K

(Js2+ f8)((Lg+ La)s + Ry + Ry) + K3K s

The block diagram for 6(s)/V,(s) is shown in Figure P2.11, where

N 9(8) Vd(s) N KlKQKm
POV =y e T A

Va(s)/Ve(s) = ,and

0(s)/Va(s) =

where

A(s) = s(Les+ Re)(Lgs+ Rq)((Js+b)((Lag+ La)s + Ra+ Ry) + K K3) .

Z-
A
vl

Iq Vd lq T w
Ve — 1Ll Ky [l 1L ik, —:Q-» S\ o 1P & m
c L cs+Re L s+Rq (L-arL Js+Ra+Ra [ Km [ > —=d

Vb?
K3

A

FIGURE P2.11
Block diagram.

P2.12 The open-loop transfer function is

Y(s) K
R(s) s+50"°
With R(s) = 1/s, we have
K
Yis) = s(s+50)

The partial fraction expansion is

K /1 1
Vis)= = (2 _
(5) 50<s s+50)’

and the inverse Laplace transform is

o0 = 25 (1= ™).

As t — o0, it follows that y(t) — K/50. So we choose K = 50 so that y(t)
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approaches 1. Alternatively we can use the final value theorem to obtain

. K
Y(t)ioo = lim Y (s) = -

It follows that choosing K = 50 leads to y(t) — 1 as t — oo.

P2.13 The motor torque is given by

Tr(5) = (Jins® 4 bys)Om(s) + (Jps* + brs)nfp(s)
n((Jps? + bys)/n? + Jps? +brs)0r(s)

where
n =0r(s)/0n(s) = gear ratio .
But
T (8) = Kply(s)
and
1) = 1 Vy(s)
(Lg + Lf)s + Ry + Ry
and
Vis) = K, I7(s) = ﬁvf(s) .
Combining the above expressions yields
0r(s) _ K,K,
Vi(s)  nAi(s)As(s)
where
Aq(s) = Jrs? +brs + 7Jm32n—; b
and

As(s) = (Lgs+ Lys + Ry + Ry)(Ry + Lys)
P2.14 For a field-controlled dc electric motor we have

wls)/Vyls) = Sl B
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With a step input of Vi(s) = 80/s, the final value of w(t) is

. 80K, K
W(t) 100 = 21_1% sw(s) = Rrb =24 or Ryb =0.03 .

Solving for w(t) yields

80K, _1{ 1 } _ 80K,
RyJ s(s+0b/J)J  Rysb

At t=1/2, w(t) =1, so

w(t) = (1—e= /Dty = 9 4(1—e /)ty

w(1/2) =241 —e ¥ =1 implies b/J = 1.08 sec .

Therefore,

0.0324
s+1.08

w(s)/Vi(s) =

P2.15 Summing the forces in the vertical direction and using Newton’s Second
Law we obtain

j&+£w:0.
m

The system has no damping and no external inputs. Taking the Laplace
transform yields

oS

X = 2 m

)

where we used the fact that 2(0) = o and #(0) = 0. Then taking the
inverse Laplace transform yields

k
t) = —t.
x(t) mocoswm

P2.16 (a) For mass 1 and 2, we have

MiZq + Kl(xl — wg) + bl(ﬁtg — 9'61) =0
Moio + Ko(xo — x3) + ba(dg — @2) + Kq(x2 —21) =0 .

(b) Taking the Laplace transform yields

(M182 +bis + Kl)Xl(S) — KlXQ(S) = blng(S)
—Kle(S) + (M282 + bys + Ky + KQ)XQ(S) = (bgs + KQ)X;),(S) .

(c) Let
Gi(s) = Ko + bys
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where
p(s) = s*Ms + sfa + K1 + Ko
and

q(s) = My + sfi + Ky .

The signal flow graph is shown in Figure P2.16.

FIGURE P2.16
Signal flow graph.

(d) The transfer function from X3(s) to X;(s) is

Xl(s) _ KlGl(S)GQ(S)Gg(S) + G4(8)G3(8)
Xg(s) 1-— K%GQ(S)G3(S) )

P2.17 Using Cramer’s rule, we have
1 1.5 o\ 6
2 4 To 11
1 1 4 —-15 6
9 Al 2 1 11

where A = 4(1) — 2(1.5) = 1 . Therefore,

or

g MO 1501 o 226+ 131

1 1

=—1.
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The signal flow graph is shown in Figure P2.17.

FIGURE P2.17
Signal flow graph.

So,
6(1) — 1.5(1 11(3) + 516
551:—() 3(4):7.5 and xo = (2) 32():—1.
1—3 1—1
P2.18 The signal flow graph is shown in Figure P2.18.

I . v, y l, .

v 2 3 4

R Z, Y,

FIGURE P2.18
Signal flow graph.

The transfer function is
Va(s) _ Y122Y374
Vi(s) 14+Y1Zo+Y3Zy+ Y32y +Y12Z22,Y3

P2.19 (a) Assume R, > R, and R, > R;. Then Ry = Ri + Ry = Ry, and
Vgs = Vin — Vo
where we neglect i;,,, since R, > R,. At node S, we have

Vo _ gmBs

Vo
Vin 1+ gmRs ‘

E = gmUgs = gm(vin - Uo) or

(b) With g, Rs = 20, we have

Vo 20
—=—=0.95.
Vin 21
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(c) The block diagram is shown in Figure P2.19.

Vin(s) 8mRs > Vo(s)

FIGURE P2.19
Block diagram model.

P2.20 From the geometry we find that
lh— 1o

Az =k By - 2y
l l
The flow rate balance yields
Accil—:z = pAz whichimplies = Y (s) = I)AALS(S) .

By combining the above results it follows that

Y(s) =B k(P22 (X9 - Y(5) - 2Y6)

Therefore, the signal flow graph is shown in Figure P2.20. Using Mason’s

FIGURE P2.20
Signal flow graph.

gain formula we find that the transfer function is given by

O > R ¢
X(S) 1_|_li2f1178_|_k(l111;14{92)p S+K2+K1’
where
k‘(ll — lg)p lgp
K= ——= d Ky=-"*>.
! T R

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Problems 49
P2.21 (a) The equations of motion for the two masses are
- L\? L
ML“01 + MgL6, + k 5 (91_92):§f(t)

.. L\ 2

a -
F(t) - W, 9,
> 1/2ML 1V T — 1/s >
A
B ——
(a) b <

Imag(s)
i
/*J €+2LM
¢] k
(b) TINT Tam
\o
« )7
- = Re(s)

FIGURE P2.21
(a) Block diagram. (b) Pole-zero map.

With 91 = w1 and 92 = wy, we have

. (9 Kk k f(t)
== (F+137) O+ e+ oav
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. k g k
= g0~ (3 17) %
(b) Define a = g/L + k/4M and b = k/4M. Then

O1(s) 1 s> +a
F(s) 2ML(s2+a)?—b2"

(¢) The block diagram and pole-zero map are shown in Figure P2.21.

P2.22 For a noninverting op-amp circuit, depicted in Figure P2.22a, the voltage
gain (as a function of frequency) is

(@) (b)

FIGURE P2.22
(a) Noninverting op-amp circuit. (b) Voltage follower circuit.

the case of the voltage follower circuit, shown in Figure P2.22b, we have
Zy = oo (open circuit) and Zs = 0. Therefore, the transfer function is

Vo(s) _4_y
Vin(s)  Z1

P2.23 The input-output ratio, V./Vip, is found to be

Ve o /B(R_l)+hzeRf

‘/in B _5]17*6 + hie(_hoe +Rf) .

P2.24 (a) The voltage gain is given by

Vo RLB1B2(R1 + Ro)

Vin  (Ry+ Ra)(Ry + hic1) + Ri(Ry + Ra)(1 + B1) + RiRLB1Ba
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(b) The current gain is found to be
1
< = BB, .
b1

(¢) The input impedance is

Vin _ (Rl + RQ)(RQ + hiel) + Rl(Rl + Rg)(l + 51) + R1R, (152

1 R+ Ro

)

and when 155 is very large, we have the approximation

Vin __ RpR1S152
ip1 Ri+Ry

P2.25 The transfer function from R(s) and Ty(s) to Y (s) is given by

(G(s)R(s) + Td(s))> + Ty(s) + Gs)R(s)

Also, we have that

when R(s) = 0. Therefore, the effect of the disturbance, Ty(s), is elimi-
nated.

P2.26 The equations of motion for the two mass model of the robot are

Mz +b(& —9)+ k(x —y) = F(t)
my+by—2)+kly—xz)=0.

Taking the Laplace transform and writing the result in matrix form yields

Ms? +bs+k  —(bs+k) X(s) F(s)
—(bs+k) ms®+bs+k Y (s) 0
Solving for Y (s) we find that

F(s)  s2s24 (14 2) (%er %)] .
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P2.27 The describing equation of motion is

2

. 1
mZ=mg—k— .

z

Defining

2
f(z>i) = _ki

mz2
leads to
Z = f(z,i) .

The equilibrium condition for i, and z,, found by solving the equation of
motion when

2=2=0,
is
2
k:zo_ s
SE £ .
mg

We linearize the equation of motion using a Taylor series approximation.
With the definitions

Az=z—2, and Ai=1—1,,

we have Az = # and*Az = 2. Therefore,

af

Aj -
92 7+

Az = f(Z,’i) = f(zoaio) +

vy A2+

=10 01

z=zo
1=10

But f(z0,i,) = 0, and neglecting higher-order terms in the expansion

yields
" 2k 2ki
Az = ZgAz— ZgAi.
mzy mzs

Using the equilibrium condition which relates z, to i,, we determine that

. 2

Ar="In—Ini.

Zo 1o

Taking the Laplace transform yields the transfer function (valid around
the equilibrium point)

AZ(s) _ —9/io

Al(s) s2—2g/z,
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P2.28 The signal flow graph is shown in Figure P2.28.

FIGURE P2.28
Signal flow graph.

(a) The PGBDP loop gain is equal to -abcd. This is a negative transmis-
sion since the population produces garbage which increases bacteria
and leads to diseases; thus reducing the population.

(b) The PMCP-loop. gain is equal to +efg. This is a positive transmis-
sion since the population leads to modernization which encourages
immigration; thus increasing the population.

(¢) The PMSDP loop gain is equal to +ehkd. This is a positive trans-
mission since the population leads to modernization and an increase
in sanitation facilities which reduces diseases, thus reducing the rate
of decreasing population.

(d) The PMSBDP loop gain is equal to +ehmecd. This is a positive trans-
mission by similar argument as in (3).

P2.29 Assume the motor torque is proportional to the input current
T = ki .
Then, the equation of motion of the beam is
Jb=ki,

where J is the moment of inertia of the beam and shaft (neglecting the
inertia of the ball). We assume that forces acting on the ball are due to
gravity and friction. Hence, the motion of the ball is described by

mx = mgeop — bt
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where m is the mass of the ball, b is the coefficient of friction, and we
have assumed small angles, so that sin ¢ = ¢. Taking the Laplace transfor
of both equations of motion and solving for X(s) yields

X(s)/1(s) = 32(%/}:/77@) .
P2.30 Given

k

H(s) - Ts+1

where 7 = 5us = 4 x 107% seconds and 0.999 < k < 1.001. The step
response is

k 1 k k

Y(s) = C— = .
() Ts+1 s s s+1/7

Taking the inverse Laplace transform yields
yt) = k= ke /T =k(1—etT) .

The final value is k. The time it takes to reach 98% of the final value is
t = 19.57us independent of k.

P2.31 From the block diagram. we have

Yl(S) — GQ(S)[Gl (s)El(s) + Gg(S)EQ(S)]
= GQ(S)Gl (s)[Rl(s) — Hl(S)Yl(S)] + GQ(S)Gg(S)EQ(S) .

Therefore,

_ G1(s)Ga(s) G (s)Gs(s)
M) =17 G1(s)Ga(s)Hi(s) )+ 17 G1(3)Ga(s) Hi(5)

And, computing Es(s) (with Ra(s) = 0) we find

Ga(s)
Ga(s)

EQ(S) .

Es(s) = Ha(s)Ya(s) = Ha(s)Ge(s)

Y (S) + G5(8)E2(8)

or

N G4(S)G6(S)H2(S) s
20 = Ge0 - GG R
Substituting Fs(s) into equation for Yi(s) yields

_ Gi(s)Ga(s)
1+ Gi(s)Ga(s)Hi(s)

Yi(s) Ry (s)
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N G3(5)G4(s)Ge(s)Ha(s) Y (s)
(1+ G1(s)Ga(s) H1(s))(1 — G5(s)Go(s) Ha(s))

Finally, solving for Yj(s) yields
Yl(s) = Tl(S)Rl(S)
where

Tl(S) =
G1(5)Ga(s)(1 — G5(s)Ge(s)Ha(s))
(1+ G1(s)Ga(s)H1(s))(1 — G5(s)Ge(s)Ha(s)) — G3(s)Ga(s)Ge(s)Ha(s)

Similarly, for Y5(s) we obtain

Ya(s) = Ta(s)Ri(s) .

Gl(S)G4(S)G6(S)
(1 +G1(s5)G2(s)Hi(s)) (1 = G5(s)Ge(s) Ha(s)) — G3(5)Ga(s)Ge(s)Ha(s)

P2.32 The signal flow graph shows three loops:

Ly = —G1G3G4Hy
Lo = —GoG5GgHy
Ly = —H{GsGsGoG7G4HoG .

The transfer function Y5/R; is found to be

Yas) _ GiGsGoAi — GaGsGaly
Rl(s) 1— (Ll + Lo + L3) + (L1L2) ’

where for path 1
Ap=1
and for path 2
Ay=1—-1,.

Since we want Y5 to be independent of Ry, we need Y3/R; = 0. Therefore,
we require

G1GsGg — G2G5G6(1 + G1G3G4H2) =0.
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P2.33 The closed-loop transfer function is

Y(S) _ Gg(S)Gl(S)(GQ(s) + K5K6)
R(s) 1—Gs(s)(Hi(s) + Ke) + G3(s)G1(s)(Ga(s) + K5Ke)(Ha(s) + Kg) -

P2.34 The equations of motion are

mat1 + b1 — v2) + k1(y1 —y2) =0
madio + b(Y2 — 1) + k1(y2 — y1) + kaya = kox

Taking the Laplace transform yields
(m15° + bs + k1)Y1(s) — (bs + k1)Ya(s) = 0
(mgs® + bs + ki + ko) Ya(s) — (bs + k1) Yi(s) = k2 X (s)
Therefore, after solving for Y7(s)/X(s), we have
Ya(s) oo (b5 + oy)

X(s)  (mys?+bs+ ki)(mnos? + bs + ky + ka) — (bs + k1)?

P2.35 (a) We can redraw the block diagram as shown in Figure P2.35. Then,

B K1/8(8+1) N Kl
Sl Ki(P+Kss)s(s+ 1) s2+ (1+ KoKy)s+ Ky

T(s)

(b) The signal flow graph reveals two loops (both touching):

- K, —K1 Ky
Li= d Ly= .
! s(s+1) o 2 s+1
Therefore,
K 1 K
T(s) 1/s(s+1) 1

T I+ Ki/s(s+ 1)+ K1Ka/(s +1)  s2+ (1+ KaKq1)s+ K;
(¢) We want to choose Kj and Ks such that
s 4+ (1 + KoK1)s + Ky = s> + 205 + 100 = (s 4 10)? .

Therefore, K1 = 100 and 1 + Ky K7 = 20 or K9 = 0.19.
(d) The step response is shown in Figure P2.35.
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K -
R(S) ﬁt 5 (5+1) Y(S)
1+K3s

1 ‘ ‘ ;
09 /

08} ' ,

0.7F : } 0 : : 0 4

06 }<-—-— time to 90% = 0.39 sec i

y(t)

0.5+ i i
04f —

01t | |

0

0 0.2 0.4 0.6 0.8 1 12 14 1.6 1.8 2

time(sec)

FIGURE P2.35
The equivalent block diagram-and the system step response.

P2.36 (a) Given R(s) = 1/s%, the partial fraction expansion is

30 ~0.1091 0.7576(s +3.4) 1 0.8667

Y(s)= = _
() s2(s+5)(s2+4s+6) s+5 s24+4s+6  s2 s

Therefore, using the Laplace transform table, we determine that the
ramp response for t > 0 is

25

7V2 13
— —5t —2t . _
y(t) = £5¢ + 33° (cos V2t + 10 Sin \/51?) +t T

(b) For the ramp input, y(¢) ~ 0.25 at ¢t = 1 second (see Figure P2.36a).

(c) Given R(s) =1, the partial fraction expansion is

30 30 1 30 s—1
(s+5)(s2+45+6) 1ls+5 11s2+4s+6 "

Y(s) =

Therefore, using the Laplace transform table, we determine that the
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impulse response for ¢t > 0 is

30 30 3V 2
B A <cos Vot — T\/_ sin \/§t)> .

y(t) = 11¢ 1

(d) For the impulse input, y(t) &~ 0.73 at t = 1 seconds (see Figure P2.36b).

(a) Ramp input (b) Impulse input
35 T 1.2 T

2,
g 3
15F
l,
0.5}
0 -0.2 . ! !
0 0 1 2 3 4
Time (s) Time (s)
FIGURE P2.36
(a) Ramp input response. (b) Impulse input response.
P2.37 The equations of motion are
d’x d?y
mi—s = — (k1 + ko)z + k and mo—s =ko(z —y)+u .
LT5) (k1 2) 2Y 272 2 Y)

When m; =ms =1 and k1 = ko = 1, we have

A2z d?
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P2.38 The equation of motion for the system is

d%0 de

—+b—+kf=0

az " a T ’

where k is the rotational spring constant and b is the viscous friction
coefficient. The initial conditions are §(0) = 6, and §(0) = 0. Taking the

Laplace transform yields

J(5%0(s) — 50,) + b(s0(s) — 0,) + kB(s) =0 .

J

Therefore,

(4500 (s+2Cw)fl
(s2+ 25+ 5) 824+ 2wps +w2

0(s) =

Neglecting the mass of the rod, the moment of inertia is detemined to be
J =2M7* = 0.5kg-m? .
Also,

k b
Wp, = \/;— 0.02rad/s and (= 5T 0.01 .

Solving for 6(¢), we find that

0(t) = 7_10i % e ntsin(wp\/1 — C2 t+ ¢)

where tan ¢ = /1 — (2/(). Therefore, the envelope decay is

06 - eo_e—Cwnt .
V1—¢(2
So, with Cw, = 2 x 1074, 6, = 4000° and 0y = 10°, the elapsed time is
computed as
1 0

t=—I 2
Com /T = C20;

P2.39 When t < 0, we have the steady-state conditions

= 8.32 hours .

12
i1(0) = gA . 0a(0) = 7V and  v.(0) = ?V ,
where v.(0) is associated with the 0.75F capacitor. After ¢ > 0, we have
dil . . SN —9t
1.5— + 2iy + 5(i1 — i2) = 10e

dt
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and
0.75/i2dt + 1029 + 5(’i2 — ’il) —11=0.

Taking the Laplace transform (using the initial conditions) yields

1.5(sT1(s) — i1(0)) + 211 (s) + 511 () — BIa(s) = §%£2§
14 10 185 + 176
<&+§>h“*‘§b“*25mﬂiﬁ
and
Z(é@@)—v4m>+405@)+5uy5)—1ﬂ@):14$
—Zkh@)+ams+3ﬂﬂ@::£?s

Solving for I5(s) yields

45(27s% + 2165 + 604)

Io(s) = .
(%) = 705 196057 + 2035 1 10)

Then, V,(s) = 10L5(s).
P2.40 The equations of motion are
J10) = K0y — 61) —b(0; —0o) + T and  Joby = b(0; — 65) .
Taking the Laplace transform yields
(J15% + bs + K)B,(s) — bsba(s) = Kbs(s) + T(s)

and (Jos2 + bs)0a(s) — bsh1(s) = 0. Solving for 01(s) and 6a(s), we find

that

(K0a(s) +T(s))(Jas +b)
A(s)

b(K0a(s) +T(s))

= A

and fy(s) =

where A(s) = JyJas® + b(Jy + Jo)s% + JoKs + bK.

P2.41 Assume that the only external torques acting on the rocket are control
torques, T, and disturbance torques, T, and assume small angles, 6(¢).
Using the small angle approximation, we have

h=V0
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JO=T.+ 1Ty,

where J is the moment of inertia of the rocket and V' is the rocket velocity
(assumed constant). Now, suppose that the control torque is proportional
to the lateral displacement, as

T.(s) = —KH(s) ,

where the negative sign denotes a negative feedback system. The corre-
sponding block diagram is shown in Figure P2.41.

H gesired0 4:?‘ K

FIGURE P2.41
Block diagram.

H(s)

+i
3
w |—=
N
n<<

P2.42 (a) The equation of motion of the motor is

dw
JE—Tm—bUJ,

where J = 0.1, b = 0.06, and T;,, is the motor input torque.
(b) Given T;,(s) = 1/s, and w(0) = 0.7, we take the Laplace transform
of the equation of motion yielding

sw(s) —w(0) + 0.6w(s) = 10T,

or
(s) 0.7s 4+ 10
w(s) = —— .
s(s +0.6)
Then, computing the partial fraction expansion, we find that

A B 16.67 15.97
w(s) = — = _ .
s s+0.6 s s+ 0.6

The step response, determined by taking the inverse Laplace trans-
form, is

w(t) =16.67 — 15.97¢7 %6 ¢t >0.
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P2.43 The work done by each gear is equal to that of the other, therefore
T =TL05 .
Also, the travel distance is the same for each gear, so
716, = 6y, .

The number of teeth on each gear is proportional to the radius, or

r1No = roN7y .
So,
Om _ 12 _ N2
0, N’
and
N10y, = Noby,
0= % m = N, ,
where
n = N1/Ns .
Finally,
T, 60, N
T, bn Ny
P2.44 The inertia of the load is
npLrt
=5

Also, from the dynamics we have
T5 = Jrwo + brwo
and
Ty =nTy = n(Jpws + brwa) .
So,

T = nz(JLdjl + wal) ,
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since
Wy = Nwy .
Therefore, the torque at the motor shaft is
T =T+ Ty = n*(Jrwr + brwi) + Jndr + bpw -

P2.45 Let U(s) denote the human input and F(s) the load input. The transfer
function is
G(s) + KGi(s)
As)

Ge(s) + KGi(s)
A(s)

P(s) = U(s) + F(s),

where
A=1+GH(s)+Gi1KBH(s)+ G.E(s) + G1KE(s) .

P2.46 Consider the application of Newton’s law (3 F' = ma). From the mass
m, we obtain

mydy =F = k(1 = x2) — by (&1 — &2).
Taking the Laplace transform, and solving for X (s) yields

Xi(s) = F(s) + %XQ(S),

where
A1 = myps® + bis + k.
From the mass m; we obtain
myiy = —koxy — bodo + k1 (x1 — x2) + by (&1 — @2).
Taking the Laplace transform, and solving for Xs(s) yields

Xa(s) = S (o),

where
Ag = mys® + (by + bo)s + ky + ko.

Substituting Xa(s) above into the relationship fpr X (s) yields the trans-
fer function

Xi(s) _ Aa(s)

F(S) Al(S)AQ(S) - (bls + k1)2
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P2.47 Using the following relationships

h(t) = / (1.66(t) — h(t))dt
w(t) = 6(t)
Jo(t) = Kmia(t)
va(t) = 50v; (t) = 10i4(t) + vp(t)
9 = Kvb

we find the differential equation is

d3h+ <1+ K, ) d2h+ Ky, dh 8K,
dt3 10JK ) dt2 ~ 10JK dt — J

P2.48 (a) The transfer function is
VQ(S) (1 —|—SR101)(1 +SR202)

v; .

VI(S) R1028
(b) When Ry = 250 k€2, Ry =200 k€2, C; =2 pF and Cy = 0.1 uF, we
have

Va(s) 0.4s% +20.8s + 40
Vi(s) s '

(¢) The partial fraction expansion is

Va(s) 40
= 20. — As .
Tl = 08+ +04s

P2.49 (a) The closed-loop transfer function is

G(s) 5000

T(s) = = .
() =13 G(s) 8%+ 2052 + 1000s + 5000

(b) The poles of T'(s) are s; = —5.43 and sp 3 = —7.28 & j29.46.
(c) The partial fraction expansion (with a step input) is

1 1.06 0.0285 4-0.09045  0.0285 — 0.09045

Y(s) = - —
) =S~ 57513 T 51728 2946 T 57287 72946

and
y(t) =1 — 1.06e >3 1+ 0.06e™ 7?8 (cos 29.46t — 3.17sin 29.46t) ;

(d) The step response is shown in Figure P2.49. The real and complex
roots are close together and by looking at the poles in the s-plane we
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Amplitude

0 I I I ! I I I I I
0 0.2 0.4 06 0.8 1 12 14 16 18 2

Time (seconds)

FIGURE P2.49
Step response.

have difficulty deciding which is dominant. However, the residue at
the real pole is much larger and thus dominates the response.

P2.50 (a) The closed-loop transfer function is

B 14000
~ §3 44552 4 3100s + 14500

T(s)

(b) The poles of T'(s) are
s1=—5 and sg3= —20 % j50.

(¢) The partial fraction expansion (with a step input) is

~ 09655 1.0275  0.0310 —0.03907 ~ 0.0310 + 0.0390;

Y
(5) s s+5 | 5120450 s+ 20 — 750

(d) The step response is shown in Figure P2.50. The real root dominates
the response.

(e) The final value of y(t) is

Yss = ;lg%] SY(S) = 0.9655 .
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Amplitude

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

Time (secs)

FIGURE P2.50
Step response.

P2.51 Consider the free body diagram in Figure P2.51. Using Newton’s Law
and summing the forces on'the two masses yields
lei'(t) + bll‘(t) + k‘ll'(t) = bly(t)
Mogj(t) + b1y(t) + kay(t) = b1 (t) + u(t)

u(f) u(?)

FIGURE P2.51
Free body diagram.
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Advanced Problems

AP2.1 The transfer function from V (s) to w(s) has the form

w(s) K,
V(s) Tms+1'

In the steady-state,

ot ] 2o
So,

K, =70/5=14.
Also,

w(t) = VK (1= e/
where V (s) = V,,,/s. Solving for 7,,, yields

—t
In(l — w(t)/wss)

Teh =5

When t = 2, we have
-2
m=—————— = 3.57 .
m = Tn(1 — 30/70)
Therefore; the transfer function is
w(s) 14
V(s) 357s+1°

AP2.2 The closed-loop transfer function form R;(s) to Ya(s) is

Yg(s) _ G1G4G5(S) + G1G2G3G4G6(8)
Ri(s) A

where
A =[1+ G3G4Hy(s)][1 + G1G2H3(s)] .
If we select
Gs(s) = —G2G3Ge(s)

then the numerator is zero, and Y3(s)/Ri(s) = 0. The system is now
decoupled.
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AP2.3 (a) Computing the closed-loop transfer function:

1 G)G.)
o= i3 Gc(s)G(s)H(s)} R(s) -

Then, with E(s) = R(s) — Y (s) we obtain
_ [14+Gels)G(s)(H(s) — 1)
20 = [ S et ) M-

If we require that E(s) = 0 for any input, we need 1+ G.(s)G(s)(H(s) —
1)=0or

G.(s)G(s) — 1 _ n(s)
Ge(s)G(s d(s)

H(s) =

Since we require H(s) to be a causal system, the order of the numerator
polynomial, n(s), must be less than or-equal to the order of the denom-
inator polynomial, d(s). This will be true, in general, only if both G.(s)
and G(s) are proper rational functions (that is, the numerator and de-
nominator polynomials have the same order). Therefore, making £ = 0
for any input R(s) is possible only in certain circumstances.

(b) The transfer function from T;(s) to Y (s) is

> Ga(s)G(s)
Ylae [1 n GC(S)G(S)H(S)} Ta(s) -

With H(s) as in part (a) we have

Y(s) = [ng } Ty(s) .

(¢) No. Since

[ Ga9G() .
Y(s) = | Tt i) i) = TETls)

the only way to have Y (s) = 0 for any Ty(s) is for the transfer function
T(s) = 0 which is not possible in general (since G(s) # 0).

AP2.4 (a) With ¢(s) = 1/s we obtain

T(s) = SRV T
Define
a:zw and (:=1/Cy .

Ct
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Then, it follows that
1 -
B 1_=Ble_ B/e

s+a s S+« S

7(s) =

Taking the inverse Laplace transform yields

T(t) = %ﬂe_at + g = g[l —e ™).

(b)Ast—)oo,T(t)—>§:QS+1/R.

(c¢) To increase the speed of response, you want to choose Cy, @, S and
R such that

oo Qs+ 1/R
=

is "large.”
Considering the motion of each mass, we have
M3Zs + b3y + ksxs = us + b3y + kzxo

Moo + (b2 + bg)ij 4 (k‘g + ]6‘3)362 = ug + b3xg + k3xz + body + koxq
Mia1 + (b1 + bg)ﬂﬁ -+ (k‘l -+ k‘z)ﬂjl = w1 + boZg + koxo

In matrix form the three equations can be written as

My 0.0 21 i by +ba  —bo 0 1
0 My 0 o |+ —by by +b3 —b3 T
0 0 M I3 0 —bs b3 I3

i ki +ke  —ko 0 xy uy

+ —ko ko + ks —k3 o | = | wuo

0 —k3 ks x3 us3

Considering the cart mass and using Newton’s Law we obtain
Mi=u—bx— Fsinyp

where I is the reaction force between the cart and the pendulum. Con-
sidering the pendulum we obtain

d?(x + Lsin )
m—

oTE = F'siny
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d?(L cos )

m
dt?

= F'cosp +mg

Eliminating the reaction force F yields the two equations

(m 4 M)i + bi + mLg cos p — mLy*sing = u
mL2p + mgLsin o +mLi cosp = 0

If we assume that the angle ¢ ~ 0, then we have the linear model

(m+ M)i+ bt +mLp =u
mL?p + mgLy = —mLi

AP2.7 The transfer function from the disturbance input to the output is

1

Y(s) ==—=—==T, .
) = x

When T,(s) =1, we obtain

y(t) £ e—(40+K)t ]

Solving for ¢ when y(¢) < 0.1 yields

2.3
40+ K -

When ¢ = 0.05 and y(0.05) = 0.1, we find K = 6.05.

t>

AP2.8 The closed-loop transfer function is

200K (0.255 + 1)

T() = 0385 ¥ (s + (s £ 8) 7 200K

The final value due to a step input of R(s) = A/s is

200K

) A
v(t) = Aok 78

We need to select K so that v(t) — 50. However, to keep the percent
overshoot to less than 10%, we need to limit the magnitude of K. Fig-
ure AP2.8a shows the percent overshoot as a function of K. Let K = 0.06
and select the magnitude of the input to be A = 83.3. The inverse Laplace
transform of the closed-loop response with R(s) = 83.3/s is

v(t) = 50 + 9.85e 15 — 71938 (59 85 cos(2.24¢) 4 11.27 sin(2.24t))
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The result is P.O. = 9.74% and the steady-state value of the output is
approximately 50 m/s, as shown in Figure AP2.8b.

25

20

15

Percent Overshoot (%)

i i i i i i i i
0 0.01 0.02 ©0.03 004 005 006 0.07 008 0.09 01
K

Step Response

60
| System: untitled1
501 | “Peak amplitude: 54.9 =
Overshoot (%): 9.74
I At time (sec): 1.15
|
401 | 1
S I
o
e |
=i L 4
g |
< |
|
20+ ‘ 1
|
|
10} ‘ 1
|
|
0 . . . .
0 0.5 1 1.5 2 25
Time (sec)
FIGURE AP2.8

(a) Percent overshoot versus the gain K. (b) Step response.

AP2.9 The transfer function is
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where
Ry RyCos + 1
A = d Z ==
1(8) RlCls + 1 an 2(8) CQS
Then we can write
Vo(s) K
=K —+ K
‘/Z(S) P + s + DS
where
R1CY ) 1
Kp=— 1 Kr=—-— K —RyC
P (R202+ ) I "Gy D 201
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Design Problems

CDP2.1 The model of the traction drive, capstan roller, and linear slide follows
closely the armature-controlled dc motor model depicted in Figure 2.18
in Dorf and Bishop. The transfer function is

(s) rK,,
s) = ,
S[(Lpms + Ruy)(Jrs + b)) + Kp K
where
Jr = Jm +172(M, + M) .
v, Lmls(J'l"Rm > JTslbm ™ . 7
K »
Back EMF b

DP2.1 The closed-loop transfer function is

Y(S) _ Gl(s)Gg(s)
R(s) 1+ Gi(s)Hi(s) — Ga(s)Ha(s)

When G1Hy; = GoHy and G1Gy = 1, then Y(s)/R(s) = 1. Therefore,
select

and Hy(s) = Ga(s)Ha(s) = G3(s)Ha(s) .

) ()

~ Ga(s)

DP2.2 At the lower node we have

1 1 .
U(Z+§+G)+222—20—0.

Also, we have v = 24 and i, = Gv . So

1 1
U(Z+§+G)+2GU_20:O
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and

. 20-v(+1)
B 3v 12

DP2.3 Taking the Laplace transform of

yields

1 1 3

Y(s) = . 2y
() s+1 4(s+2) 4s i 252

Similarly, taking the Laplace transform of the ramp input yields

Therefore

R(s)" (s+1)(s+2)°
DP2.4 For an ideal op-amp, at node a we have

Uin — VUq Vo — Vg
+ —0,
Ry Ry

and at node b
Vin — Up

R2 Uy

from it follows that

1 1
— +Cs|Vy=—=—Vip .
|:R2 - S} "Ry "

Also, for an ideal op-amp, V;, — V,; = 0. Then solving for V}, in the above
equation and substituting the result into the node a equation for V,, yields

Vs 2

Vo _ 2 1 gtCs
‘/in RLQ—FCS

Ry 2

or

Vo(s) _ ReCs—1
Vm(s) N RoCs+1 '
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For v, (t) = At, we have Vj,(s) = A/s?, therefore
2 2
vo(t) = A [—e‘ﬁtﬂ— —]
(t) 3 3
where 5 =1/RsC.

DP2.5 The equation of motion describing the motion of the inverted pendulum
(assuming small angles) is

. g
2o=0.
®+ LSO
Assuming a solution of the form ¢ = kcosyp, taking the appropriate

derivatives and substituting the result into the equation of motion yields
the relationship

Y= I

If the period is T' = 2 seconds, we compute ¢ = 27 /7. Then solving for L
yields L = 0.99 meters when g = 9.81:m/s%. So, to fit the pendulum into
the grandfather clock, the dimensions are generally about 1.5 meters or
more.
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Computer Problems

CP2.1 The m-file script is shown in Figure CP2.1.

p=[1812]; =1 2];

% Part (a) /

pg=conv(p,q)
% Part (b)
P=roots(p), Z=roots(q) <

/
/ )
% Part (c) I 7 _
2

\

pq=
1 10 28 24
P

value=polyval(p,-1) ~

value =
5

FIGURE CP2.1
Script for various polynomial evaluations.

CP2.2 The m-file script and step response is shown in Figure CP2.2.

numc = [1]; denc = [1 1]; sysc = tf(numc,denc)
numg = [1 2]; deng = [1'3]; sysg =tf(humg,deng)
% part (a)

sys_s = series(sysc,sysg);
sys_cl = feedback(sys_s,[1])
% part (b)
step(sys_cl);.grid on

Transfer function:
s+2

sA2+5s+5

\J

Step Response

From: U(1)
04 T

Amplitude
To:Y(1)

Time (sec.)

FIGURE CP2.2
Step response.
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CP2.3 Given
Y+ 6y +oy=u
with y(0) = ¢ =0 and U(s) = 1/s, we obtain (via Laplace transform)

1 1
YO = (T eTE s TETD

Expanding in a partial fraction expansion yields

1 1 1

Y(S):£_2o(s+5)_4(s+1) ‘

Taking the inverse Laplace transform we obtain the solution
y(t) = 0.2 + 0.05¢ 7" — 0.25¢7" .

The m-file script and step response is’ shown in Figure CP2.3.

Step Response

0.2 T T T T T T T T
0.18 4
0.16 4
014} 7
0.12f n=[1]; d=[1 6 5]; sys = tf(n,d); ]
g t=[0:0.1:5;
£ o1t .
g y = step(sys,t);
008k ya=0.2+0.05*exp(-5*t)-0.25*exp(-t); i
plot(t,y,t,ya); grid;
0.06F title('Step Response); 7
xlabel('Time (s)");
0.04r ylabel('Amplitude'); ’
0.02 4
00 055 ‘; 115 é 255 C; 315 :1 415 5
Time (s)
FIGURE CP2.3

Step response.
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CP2.4 The mass-spring-damper system is represented by
mi +bx +kx=f.

Taking the Laplace transform (with zero initial conditions) yields the
transfer function

B 1/m

82 +bs/m+k/m

X(s)/F(s)

The m-file script and step response is shown in Figure CP2.4.

m=10; k=1; b=0.5;
num=[1/m]; den=[1 b/m k/m]J;
sys = tf(num,den);
t=[0:0.1:150];

step(sys,t)

Step Response
From: U(1).

Amplitude

08 -

06 -

04

02

To:Y(1)

0 50 100 150

Time (sec.)

FIGURE CP2.4
Step response.

CP2.5 The spacecraft simulations are shown in Figure CP2.5. We see that as J
is decreased, the time to settle down decreases. Also, the overhoot from
10° decreases as J decreases. Thus, the performance seems to get better
(in some sense) as J decreases.
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Nominal (solid); Off-nominal 80% (dashed); Off-nominal 50% (dotted)

Spacecraft attitude (deg)

0 10 20 30 40 50 60 70 80 2 100

Time (sec)

%Part (a)

a=1; b=8; k=10.8e+08; J=10.8e+08;
num=k*[1 al;

den=J*[1 b 0 0]; sys=tf(num,den);
sys_cl=feedback(sys,[1]);

%

% Part (b) and (c)

t=[0:0.1:100];

%

% Nominal case

f=10*pi/180; sysf=sys_cl*f;
y=step(sysf,t);

%

% Off-nominal case 80%

J=10.8e+08%0.8; den=J*[1b 0 0];
sys=tf(num,den); sys_cl=feedback(sys,[1]);
sysf=sys_cl*f;

yl1=step(sysf,t);

%

% Off-nominal case 50%

J=10.8e+08%0.5; den=J*[1 b 0 0];
sys=tf(num,den); sys_cl=feedback(sys,[1]);
sysf=sys_cl*f;

y2=step(sysf,t);

%
plot(t,y*180/pi,t,y1*180/pi,'--'t,y2*180/pi,":"),grid
xlabel('Time (sec))

ylabel('Spacecraft attitude (deg)")
title('Nominal (solid); Off-nominal 80% (dashed); Off-nominal 50% (dotted)")

FIGURE CP2.5
Step responses for the nominal and off-nominal spacecraft parameters.
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CP2.6 The closed-loop transfer function is

B 455 + 85° + 45 + 565% + 11252 + 565

T(s
) AGs) |
p =
num1=[4]; den1=[1]; sys1 = tf(num1,den1); 7.0709
num2=[1]; den2=[1 1]; sys2 = tf(hum2,den2); -7.0713 )
num3=[1 0]; den3=[1 0 2]; sys3 = tf(num3,den3); 1.2051 + 2.0863i
num4=[1]; den4=[1 0 0]; sys4 = tf(num4,den4); 1.2051 - 2.0863i
num5=[4 2]; den5=[1 2 1]; sys5 = tf(num5,den5); 0.1219 + 1.8374i
numé6=[50]; den6=[1]; sys6 = tf(num6,den6); 0.1219 - 1.8374i

num7=[1 0 2]; den7=[1 0 0 14]; sys7 = tf(hum7,den7);
sysa = feedback(sys4,sys6,+1);

sysb = series(sys2,sys3);

sysc = feedback(sysb,sys5);

sysd = series(sysc,sysa);

syse = feedback(sysd,sys7);

sys = series(sys1,syse) z=

-2.3933
-2.3333
-0.4635 + 0.1997i
-0.4635 - 0.1997i

-

%

pzmap(sys)

%

p=pole(sys)

poles 0

1.2051 + 2.0872i
1.2051 - 2.0872i
-2.4101

z=zero(sys) » -1.0000 + 0.0000i
-1.0000 - 0.0000i

Polezero map

05 [ b

Imag Axis
o
T
X
@
o
o
X
L

05 | 4

25 L L L L L L L
-8 -6 -4 -2 0 2 4 6 8

Real Axis

FIGURE CP2.6
Pole-zero map.
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where

A(s) = 519 + 357 — 455% — 12557 — 20055 — 11775°
— 923445% — 348553 — 7668s% — 55985 — 1400 .

CP2.7 The m-file script and plot of the pendulum angle is shown in Figure CP2.7.
With the initial conditions, the Laplace transform of the linear system is

0(s)

B 908
824+ g/L

To use the step function with the m-file, we can multiply the transfer
function as follows:

82 90

)=y gs

which is equivalent to the original transfer function except that we can
use the step function input with magnitude 6y. The nonlinear response
is shown as the solid line and the linear response is shown as the dashed
line. The difference between the two responses is not great since the initial
condition of 6y = 30° is not that large.

30
L=0.5;m=1;9=9.8;

theta0=30;

% Linear simulation
sys=tf([100],[10g/L]);

T ly,tl=step(theta0*sys,[0:0.01:10]);

% Nonlinear simulation
[tynl]=ode45(@pend,t,[theta0*pi/180 0]);

E plot(t,ynl(:1)*180/pi,ty,'--);
s O xlabel(‘Time (s)')
° ylabel(\theta (deg)’)

a0 b ¥
function [yd]=pend(ty)
L=0.5;9=9.8;

20 yd(1)=y(2);
yd(2)=-(g/L)*sin(y(1));
yd=yd’;

-30

0 2 4 6 8 10
Time (s)
FIGURE CP2.7

Plot of 0 versus xt when 0y = 30°.
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82 CHAPTER 2 Mathematical Models of Systems
CP2.8 The system step responses for z = 5,10, and 15 are shown in Fig-

ure CP2.8.

z=10 (solid), z=12 (dashed), z=22 dotted)
1.4 T T T T

x(t)

0.6 ! -

04f [ .

|
0 0.5 1 1.5 2 25 3
Time (sec)

FIGURE CP2.8
The system response.

CP2.9 (a,b) Computing the closed-loop transfer function yields

G(s) s24+2s5+1

) = G HG) ~ s+ as+3

The poles are s = —3, —1 and the zeros are s = —1, —1.
(c) Yes, there is one pole-zero cancellation. The transfer function (after
pole-zero cancellation) is

s+1
s+3°

T(s) =
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Pole?Zero Map

1 T T T T T

08 - =1

0.6 - =1

02 =1

Imaginary Axi s
o
K
[
L

02 A

204 B

2-0.8 - A

21 1 1 1 1 1
?-3 7-25 -2 7-1.5 71 ?-0.5 0
Real Axi s

>>
Transfer function:
ng=I[11]; dg=[1 2]; sysg = tf(ng,dg); SA2+2s+1
nh=[1]; dh=[1 1};sysh =tf(nhab); |
sys=feedback(sysg,sysh) SA2 +45+3

%
pzmap(sys)
% poles _ p=
pole(sys) g

zero(sys) -3

\

zeros

-1
-1

FIGURE CP2.9
Pole-zero map.

CP2.10 Figure CP2.10 shows the steady-state response to a unit step input and a
unit step disturbance. We see that K = 1 leads to the same steady-state
response.
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0.35
K=[0.1:0.1:10]; 03l

sysg=tf([1],[1 20 20]);
for i=1:length(K)

ne=K(i); de=[1];sysc=tf(nc,do); o | Input Response Steady-State —_

syscl=feedback(sysc*sysg,1); | §

systd=feedback(sysg,sysc); g 0.2 1

y1=step(syscl); 2

Tf1(i)=y1(end); ‘i 0151 |

y2=step(systd); 8

Tf2(i)=y2(end); »
end o1r ) 1
plot(K,TF1, K Tf2/~) Disturbance Response Steady-State
xlabel('K') 0.05— o 1
ylabel('Steady-state response’) T T T

% 1 2 3 4 6 7 8 9 10

X o

FIGURE CP2.10
Gain K versus steady-state value.
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