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GUEST EDITORIAL

Genetic Algorithms and Machine Learning

Metaphors for learning

There is no a prior: reason why machine learning must borrow from nature.
A field could exist, complete with well-defined algorithms, data structures,
and theories of learning, without once referring to organisms, cognitive or
genetic structures, and psychological or evolutionary theories. Yet at the end
of the day, with the position papers written, the computers plugged in, and
the programs debugged, a learning edifice devoid of natural metaphor would
lack something. It would ignore the fact that all these creations have become
possible only after three billion years of evolution on this planet. It would
miss the point that the very ideas of adaptation and learning are concepts
invented by the most recent representatives of the species Homo sapiens from
the careful observation of themselves and life around them. It would miss the
point that natural examples of learning and adaptation are treasure troves of
robust procedures and structures.

Fortunately, the field of machine learning does rely upon nature’s bounty
for both inspiration and mechanism. Many machine learning systems now
borrow heavily from current thinking in cognitive science, and rekindled in-
terest in neural networks and connectionism is evidence of serious mechanistic
and philosophical currents running through the field. Another area where nat-
ural example has been tapped is in work on genetic algorithms (GAs) and
genetics-based machine learning. Rooted in the early cybernetics movement
(Holland, 1962), progress has been made in both theory (Holland, 1975; Hol-
land, Holyoak, Nisbett, & Thagard, 1986) and application (Goldberg, 1989;
Grefenstette, 1985, 1987) to the point where genetics-based systems are find-
ing their way into everyday commercial use {Davis & Coombs, 1987; Fourman,
1985).

Genetic algorithms and classifier systems

This special double issue of Machine Learning is devoted to papers concern-
ing genetic algorithms and genetics-based learning systems. Simply stated,
genetic algorithms are probabilistic search procedures designed to work on
large spaces involving states that can be represented by strings. These meth-
ods are inherently parallel, using a distributed set of samples from the space
(a population of strings) to generate a new set of samples. They also ex-
hibit a more subtle implicit parallelism. Roughly, in processing a population
of m strings, a genetic algorithm implicitly evaluates substantially more than
m® component substrings. It then automatically biases future populations to
exploit the above average components as building blocks from which to con-
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struct structures that will exploit regularities in the environment (problem
space). Section 3 of the paper by Fitzpatrick and Grefenstette gives a clear
discussion of this property. The theorem that establishes this speedup and its
precursors — the schema theorems — illustrate the central role of theory in the
development of genetic algorithms. Learning programs designed to exploit this
building block property gain a substantial advantage in complex spaces where
they must discover both the “rules of the game” and the strategies for playing
that “game.”

Although there are a number of different types of genetics-based machine
learning systems, in this issue we concentrate on classifier systems and their
derivatives. Classifier systems are parallel production systems that have been
designed to exploit the implicit parallelism of genetic algorithms. All inter-
actions are via standardized messages, so that conditions are simply defined
in terms of the messages they accept and actions are defined in terms of the
messages they send. The resulting systems are computationally complete, and
the simple syntax makes it easy for a genetic algorithm to discover building
blocks appropriate for the construction of new candidate rules. Because clas-
sifier systems rely on competition to resolve conflicts, they need no algorithms
for determining the global consistency of a set of rules. As a consequence, new
rules can be inserted in an existing system, as trials or hypotheses, without
disturbing established capacities. This gracefulness makes it possible for the
system to operate incrementally, testing new structures and hypotheses while
steadily improving its performance.

Arguments for the evolutionary metaphor

These attractive properties of genetics-based systems - explicit parallelism,
implicit parallelism, and gracefulness - are explored more fully in the papers
that follow. However, before proceeding further we must answer an important
question. Of the two natural archetypes of learning available to us - the brain
and evolution — why have genetic algorithm researchers knowingly adopted
the “wrong” metaphor? One reason is expedience. The processes of natural
evolution and natural genetics have been illuminated by a century of enormous
progress in biology and molecular biology. In contrast, the brain, though
yielding some of its secrets, remains largely an opaque gray box; we can only
guess at many of the fundamental mechanisms contained therein.

Of course, simple expedience is not the best reason for adopting a particular
course of action, and at first glance, it is not at all obvious why learning in
natural or artificial minds should be anything like the adaptation that has
occurred in evolution. Yet there is an appealing symmetry in the notion that
the mechanisms of natural learning may resemble the processes that created
the species possessing those learning processes. Furthermore, the idea that the
mind is subject to the same competitive-cooperative pressures as evolutionary
systems has achieved some currency outside of GA circles (Bateson, 1972;
Edelman, 1987; Minsky, 1986).

Despite these suggestions, genetic algorithms and genetics-based machine
learning have often been attacked on the grounds that natural evolution is
simply too slow to accomplish anything useful in an artificial learning system;
three billion years is longer than most people care to wait for a solution to a
problem. However, this slowness argument ignores the obvious differences in
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time scale between natural systems and artificial systems. A more fundamental
fault is that this argument ignores the robust complexity that evolution has
achieved in its three billion years of operation. The ‘genetic programs’ of even
the simplest living organisms are more complex than the most intricate human
designs.

Waddington (1967) presents more sophisticated probabilistic arguments that
actual evolutionary processes have achieved a complexity in existing species
that is incommensurate with an evolutionary process using only selection and
mutation. Although such arguments were originally meant to challenge evolu-
tionary theory, genetic algorithmists see no such challenge. Instead, the high
speed-to-complexity level observed in nature lends support to the notion that
reproduction, recombination, and the processing of building blocks result in
the rapid development of appropriate complexity. Moreover, this speed is not
purchased at the cost of generality. The mechanisms of genetics and genetic
algorithms permit relative efficiency across a broad range of problems.

Contents of the special issue

This robust combination of breadth and efficiency is a recurring theme in
work on genetic algorithms, and any collection of papers on the topic is likely
to cover a broad range. The current set of papers has been selected to give
a representative view of the major lines of research involving genetic algo-
rithms. The first paper, by Fitzpatrick and Grefenstette, discusses the theory
and application of a genetic algorithm in a difficult, noisy search domain -
medical image registration. Next De Jong provides an overview and careful
discussion of alternative approaches to machine learning using genetic algo-
rithms. The third paper, by Robertson and Riolo, explores the problem of
“scaling up” when one implements 8000 rule classifier systems on a massively
parallel machine. After this, Booker discusses experiments with a simulated
roving automaton, bridging the gap between theories of animal learning and
machine learning. In the fifth paper, Belew and Forrest compare symbolic and
subsymbolic approaches to machine learning, using a classifier-system imple-
mentation of KL-ONE as their starting point. The final paper, by Grefenstette,
experimentally compares various methods for credit assignment in these highly
parallel systems.

The abstracts provide an effective annotated table of contents that we will
not try to duplicate here. However, it is worth extracting a few comments
from the papers concerning the kinds of issues typical of research on genetic
algorithms:

Genetic algorithms search by allocating effort to regions of the search space
based on an estimate of the relative performance of competing regions.
[In complex domains] one expects perpetual novelty to be a characteristic
feature ... In these cases, traditional search techniques ... are likely to be
misled [and] genetic algorithms may be the search technique of choice for
machine learning systems ... [Fitzpatrick and Grefenstette]

If very little background knowledge is available and the problem environ-
ment provides a natural measure for the quality of outcomes, it is appro-
priate to view the problem of learning as a search for high-performance
structures ... [Grefenstette]
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... the syntactic and semantic complexity of traditional languages makes it
difficult to develop [structure-modifying] operators ... that preserve ... the

syntactic integrity ...of the programs being manipulated ... An obvious
next step [is to] focus on less traditional languages with simpler syntax and
semantics [that can be subjected to] genetic operators. [De Jong]

[It is important to provide] low-level learning systems that [support] repre-
sentations at the symbolic level [and that allow] integration of programmed

and learned knowledge ... [Belew and Forrest]

. sequences of coupled classifiers, ... [or] classifier chains, are necessary
so that classifiers can be used to implement arbitrary networks and to
perform a variety of computations. ... the system must not only be able

to discover (create) a set of classifiers to solve the problem, it must also be
able to maintain such a set once it has been discovered. [Robertson and
Riolo]

[An internal] model is used to direct behavior, and learning is triggered
whenever the model proves to be an inadequate basis for generating be-
havior in a given situation. This means that overt external rewards are
not necessarily the only or the most useful source of feedback for inductive
change. [Booker]

Although the papers in this special issue are representative, they can only
suggest the breadth of current activity. The proceedings from two conferences
on genetic algorithms (Grefenstette, 1985, 1987), held at Carnegie Mellon Uni-
versity in 1985 and at Massachusetts Institute of Technology in 1987, contain
papers ranging from VLSI layout compaction to problem-directed generation
of LISP code. The diversity and level of this activity are the signposts of a
journey that has just begun. Along the way, researchers have already learned
that evolutionary processes are not “slow,” and that discovery and recombina-
tion of building blocks, allied with speedup provided by implicit parallelism,
provides a powerful tool for learning in complex domains. As the journey con-
tinues, we are confident that an approach based on the abstraction of natural
example, combined with careful theoretical and computational investigation,
will continue to chart useful territory on the landscape of machine learning.
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