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Introduction �

Abstract

In this tutorial we give an overview of the basic ideas underlying Support
Vector 
SV� machines for regression and function estimation� Further	
more� we include a summary of currently used algorithms for training SV
machines� covering both the quadratic 
or convex� programming part and
advanced methods for dealing with large datasets� Finally� we mention
some modi
cations and extensions that have been applied to the standard
SV algorithm� and discuss the aspect of regularization and capacity control
from a SV point of view�

� Introduction

The purpose of this paper is twofold� It should serve as a self�contained intro�
duction to Support Vector regression for readers new to this rapidly developing
�eld of research� On the other hand� it attempts to give an overview of recent
developments in the �eld�

To this end� we decided to organize the essay as follows� We start by giv�
ing a brief overview of the basic techniques in sections �� �� and �� plus a
short summary with a number of �gures and diagrams in section �� Section �
reviews current algorithmic techniques used for actually implementing SV ma�
chines� This may be of most interest for practicioners� The following sections
cover more advanced topics such as extensions of the basic SV algorithm 	sec�

�� connections between SV machines and regularization theory 	sec� ��� and
methods for carrying out model selection and capacity control 	sec� 
�� We
conclude with a discussion of open questions and problems and current direc�
tions of SV research� Most of the results presented in this review paper already
have been published elsewhere� but the comprehensive presentations and some
details are new�

��� Historic Background

The SV algorithm is a nonlinear generalization of the Generalized Portrait al�
gorithm developed in Russia in the sixties� �Vapnik and Lerner� ��
�� Vapnik
and Chervonenkis� ��
��� As such� it is �rmly grounded in the framework of
statistical learning theory� or VC theory� which has been developed over the last
three decades by Vapnik� Chervonenkis and others Vapnik and Chervonenkis
������� Vapnik ���
�� ������ In a nutshell� VC theory characterizes properties
of learning machines which enable them to generalize well to unseen data�

In its present form� the SV machine was developed at AT�T Bell Labora�
tories by Vapnik and co�workers �Boser et al�� ����� Guyon et al�� ����� Cortes
and Vapnik� ����� Sch�olkopf et al�� ����� Vapnik et al�� ������ Due to this in�
dustrial context� SV research has up to date had a sound orientation towards
real�world applications� Initial work focused on OCR 	optical character recog�
nition�� Within a short period of time� SV classi�ers became competitive with
the best available systems for both OCR and object recognition tasks �Sch�olkopf

�A similar approach� however using linear instead of quadratic programming� was taken at
the same time in the USA� mainly by Mangasarian ������ ������
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et al�� ���
� Sch�olkopf et al�� ���
�� A comprehensive tutorial on SV classi�ers
has been published by Burges ����
�� But also in regression and time series pre�
diction applications� excellent performances were soon obtained �M�uller et al��
����� Drucker et al�� ����� Stitson et al�� ����� Mattera and Haykin� ������ A
snapshot of the state of the art in SV learning was recently taken at the annual
Neural Information Processing Systems conference �Sch�olkopf et al�� ������ SV
learning has now evolved into an active area of research� Moreover� it is in the
process of entering the standard methods toolbox of machine learning �Haykin�
���
� Cherkassky and Mulier� ���
� e�g���

��� The Basic Idea

Suppose we have are given training data f	x�� y��� � � � � 	x�� y��g � X�R� where
X denotes the space of the input patterns � for instance� Rd � These might be�
for instance� exchange rates for some currency measured at subsequent days
together with corresponding econometric indicators� In ��SV regression Vapnik
������� our goal is to �nd a function f	x� that has at most � deviation from the
actually obtained targets yi for all the training data� and at the same time� is
as �at as possible� In other words� we do not care about errors as long as they
are less than �� but will not accept any deviation larger than this� This may be
important if you want to be sure not to lose more than � money when dealing
with exchange rates� for instance�

For pedagogical reasons� we begin by describing the case of linear functions
f � taking the form

f	x� � hw� xi � b with w � X� b � R 	��

where h � � � i denotes the dot product in X� Flatness in the case of 	�� means
that one seeks small w� One way to ensure this is to minimize the Euclidean
norm�� i�e� kwk�� Formally we can write this problem as a convex optimization
problem by requiring�

minimize �
�kwk�

subject to

�
yi � hw� xii � b � �
hw� xii� b� yi � �

	��

The tacit assumption in 	�� was that such a function f actually exists that
approximates all pairs 	xi� yi� with � precision� or in other words� that the
convex optimization problem is feasible� Sometimes� however� this may not
be the case� or we also may want to allow for some errors� Analogously to the
�soft margin� loss function in �Cortes and Vapnik� ������ one can introduce slack
variables �i� �

�
i to cope with otherwise infeasible constraints of the optimizatio

�See �Smola� ����� for an overview over other ways of specifying �atness of such functions�
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problem 	��� Hence we arrive at the formulation stated in �Vapnik� ������

minimize �
�kwk� � C

�P
i��

	�i � ��i �

subject to

��
�

yi � hw� xii � b � �� �i
hw� xii� b� yi � �� ��i
�i� �

�
i � �

	��

The constant C � � determines the trade o� between the �atness of f and the
amount up to which deviations larger than � are tolerated� The formulation
above corresponds to dealing with a so called ��insensitive loss function j�j�
described by

j�j� ��
�

� if j�j � �
j�j � � otherwise�

	��

Fig� � depicts the situation graphically� Only the points outside the shaded
region contribute to the cost insofar� as the deviations are penalized in a linear
fashion� It turns out that the optimization problem 	�� can be solved more

x

x

x
x

x

x
xx

x

x
x

x

x

x

+ε−ε

x

ζ+ε

−ε
0

ζ

Figure � The soft margin loss setting corresponds for a linear SV machine�

easily in its dual formulation� Moreover� as we will see in Sec� �� the dual
formulation provides the key for extending SV machine to nonlinear functions�
Hence we will use a standard dualization method utilizing Lagrange multipliers�
as described in e�g� �Fletcher� ��
���

��� Dual Formulation and Quadratic Programming

The key idea is to construct a Lagrange function from both the objective func�
tion 	it will be called the primal objective function in the rest of this article�
and the corresponding constraints� by introducing a dual set of variables� It
can be shown that this function has a saddle point with respect to the primal
and dual variables at the optimal solution� For details see e�g� �Goldstein� ��

�
Mangasarian� ��
�� McCormick� ��
�� Vanderbei� ����a� and the explanations
in section ���� Hence we proceed as follows�

L ��
�

�
kwk� � C

�X
i��

	�i � ��i ��
�X

i��

�i	�� �i � yi � hw� xii� b� 	��
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�
�X

i��

��i 	�� ��i � yi � hw� xii � b��
�X

i��

	�i�i � ��i �
�
i �

It is understood that the dual variables in 	�� have to satisfy positivity con�
straints� i�e� �i� �

�
i � �i� �

�
i � �� It follows from the saddle point condition that

the partial derivatives of L with respect to the primal variables 	w� b� �i� �
�
i �

have to vanish for optimality�

�bL �
P�

i��	�
�
i � �i� � � 	
�

�wL � w �P�
i��	�i � ��i �xi � � 	��

�
�
���
i

L � C � �
���
i � �

���
i � � 	
�

Substituting 	
�� 	��� and 	
� into 	�� yields the dual optimization problem�

maximize

����
���

��
�

�P
i�j��

	�i � ��i �	�j � ��j �hxi� xji

��
�P

i��
	�i � ��i � �

�P
i��

yi	�i � ��i �

subject to

��
�

�P
i��

	�i � ��i � � �

�i� �
�
i � ��� C�

	��

In deriving 	�� we already eliminated the dual variables �i� �
�
i through condition

	
�� as these variables did not appear in the dual objective function anymore
but only were present in the dual feasibility conditions� Eq� 	�� can be rewritten
as follows

w �

�X
i��

	�i � ��i �xi and therefore f	x� �

�X
i��

	�i � ��i �hxi� xi� b� 	���

This is the so�called Support Vector expansion� i�e� w can be completely de�
scribed as a linear combination of the training patterns xi� In a sense� the
complexity of a function�s representation by SVs is independent of the dimen�
sionality of the input space X� and depends only on the number of SVs� More�
over� the complete algorithm can be described in terms of dot products between
the data� Even when evaluating f	x� we need not compute w explicitly 	al�
though this may be computationally more e�cient in the linear setting�� These
observations will come handy for the formulation of a nonlinear extension�

��� Computing b

So far we neglected the issue of computing b� The latter can be done by ex�
ploiting the so called Karush�Kuhn�Tucker 	KKT� conditions �Karush� �����
Kuhn and Tucker� ������ These state that at the optimal solution the product
between dual variables and constraints has to vanish� In the SV case this means

�i	�� �i � yi � hw� xii� b� � �
��i 	�� ��i � yi � hw� xii � b� � �

	���
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and
	C � �i��i � �
	C � ��i ��

�
i � ��

	���

This allows us to make several useful conclusions� Firstly only samples 	xi� yi�

with corresponding �
���
i � C lie outside the ��insensitive tube around f � Sec�

ondly �i�
�
i � �� i�e� there can never be a set of dual variables �i� �

�
i which

are both simultaneously nonzero as this would require nonzero slacks in both

directions� Finally for �
���
i � 	�� C� we have �

���
i � � and moreover the second

factor in 	��� has to vanish� Hence b can be computed as follows�

b � yi � hw� xii � � for �i � 	�� C�
b � yi � hw� xii� � for ��i � 	�� C�

	���

Another way of computing b will be discussed in the context of interior point op�
timization 	cf� Sec� ��� There b turns out to be a by�product of the optimization
process� Hence further considerations shall be deferred to the corresponding
section�

A �nal note has to be made regarding the sparsity of the SV expansion�
From 	��� it follows that only for jf	xi�� yij � � the Lagrange multipliers may
be nonzero� or in other words� for all samples inside the ��tube 	i�e� the shaded
region in Fig� �� the �i� �

�
i vanish� for jf	xi� � yij � � the second factor in

	��� is nonzero� hence �i� �
�
i has to be zero such that the KKT conditions are

satis�ed� Therefore we have a sparse expansion of w in terms of xi 	i�e� we
do not need all xi to describe w�� The examples that come with nonvanishing
coe�cients are called Support Vectors�

� Kernels

��� Nonlinearity by Preprocessing

The next step is to make the SV algorithm nonlinear� This� for instance� could
be achieved by simply preprocessing the training patterns xi by a map � � X�
F into some feature space F� as described in �Aizerman et al�� ��
�� Nilsson�
��
�� and then applying the standard SV regression algorithm� Let us have a
brief look at an example given in �Vapnik� ������

Example � �Quadratic features in R
�� Consider the map � � R� � R

�

with
�	x�� x�� �

�
x���

p
�x�x�� x

�
�

�
� 	���

It is understood that the subscripts in this case refer to the components of x �
R
� � Training a linear SV machine on the preprocessed features would yield a

quadratic function�

While this approach seems reasonable in the particular example above� it can
easily become computationally infeasible for both polynomial features of higher
order and higher dimensionality� as the number of di�erent features is

�d�p��
p

�
�

Here d is dim	X� and p denotes the polynomial degree� Typical values for OCR
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tasks 	with good performance� �Sch�olkopf et al�� ����� Sch�olkopf et al�� �����
Vapnik� ����� are p � �� d � �
 � �
 � �
�� corresponding to approximately
��� � ���� features�

��� Implicit Mapping via Kernels

Clearly this approach is not feasible at all� and we have to �nd a computationally
cheaper way� The key observation �Boser et al�� ����� is that for the feature
map of example � we have

h�	x���	x��i �
D�

x���
p
�x�x�� x

�
�

�
�
�
x����

p
�x��x��� x�

�
�

�E
� hx� x�i�� 	���

As noted already in the previous chapter� the SV algorithm only depends on
dot products between the various patterns� Hence it su�ces to know and use
k	x� x�� �� h�	x���	x��i instead of �	�� explicitly� This allows us to rewrite the
Support Vector algorithm as follows�

maximize

����
���

��
�

�P
i�j��

	�i � ��i �	�j � ��j �k	xi� xj�

��
�P

i��
	�i � ��i � �

�P
i��

yi	�i � ��i �

subject to

��
�

�P
i��

	�i � ��i � � �

�i� �
�
i � ��� C�

	�
�

The expansion of f 	��� may be written as

w �

�X
i��

	�i � ��i ��	xi� and therefore f	x� �

�X
i��

	�i � ��i �k	xi� x� � b� 	���

The di�erence to the linear case is that w is no longer explicitly given� However
due to the theorem of Fischer�Riesz 	see e�g� �Riesz and Nagy� ������ it is already
uniquely de�ned in the weak sense by the dot products hw��	x�i� Also note
that in the nonlinear setting� the optimization problem corresponds to �nding
the �attest function in feature space� not in input space�

��� Conditions for Kernels

The question that arises now is� which functions k	x� x�� correspond to a dot
product in some feature space F� The following theorem characterizes these
functions�

Theorem � �Mercer ������� Suppose k � L�	X�� such that the integral op�
erator Tk � L�	X�� L�	X��

Tkf	�� ��
Z
X

k	�� x�f	x�d		x� 	�
�
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is positive� Let 
j � L�	X� be the eigenfunction of Tk associated with the
eigenvalue �j �� � and normalized such that k
jkL� � � and let 
j denote its
complex conjugate� Then

�� 	�j	T ��j � ���

�� 
j � L�	X� and supj k
jkL� �	�

�� k	x� x�� �
P
j�N

�j
j	x�
j	x
�� holds for almost all 	x� x��� where the series

converges absolutely and uniformly for almost all 	x� x���

Less formally speaking this theorem means that ifZ
X�X

k	x� x��f	x�f	x��dxdx� � � for all f � L�	X� 	���

holds we can write k	x� x�� as a dot product in some feature space� From this
condition we can conclude some simple rules for compositions of kernels� which
then also satisfy Mercer�s condition �Sch�olkopf et al�� ���
�� In the following we
will call such functions k admissible SV kernels�

Corollary � �Linear Combinations of Kernels� Let k�	x� x
��� k�	x� x�� be

admissible SV kernels and c�� c� � �� then also

k	x� x�� �� c�k�	x� x
�� � c�k�	x� x

�� 	���

is an admissible kernel�

This follows directly from 	��� by virtue of the linearity of integrals�

Corollary 	 �Integrals of Kernels� Let s	x� x�� be a symmetric function of
its arguments on X� X� then

k	x� x�� ��
Z
X

s	x� z�s	x�� z�dz 	���

is an admissible SV kernel�

This can be shown directly from 	��� and 	��� by rearranging the order of
integration� We now state a necessary and su�cient condition for translation
invariant kernels� i�e� k	x� x�� �� k	x� x�� as derived in �Smola et al�� ���
d��

Theorem 
 �Smola� Sch�olkopf� and M�uller ����
d�� A translation invari�
ant kernel k	x� x�� � k	x � x�� is an admissible SV kernels if and only if the
Fourier transform

F �k�	
� � 	����
d
�

Z
X

e�ih��xik	x�dx 	���

is nonnegative�
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We will give a proof and some additional explanations to this theorem in sec�
tion �� It is basically derived from interpolation theory �Micchelli� ��

� and
regularization networks �Girosi et al�� ������ For kernels of the dot�product
type� i�e� k	x� x�� � k	hx� x�i� exist su�cient conditions for being admissible SV
kernels�

Theorem � �Burges ������� Any kernel of dot�product type k	x� x�� � k	hx� x�i�
has to satisfy

k	�� � � 	���

��k	�� � � 	���

��k	�� � ����k	�� � � 	���

for any � � � in order to be an admissible SV kernel�

Note that the conditions in theorem 
 are only necessary but not su�cient�
The rules stated above can be useful tools for practicioners both for checking
whether a kernel is an admissible SV kernel and for actually constructing new
kernels�

��� Examples

In �Poggio� ����� Sch�olkopf et al�� ���
� it has been shown� by explicitly com�
puting the mapping� that homogeneous polynomial kernels k with p � N and

k	x� x�� � hx� x�ip 	�
�

are suitable SV kernels� From this observation one can conclude immediately
�Boser et al�� ����� Vapnik� ����� that kernels of the type

k	x� x�� �
�hx� x�i� c

�p
	���

i�e� inhomogeneous polynomial kernels with p � N� c � � are admissible� too�
This can be seen by rewriting k as a sum of homogeneous kernels and apply�
ing corollary �� Another kernel� that might seem appealing� is the hyperbolic
tangent kernel

k	x� x�� � tanh
�
�� �hx� x�i� 	�
�

as it results in functions of the Neural Network type� By applying theorem 

one can check �Burges� ����� that for � � � or � � � this kernel surely does not
satisfy Mercer�s condition��

Translation invariant kernels k	x� x�� � k	x � x�� are quite widespread� It
was shown in �Aizerman et al�� ��
�� Micchelli� ��

� Boser et al�� ����� that

k	x� x�� � e�
kx�x�k�

��� 	���

�A more direct way to see this� e�g� for � � 	� is to consider nonnegative functions f
x�
that have support only for kxk �

p
���� In this case the integrand is negative on it�s support

and thus also the integral itself�
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is an admissible SV kernel� Moreover one can show �Smola� ���
� Vapnik et al��
����� that

k	x� x�� � B�n��	kx� x�k� with Bk	�� ��
kO
i��

����������		�� 	���

B�splines of order �n��� de�ned by the �n�� convolution of the unit inverval�
are also admissible� Finally� if the input dimensionality is too low� one could
also use some intermediate map and apply a kernel in the second step� How�
ever in practical applications this approach shows hardly any advantage over
conventional kernels�

We shall postpone further considerations to section �� where it will be shown
that by some simple modi�cations� the SV algorithm can be extended to kernels
satisfying a condition weaker than the one of Mercer�

� Cost Functions

So far the SV algorithm for regression may seem rather strange and hardly
related to other existing methods of function estimation 	e�g� �Huber� ��
��
Stone� ��
�� H�ardle� ����� Hastie and Tibshirani� ����� Wahba� ����� Ripley�
���
��� However� once cast into a more standard mathematical notation� we
will observe the connections to previous work� For the sake of simplicity we
will� again� only consider the linear case� as extensions to the nonlinear one are
straightforward by using the kernel method described in the previous chapter�

��� The Risk Functional

Let us for a moment go back to the case of section ���� There� we had some
training data X �� f	x�� y��� � � � � 	x�� y��g � X � R� We will assume now� that
this training set has been drawn iid
 from some probability distribution P 	x� y��
Our goal� however� will be to �nd a function f that minimizes a risk functional
	cf� �Vapnik� ��
���

R�f � �

Z
c	x� y� f	x��dp	x� y� 	���

	c	x� y� f	x�� denotes a cost function determining how we will penalize estima�
tion errors� based on the empirical data X� Given that we do not know the
probability measure dp	x� y� we can only use X for estimating a function f that
minimizes R�f �� A possible approximation consists in replacing the integration
by the empirical estimate to get the so called empirical risk functional

Remp�f � ��
�

�

�X
i��

c	xi� yi� f	xi��� 	���

A �rst attempt would be to �nd the function f� �� argminf�H Remp�f � for some
hypothesis class H� However� if H is very rich� i�e� its capacity very high as for

�independent and identically distributed
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instance when dealing with few data in very high�dimensional spaces� this may
not be a good idea� as it will lead to over�tting and thus bad generalization
properties� Hence one should add a capacity control term� which in the SV case
results to be kwk�� which leads to the regularized risk functional �Tikhonov and
Arsenin� ����� Morozov� ��
�� Vapnik� ��
��

Rreg�f � �� Remp�f � �
�

�
kwk� 	���

where � � � is a so called regularization constant� Many algorithms like regu�
larization networks �Girosi et al�� ����� or weight decay networks �Bishop� �����
minimize an expression similar to 	�����

��� Maximum Likelihood and Density Models

Now the question arises� which cost functions c	x� y� f	x�� should be used in
	���� The standard setting in the SV case is� as already mentioned in section
����

c	x� y� f	x�� � jy � f	x�j�� 	���

It is straightforward to show� that minimizing 	��� with the particular loss
function of 	��� is equivalent to minimizing 	��� the only di�erence being that
C � ��	����

Loss functions such like jy� f	x�jp� with p � � may not be desirable� as the
superlinear increase leads to a loss of the robustness properties of the estimator
	see e�g� �Huber� ��
���� in those cases the derivative of the cost function may
grow without bound� For p � � the loss function becomes nonconvex�

For the case of c	x� y� f	x�� � 	y�f	x��� we recover the least mean squares
�t approach� which� unlike the standard SV loss function� leads to a matrix
inversion instead of a quadratic programming problem�

The question that now arises is which cost function should be used in 	����
On the one hand we will want to avoid using a very complicated function c
as this may lead to di�cult optimization problems� On the other hand one
should use that particular cost function that suits the data best� For instance
we may be given a cost function  c by some real world problem� hence we should
use this particular one� Moreover� under the assumption that the samples
were generated by an underlying functional dependency plus additive noise
yi � ftrue	xi� � �i with density p	�� the optimal cost function in a maximum
likelihood sense would be

c	x� y� f	x�� � � log p	y � f	x��� 	���

This can be seen as follows� The likelihood of an estimate

Xf �� f	x�� f	x���� � � � � 	x�� f	x���g 	�
�

�See �Smola� ����� for a discussion of other regularization terms and invariance properties
of quadratic regularization functionals�
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loss function density model

��insensitive c	�� � j�j� p	�� � �
������ exp	�j�j��

Laplacian c	�� � j�j p	�� � �
� exp	�j�j�

Gaussian c	�� � �
��

� p	�� � �p
��

exp	� ��

� �

Huber�s
robust loss

c	�� �

�
�
�� 	��

� if j�j � �
j�j � �

� otherwise
p	�� 


	
exp	� ��

�� � if j�j � �
exp	�� � j�j� otherwise

Polynomial c	�� � �
p j�jp p	�� � p

�
���p� exp	�j�jp�
Piecewise
polynomial

c	�� �

	
�

p�p�� 	��
p if j�j � �

j�j � � p��
p otherwise

p	�� 

	

exp	� �p

p�p�� � if j�j � �

exp	� p��
p � j�j� otherwise

Table � Common loss functions and corresponding density models

under the assumption of additive noise and iid data is

P 	Xf jX� �

�Y
i��

P 	f	xi�j	xi� yi�� �
�Y

i��

P 	f	xi�jyi� �
�Y

i��

p	yi � f	xi��� 	���

Maximizing P 	Xf jX� is equivalent to minimizing � logP 	Xf jX�� By using
	��� we get

� logP 	Xf jX� �

�X
i��

c	xi� yi� f	xi�� 	�
�

which proves the statement�
However� the cost function resulting from this reasoning might be noncon�

vex� In this case one would have to �nd a convex proxy in order to deal with
the situation e�ciently 	i�e� to �nd an e�cient implementation of the corre�
sponding optimization problem�� Moreover� the situation of regression as such�
i�e� without any knowledge of cost functions� is not properly de�ned from the
viewpoint of structural risk minimization� risk can only be minimized if it can
be quanti�ed via a cost function 	i�e� a penalty for deviations�� Finally� given
a speci�c cost function from a real world problem� one should try to �nd as
close a proxy to this cost function as possible� as it is the performance wrt� this
particular cost function that matters ultimately�

Table � contains an overview over some common density models and the
corresponding loss functions as de�ned by 	���� whereas �gure � contains graphs
of the corresponding functions� The only requirement we will impose on c
in the following is that for �xed xi and yi we have convexity in f	xi�� This
requirement is made� as we want to ensure the existence and uniqueness 	for
strict convexity� of a minimum of optimization problems by imposing convexity
�Fletcher� ��
���

��� Solving the Equations

However� for the sake of simplicity we will additionally assume c to be symmetric
and to have 	at most� two 	for symmetry� discontinuities at ��� � � � in the
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Figure � Graphs of loss functions and corresponding density models� upper
left� Gaussian� upper right� Laplacian� lower left� Huber�s robust� lower right�
��insensitive

�rst derivative� and to be zero in the interval ���� ��� All loss functions from
table � belong to this class� Hence c will take on the following form�

c	x� y� f	x�� �

�
� for jy � f	x�j � �

 c	jy � f	x�j � �� otherwise
	���

Note the similarity to Vapnik�s ��insensitive loss� It is rather straightforward
to extend this special choice to more general convex cost functions� For nonzero
cost functions in the interval ���� �� use an additional pair of slack variables�
Moreover we might choose di�erent cost functions  ci�  c

�
i and di�erent values

of �i� �
�
i for each sample� At the expense of additional Lagrange multipliers

in the dual formulation additional discontinuities also can be taken care of�
Analogously to 	�� we arrive at a convex minimization problem �Smola et al��
���
b�� We will stick� however� to the notation of 	�� and will use C instead of
normalizing by � and �� as it contributes to the clarity of the exposition�

minimize �
�kwk� � C

�P
i��

	 c	�i� �  c	��i ��

subject to

��
�

yi � hw� xii � b � �� �i
hw� xii� b� yi � �� ��i
�i� �

�
i � �

	���
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Again� by standard Lagrange multiplier techniques� exactly in the same manner
as in the j � j� case� one can compute the dual optimization problem� We will
omit the indices i and

�� where applicable in order to avoid tedious notation�
This yields

maximize

����
���

��
�

�P
i�j��

	�i � ��i �	�j � ��j�hxi� xji

�
�P

i��
	yi	�i � ��i �� �	�i � ��i � � C	T 	�i� � T 	��i ���

where

��
� w �

�P
i��

	�i � ��i �xi

T 	�� ��  c	��� ��� c	��

subject to

������
�����

�P
i��

	�i � ��i � � �

� � C�� c	��
� � inff� jC�� c � �g
�� � � �

	���

��� Examples

Let us consider the examples of table �� We will show explicitly for two examples
how 	��� can be further simpli�ed to bring it into a form that is practically
useful� In the ��insensitive case� i�e�  c	�� � j�j we get

T 	�� � � � � � � � �� 	���

Morover one can conclude from �� c	�� � � that

� � inff� jC � �g � � and hence � � ��� C� � 	���

For the case of piecewise polynomial loss we have to distinguish two di�erent
cases � � � � and � � �� In the �rst case we get

T 	�� �
�

p�p��
�p � �

�p��
�p � �p� �

p
���p�p 	���

and � � f� jC���p�p�� � �g � �C
� �
p���

�
p�� and therefore

T 	�� � �p� �

p
�C

� p
p���

p
p�� � 	���

In the second case 	� � �� we have

T 	�� � � � �
p� �

p
� � � ��p� �

p
	�
�

and
� � inff� jC � �g � � and hence � � ��� C� � 	���
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� � CT 	��

��insensitive � �� � � � ��� C� CT 	�� � �

Laplacian � � � � � ��� C� CT 	�� � �

Gaussian � � � � � ���	� CT 	�� � ��
�C

����

Huber�s
robust loss

� � � � � ��� C� CT 	�� � ��
��C

����

Polynomial � � � � � ���	� CT 	�� � �p��
p C� �

p���
p

p��

Piecewise
polynomial

� � � � � ��� C� CT 	�� � �p��
p �C

� �
p���

p
p��

Table � Terms of the convex optimization problem depending on the choice of
the loss function�

These two cases can be combined into

� � ��� C� and T 	�� � �p� �

p
�C

� p
p���

p
p�� � 	�
�

Table � contains a summary of the various conditions on � and formulas for
T 	�� for di�erent cost functions�� Note that the maximum slope of  c determines
the region of feasibility of �� i�e� s �� sup��R� �� c	�� � 	 leads to compact
intervals ��� Cs� for �� This means that the in�uence of a single pattern is
bounded� leading to robust estimators �Huber� ������ One can also observe
experimentally that the performance of a SV machine depends signi�cantly on
the cost function used �M�uller et al�� ����� Smola et al�� ���
b��

A cautionary remark is necessary regarding the use of cost functions other
than the ��insensitive one� Unless � �� � we will lose the advantage of a sparse
decomposition� This may be acceptable in the case of few data� but will render
the prediction step extremely slow otherwise� Hence one will have to trade of
a potential loss in prediction accuracy with faster predictions� Note� however�
that also a reduced set algorithm like in �Burges� ���
a� Burges and Sch�olkopf�
����� Sch�olkopf et al�� ���
b� could be applied to address this issue�

� The Bigger Picture

Before delving into algorithmic details of the implementation let us brie�y re�
view the basic properties of the SV algorithm for regression as described so far�
Figure � contains a graphical overview over the di�erent steps in the regression
stage�

The input pattern 	for which a prediction should be made� is mapped into
feature space by a map �� Then dot products are computed with the images of
the training patterns under the map �� This corresponds to evaluating kernel
k functions at locations k	xi� x�� Finally the dot products are added up using
the weights �i � ��i � This� plus the constant term b yields the �nal prediction

�The table displays CT 
�� instead of T 
�� as the former can be plugged directly into the
corresponding optimization equations�
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Σ

. . .

output   Σ vi k (x,xi) + b

weightsv1 v2  vm

. . .

. . .

test vector x

support vectors x1 ... xn

mapped vectors Φ(xi), Φ(x)Φ(x) Φ(xn)

dot product (Φ(x).Φ(xi)) =  k (x,xi)( . ) ( . ) ( . )

Φ(x1) Φ(x2)

Figure � Architecture of a regression machine constructed by the SV algorithm�

output� The process described here is very similar to regression in a three�
layered neural network� with the di�erence� that in the SV case the weights in
the input layer are predetermined by the training patterns�

Figure � demonstrates how the SV algorithm chooses the �attest function
among those approximating the original data with a given precision� Although
requiring �atness only in feature space� one can observe that the functions
also are very �at in input space� This is due to the fact� that kernels can be
associated with �atness properties via regularization operators� This will be
explained in more detail in section ��

Finally �g� � shows the relation between approximation quality and sparsity
of representation in the SV case� The lower the precision required for approxi�
mating the original data� the fewer SVs are needed to encode that� The non�SVs
are redundant� i�e� even without these patterns in the training set� the SV ma�
chine would have constructed exactly the same function f � One might think
that this could be an e�cient way of data compression� namely by storing only
the support patterns� from which the estimate can be reconstructed completely�
However� this simple analogy turns out to fail in the case of high�dimensional
data� and even more drastically in the presence of noise� In �Vapnik et al�� �����
one can see that even for moderate approximation quality� the number of SVs
is considerably high yielding rates worse than the Nyquist sampling �Nyquist�
���
� Shannon� ���
� rate�

In �gure 
 one can observe the action of Lagrange multipliers acting as forces
	�i� �

�
i � pulling and pushing the regression inside the ��tube� These forces�

however� can only be applied at the samples where the regression touches or
even exceeds the predetermined tube� This is a direct illustration of the KKT�
conditions� either the regression lies inside the tube 	hence the conditions are
satis�ed with a margin�� and consequently the Lagrange multipliers are �� or
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Figure 	 Upper left� original function sincx� upper right� approximation with
� � ��� precision 	the solid top and the bottom lines indicate the size of the
��tube� the dotted line in between is the regression�� lower left� � � ���� lower
right� � � ����

the condition is exactly met and forces have to applied �i �� � or ��i �� � to
keep the constraints satis�ed� This observation will prove useful when deriving
algorithms to solve the optimization problems �Osuna et al�� ����� Saunders
et al�� ���
��

� Optimization Algorithms

While there has been a large number of implementations of SV algorithms in the
past two years� we focus on a few algorithms which will be presented in greater
detail� This selection is somewhat biased� as it contains these algorithms the
authors are most familiar with� However� we think that this overview contains
some of the most e�ective ones and will be useful for practicioners who would
like to actually code a SV machine by themselves� But before doing so we will
brie�y other major optimization packages and strategies�
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Figure 
 Upper left� regression 	solid line�� datapoints 	small dots� and SVs
	big dots� for an approximation with � � ���� upper right � � ���� lower left
� � ���� lower right � � ����� Note the increase in the number of SVs�

��� Implementations

A commercially available package for quadratic programming is OSL �IBM Cor�
poration� ������ It uses a two phase algorithm to minimize a quadratic objective
function with a positive semide�nite quadratic coe�cient matrix subject to lin�
ear constraints� Since the optimum may occur in the interior of the feasible
region� the simplex method �Dantzig� ��
�� alone cannot be used to solve QP
problems� The �rst subalgorithm solves an approximating LP problem� using
the simplex solver� and a related very simple QP problem at each iteration�
When successive approximations are close enough together� the second subal�
gorithm� which permits a quadratic objective and converges very rapidly from
a good starting value� is used� Another package� �Inc�� ����� uses a primal�dual
logarithmic barrier algorithm �Vanderbei et al�� ����� instead with predictor�
corrector step 	see eg� �Lustig et al�� ����� Mehrotra and Sun� ����� Vanderbei�
����b� �������

Another package� MINOS by the Stanford Optimization Laboratory �Murtagh
and Saunders� ��
�� uses a reduced gradient algorithm in conjunction with a
quasi�Newton algorithm� The constraints are handled by an active set strategy�
Feasibility is maintained throughout the process� The variables are classi�ed
as basic� superbasic� and nonbasic! at the solution� the basic and superbasic
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Figure � Forces 	dashdotted line� exerted by the ��tube 	solid interval lines�
on the approximation 	dotted line��

variables are away from their bounds� The null space is spanned by a matrix
that is constructed from the coe�cient matrix of the basic variables by us�
ing a sparse factorization� On the active constraint manifold� a quasi�Newton
approximation to the reduced Hessian is maintained�

Finally a system by Kaufman �Bunch et al�� ���
� Bunch and Kaufman�
����� ��
�� Drucker et al�� ����� Kaufmann� ������ uses an iterative free set
method starting with all variables on the boundary and adding them as the
Karush Kuhn Tucker conditions become more violated� This approach has
the great advantage of not having to compute the full dot product matrix
from the beginning� Instead it is evaluated on the �y� yielding a performance
improvement in comparison to tackling the whole optimization problem at once�
However� also other algorithms can be modi�ed by several chunking techniques
	see section ���� to address this problem�

A cautionary remark is necessary regarding the use of the standard MAT�
LAB optimization toolbox� Whilst it does delivers agreeable� although below
average performance on classi�cation tasks� it does not seem all too useful for
regression tasks 	for problems much larger than ��� samples� due to the fact
that one is e�ectively dealing with an optimization problem of size �� where
at least half of the eigenvalues of the Hessian vanish� This is also the reason
why it is advantageous not to take an o��the�shelf product for SV regression �
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considerable speedups can be realized by adapting the optimization strategy to
the particular SV situation�

��� Basic Notions

Most algorithms rely on results from the duality theory in convex optimization�
Although we already happened to mention some basic ideas in section ��� we
will� for the sake of convenience� brie�y review without proof the core results�
These are needed in particular to derive an interior point algorithm� For details
and proofs see e�g� �Fletcher� ��
���

Uniqueness Every strictly convex constrained optimization problem has a
unique solution� This means that SVs are not plagued with the problem
of local minima as Neural Networks are�� The uniqueness property can be
seen as follows� assume that there exist two points� say x� and x� where
the minimum of the 	primal objective� i�e� target� function f	x�� is ob�
tained� As the problem is strictly convex� all points x	 �� �x��	����x�
are feasible� i�e� satisfy the constraints on the manifold of the solution�
Moreover f	x	� � �f	x�� � 	�� ��f	x�� for � � 	�� �� due to the convex�
ity� This is a contradiction to the initial assumption that f	x�� � f	x��
are both minima of the constrained optimization problem� The same
reasoning also shows that there exist no local minima�

Lagrange Function The Lagrange function is given by the primal objective
function 	the one that should be minimized� minus the sum of all prod�
ucts between constraints and corresponding Lagrange multipliers 	cf� e�g�
�Goldstein� ��

� Fletcher� ��
���� Optimization can be seen as minimza�
tion of the Lagrange function wrt� the primal variables or maximization
wrt� the Lagrange multipliers� i�e� dual variables� Thus it has a saddle
point at the optimal solution in terms of the primal and dual variables�
Usually the Lagrange function is only used as a theoretical device to derive
the dual objective function 	cf� Sec� �����

Dual Objective Function It is derived by minimizing the Lagrange function
with respect to the primal variables and subsequent elimination of the
latter� Hence it can be written solely in terms of the dual variables 	i�e�
Lagrange multipliers� and leads to the dual maximization problem�

Duality Gap For both feasible primal and dual variables the primal objective
function 	of a convex minimization problem� is always greater or equal

	For large and noisy problems 
e�g� �		�			 patterns and more� it is quite impossible to

nd the exact minimum of the optimization equations� This is due to the fact that one has to
use subset selection algorithms� hence joint optimization over the training set is impossible�
and the global optimum is only approached up to a certain precision� say 	�		�� Neural
Networks� however� have additional the problem that one can not even be sure that it is the
global minimum one is approaching� as there are exponentially many local minima �Minsky
and Papert� ������ Moreover� no statement can be made about the absolute quality of the
solution� i�e� the maximum distance of the current set of variables to the optimal solution�
However� all this reasoning is valid only in the case of convex cost functions�
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than the dual objective function� Equality is obtained if and only if we
are at the optimal solution� Thus the duality gap is a measure how close
	in terms of the objective function� the current set of variables is already
to the optimal solution� It follows directly from the saddlepoint property
of the Lagrange function�

Karush�Kuhn�Tucker �KKT� conditions A set of primal and dual vari�
ables that is both feasible and satis�es the KKT conditions is the optimal
solution 	i�e� constraint � dual variable � ��� The sum of the violated
KKT terms determines 	by construction of the Lagrange function� ex�
actly the size of the duality gap� This allows to compute the latter quite
easily�

A simple intuition to see why �constraint � dual variable � �� can be
found in the fact that for violated constraints the dual variable could
be increased arbitrarily� thus rendering the Lagrange function arbitrarily
large� This� however� is in contradition to the saddlepoint property�

Consider a simple example� a box containing a ball subject to the forces
of gravity� Only at the faces of the box 	i�e� the constraints� where the ball
	i�e� the variables� touches the box 	the domain of feasible regions� forces
may be applied 	i�e� yield nonzero Lagrange multipliers�� The amount is
given by the projections of the gradient of the objective function 	potential
energy� onto the constraints 	faces of the box��

The above mentioned results will enable us to �nd an e�cient solution of the
convex optimization problem�

��� Interior Point Algorithms

In a nutshell the idea of an interior point algorithm is to compute the dual of the
optimization problem 	in our case the dual of the dual of the initial setting� and
solve both problems simultaneously� This is done by only gradually enforcing
the KKT conditions to iteratively �nd a feasible solution and to use the duality
gap between primal and dual objective function to determine the quality of the
current set of variables� The special �avour of algorithm we will describe is a
primal�dual path�following one as described in �Vanderbei� ������

����� Primal�Dual Formulation

In order to avoid tedious notation we will consider the slightly more general
problem and specialize the result to the SV case in the end� It is understood
that unless stated otherwise� variables like � denote vectors and �i denotes the
i�th component thereof�

minimize �
�q	�� � 	c � ��

subject to A� � b
l � � � u

	���



Optimization Algorithms ��

with c� �� l� u � R
n � A � R

n�m � b � R
m � the inequalities between vectors holding

componentwise and q	�� being a convex function of � 	in the feasible region�
i�e� in the region where the constraints are satis�ed�� Now we will add slack
variables to get rid of all inequalities but the positivity constraints� This yields�

minimize �
�q	�� � 	c � ��

subject to A� � b� �� g � l� �� t � u
g� t � �� � free

	���

The Wolfe dual of 	��� is

maximize �
�

�
q	��� 	��q	�� � ��

�
� 	b � y� � 	l � z�� 	u � s�

subject to �
�
��q	�� � c� 	Ay�� � s � z

s� z � �� y free

	���

Moreover we get the KKT conditions� namely

gizi � �� siti � � for all i � ����n�� 	���

As we know� a necessary and su�cient condition for the optimal solution to be
found is that the primal " dual variables satisfy both the feasibility conditions
of 	��� and 	��� and the KKT conditions 	���� Now we will proceed to solve
the system of equations iteratively�

����� Solving the Equations

We will resort to a method called path�following� i�e� we will not try to satisfy
	��� as it is� but try to solve a modi�ed version instead for some 	 � � in the
�rst place and decrease 	 while iterating�

gizi � 	� siti � 	 for all i � ����n�� 	���

Still it is rather di�cult to solve the nonlinear system of equations 	���� 	����
and 	��� exactly� However we are not interested in obtaining the exact solution
� instead our aim is to �nd a somewhat more feasible solution for a given
	� then decrease 	 and keep on iterating� This can be done by linearizing
the above system and solving the resulting equations by a predictor�corrector
approach until the duality gap is small enough� It means that we will solve the
linearized system for the variables in # once � this is the predictor step � then
substitute these variables into the quadratic terms in # and solve the linearized
system again 	corrector�� The advantage is that we will get approximately equal
performance as by trying to solve the quadratic system directly� provided that
the terms in #� are small enough� Hence we solve the system

A	� �#�� � b
��#�� g �#g � l
��#�� t�#t � u

c� �
��
q	�� �

�
��

�

q	��#�� 	A	y �#y��� � s�#s � z �#z

	gi �#gi�	zi �#zi� � 	
	si �#si�	ti �#ti� � 	

	���
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for the variables in #� This method is described in great detail in �Vanderbei�
����� for quadratic programming� We get

A#� � b�A� �� �
#��#g � l � �� g �� �
#��#t � u� �� t �� �
	A#y�� �#z �#s� �

��
�

q	��#� � c� 	Ay�� � �

��
q	�� � s� z �� �
g��z#g �#z � 	g�� � z � g��#g#z �� �z
t��s#t�#s � 	t�� � s� t��#t#s �� �s

	���
where g�� denotes the vector 	��g�� � � � � ��gn�� and t analogously� Moreover
denote g��z and t��s the vector generated by the componentwise product of
the two vectors� Solving for #g�#t�#z�#s we get

#g � z��g	�z �#z�
#t � s��t	�s �#s�

de�ne $� �� � � z��g�z
$� �� � � s��t�s

hence #z � g��z	$� �#��
#s � t��s	#�� $���

	�
�

Now we can formulate the reduced KKT�system 	see �Vanderbei� ����� for the
quadratic case��
 � �����
q	�� � g��z � t��s

�
A�

A �

� 

#�
#y

�
�



� � g��z$� � t��s$�

�

�
	���

����� Iteration Strategies

For the predictor�corrector method we proceed as follows� In the predictor step
solve the system of 	�
� and 	��� with 	 � � and all #�terms on the rhs set to
�� i�e� �z � z� �s � s� The values in # are substituted back into the de�nitions
for �z and �s and 	�
� and 	��� are solved again in the corrector step� As
the quadratic part in 	��� is not a�ected by the predictor�corrector steps� we
only need to invert the quadratic matrix once� This is done best by manually
pivoting for the �

��
�

q	�� � g��z � t��s part� as it is positive de�nite�

Next the values in # obtained by such an iteration step are used to update
the corresponding values in �� s� t� z� � � �� To ensure that the variables meet the
positivity constraints� the steplength � is chosen such that the variables move
at most �� � of their initial distance to the boundaries of the positive orthant�
Usually �Vanderbei� ����� one sets � � �����

Another heuristic is used for computing 	� the parameter determining how
much the KKT�conditions should be enforced� Obviously it is our aim to reduce
	 as fast as possible� however if we happen to choose it too small� the condition
of the equations will worsen drastically� A setting that has proven to work
robustly is

	 �
hg� zi � hs� ti

�n

�
� � �

� � ��


�

� 	�
�
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The rationale behind 	�
� is to use the average of the satisfaction of the KKT
conditions 	��� as point of reference and then decrease 	 rapidly if we are far
enough away from the boundaries of the positive orthant� to which all variables
	except y� are constrained to�

Finally one has to come up with good initial values� Analogously to �Van�
derbei� ����� we choose a regularized version of 	��� in order to determine the
initial conditions� One solves
 � �����
q	�� � �

�
A�

A �

� 

�
y

�
�



c
b

�
	���

and
x � max 	x� u�����
g � min 	�� l� u�
t � min 	u� �� u�

z � min
�
H
�
�
��
q 	�� � c� 	Ay��

�
� u����� u

�
s � min

�
H
�
��

��
q 	��� c� 	Ay��
�
� u����� u

�
	
��

where H	�� denotes the Heavyside function� i�e� H	x� � � for x � � and H	x� �
� otherwise�

����� Special considerations for SV regression

The algorithm described so far can be applied to both SV pattern recognition
and regression estimation� For the standard setting in pattern recognition we
have

q	�� �
�X

i�j��

�i�jyiyjk	xi� xj� 	
��

and consequently
�
iq	�� � �
��
i
jq	�� � yiyjk	xi� xj��

	
��

i�e� the Hessian is dense and the only thing we can do is compute its cholesky
factorization to compute 	���� In the case of SV regression� however we have
	with � �� 	��� � � � � ��� �

�
�� � � � � �

�
� ��

q	�� �
�X

i�j��

	�i � ��i �	�j � ��j �k	xi� xj� � �C
�X

i��

T 	�i� � T 	��i � 	
��

and therefore
�
iq	�� � d

d
i
T 	�i�

��
i
jq	�� � k	xi� xj� � �ij
d�

d
�i
T 	�i�

��
i
�j
q	�� � �k	xi� xj�

	
��

and ��
�i 
�j
q	��� ��
�i 
j

q	�� analogously� Hence we are dealing with a matrix of

type M ��



K �D �K
�K K �D�

�
where D�D� are diagonal matrices� By apply�

ing an orthogonal transformation M can be inverted essentially by inverting an
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��� matrix instead of a ����� system� This is exactly the additional advantage
one can gain from implementing the optimization algorithm directly instead of
using a general purpose optimizer� One can show that for practical implemen�
tations �Smola et al�� ���
b� one can solve optimization problems using nearly
arbitrary convex cost functions as e�ciently as the special case of ��insensitive
loss functions�

Finally note that due to the fact that we are solving the primal and dual
optimization problem simultaneously we are also computing parameters corre�
sponding to the initial SV optimization problem� This observation is useful as
it allows us to obtain the constant term b directly� namely by setting b � y� See
�Smola� ���
� for details�

��� Useful Tricks

Before proceeding to further algorithms for quadratic optimization let us brie�y
mention some useful tricks that can be applied to all algorithms described
subsequently and may have signi�cant impact despite their simplicity� They
are in part derived from ideas of the interior�point approach�

Training with Di�erent Regularization Parameters For several reasons
	model selection� controlling the number of support vectors� etc�� it may
happen that one has to train a SV machine with di�erent regularization
parameters C� but otherwise rather identical settings� If the parameters
Ci are not too di�erent� it is advantageous to use the rescaled values of the
Lagrange multipliers 	i�e� �i� �

�
i � as a starting point for the new optimiza�

tion problem� Rescaling is necessary to satisfy the modi�ed constraints�
Thus one gets

�new �
Cnew

Cold
�old and analogously bnew �

Cnew

Cold
bold� 	
��

Assuming that the 	dominant� convex part q	�� of the primal objective

is quadratic� the latter scales with C�
new

C�
old

� which is faster than the linear

part� However� as the linear term dominates the objective function 	one
obtains negative values in practice� the convex term� however can only
be nonnegative�� the rescaled values are still a better starting point than
� � �� In practice a speedup of approximately ��% of the overall training
time can be observed when using the sequential minimization algorithm�
cf� �Smola� ���
��

A similar reasoning can be applied when retraining with the same regu�
larization parameter but di�erent 	yet similar� width parameters of the
kernel function� See �Cristianini et al�� ���
� for details thereon in a dif�
ferent context�

Monitoring Convergence via the Feasibility Gap In the case of both pri�
mal and dual feasible variables the following connection between primal
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and dual objective function holds�

Dual Objective � Primal Objective�
X
i

	gizi � siti� 	

�

This can be seen immediately by the construction of the Lagrange func�
tion� In Regression Estimation 	with the ��insensitive loss function� one
has

X
i

gizi � siti �
X
i

�
���

�max	�� f	xi�� 	yi � �i��	C � ��i �
�min	�� f	xi�� 	yi � �i���

�
i

�min	�� 	yi � ��i �� f	xi��	C � �i�
�max	�� 	yi � ��i �� f	xi���i

�
��� � 	
��

Thus convergence with respect to the optimal solution can be expressed
in terms of the duality gap� An e�ective stopping rule is to requireP

i gizi � siti
jPrimal Objectivej� �

� �tol 	

�

for some precision �tol� This condition is very much in the spirit of primal
dual interior point path following algorithms� where convergence is mea�
sured in terms of the number of signi�cant �gures 	which would be the
decimal logarithm of 	

��� a convention that will also be adopted in the
subsequent parts of this exposition�

��� Subset Selection Algorithms

The convex programming algorithms described so far can be used directly on
moderately sized 	up to ����� samples datasets without any further modi��
cations� On large datasets� however� it is di�cult� due to memory and cpu
limitations� to compute the dot product matrix k	xi� xj� and keep it in mem�
ory� A simple calculation shows that for instance storing the dot product
matrix of the NIST OCR database 	
����� samples� at single precision 	�
bytes� would consume 

� MBytes� already taking advantage of the fact that
k	xi� xj� � k	xj � xi�� Computing a Cholesky decomposition thereof� which
would additionally require roughly the same amount of memory and 
� Ter�
a�ops 	counting multiplies and adds separately�� seems unrealistic� at least at
current processor speeds� Even worse� interior point algorithms need approx�
imately �� Cholesky iterations until convergence� yielding nearly ���� �oating
point operations� Hence one has to �nd more e�cient ways for large datasets�

����� Chunking

A �rst solution� which was introduced in �Vapnik� ��
�� relies on the observation
that only the SVs are relevant for the �nal form of the hypothesis� In other
words � if we were given only the SVs� we would obtain exactly the identical
�nal hypothesis as if we had the full training set at disposition� Hence if we
knew the SV set beforehand and moreover this also would �t into memory we
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could directly solve the reduced problem and thereby deal with signi�cantly
larger datasets� The catch is that we do not know the SV set before solving
the problem� The solution is to start with an arbitrary subset� a �rst chunk
that �ts into memory� train the SV algorithm on it� keep the SVs and �ll the
chunk up with data the current estimator would make errors on 	i�e� data lying
outside the ��tube of the current regression�� Then retrain the system and
keep on iterating until after training the KKT�conditions are satis�ed for all
samples�

����� Advanced Working Set Algorithms

The basic chunking algorithm just postponed the underlying problem of deal�
ing with large datasets whose dot�product matrix cannot be suitably kept in
memory� Hence the solution is �Osuna et al�� ����� to use only a subset of the
variables as a working set and optimize the problem with respect to them while
freezing the other variables� This method is described in detail in �Osuna et al��
���
� Joachims� ����� Saunders et al�� ���
� for the case of pattern recognition��

We will adapt the exposition to the case of regression with convex cost
functions� This is straightforward as the only non�quadratic part will appear
in the term

P
i T 	�i� � T 	��i �� Without loss of generality we will assume � �� �

and � � ��� C�� as the other situations can be treated as a special case� First
we will extract a reduced optimization problem for the working set when all
other variables are kept �xed� Denote Sw � f�� � � � � �g the working set and
Sf � f�� � � � � �g the �xed set with Sw � Sf � f�� � � � � �g and Sw 
 Sf � ��
Writing 	��� as an optimization problem only in terms of Sw yields

maximize

�������
������

��
�

P
i�j�Sw

	�i � ��i �	�j � ��j �hxi� xji

�
P
i�Sw

	�i � ��i �

�
yi �

P
j�Sf

	�j � ��j �hxi� xji
�

�
P
i�Sw

	�� 	�i � ��i � � C 	T 	�i� � T 	��i ���

subject to

��
�

P
i�Sw

	�i � ��i � � � P
i�Sf

	�i � ��i �

�i � ��� C�

	
��

Hence we only have to update the linear term by the coupling with the �xed set
� P

i�Sw
	�i���i �

P
j�Sf

	�j ���j �hxi� xji and the equality constraint by � P
i�Sf

	�i�
��i �� It is easy to see that minimizing 	
�� also decreases 	��� by exactly the
same amount� If we choose variables for which the KKT�conditions are not
satis�ed we are guaranteed to strictly decrease the overall objective function
whilst still keeping all variables feasible� Moreover the objective function is
bounded from below by �� Table � describes the algorithm�

In �Osuna et al�� ����� sec� ���� this reasoning is used to argue that this
subset selection procedure is guaranteed to converge in a �nite number of steps�


A similar technique was employed by Bradley and Mangasarian ������ in the context of
linear programming in order to deal with large datasets�
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��� Initialize �i� �
�
i � �

��� Choose arbitrary working set Sw
��� Repeat

����� Compute coupling terms �linear and constant� for Sw
����� Solve reduced optimization problem

����� Choose new Sw from variables �i� �
�
i not satisfying the

KKT conditions

�	� Until working set Sw � �

Table � Basic structure of a working set algorithm�

This conclusion� however� is incorrect� as a strictly monotonously decreasing
sequence 	e�g� �

n� which is bounded from below by some constant c� 	e�g� ���
will not necessarily converge to c� � it easily also might converge to some
c� � c� 	in this case ��� and even worse� in an in�nite number of steps�

Yet one should bear in mind that even though there exists no proof of
convergence in a �nite number of steps� in many cases this algorithm proves
useful in practice� It is one of the few methods 	besides �Kaufmann� ����� Platt�
������ that can deal with problems whose quadratic part does not completely
�t into memory� Still in practice one has to take special precautions to avoid
stalling of convergence� The crucial part is step 	���� of the algorithm in table
�� namely which working set Sw to select�

����� A Note on Optimality

For convenience the KKT conditions are repeated in a slightly modi�ed form�
Denote �i the error made by the current hypothesis at sample xi� i�e�

�i �� yi � f	xi� � yi �
�
� mX
j��

k	xi� xj�	�i � ��i � � b

�
� � 	���

Rewriting the feasibility condition of 	��� in terms of �i� �
�
i yields

��
iT 	�i� � �� �i � si � zi � �
��
�i T 	�

�
i � � �� �i � s�i � z�i � �

	���

for all i � f�� � � � �mg with zi� z
�
i � si� s

�
i � �� Now one has to �nd a set of dual

feasible variables z� s� This is done by letting

zi � max 	��
iT 	�i� � �� �i� ��
si � �min 	��
iT 	�i� � �� �i� ��
z�i � max

�
��
�i T 	�

�
i � � �� �i� �

�
s�i � �min

�
��
�i T 	�

�
i � � �� �i� �

� 	���

Consequently the KKT conditions 	��� can be translated into

�izi � � and 	C � �i�si � �
��i z

�
i � � and 	C � ��i �s

�
i � �

	���
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All variables �i� �
�
i violating some of the conditions of 	��� may be selected

for further optimization� In most cases� especially in the initial stage of the
optimization algorithm� this set of patterns is much larger than any practical
size of Sw� Unfortunately �Osuna et al�� ����� contains little information on how
to select Sw� The heuristics presented here are an adaptation of �Joachims� �����
to regression�

����� Selection Rules

Similarly to a merit function approach �El�Bakry et al�� ���
� the idea is to
select those variables that violate 	��� and 	��� most� thus contribute most to
the feasibility gap� Hence one de�nes a score variable �i by

�i �� gizi � siti
� �izi � ��i z

�
i � 	C � �i�si � 	C � ��i �s

�
i

	���

By construction�
P

i �i is the size of the feasibility gap 	cf� 	
�� for the case
of ��insensitive loss�� By decreasing this gap� one approaches the the optimal
solution 	upper bounded by the primal objective and lower bounded by the
dual objective function�� Hence� the selection rule is to choose those patterns
for which �i is largest�

�

Finally� note that heuristics like assigning sticky��ags 	cf� �Burges� ���
��
to variables at the boundaries� thus e�ectively solving smaller subproblems� or
completely removing the corresponding patterns from the training set while
accounting for their couplings �Joachims� ����� can signi�cantly decrease the
size of the problem one has to solve and thus result in a noticeable speedup�
Also caching �Joachims� ����� Burges� ���
b� of already computed entries of
the dot product matrix may have a signi�cant impact on the performance�

��� Sequential Minimal Optimization

Recently an algorithm � Sequential Minimal Optimization 	SMO�� was pro�
posed �Platt� ����� that puts chunking to the extreme by iteratively selecting
subsets only of size � and optimizing the target function with respect to them�
It has been reported to be several orders of magnitude faster 	up to a factor of
����� and exhibit better scaling properties 	typically up to one order better�
than classical chunking 	sec� ������� The key point is that for a working set
of � the optimization subproblem can be solved analytically without explicitly
invoking a quadratic optimizer�

�Some algorithms replace �i by

��i �� �iH
zi� � ��iH
z�i � � 
C � �i�H
si� � 
C � ��i �H
si� or 
���

���i �� H
�i�zi �H
��i �z
�
i �H
C � �i�si �H
C � ��i �si 
���

where H
�� denotes the Heavyside function which is � if its argument is positive� and zero
otherwise� One can see that �i � 	� ��i � 	� and ���i � 	 mutually imply each other� However�
only �i gives a measure for the contribution of the variable i to the size of the feasibility gap�
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While readily derived for pattern recognition by Platt ������� one simply has
to mimick the original reasoning to obtain an extension to Regression Estima�
tion� This is what will be done in the following � for the sake of convenience�
the complete algorithm is described 	including pseudocode� cf� appendix A��
The modi�cations consist of a pattern dependent regularization� convergence
control via the number of signi�cant �gures� and a modi�ed system of equations
to solve the optimization problem in two variables for regression analytically�

Note that the reasoning only applies to SV regression with the � insensitive
loss function � for most other convex cost functions an explicit solution of the
restricted quadratic programming problem is impossible�

The exposition proceeds as follows� �rst one has to derive the 	modi�ed�
boundary conditions for the constrained � indices 	i� j� subproblem in regres�
sion 	section ��
���� next one can proceed to solve the optimization problem
analytically 	cf� section ��
���� and �nally one has to check� which part of the
selection rules have to be modi�ed to make the approach work for regression
	section ��
����

����� Pattern Dependent Regularization

Consider the constrained optimization problem 	
�� for two indices� say 	i� j��
Pattern dependent regularization means that Ci may be di�erent for every
pattern 	possibly even di�erent for �i and ��i � 	for convenience� also results for
the classi�cation case are given � these are a direct drop in replacement of the
corresponding equations in �Platt� ������� De�ne an auxiliary variable s �� yiyj
for classi�cation 	here yi � f����g�� For regression one has to distinguish four
di�erent cases� 	�i� �j�� 	�i� �

�
j �� 	�

�
i � �j�� 	�

�
i � �

�
j �� Here� set s � � for the �rst

and last case� and s � �� otherwise� Thus one obtains from the summation
constraint

s�i � �j � s�oldi � �oldj �� � 	���

for classi�cation� and

	�i � ��i � � 	�j � ��j � � 	�oldi � ��i
old� � 	�oldj � ��j

old� �� � 	�
�

for regression� Exploiting �
���
j � ��� C

���
j � yields �

���
i � �L�H� where L�H are

de�ned as in Tables � and ��

����� Analytic Solution for Regression

Next one has to solve the optimization problem analytically for two variables
	actually one has to consider four variables � �i� �

�
i � �j � �

�
j in the regression

case�� In analogy to �Platt� ������ using 	��� de�ne

vi �� yi �
P
a��i�j

	�a � ��a�Kia � b

� �i � 	�oldi � ��i
old�Kii � 	�oldj � ��j

old�Kij

	���

and therefore

vi � vj � �	Kij �Kjj� � �i � �j � 	�oldi � ��i
old�	Kii �Kjj � �Kij� 	
��
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yi � yj yi �� yj

�i
L � max	�� � � Cj�
H � min	Ci� ��

L � max	�� ��
H � min	Ci� � � Cj�

Table 	 Boundary of feasible regions for classi�cation�

�j ��j

�i
L � max	�� � �Cj�
H � min	Ci� ��

L � max	�� ��
H � min	Ci� C

�
j � ��

��i
L � max	�����
H � min	C�

i ��� � Cj�

L � max	���� �C�
j �

H � min	C�
i ����

Table 
 Boundary of feasible regions for regression�

Now 	
�� restricted to 	i� j� can be rewritten as follows�

maximize

���
�� ��

�

�
�i � ��i
�j � ��j


��
Kii Kij

Kji Kjj


�
�i � ��i
�j � ��j



�vi	�i � ��i � � vj	�j � ��j �� �	�i � ��i � �j � ��j �

subject to

�
	�i � ��i � � 	�j � ��j� � �

�i� �
�
i � �j � �

�
j � ��� C�

	
��

Next one has to eliminate �j � �
�
j by exploiting the summation constraint� Ig�

noring terms independent of �
���
i one obtains��

maximize

� ��
�	�i � ��i �

�	Kii �Kjj � �Kij�� �	�i � ��i �	� � s�
�	�i � ��i �	vi � vj � �	Kij �Kjj��

subject to �
���
i � �L����H�����

	
��

The unconstrained maximum of 	
�� with respect to �i or �
�
i can be found in

Table 
� Here the shorthand � �� Kii�Kjj��Kij is used� It may happen that
for a �xed pair of indices 	i� j� the initially chosen quadrant� say e�g� 	�i� �

�
j �

is the one with the optimal solution� In this case one has to check the other
quadrants� too� This occurs if one of the two variables hits the � boundary
� here computation of the corresponding values for the variable with	out�
asterisk according to table 
� is required� This has to be repeated at most
twice� if the overall optimum lies in the opposite quadrant� Fortunately� the
additional computational cost is negligible in comparison to the overall update
cost for the gradient"error vector� which is O	m� per successful optimization

��Note that 
��� only holds for �i�
�
i � �j�

�
j � 	�
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�i� �j
vi � vj � �	Kij �Kjj�

�
� �oldi �

�i � �j
�

�i� �
�
j

vi � vj � �	Kij �Kjj�� ��

�
� �oldi �

�i � �j � ��

�

��i � �j
vj � vi � �	Kij �Kjj�� ��

�
� ��i

old � �i � �j � ��

�

��i � �
�
j

vj � vi � �	Kij �Kjj�

�
� ��i

old � �i � �j
�

Table � Unconstrained maximum of the quadratic programming problem�

step� All one has to recompute is �newi � �newj � which can be found as

�newi � �newj � �oldi � �	�newi � ��newi �� ��oldi � ��oldi

��
	Kii �Kij�

��oldj �
��

�newj � ��newj

�
�
�
�oldj � ��oldj

��
	Kij �Kjj�

� �oldi � �oldj � �
�
	�newi � ��newi �� ��oldi � ��oldi

��
	
��

The last equality was derived using 	�
��
Due to numerical instabilities� it may happen that � � �� In that case �

should be set to �� Negative values of � are not allowed� as k	�� �� has to satisfy
Mercer�s condition� In that case set � � �� The optimal value of �i lies on the
boundaries H or L� One can �nd out by looking at the gradient� or simply by
computing the value of the objective function at the endpoints� which one of
the endpoints to take�

����� Selection Rule for Regression

Finally� one has to pick indices 	i� j� such that the objective function is maxi�
mized� Again� the reasoning of SMO �Platt� ����� sec� ������� for classi�cation
will be mimicked� This means that a two loop approach is chosen to maxi�
mize the objective function� The outer loop iterates over all patterns violating
the KKT conditions� �rst only over those with Lagrange multipliers neither on
the upper nor lower boundary� and once all of them are satis�ed� over all pat�
terns violating the KKT conditions� to ensure self consistency on the complete
dataset��� This solves the problem of choosing the index i�

Now for j� To make a large step towards the minimum� one looks for large
steps in �i� As it is computationally expensive to compute � for all possible pairs
	i� j� one chooses the heuristic to maximize the absolute value of the numerator
in the expressions of table 
 	i�e� j�i � �j j and j�i � �j � ��j� depending on
the presence"absence of asterisks�� The index j corresponding to the maximum
absolute value is chosen for this purpose�

��It is sometimes useful� especially when dealing with noisy data� to iterate over the com�
plete KKT violating dataset already before complete self consistency on the subset has been
achieved� Otherwise much computational resources are spent on making subsets self consis�
tent that are not globally self consistent� This is the reason why in the pseudo code a global
loop is initiated already when only less than �	� of the non bound variables changed�
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If this heuristic happens to fail� in other words if little progress is made by
this choice� all other indices j are looked at 	this is what is called �second choice
hierarcy� in �Platt� ������ in the following way�

�� All indices j corresponding to non�bound examples are looked at� search�
ing for an example to make progress on�

�� In the case that the �rst heuristic was unsuccessful� all other samples are
analyzed until an example is found where progress can be made�

�� If both previous steps fail� SMO proceeds to the next index i�

For a more detailed discussion of these heuristics see �Platt� ������
Unlike interior point algorithms SMO does not automatically provide a value

for b� However this can be chosen like in section ��� by having a close look at the

Lagrange multipliers �
���
i obtained� If at least one of the variables �

���
i and �

���
j

is inside the boundaries� one can exploit 	���� In the rare case that this does
not happen� there exists a whole interval 	say �bibj �� of admissible thresholds�

Hence one simply takes the average of both� b �
bi�bj
� �

����� Number of Signi�cant Figures and Feasibility Gap

By essentially minimizing a constrained primal optimization problem one can�
not ensure that the dual objective function increases with every iteration step���

Nevertheless one knows that the minimum value of the objective function lies
in the inteval �dual objectivei�primal objectivei� for all iteration steps i� hence
also in the interval

�
	maxj	i dual objectivej��primal objectivei

�
for all i� One

uses the latter to determine the quality of the current solution�
The calculation of the primal objective function from the prediction errors

is straightforward� One usesX
i�j

	�i � ��i �	�j � ��j �kij � �
X
i

	�i � ��i �	�i � yi � b�� 	
��

i�e� the de�nition of �i to avoid the matrix�vector multiplication with the dot
product matrix� The dual objective function can be computed via the KKT
conditions 	cf� 	

��� The number of signi�cant �gures� �nally� is computed as
the decimal logarithm of 	

�� i�e�

SigFig � log��

� P
i gizi � siti

jPrimal Objectivej� �



	
��

The constant � is added to avoid division by zero� To save computational cost�
primal and dual objective function are computed only every� say� ��� steps of
the algorithm� Appendix A contains the pseudocode for SMO regression�

After this rather long digression on methods to implement SV machines let
us now consider some more advanced topics in SV regression�

��It is still an open question how a subset selection optimization algorithm could be devised
that decreases both primal and dual objective function at the same time� The problem is that
this usually involves a number of dual variables of the order of the sample size� which makes
this attempt unpractical�
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� Variations on a Theme

There exists a large number of algorithmic modi�cations of the SV algorithm� to
make it suitable for speci�c settings 	inverse problems�� di�erent ways of mea�
suring capacity and reductions to linear programming 	convex combinations��
di�erent ways of controling capacity and di�erent model classes 	semiparamet�
ric modeling��

��� Inverse Problems

In the presentation of the SV optimization problem we had been assuming up
to now that we are given direct measurements� i�e� a training set with samples
	xi� yi� based on which we have to come up with an estimate f that minimizes
a risk functional like the one given in 	���� Let us now consider a situation
where we cannot observe xi� but some other corresponding points xsi� nor can
we observe yi� but ysi� Let us call the pairs 	xsi� ysi� measurements of the
dependency f � Suppose we know that the elements xsi are generated from xi
by a 	possibly nonlinear� transformation T �

xsi � Txi� 	

�

The corresponding transformation AT acting on f �

	AT f�	x� �� f	Tx�� 	
��

is then generally linear� for functions f� g and coe�cients �� � we have

	AT 	�f � �g��	x� � 	�f � �g�	Tx�
� �f	Tx� � �g	Tx� � �	AT f�	x� � �	AT g�	x��

	

�

Knowing AT � we can use the data to estimate the underlying functional depen�
dency� For several reasons� this can be preferable to estimating the dependen�
cies in the transformed data directly� For instance� there are cases where we
speci�cally want to estimate the original function� as in the case of Magnetic
Resonance Imaging �Vapnik et al�� ������

Moreover� we may have multiple transformed data sets� but only estimate
one underlying dependency� These data sets might di�er in size! in addition�
we might want to associate di�erent costs with estimation errors for di�erent
types of measurements� e�g� if we believe them to di�er in reliability� Finally� if
we have knowledge of the transformations� we may as well utilize it to improve
the estimation� Especially if the transformations are complicated� the original
function might be easier to estimate�

A striking example is the problem of backing up a truck with a trailer to a
given position �Nguyen and Widrow� ��
�� Geva et al�� ������ This problem is a
complicated classi�cation problem 	steering wheel left or right� when expressed
in cartesian coordinates! in polar coordinates� however� it becomes linearly
separable�

Without restricting ourselves to the case of operators acting on the argu�
ments of f only� but for general linear operators� we formalize the above as
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follows� We consider pairs of observations 	x��� y���� with sampling points x�� and
corresponding target values y��� The �rst entry i of the multi�index &� �� 	i� i��
denotes the procedure by which we have obtained the target values! the second
entry i� runs over the observations �� � � � � �i� In the following� it is understood
that variables without bar correspond to the appropriate entries of the multi�
indices� This will help us to avoid multiple summation symbols�

Let us assume that these samples have been drawn independently from q
corresponding probability distributions with densities p�	x�� y��� � � � � pq	xq� yq�
respectively� Analogously to 	��� we want to estimate a function f such that
the risk functional �Smola and Sch�olkopf� ���
a�

R�f � �

qX
i��

Z
ci 	xi� yi� 	Aif�	xi�� pi	xi� yi�dxidyi 	
��

is minimized� Note that we may 	and in most cases will� have di�erent cost
functions ci for each pdf pi� Analogously to the reasoning in section ��� we
replace R�f � by the empirical risk functional

Remp�f � ��
X
��

�

�i
ci	x��� y��� 	Aif�	x����� 	���

The de�nition of the regularized risk functional 	��� Rreg�f �� however� remains
unchanged� Yet� in order to avoid pathological cases 	for instance the operators
Ai might entail second derivatives in input space� which would� of course� vanish
in a simple linear setting�� we will deal with mappings into feature space in this
section� i�e� f	x� � hw��	x�i � b� Analogously to 	��� we obtain the following
optimization problem�

minimize �
�kwk� � C

P
��
	 ci	���� �  ci	�

�
�� ��

subject to

��
�

y�� �Ai �hw��	x���i � b� � �i � ���
Ai�hw��	x���i� b�� y�� � �i � ����
���� �

�
�� � �

	���

The expression Ai �hw��	x���i � b� has to be read as 	Aif�	x���� i�e� the operator
Ai applied to both the dot product in feature space and the constant function
b� Moreover de�ning 	Ai � Aj�k	�� �� as the function given by applying Ai to
k as a function of the �rst and Ai to k as a function of the second argument
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yields an optimization problem similar to 	����

maximize

��
�

��
�

P
�����
	��� � ���� �	��� � ���� �	Ai �Aj�k	x��� x���

�
P
��
	y��	��� � ���� �� �i	��� � ���� � � C	Ti	���� � Ti	�

�
�� ���

where

	
f	�� �

P
��
	��� � ���� �Aik	x��� �� � b

Ti	�� ��  ci	��� ��� ci	��

subject to

�����
����

P
��
	��� � ���� �	Ai�� � �

��� � C�� ci	��
� � inff� jC��ci � �g
�� � � �

	���

In the following� we discuss some examples of incorporating domain knowl�
edge by using multiple operator equations as contained in 	
���

Example � �Additional Constraints on the Estimated Function�
Suppose we had additional knowledge on the function values at some points
xsi� e�g� that �� � f	xsi� � �� for some �� �� � �� This can be incorporated
by adding the points as an extra set Xs � f	xs�� ��� � � � � 	xs�s � ��g� an operator
As �� �� and a cost function

cs	x�s� y�s� Asf	x�s�� �

�
� if � � � f	x�s� � ��

	 otherwise
	���

These additional hard constraints result in optimization problems similar to
	��� See �Smola and Sch�olkopf� ���
a� for details�

Monotonicity and convexity of a function f � along with other constraints on
derivatives of f � can be enforced similarly� In that case� we use

As �

�
�

�x


p

	���

instead of the As � � used above� This� of course� requires di�erentiability of
the function expansion of f �

Likewise one can use these methods in order to incorporate virtual examples
�Sch�olkopf et al�� ���
� 	here T would be a symmetry operator on the data�� use
it for dealing with hints �Abu�Mostafa� ������ tangent regularizers �Sch�olkopf
et al�� ���
� or �D tomography reconstruction �Vapnik et al�� ������ A detailed
account on these techniques can be found in �Smola and Sch�olkopf� ���
a� and
references therein�

��� Convex Combinations and ���norms

All the algorithms presented so far involved convex� and at best� quadratic
programming� Yet one might think of reducing the problem to a case where
linear programming techniques can be applied� It turns out that this can be
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done in a straightforward fashion �Weston et al�� ����� for both SV pattern
recognition and regression cases� The key is to replace 	��� by

Rreg�f � �� Remp�f � � �k�k� 	���

where k�k� denotes the �� norm in coe�cient space� Hence one uses the SV
kernel expansion

f	x� �

�X
i��

�ik	xi� x� � b 	�
�

with a di�erent way of controlling capacity by minimizing

Rreg�f � �
�

�

�X
i��

c	xi� yi� f	xi�� � �
�X

i��

j�ij� 	���

For the ��insensitive loss function this leads to a linear programming prob�
lem� In the other cases� however� the problem still stays a quadratic or general
convex one� and therefore may not yield the desired computational advantage�
Therefore we will limit ourselves to the derivation of the linear programming
problem in the case of j � j� cost function� Reformulating 	��� yields

minimize
�P

i��
	�i � ��i � � C

�P
i��

	�i � ��i �

subject to

�������
������

yi �
�P

j��
	�j � ��j �k	xj � xi�� b � �� �i

�P
j��

	�j � ��j �k	xj � xi� � b� yi � �� ��i

�i� �
�
i � �i� �

�
i � �

	�
�

Unlike in the classical SV case� the transformation of 	�
� into it�s Wolfe dual
does not give any improvement in the structure of the optimization problem�
Hence it is best to solve 	�
� directly� which can be readily done by a linear
optimizer� e�g� �Dantzig� ��
�� Lustig et al�� ����� Vanderbei� ����a��

In �Weston et al�� ����� a similar variant of the linear SV approach is used to
estimate densities on a line� However� they mention that it may not be a good
concept to control capacity SV machines in this way� Yet one can show �Smola
et al�� ���
e� that one may obtain bounds on the generalization error which
exhibit even better rates 	in terms of the entropy numbers� than the classical
SV case �Williamson et al�� ���
��

Finally it is worth while mentioning that there exist similar approaches to
SV classi�cation� See �Bennett� ����� Frie' and Harrison� ���
� for details�

��� Three Algorithms in One Picture

So far all the algorithms we had been considering yield a value 	either kwk� or
k�k�� which can be used to apply model selection once both the regularization
parameter C and the data are given� Hence both kwk� and k�k� are random
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variables� However� if we want to apply structural risk minimization �Vapnik�
��
�� we should specify the hypothesis class beforehand� yet in the cases pre�
sented here hierarchy of models is data dependent��� This is not exactly what
we want� Of course� one could apply appropriate methods to deal with this
additional technical intricacy �Shawe�Taylor et al�� ���
a�b� but there are ways
to avoid this problem� at least at this point� We will have to resort to these
methods� for a di�erent reason� when applying model selection criteria� though
	details will be given in section 
��

em
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Figure � Three algorithms for risk minimization�

Figure � depicts the dependency between the empirical error and the corre�
sponding model selection parameter 	here� kwk�� or k�k�� under consideration�
Clearly the function is monotonically decreasing as the model selection param�
eter indexes a hierarchy of nested subsets of hypothesis classes� In other words
� sets of hypothesis classes are guaranteed to perform at least as well 	in terms
of training error� as their subsets on a speci�c problem�

The standard SV algorithm can be described with situation � of �gure ��
By specifying C or � one speci�es the trade o� between model complexity and

��One could argue that the structure is data dependent in a second way� too� namely by
the form of the kernel expansion� One uses only functions k
xi� �� and therefore only a subset
of functions� However this is not a major limitation as one can show �Kimeldorf and Wahba�
����� that in the case of a quadratic regularizer the optimal solution amongst all expansions
in feature space F is exactly the one given in the SV expansion� Therefore one is e�ectively
searching the whole feature space for the optimal solution� Hence considering w to be chosen
from some constrained region in F is reasonable�
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training error� i�e� one solves

minimize Remp�f � � �

�
�
�kwk�� feature space regularization
k�k� convexity regularization�

	���

E�ectively C determines the pair 	Remp�f �� w�f �� by a tangent condition on the
graph� This observation can be used to choose the value of C without the need
for a validation set� by determining C to be consistent with risk bounds derived
in VC theory �Sch�olkopf� ������

However� the structure can also be speci�ed beforehand� by solving

minimize Remp�f �

subject to

�
�
�kwk�� � C � feature space regularization
k�k� � C � convexity regularization�

	����

for some positive constant C �� This� again� leads to a convex �Vapnik� ����� or
linear �Smola et al�� ���
e� programming problem and corresponds to case � in
�gure ��

Finally one could consider allowing for a certain degree of error in the op�
timization problem� This would lead to case � in �gure � by solving

minimize

�
�
�kwk�� feature space regularization
k�k� convexity regularization

subject to Remp�f � � C ���
	����

Although these optimization algorithms may di�er in way the equations are
stated� they all result in identical hypotheses for corresponding settings� This
is also the reason� why case � is the one which is used most� It is better behaved
numerically in practice �Vapnik� ������

��� Automatic Tuning of the Insensitivity Tube

Besides the classical model selection issues� i�e� how to specify the trade o�
between empirical error and model complexity there also exists the problem of
an optimal choice of a cost function� In particular� for the ��insensitive cost
function we still have the problem of choosing an adequate parameter � in order
to achieve good performance with the SV machine�

It has been shown �Smola et al�� ���
a� that there exists a linear depen�
dency between the noise level and the optimal ��parameter for a SV regression
approach� However� this would require that we know something about the noise
model� While this may be the case in some special situations� it cannot be as�
sumed in general� Therefore� albeit providig theoretical insight� this �nding by
itself is not particularly useful in practice� Moreover� if we really knew the noise
model� we most likely would not choose the ��insensitive cost function but the
corresponding maximum likelihood loss function instead�

There exists� however� a method to construct SV machines that automati�
cally adjust � and moreover also� at least asymptotically� have a predetermined
fraction of sampling points as SVs� The method �Sch�olkopf et al�� ���
a� is re�
lated to the ideas presented in section 
��� We modify 	��� such that � becomes
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a variable of the optimization problem� including an extra term in the primal
objective function which attempts to minimize �� In other words

minimize R
 �f � �� Remp�f � �
�

�
kwk� � �� 	����

For some � � �� Hence 	��� becomes 	again carrying out the usual transforma�
tion between �� � and C�

minimize �
�kwk� � C

�
�P

i��
	 c	�i� �  c	��i �� � ���




subject to

��
�

yi � hw� xii � b � �� �i
hw� xii� b� yi � �� ��i
�i� �

�
i � �

	����

Note that this holds for any convex loss functions with an ��insensitive zone� For
the sake of simplicity in the exposition� however� we will stick to the standard
j � j� loss function� Computing the dual of 	���� yields

maximize

	
��

�

�P
i�j��

	�i � ��i �	�j � ��j �k	xi� xj� �
�P

i��
yi	�i � ��i �

subject to

������
�����

�P
i��

	�i � ��i � � �

�P
i��

	�i � ��i � � C��

�i� �
�
i � ��� C�

	����

Besides having the advantage of being able to automatically determine �� 	����
also has another advantage� It can be used to pre�specify the number of SVs�

Theorem 
 �Sch�olkopf� Bartlett� Smola� and Williamson ����
a��

�� � is an upper bound on the fraction of errors�

�� � is a lower bound on the fraction of SVs�

�� Suppose the data has been generated iid from a distribution p	x� y� �
p	x�p	yjx� with a continuous conditional distribution p	yjx�� With prob�
ability �� asymptotically� � equals the fraction of SVs and the fraction of
errors�

Hence the so�called ��SV machine� unlike the standard ��SV regression� contains
a means for controlling the number of SVs directly� For more details on the
method and a description of the performance see the original publication�

Essentially� ��SV regression improves upon ��SV regression by allowing the
tube width to adapt automatically to the data� What is kept �xed up to this
point� however� is the shape of the tube� One can� however� go one step further
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and use parametric tube models with non�constant width� leading to almost
identical optimization problems �Sch�olkopf et al�� ���
a��

Combining the concept of ��SV regression with results on the asymptotical
optimal choice of � for a given noise model �Smola et al�� ���
a� leads to a
guideline how to adjust � provided the class of noise models 	e�g� Gaussian or
Laplacian� is known�

Remark � �Optimal Choice of �� Denote by p a probability density with
unit variance� and by P a famliy of noise models generated from p by

P ��
�
p
��p � �

�p
� y
�

��
� 	����

Moreover assume that the data were generated iid from a distribution p	x� y� �
p	x�p	y � f	x�� with p	y � f	x�� continuous� i�e� generated by an underlying
functional dependency f � corrupted by additive noise� Then under the assump�
tion of uniform convergence� the asymptotically optimal adaptation parameter
� is

� � ��
Z �

��
p	t�dt where � �� argmin

�

�

	p	��� � p	����

�
��

Z �

��
p	t�dt



	��
�

For a proof see �Smola� ���
�� For polynomial noise models� i�e� densities of
type exp	�j�jp� one may compute the corresponding 	asymptotically� optimal
values of �� They are given table ��

Polynomial Degree p � � � � �

Optimal � � ������ ������ ���
�
 ����
�

Optimal � for unit variance � ��
��� ����
� ����
� ���
��

Polynomial Degree p 
 � 
 � ��

Optimal � ����
� ���

� ������ ���
�� ����
�

Optimal � for unit variance �����
 ��
��� ��
��� ��
��� ��
���

Table � Optimal � and � for various degrees of polynomial additive noise�

We conclude this section by noting that ��SV regression is related to the idea
of trimmed estimators� One can show that the regression is not in�uenced if we
perturb points lying outside the tube� Thus� the regression is essentially com�
puted by discarding a certain fraction of outliers� speci�ed by �� and computing
the regression estimate from the remaining points �Sch�olkopf et al�� ���
��

��� Semiparametric SV Machines

One of the strengths of SV machines is that they are nonparametric techniques�
where one does not have to e�g� specify the number of basis functions before�
hand� In fact� for many of the kernels used 	not the polynomial kernels� like
Gaussian rbf�kernels it can be shown �Micchelli� ��

� Dyn� ��
�� that SV ma�
chines are universal approximators� Note that a similar proof has been carried
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out for neural networks �Hornik et al�� ��
��� though� However unlike SV ma�
chines this does not help much in practice as Neural Networks may get stuck
in local minima whereas SV machines come with an practically implementable
algorithm to exactly �nd the local minimum�

While this is advantageous in general� parametric models are useful tech�
niques in their own right� Especially if one happens to have additional knowl�
edge about the problem� it would be extremely dumb not to take advantage of it�
For instance it might be the cases that the major e�ects of the data are described
by a linear combination of a small set of basis functions f��	��� � � � � �n	��g� Sec�
ondly it also may be the case that the user wants to have and understandable
model� without sacri�cing accuracy� For instance many people in life sciences
tend to have a preference for linear models� This may be some motivation to
construct semiparametric models� which are both easy to understand 	for the
parametric part� and have good performance 	for the additional nonparametric
formalism�� A good reference on semiparametric models is �Bickel et al�� ������

A common approach is to �t the data with the parametric model and train
the nonparametric add�on on the errors of the parametric part� i�e� �t the
nonparametric part to the errors� One can show �Smola et al�� ���
c� that this
is useful only in a very restricted situation� In general it is impossible to �nd
the best model amongst a given class for di�erent cost functions by doing so�
The better way is to solve a convex optimization problem like in standard SV
machines� however with a di�erent set of admissible functions

f	x� � hw��	x�i �
nX
i��

�i�i	x�� 	����

Note that this is not so much di�erent from the original setting if we set n � �
and ��	�� � �� Solving the corresponding optimization equations one arrives at

maximize

����
���

��
�

�P
i�j��

	�i � ��i �	�j � ��j �k	xi� xj�

��
�P

i��
	�i � ��i � �

�P
i��

yi	�i � ��i �

subject to

��
�

�P
i��

	�i � ��i ��j	xi� � � for all � � j � n

�i� �
�
i � ��� C�

	��
�

The single equality constraint 	due to the constant o�set� has been transformed
into multiple equality constraints� It is strongly recommended to use a primal�
dual method when solving 	��
�� as this 	see section ���� automatically yields
the coe�cients �i as dual variables of the equality constraints in 	��
��

Semiparametric models could be used in time series prediction� e�g� for using
a simple linear autoregressive model with nonlinear enhancements� or also to
perform hypothesis testing� whether the speci�c parametric model under con�
sideration is justi�ed or not� Note that similar models have been proposed and
explored in the context of smoothing splines �Wahba� ����� ������ Moreover this
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setting arises naturally in the context of conditionally positive de�nite kernels
	see �Smola et al�� ���
d� and section ����� For more details on this extension
see the original work �Smola et al�� ���
c��

� Regularization

So far we had not been bothering about the speci�c properties of the map
� into feature space at all and just been using it as a convenient trick to
construct nonlinear regression functions� In some cases the map was just given
implicitly by the kernel� hence the map itself and many of its properties have
been neglected� Moreover we would like to get some deeper understanding of the
kernel map in order to be able to choose appropriate kernels for a speci�c task�
maybe by doing so also incorporating prior knowledge �Sch�olkopf et al�� ���
��
Finally the feature map seems to defy the curse of dimensionality �Bellman�
��
�� by making problems seemingly easier via a map into some even higher
dimensional space�

In this section we will focus on the connections between SV methods and
previous techniques like Regularization Networks �Girosi et al�� ������ This
will give us insight in the mechanism how kernels work� In particular we will
show that SV machines are essentially Regularization Networks 	RN� with a
clever choice of cost functions� with the kernels being Green�s function of the
corresponding regularization operators� Due to the nature of this review paper
we can only give a brief account on these issues� For a full exposition of the
subject the reader is referred to �Smola et al�� ���
d��

��� Regularization Networks

Let us brie�y review the basic concepts of RNs� Like in 	��� we also minimize a
regularized risk functional� However� we are not interested in enforcing �atness
in feature space� but try to optimize some di�erent smoothness criterium for
the function in input space� Thus we get

Rreg�f � �� Remp�f � �
�

�
kPfk�� 	����

Here P denotes a regularization operator in the sense of �Tikhonov and Arsenin�
������ i�e� P is a positive semide�nite operator mapping from the Hilbert space
H of functions f under consideration to a dot product space D such taht the
expression hPf � Pgi is well de�ned for f� g � H� For instance by choosing a
suitable operator that penalizes large variations of f one can reduce the well�
known over�tting e�ect� Another possible setting also might be an operator P
mapping from L�	Rn� into some Reproducing Kernel Hilbert Space �Aronszajn�
����� Kimeldorf and Wahba� ����� Saitoh� ��

� Girosi� ���
��

Using an expansion of f in terms of some symmetric function k	xi�xj� 	note
here� that k� like in the case of convex combinations� need not ful�ll Mercer�s
condition��

f	x� �

�X
i

�ik	xi� x� � b� 	����
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and the ��insensitive cost function� this leads to a quadratic programming prob�
lem similar to the one for SVs� By computing Wolfe�s dual and using

Dij �� h	Pk�	xi� �� � 	Pk�	xj � ��i 	����

we get � � D��K	� � ���� with �� �� being the solution of

minimize �
�	�

� � ���KD��K	�� � ��� 	�� � ���y � �
�P

i��
	�i � ��i �

subject to
�P

i��
	�i � ��i � � �� �i� �

�
i � ��� C�

	����
Unfortunately� this setting of the problem does not preserve sparsity in terms
of the coe�cients� as a potentially sparse decomposition in terms of �i and ��i
is spoiled by D��K� which in general is not diagonal�

��� Green	s Functions

Comparing 	�� with 	���� leads to the question if and under which condition
the two methods might be equivalent and therefore also under which conditions
regularization networks might lead to sparse decompositions 	i�e� only a few
of the expansion coe�cients �i in f would di�er from zero�� A su�cient�


condition is D � K 	thus KD��K � K�� i�e�

k	xi� xj� � h	Pk�	xi� �� � 	Pk�	xj � ��i 	self consistency�� 	����

Our goal now is to solve the following two problems�

�� Given a regularization operator P � �nd a kernel k such that a SV machine
using k will not only enforce �atness in feature space� but also correspond
to minimizing a regularized risk functional with P as regularization oper�
ator�

�� Given an SV kernel k� �nd a regularization operator P such that a SV
machine using this kernel can be viewed as a Regularization Network
using P �

These two problems can be solved by employing the concept of Green�s functions
as described in �Girosi et al�� ������ These functions had been introduced in
the context of solving di�erential equations� For our purpose� it is su�cient to
know that the Green�s functions Gxi	x� of P

�P satisfy

	P �PGxi�	x� � �xi	x�� 	����

Here� �xi	x� is the ��distribution 	not to be confused with the Kronecker symbol
�ij� which has the property that hf � �xii � f	xi�� The relationship between
kernels and regularization operators is formalized in the following proposition�

��In the case of K not having of full rank D is only required to be the inverse on the image
of K� The pseudoinverse for instance is such a matrix�
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Proposition �� �Smola and Sch�olkopf ����
b��
Let P be a regularization operator� and G be the Green	s function of P �P �
Then G is a Mercer Kernel such that D � K� SV machines using G minimize
risk functional 
���
 with P as regularization operator�

In the following we will exploit this relationship in both ways� to compute
Green�s functions for a given regularization operator P and to infer the regu�
larization operator from a given kernel k�

��� Translation Invariant Kernels

Let us now more speci�cally consider regularization operators $P that may be
written as multiplications in Fourier space

hPf � Pgi � �

	���n��

Z
�

 f	
� g	
�

P 	
�
d
 	����

with  f	
� denoting the Fourier transform of f	x�� and P 	
� � P 	�
� real
valued� nonnegative and converging to � for j
j � 	 and ( �� supp�P 	
���
Small values of P 	
� correspond to a strong attenuation of the corresponding
frequencies� Hence small values of P 	
� for large 
 are desirable since high
frequency components of  f correspond to rapid changes in f � P 	
� describes
the �lter properties of P �P � note that no attenuation takes place for P 	
� � �
as these frequencies have been excluded from the integration domain�

For regularization operators de�ned in Fourier Space by 	���� it can be
shown by exploiting P 	
� � P 	�
� � P 	
� that

G	xi� x� �
�

	���n��

Z
Rn

ei��xi�x�P 	
�d
 	��
�

is a corresponding Green�s function satisfying translational invariance� i�e�

G	xi� xj� � G	xi � xj� and  G	
� � P 	
�� 	����

This provides us with an e�cient tool for analyzing SV kernels and the types
of capacity control they exhibit� In fact the above is a special case of Bochner�s
theorem �Bochner� ����� stating that the Fourier transform of a positive measure
constitutes a positive Hilbert Schmidt kernel�

Example �� �Gaussian kernels�
Following the exposition of �Yuille and Grzywacz� ����� as described in �Girosi
et al�� ������ one can see that for

kPfk� �
Z

dx
X
m

��m

m)�m
	 $Omf	x��� 	��
�

with $O�m � #m and $O�m�� � r#m� # being the Laplacian and r the Gradient
operator� we get Gaussians kernels 
see Fig� �


k	x� � exp

�
�kxk

�

���



� 	����
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Moreover� we can provide an equivalent representation of P in terms of its

Fourier properties� i�e� P 	
� � exp	���k�k�
� � up to a multiplicative constant�

Training a SV machine with Gaussian RBF kernels �Sch�olkopf et al�� ����� cor�
responds to minimizing the speci�c cost function with a regularization operator
of type 
���
� Recall that 
���
 means that all derivatives of f are penalized

we have a pseudodi�erential operator
 to obtain a very smooth estimate� This
also explains the good performance of SV machines in this case� as it is by no
means obvious that choosing a �at function in some high dimensional space will
correspond to a simple function in low dimensional space� as shown in �Smola
et al�� ����d� for Dirichlet kernels�
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Figure 
 Left� Gaussian kernel with standard deviation ���� Right� Fourier
transform of the kernel�

Gaussian kernels tend to yield good performance under general smoothness
assumptions and should be considered especially if no additional knowledge
of the data is available� For additional information and examples� e�g� on
Bq�spline kernels� Dirichlet kernels� periodical kernels� etc� see �Smola et al��
���
d��

The question that arises now is which kernel to choose� Let us think about
two extreme situations�

�� Suppose we already knew the shape of the power spectrum Pow	
� of the
function we would like to estimate� In this case we choose k such that  k
matches the power spectrum �Smola� ���
��

�� If we happen to know very little about the given data a general smoothness
assumption is a reasonable choice� Hence we might want to choose a
Gaussian kernel 	cf� example ���� If computing time is important one
might moreover consider kernels with compact support� e�g� using the
Bq�spline kernels 	cf� 	����� This choice will cause many matrix elements
kij � k	xi � xj� to vanish�

The usual scenario will be in between the two extreme cases and we will have
some limited prior knowledge available� For more information on using prior
knowledge for choosing kernels see �Sch�olkopf et al�� ���
��
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��� Conditional Positive De
niteness

The connection to RNs allows us to exploit a connection� shown by �Madych
and Nelson� ����� as pointed out by �Girosi et al�� ������ The main statement
is that conditionally positive de�nite 	cpd� functions generate admissible SV
kernels� This is very useful as the property of being cpd often is easier to verify
than Mercer�s condition� especially when combined with the results of Schoen�
berg and Micchelli on the connection between cpd and completely monotonic
functions �Schoenberg� ���
a�b� Micchelli� ��

�� Moreover cpd functions lead
to a class of SV kernels that do not necessarily satisfy Mercer�s condition�

De�nition �� �Conditionally positive de�nite functions�
A continuous function h� de�ned on ���	�� is said to be conditionally positive
de�nite 
cpd
 of order m on R

n if for any distinct points x�� � � � � x� � R
n the

quadratic form
�X

i�j��

cicjh	kxi � xjk�� 	����

is nonnegative provided that the scalars c�� � � � � c� satisfy
P�

i�� cip	xi� � � for
all polynomials p on R

n of degree lower than m�

De�nition �� �Completely monotonic functions�
A function h	x� is called completely monotonic of order m if

	���n dn

dxn
h	x� � � for x � R

�
� and n �m� 	����

It can be shown �Schoenberg� ���
a�b� Micchelli� ��

� that a function h	x�� is
conditionally positive de�nite if and only if h	x� is completely monotonic of the
same order� This gives a 	sometimes simpler� criterion for checking whether
a function is cpd or not� These tools can be used to derive an easy to check
condition for testing whether a kernel is an admissible SV kernel�

Proposition �	 �Smola� Sch�olkopf� and M�uller ����
d��
De�ne *n

m to be the space of polynomials of degree lower than m on R
n � Every

cpd function h of order m generates an admissible Kernel for SV expansions on
the space of functions f orthogonal to *n

m by setting k	xi� xj� �� h	kxi �xjk���
In other words� kernels generated from cpd functions of order m can be used
in SV machines� provided the �nal estimate produced from the kernels is or�
thogonal to polynomials of degree lower than m� This can be achieved by a
semiparametric model as described in section 
��� This yields a convex opti�
mization problem inside the feasible region� The only problem arises from the
fact that the problem may not be convex outside the region of feasibility due
to negative eigenvalues in the dot product matrix� Hence one has to project
out the polynomial part also from the dot product matrix� For details on the
algorithmic realization see �Smola et al�� ���
d��
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Consequently� one may use kernels like those proposed in the context of
regularization networks by �Girosi et al�� ����� as SV kernels�

k	x� y� � e��kx�yk
�

Gaussian� 	m � �� 	����

k	x� y� � �pkx� yk� � c� multiquadric� 	m � �� 	����

k	x� y� � �p
kx�yk��c� inverse multiquadric� 	m � �� 	����

k	x� y� � kx� yk� ln kx� yk thin plate splines� 	m � �� 	����

��� Reproducing Kernel Hilbert Spaces

There exists a connection between kernels and regularization� deeper than
pointed out so far� It is connected with the theory of Reproducing Kernel
Hilbert Spaces 	RKHS�� These were originally introduced in �Aronszajn� �����
����� and used in �Parzen� ��
�� for time series prediction� For a modern ac�
count on the theory of RKHS see �Saitoh� ��

� Small and McLeish� ������ For
convenience we recall the de�nition of an RKHS as given in �Aronszajn� ������

De�nition �
 �Reproducing Kernel Hilbert Space� Let F be a class of
functions de�ned on a set E� forming a Hilbert space 
complex or real
� The
function k	x� x�� of x� x� � E is called a reproducing kernel on F if

�� For every x� k	x� �� as a function of its second argument belongs to F �

�� For every x � E and every f � F we have

f	x� � hf	��� k	x� ��i 
reproducing property
� 	��
�

Among several other properties like uniqueness� existence� additivity and pro�
jection properties it is shown in �Moore� ���
� Aronszajn� ����� that the matrix
Kij �� k	xi� xj� is a positive semide�nite matrix� Moreover� to every positive
function k	x� x�� 	i�e� every function satisfying Mercer�s condition� corresponds
exactly one class of functions with a unique quadratic form in it� forming a
Hilbert space and admitting k	x� x�� as its reproducing kernel�

In other words there exists a one to one correspondence between RKHS and
admissible SV kernels� Due to the reproducing property for elements of the
RKHS we get in particular

k	x� x�� � hk	x� ��� k	x�� ��i 	����

which is essentially identical to 	���� if we require that the regularization op�
erator P maps functions into the RKHS given by k� This approach is taken in
�Girosi� ���
� to derive a similar result to �Smola et al�� ���
d��

The theory of RKHS is particularly useful� as it enables us to state and
prove results on the optimality of expansions in a very elegant form� A central
statement is the so called representer theorem�
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Theorem �� �Kimeldorf and Wahba ������� Cox and O�Sullivan �������

Let F be an RKHS of real valued functions on E with reproducing kernel
k� Denote X the training set� and let + �� f��� � � � � �mg�m � N be a set of
functions on E such that the matrix �
j �� �
	xj� has maximal rank� Then for

f� � argmin
f�span����h�h�F

Remp�f � � �khk�F 	��
�

we have f� � span	+ � fk	x�� ��� � � � � k	x�� ��g��
This theorem states that for any cost function the optimal expansion in the
RKHS is de�ned in terms of the basis functions de�ned by the training data�
i�e� k	xi� ��� This is a more general way of saying that the solution of the SV
optimization problem can be expressed in terms of the mapped input data�

An interesting connection to Gaussian Processes 	GP� is pointed out in
�Williams� ���
� where it is shown� that GP regression� using the maximum a
posteriori approximation of the full Bayesian posterior mean� yields identical
results to SV machines � as long as we are using a quadratic loss function�
The kernel k	x� x�� plays the role of a GP covariance function in this case �
minimizing

P
i�j k	xi� xj��i�j there means maximizing the likelihood of the

model� Basically any admissible SV kernel could also be used for GP regression
and vice versa� which may open a way of directly comparing and"or adapting
the di�erent model selection schemes used for those two techniques�

��� Support Vectors and Sparsity

We conclude this section with a connection between SV machines and sparse
representations� The presentation bases largely on �Girosi� ���
�� In a nutshell
the idea is to use the regularized risk functional of �Olshausen and Field� ���
�
and use a di�erent Hilbert space 	namely an RKHS de�ned by k� to obtain
similar expansions to SV machines�

The starting point is the idea to use large redundant sets of basis functions�
so called dictionaries for approximation and interpolation purposes� This con�
cept was introduced in the theory of wavelets 	see e�g� �Meyer� ����� Daubechies�
������ The problem is to choose a small subset of atoms� i�e� elements of this
dictionary that yield nearly the best approximation or estimate of a target func�
tion g	��� There exist 	among others� three major approaches for �nding such
decompositions�

The �rst one is matching pursuit as described in �Mallat and Zhang� ������
Here one chooses the optimal functions from the dictionary one at a time in an
iterative manner� i�e� by adding the atom from the dictionary that reduces the
appoximation error most� This method is computationally very e�cient but
suboptimal in terms of sparsity as the optimization steps are only carried out
locally� There exists a SV equivalent to this approach� described in �Sch�olkopf
et al�� ���
c�� which deals with the problem of optimal reconstruction of ele�
ments of the feature space 	e�g� RKHS� by atoms of the dictionary 	the functions
k	x� ��� x � E� in a greedy manner by iteratively selecting optimal atoms�



Regularization ��

Another approach� called best basis algorithm� is described in �Coifman and
Wickerhauser� ����� where one has a large dictionary of 	often orthogonal� bases
at hand and tries to choose the best basis into which the estimate should be
decomposed� Whilst having nice properties e�g� in signal processing �Vetterli
and Kovacevic� ����� it is not clear at present how it also could be applied to
RKHS methods and SV algorithms�

Finally there is basis pursuit as described in �Chen� ����� Chen et al�� ������
The idea is to choose an expansion such that the coe�cients have minimal ��
norm instead of the �� which is chosen in frame theory� This� or more precisely
the formulation in �Olshausen and Field� ���
� will be the formulation to use
for proving an equivalence between SV machines and sparse decompositions�
For more details on sparsity consider a textbook on wavelets� e�g� �Strang and
Nguyen� ���
��

Hence we start with the already known kernel expansion of f 	��� and the
sparsi�ed risk functional of �Olshausen and Field� ���
�� i�e�

f	x� �
X
i��

�ik	xi� x� 	����

Rsparse�f � �
�

�
kg	x� � f	x�k�L� � �

�X
i��

S	�i�� 	����

In the SV case we will use S	�� � j�j� yet di�erent functions S could be used
to achieve other distributions of the coe�cients �� Minimizing 	���� leads to
convex programming problems which can be solved e�cienty�

In order to derive a similar equation to SV machines one has to replace
the L� distance� w�r�t� which performance is measured in �Olshausen and Field�
���
� by the RKHS distance �Girosi� ���
�� Hence the modi�ed sparse risk
functional reads as follows�

Rsparse�f � �
�

�
kg	x� � f	x�k�RKHS � �

�X
i��

S	�i�� 	����

Moreover we require that the projections of g and f onto the constant function
� be � in the RKHS 	hf� �i � hg� �i � �� and that the projection of the kernel
functions onto � be normalized to some constant 	e�g� ��� i�e� hk	x� ��� �i � ��
These constraints translate into the additional condition

P�
i�� �i � �� Plugging

	���� into 	���� and exploiting 	��
� and 	���� yields

Rsparse�f � �
�

�
kg	x�k�RKHS�

�

�

�X
i�j��

k	xi� xj��i�j�
�X

i��

�ig	xi���

�X
i��

j�ij 	����

which is identical to the equation one would obtain when computing Wolfe�s
dual to ��insensitive hard loss case as described in 	���

�Girosi� ���
� appendix �� also contains a sketch of a proof how this reasoning
could be applied to the standard SV ��insensitive loss function case� The reader
is referred to the original publication for further details�



Capacity Control �	

� Capacity Control

All the reasoning so far has been based on the assumption that there exist
ways to determine model selection parameters like the regularization constant
� or length scales of rbf�kernels� We will brie�y sketch how capacity control
can be performed for SV machines and similar kernel based algorithms� The
major part of the following exposition is based on �Williamson et al�� ���
��
We refer the reader to the original work for a detailed exposition as a complete
description would approximately double the length of the current paper�

In a nutshell the proofs are based on a viewpoint apparently novel in the
�eld of statistical learning theory� The hypothesis class is described in terms
of a linear operator mapping from a possibly in�nite dimensional unit ball in
feature space into a �nite dimensional space� The covering numbers of the class
are then determined via the entropy numbers of the operator� These numbers�
which characterize the degree of compactness of the operator� can be bounded
in terms of the eigenvalues of an integral operator induced by the kernel function
used by the machine�

��� Entropy Numbers� Covering Numbers� the VCSS�

Lemma and the Annealed Entropy

Let us �rst introduce a set of basic tools� The �rst ingredient is a bound on the
generalization error in terms of the entropy number �n or its functional inverse�
the covering number N	�� of a model class��� A typical uniform convergence
result takes the general form

P �fR�Remp � �g � c�	��E
h
N	��F� �����

i
e��

���c� � 	����

Here � denotes the number of samples� Remp the empirical and R the expected
risk� The constants c�� � and c�	m� depend on the setting� For instance in the
case of realizable models �Alon et al�� ����� we have c�	�� � ���� � � �� c� � �
�
These bounds�� are typically used by setting the right hand side equal to �
and solving for � � �	�� ��� This is called the sample complexity� The above
result can be used to give a generalization error result by applying it to the loss�
function induced class using standard techniques �Bartlett et al�� ���
� Lemma
���� �Williamson et al�� ���
��

A close look at 	���� shows that the relevant quantity is lnE
�
N	��F� ����

�
that matters� or more precisely its magnitude relative to �� However� to make

��The covering number N
��X� d� of a set X equipped with a metric d
x� y� is de
ned as
the minimum number of elements xi of X such that the minimum distance between arbitrary
x � X and these elements is less equal �� i�e� mini d
x� xi� � �� The entropy number of
X 
w�r�t� d� is �n
X� � �n
X� d� � inff� 	 	�N
��X� d� � ng� Consequently N
��F� 
���
denotes the ��covering number of the model class F w�r�t� the 
�� metric� We set N�
��F� ��
supx������x� N
��F� 


�
���

��The 
rst result of this type was published by Vapnik and Chervonenkis 
see e�g� �Vapnik
and Chervonenkis� ����� for the proof� and then �rediscovered� independently by Sauer ������
and Shelah ������� Hence one might refer to the original result as the VCSS�lemma instead
of only calling it Sauer�s lemma�



Capacity Control ��

the expression more amenable to practical use� one bounds it by the Annealed
Entropy

H	��F� ���� �� E
h
lnN	��F� ����

i
� 	����

which is possible due to the convexity of the logarithm� Finally� the expectation
is replaced by the sup over all possible ��samples� i�e�

G	��F� ���� �� sup
�x������x���X

h
lnN	��F� ����

i
� 	����

a quantity which is referred to as the Growth Function� This quantity in turn
is usually bounded by an expression derived from the VC dimension� See e�g�
�Vapnik� ��
�� ����� Anthony� ����� Vidyasagar� ����� Williamson� ���
� An�
thony and Bartlett� ����� for further details on how the bounding mechanism
works�

In the following we will only deal with the Growth Function� or more pre�
cisely we will exploit

E �N	��F� �m��� � N
m	��F�� 	��
�

Of particular interest will be the functional inverse of Nm	��F�� i�e� the entropy
number as results can be stated more easily in the latter notation� The key idea
as will be described in section 
�� involves the direct computation of Nm	��F�
in a manner that does not involve a combinatorial dimension 	such as the VC�
or the fat�shattering dimension��

��� Why not to use the VC Dimension in SV regression

One might think that the VC dimension would be a reasonable concept for
SV regression� As we will show in a small example this is not the case� The
problem is that the VC dimension does not contain any scale information and
therefore is too conservative in most cases�

Proposition �� �Gaussian rbf�kernel with in�nite VC dimension� Denote
r an arbitrary positive number and C � R

n a compact set� The class of functions

F �� ff jf �
X
i

�ik	xi� �� with xi � C�
X
i�j

�i�jk	xi� xj� � �g� 	����

where k is a Gaussian rbf�kernel� has in�nite VC dimension�

Proof It su�ces to show that for each � � N� there exist a set

X � f	x�� y�� � � � � 	x�� y��g � C � f��� �g of size � 	��
�

that can be shattered with a nonzero margin� Consider a set X that contains
no duplicate xi� It can be shown that there exists a function  f �

P
i  �ik	xi� ��

such that f	xi� � yi for all � � i � �� since the matrix k	xi� xj� has full rank for
Gaussian rbf�kernels �Micchelli� ��

�� Now set r ��

P
i�j  �i  �jk	xi� xj� � � and

f ��
p

��r  f � By construction f � F and f	xi� �
p

��ryi� hence X is shattered
by the margin

p
��r As this holds for arbitrary �� F has in�nite VC dimension
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even though C is compact�

Consequently the VC dimension is not the appropriate in SV regression as
the length of the weight vector in feature space is exactly the quantity used
in the SV approach� Hence it is absolutely necessary to use scale dependent
quantities like the 	level� fat VC dimension or directly more basic quantities
like entropy and covering numbers directly by applying to functional analytic
tools without taking the detour via some combinatorial reasoning���

��� Useful Theorems for Entropy Numbers

One might ask the question about the relative merit of using entropy numbers
�n instead of their functional inverse� the growth function 	also called covering
number� N	��F� �m��� In fact� calculations could be equivalently also carried out
in terms of the latter� however� at the expense of rather complicated notation�
Entropy numbers are a much more natural quantity 	they�re continuous� than
covering numbers when dealing with operators� A simple example will show
this�

Denote �n	F� the entropy number of some function class F� Then the en�
tropy number of the same class scaled by some constant c is �n	cF� � jcj�n	F��
Notation in terms of covering numbers would completely hide this relation�

Besides entropy numbers of function classes 	i�e� sets� we also need the
notion of entropy numbers of operators as we will try to construct function
classes by concatenation of operators� The entropy number of an operator
T � A � B� �n	T � is de�ned as the entropy number of the image of the unit
ball UA� i�e� �	TUA�� The following theorems will come handy�

Proposition �
 �Maurey ���
��� Let n � N� X a Hilbert space and denote
S�X � �n� a linear operator� Then there exists a constant c such that�

��n	S� � ckSk
�
n�� log

�
� �

m

n

��� �
�

	����

This theorem is useful when mapping from feature space to �m��

Theorem �� �Carl and Stephani ������� Let �� � �� � � � � � �j � � � � �
� be a non�increasing sequence of non�negative numbers and

Dx � 	��x�� ��x�� � � � � �jxj � � � �� for x � 	x�� x�� � � � � xj � � � �� � �p 	����

be the diagonal operator from �p into itself� generated by the sequence 	�j�j�
Then for all n � N�

sup
j�N

n�
�
j 	���� � � � �j�

�
j � �n	D� � 
 sup

j�N
n�

�
j 	���� � � � �j�

�
j � 	����

�	A similar fact is true for SV classi
cation� too� There� however� the introduction of a scale
sensitive quantity in �Vapnik� ����� avoids the problem mentioned above� Essentially bounds
on the level fat shattering VC dimension are derived�



Capacity Control ��

We will exploit this result to take advantage of the speci�c kernels as those
do not necessarily map the data into balls but somewhat more constrained ob�
jects like hyperellipsoids with rapidly decaying radii� The following proposition
will be used for concatenating several operators to generate sets that get as
close as possible to the actual sets we want to bound the entropy number on�

Proposition �� �Entropy numbers for concatenations of operators� Suppose
X� Y� Z are Banach spaces and A � X � Y � B � Y � Z are linear operators�
Then the entropy numbers of AB � X � Z satisfy

�n	AB� � kAk�n	B� 	����

�n	AB� � kBk�n	A� 	����

�nm	AB� � �n	A��m	B� with n�m � N 	����

��� How to use Entropy Numbers in SV regression

The strategy is as follows� First one derives statements to bound the shape
of the mapped images in feature space� Next one constructs operators taking
advantage of that� and �nally one applies to Maurey�s theorem when mapping
back into �m�� i�e� evaluating the functions on an m�sample�

For this purpose we need a statement restricting the sort of operations we
may perform on the image of the data in feature space� i�e� �	X�� It is a direct
result of Mercer�s theorem�

Proposition �� �Mapping �	X� into ��� �Williamson et al�� ���
�� Recall
the notation of theorem �� Moreover let A be the diagonal map

A � RN � R
N � A � 	xj�j �� A	xj�j � 	ajxj�j � 	����

Then A maps �	X� into a ball of �nite radius RA centered at the origin if and
only if 	

p
�jaj�j � ���

The consequence of this result is that there exists no axis parallel ellipsoid E
not completely containing the 	also� axis parallel parallelepiped B of sidelength
	�Ck

p
�j�j � such that E would contain �	X�� That isB � E if and only if �	X� �

E� Hence �	X� contains a set of nonzero measure of elements near the corners
of the parallelepiped� Once we know that �	X� ��lls� B we can use this result
to construct an inverse mapping A from the unit ball in �� to an ellipsoid E
such that �	X� � E as in the following diagram�

X
� �� �	X�

A�� ��
T

U��
A

��� � � �
� � � �

� � �

E

	��
�

We thus seek an operator A � �� � �� such that A	U��� � E� We can ensure
this by constructing A such that

A� 	xj�j �� 	RAajxj�j 	����
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with RA �� Ckk	
p
�j�aj�jk�� � From Proposition �� it follows that all those

operators A for which RA � 	 will satisfy A	U��� � E� We call such scaling
	inverse� operators admissible� Let us assume for a moment that we knew the
shape of B� In order to �nally treat the class of functions with restricted
weight vector in feature space 	i�e� kwk � Rw� evaluated on the m�sample
Xm �� fx�� � � � � xmg � X we need to introduce an evaluation operator S��Xm��
It is understood that �	Xm� denotes the element wise mapping from X into
feature space�

S��Xm��U�� � �m�� S��Xm��w �� 	hw��	x��i� � � � � hw��	xm�i� 	��
�

It is the entropy number of S��Xm�	RwU��� we are interested in SV machines�
One could� for instance� apply theorem �
 and bound the norm of S by maxi k�	xi�k�
This would lead to bounds similar to the ones obtained by Vapnik ������ for
pattern recognition� however slightly better by a log term as these estimates
need to bound �n in terms of the fat shattering dimension� However one can do
much better by exploiting the information on the shape of E� Eq� 	���� shows
the further reasoning one may follow�

U��
T ��

Rw

��

�m�

RwU��

S
�Xm�

����������������
A �� RwE

S�A��
�Xm��

�� 	����

In particular Williamson et al� ����
� derive the following bound

�n	S��Xm�RwU��� � Rw�n	SA����Xm�A� � inf
n��n��N�n�n�
n

Rw�n�	SA����Xm���n�	A��

	����
This is possible due to the linearity in feature space� i�e�

S��Xm�x � SA����Xm�Ax� 	����

Hence the overall strategy consists in getting a bound 	or an estimate� on E and
then apply 	���� to obtain the overall entropy numbers� which then� in turn�
are substituted into an error bound of the type introduced in 	��
��

��� Bounding the shape of ��X�

As already mentioned beforehand the �rst approach to estimate the shape of E
was carried out in �Guyon et al�� ����� Vapnik� ������ There the assumption was
made that E has the shape of a ball� It turns out �Sch�olkopf et al�� ����� that
the radius r of the latter can be estimated by solving a quadratic programming
problem� This method� however� has a fundamental drawback� which is not
resolved in �Vapnik� ������ The radius r is an estimate on the m�sample given
as training data� In order to give reliable bounds one would have to give an
upper bound on the radius of a �m�sample drawn iid from the same distribution
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as the m�sample� Hence one must not simply plug r into theorem �
 to obtain
good bounds but for instance make a statement in the luckiness framework
�Shawe�Taylor et al�� ���
b�� This has been mainly ignored in the SV literature
so far�

A similar approach could be applied to estimate several radii of an ellipsoid
enclosing the data thus yielding improved bounds due to the operator A� Again�
su�cient safeguards have to be taken to ensure that the estimate obtained from
an m�sample will lead to good predictions for a �m�sample� See �Williamson
et al�� ���
� Shawe�Taylor and Williamson� ����� Smola� ���
� for more details
on this topic�

Finally there exists an analytic approach to bounding �	X� which does
not need a luckiness argument at all� Williamson et al� ����
� show that for
certain kernels the radii of E decay polynomially or even exponentially� Loosely
speaking for translation invariant kernels the radii essentially decay as rapidly as
the Fourier spectrum of the kernels� For instance Gaussian rbf kernels k	x� y� �
exp	�kx�yk�� yield radii decaying like rj 
 exp	��j��� Again see �Williamson
et al�� ���
� for details� We now brie�y consider how �n	A� �� � ��� depends
asymptotically on the radii of E���

Proposition �� �Exponential�Polynomial decay� Williamson et al� ����
��
Suppose k is a Mercer kernel with �j � ��e�
jp for some �� �� p � �� Then

ln ���n 	A� �� � ��� � O	ln
p

p�� n�

It can also be shown that the rate in the above proposition is asymptotically
tight� These rates can be combined with theorem �
 into an overall rate bound
on �n�

Lemma �� �Rate bounds on �n� Williamson et al� ����
�� Let k be a Mer�
cer kernel and suppose A is the scaling operator associated with it as de�ned by

���
�

�� If �n	A� � O	log�
 n� for some � � � then �n	T � � O	log��
����� n��

�� If log �n	A� � O	log�� n� for some � � � then log �n	T � � O	log�� n��

This Lemma shows that in the �rst case� Maurey�s theorem allows an asymp�
totic improvement in the exponent of the entropy number of T � whereas in
the second� it a�ords none 	since the entropy numbers decay so fast anyway��
In a nutshell we can always obtain rates of convergence better than those due
to Maurey�s theorem because we are not dealing with arbitrary mappings into
in�nite dimensional spaces� On the other hand� the rates obtainable from a
VC�dimension argument 	cf� �Alon et al�� ������ are� at best� comparable to
the rates of Maurey�s theorem� Thus one can observe that using kernels gives
a signi�cant improvement over the currently �available� bounds�

Due to space constraints� it is impossible to explain these results 	includ�
ing constants� in more detail here� In particular we have limited ourselves in

�
The connection between E and the eigenvalues �j induced by the kernel k is governed by
theorem ��



Discussion ��

this exposition to outlining how the learning rates could be computed� For a
successful learning algorithm� however� good estimates of the constants 	and
not only the rates� are crucial� We refer the reader to �Williamson et al�� ���
�
for calculation of the latter and algorithms to obtain even tighter bounds� by
evaluating numerically what had been simply majorized in this brief outline�


 Discussion

Due to the already quite large body of work done in the �eld of SV research
it is quite impossible to write a tutorial on SV regression which includes all
contributions to this �eld� This also would be quite out of the scope of a
tutorial and rather be relegated to textbooks on the matter 	see e�g� Sch�olkopf
et al� ������ for a snapshot of the current state of the art� or Vapnik ����
�
for an overview on statistical learning theory�� Still the authors hope that this
work provides a not too much biased view of the state of the art in SV research�
We deliberately omitted 	among others� the following topics�


�� Missing Topics

Before all one should mention the area of mathematical programming�
Starting from a completely di�erent perspective algorithms have been devel�
oped that are very much similar in their ideas to SV machines� A good primer
might be �Bradley et al�� ���
�� Also see �Mangasarian� ��
�� ��
�� Street and
Mangasarian� ������ A comprehensive discussion of connections between math�
ematical programming and SV machines has been given by Bennett �������

Another idea that has been pursued recently is density estimation with
SV machines �Weston et al�� ����� Vapnik� ������ There one makes use of the
fact that the cumulative distribution function is monotonically increasing� and
that its values can be predicted with variable con�dence which is adjusted by
selecting di�erent values of � in the loss function�

Furthermore one might think of choosing di�erent kernel widths simultane�
ously� In the standard SV case this is hardly possible except by de�ning new
kernels as linear combinations of di�erently scaled ones� This is due to the fact
that once chosen a regularization operator the solution minimizing the regular�
ized risk function has to expanded into the corresponding Greens functions of
P �P �Kimeldorf and Wahba� ����� Cox and O�Sullivan� ������ Hence one has
to resort to linear programming� Weston et al� ������ use kernel dictionaries
not unlike Chen et al� ������ for this purpose�

Finally� the focus of this review was on methods and theory rather than on
applications� This was done to limit the size of the exposition� State of the
art� or even record performance was reported in �M�uller et al�� ����� Drucker
et al�� ����� Stitson et al�� ����� Mattera and Haykin� ������ In many cases� it
may be possible to achieve similar performance with neural network methods�
however� only if many parameters are optimally tuned� thus depending largely
on the skill of the experimenter� In other words one should not consider SV
machines as a �silver bullet�� On the other hand� as there are only few critical
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parameters 	e�g� regularization and kernel width� in SV machines� it may be
much easier to achieve the same result with SVs�


�� Open Issues

Being a very active �eld there exist still a number of open issues that have to
be addressed by future research� After that the algorithmic development seems
to have found a more stable stage� one of the most important ones seems to be
to try out the error bounds derived from the speci�c properties of kernel
functions� It will be of interest in this context� whether SV machines� or similar
approaches stemming from a linear programming regularizer� will lead to most
satisfactory results�

Moreover some sort of �luckiness framework� �Shawe�Taylor et al�� ���
a� for
multiple model selection parameters� similar to multiple hyperparameters
and automatic relevance detection in Bayesian statistics �MacKay� ����� Bishop�
������ will have to be devised to make SV machines less dependent on the skill
of the experimenter� It also would be worth while to exploit the bridge between
regularization operators� Gaussian processes and priors 	see e�g� �Williams�
���
�� to state Bayesian risk bounds for SV machines in order to compare the
predictions with the ones from VC theory� Moreover optimization techniques
developed in the context of SV machines also could be used to deal with large
datasets in the Gaussian process settings�

Prior knowledge appears to be another important question in SV regres�
sion� Whilst invariances could be included in pattern recognition in a principled
way via the virtual SV mechanism and restriction of the feature space �Burges
and Sch�olkopf� ����� Sch�olkopf et al�� ���
�� it is still not clear how 	probably�
more subtle properties� as required for regression� could be dealt with e�ciently�
The multiple operator approach in �Smola and Sch�olkopf� ���
b� however may
show a �rst indication how this could be achieved�

Reduced set methods also should be considered for speeding up predic�
tion 	and possibly also training� phase for large datasets� This topic is of great
importance as data mining applications require algorithms that are able to deal
with databases that are often at least one order of magnitude larger 	� million
samples� than the current practical size for SV regression�

Many more aspects such as more data dependent generalization bounds�
e�cient training algorithms� automatic kernel selection procedures� vector val�
ued regression� and many techniques that already have made their way into the
standard neural networks toolkit� will have to be considered in the future�
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A Pseudocode for SMO Regression

target 
 desired output vector

point 
 training point matrix

procedure takeStep�i��i��

if �i� 

 i�� return �

alpha�� alpha�
 
 Lagrange multipliers for i�

y� 
 target�i��

phi� 
 SVM output on point�i�� � y� �in error cache�

k�� 
 kernel�point�i���point�i���

k�� 
 kernel�point�i���point�i���

k�� 
 kernel�point�i���point�i���

eta 
 �
k���k���k��

gamma 
 alpha� � alpha�
 � alpha� � alpha�


� we assume eta � �� otherwise one has to repeat the complete

� reasoning similarly �compute objective function for L and H

� and decide which one is largest

case� 
 case� 
 case� 
 case	 
 finished 
 �

alpha�old 
 alpha�� alpha�old
 
 alpha�


alpha�old 
 alpha�� alpha�old
 
 alpha�


delta�phi 
 phi� � phi�

while �finished

� this loop is passed at most three times

� case variables needed to avoid attempting small changes twice

if �case� 

 �� ��

�alpha� � � �� �alpha�
 

 � �� deltaphi � ��� ��

�alpha� � � �� �alpha�
 

 � �� deltaphi � ���

compute L� H �wrt� alpha�� alpha��

if L � H

a� 
 alpha� � deltaphi�eta

a� 
 min�a�� H�

a� 
 max�L� a��

a� 
 alpha� � �a� � alpha��

update alpha�� alpha� if change is larger than some eps

else

finished 
 �

endif

case� 
 ��

elseif �case� 

 �� ��

�alpha� � � �� �alpha�
 

 � �� deltaphi � � epsilon�� ��

�alpha�
 � � �� �alpha� 

 � �� deltaphi � � epsilon��

compute L� H �wrt� alpha�� alpha�
�
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if L � H

a� 
 alpha�
 � �deltaphi � � epsilon��eta

a� 
 min�a�� H�

a� 
 max�L� a��

a� 
 alpha� � �a� � alpha�
�

update alpha�� alpha�
 if change is larger than some eps

else

finished 
 �

endif

case� 
 ��

elseif �case� 

 �� ��

�alpha�
 � � �� �alpha� 

 � �� deltaphi � � epsilon�� ��

�alpha� � � �� �alpha�
 

 � �� deltaphi � � epsilon��

compute L� H �wrt� alpha�
� alpha��

if L � H

a� 
 alpha� � �deltaphi � � epsilon��eta

a� 
 min�a�� H�

a� 
 max�L� a��

a� 
 alpha�
 � �a� � alpha��

update alpha�
� alpha� if change is larger than some eps

else

finished 
 �

endif

case� 
 ��

elseif �case	 

 �� ��

�alpha�
 � � �� �alpha� 

 � �� deltaphi � ��� ��

�alpha�
 � � �� �alpha� 

 � �� deltaphi � ���

compute L� H �wrt� alpha�
� alpha�
�

if L � H

a� 
 alpha�
 � deltaphi�eta

a� 
 min�a�� H�

a� 
 max�L� a��

a� 
 alpha�
 � �a� � alpha�
�

update alpha�
� alpha�
 if change is larger than some eps

else

finished 
 �

endif

case	 
 ��

else

finished 
 �

endif

update deltaphi

endwhile

Update threshold to reflect change in Lagrange multipliers

Update error cache using new Lagrange multipliers

if changes in alpha��
�� alpha��
� are larger than some eps

return �
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else

return �

endif

endprocedure

procedure examineExample�i��

y� 
 target�i��

alpha�� alpha�
 
 Lagrange multipliers for i�

C�� C�
 
 Constraints for i�

phi� 
 SVM output on point�i�� � y� �in error cache�

if ��phi� � epsilon �� alpha�
 � C�
� ��

�phi� � epsilon �� alpha�
 � � � ��

��phi� � epsilon �� alpha� � C� � ��

��phi� � epsilon �� alpha� � � ��

if �number of non�zero � non�C alpha � ��

i� 
 result of second choice heuristic

if takeStep�i��i�� return �

endif

loop over all non�zero and non�C alpha� random start

i� 
 identity of current alpha

if takeStep�i��i�� return �

endloop

loop over all possible i�� with random start

i� 
 loop variable

if takeStep�i��i�� return �

endloop

endif

return �

endprocedure

main routine�

initialize alpha and alpha
 array to all zero

initialize threshold to zero

numChanged 
 �

examineAll 
 �

SigFig 
 ����

LoopCounter 
 �

while ��numChanged � � � examineAll� � �SigFig � ���

LoopCounter��

numChanged 
 ��

if �examineAll�

loop I over all training examples

numChanged �
 examineExample�I�

else

loop I over examples where alpha is not � � not C
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numChanged �
 examineExample�I�

endif

if �mod�LoopCounter� �� 

 ��

MinimumNumChanged 
 max��� ���
NumSamples�

else

MinimumNumChanged 
 �

endif

if �examineAll 

 ��

examineAll 
 �

elseif �numChanged � MinimumNumChanged�

examineAll 
 �

endif

endwhile

endmain
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