
Technical Report: A Case Study in Network Architecture
Tradeoffs

Nikolai Matni (Caltech), Ao Tang (Cornell) and John C. Doyle (Caltech)

March 18, 2015

Abstract

Software defined networking (SDN) establishes a separation between the control plane and the data
plane, allowing network intelligence and state to be centralized – in this way the underlying network
infrastructure is hidden from the applications. This is in stark contrast to existing distributed networking
architectures, in which the control and data planes are vertically combined, and network intelligence and
state, as well as applications, are distributed throughout the network. It is however also conceivable
that some elements of network functionality be implemented in a centralized manner via SDN, and that
other components be implemented in a distributed manner. Further, distributed implementations can
have varying levels of decentralization, ranging from myopic (in which local algorithms use only local
information) to coordinated (in which local algorithms use both local and shared information). In this
way, myopic distributed architectures and fully centralized architectures lie at the two extremes of a
broader hybrid software defined networking (HySDN) design space.

Using admission control as a case study and leveraging recent developments in distributed optimal
control, this paper provides network designers with tools to quantitatively compare different architectures,
allowing them to explore the relevant HySDN design space in a principled manner. In particular, we
assume that routing is done at a slower timescale, and seek to stabilize the network around a desirable
operating point despite physical communication delays imposed by the network and rapidly varying traffic
demand. We show that there exist scenarios for which one architecture allows for fundamentally better
performance than another, thus highlighting the usefulness of the philosophy and approach proposed in
this paper.

1 Introduction
A common challenge that arises in the design of networks is that of achieving globally optimal behavior
subject to the latency, scalability and implementation requirements of the system. Many system properties
and protocols – such as network throughput, resource allocation and congestion avoidance – are inherently
global in scope, and hence benefit from centralized solutions implemented through Software Defined Net-
working (SDN) (e.g., [4, 5, 14]). However, such centralized solutions are not always possible or desirable due
to latency and scalability constraints – in particular the delay inherent in communicating the global state
of the network, computing a solution to a global optimization problem and redistributing this solution to
the network, can often negate the benefits achieved from this holistic strategy. In these cases, distributed
networking solutions can be preferable (e.g., [1]).

Network designers currently make architectural decisions based on qualitative reasoning and best practices
gleaned from experience, often leading them to commit to one extreme of the network design space or the
other, i.e., they often commit to either a completely centralized or a completely distributed network solution.
The appropriateness of such an architectural decision is then only confirmed once a suitable algorithm
has been developed and tested. This process is time consuming and expensive, and even worse, can be
inconclusive. In particular, if an algorithm performs poorly, it is not clear if this poor performance is due to
an inherent limitation of the chosen architecture, or simply due to a poorly designed algorithm, making it
very difficult to quantitatively compare network architectures.

In this paper, we argue that there is a broad class of network architectures that can be quantitatively
compared in a principled manner. In particular, we define the broader Hybrid Software Defined Networking

1

Data$
Forwarding$$

OS$

Applica3ons$
Data$

Forwarding$$

OS$

Applica3ons$

Data$
Forwarding$$

OS$

Applica3ons$
Data$

Forwarding$$

OS$

Applica3ons$

(a) Distributed Networking

Control'Plane'

Centralized'
Applica1on'

Centralized'
Applica1on'

Centralized'
Applica1on'

Centralized'Applica1on'Plane'

Network'Opera1ng'System'

Data'Plane'

Data'Controller'Plane'Interface''

Applica1on'Controller'Plane'Interface''

Data'
Local'OS'
Dist.'App' Data'

Local'OS'
Dist.'App'

Data'
Local'OS'
Dist.'App' Data'

Local'OS'
Dist.'App'

Centralized'
Applica1on'

(b) Hybrid Software Defined Network-
ing

Control'Plane'

Applica/on'Plane'

Network'Opera/ng'System'

Data'Plane'

Data'
Forwarding''

Data'
Forwarding''

Data'
Forwarding''

Data'
Forwarding''

Data'Controller'Plane'Interface''

Applica/on'Controller'Plane'Interface''

Centralized'
Applica/on'

Centralized'
Applica/on'

Centralized'
Applica/on'

Centralized'
Applica/on'

(c) Centralized Software Defined Net-
working

Figure 1: The Hybrid Software Defined Networking Design space, ranging from distributed (Fig 1a) to
centralized (Fig 1c) network protocols.

(HySDN) design space (§2) of network architectures, and claim that a meaningful way to quantify the
appropriateness of an architecture is to determine the optimal performance achievable by any algorithm
implemented on that architecture. This metric thus allows network designers to quantify the performance
tradeoffs associated with using a simpler or more complex architecture, allowing for more informed decisions
about architecture early in the design process.

Of course, this approach is only practical if the optimal performance achievable by an algorithm imple-
mented on a network architecture can in fact be computed efficiently, and indeed, up until recently, only a
limited subset of centralized architectures admitted such an analysis. In §2, we further explain how recent
advances in distributed optimal control theory allow us to expand our analysis to a much larger subset of
the HySDN design space, and to in fact reason quantitatively (if not exactly) about architectures for which
the optimal achievable performance is still computationally intractable to identify. In §4, we illustrate the
usefulness of this approach with an admission control case study. Perhaps surprisingly, we show that for
two nearly identical routing topologies, there can be significant differences in the performance achievable by
centralized and distributed network architectures.

We emphasize that we are not arguing for a specific implementation, algorithm or architecture is best
suited for a specific application – rather, we are proposing a methodology that network designers can use to
make quantitative decisions about architectural choices early in the design process.

2 Architectural Tradeoffs
Completely distributed network architectures, in
which local algorithms take local actions using only locally available information, and centralized network
architectures, in which a centralized algorithm takes global action using global information, can be viewed
as lying at the extremes of a much richer design space. It is possible to build a network architecture in
which certain network logic elements are implemented in a centralized fashion via SDN, and in which other
network logic elements are implemented in a distributed fashion. Further, distributed architectures can have
varying levels of decentralization, ranging from completely distributed (as described above), or myopic, to
coordinated distributed architectures, in which local algorithms take local actions using both locally available
information and shared subsets of global state information. We call this broad space of architectures the
Hybrid Software Defined Networking (HySDN) design space (illustrated in Figure 1), as its constituent
architectures are naturally viewed as hybrids of distributed and software defined networks.

The question then becomes how to explore this even larger design space in a systematic way. As we
have already alluded to, there are inherent tradeoffs associated with any architecture: algorithms running
on centralized architectures typically achieve better steady state performance, but often react with higher
latency than those implemented on a distributed architecture – conversely distributed algorithms are often
simpler to implement but can lead to less predictable steady state performance. Our approach to exploring

2

these tradeoffs is simple: we compare network architectures by comparing the optimal performance achievable
by any algorithm implemented using them. If an optimal algorithm cannot be computed efficiently for a
given architecture then we bound the optimal performance using a “nearby” architecture for which an optimal
cost can be obtained.

In order to make the discussion concrete, we focus on algorithms that can be viewed as controllers that
aim to keep the state of the network as close to a nominal operating point as possible, while exchanging and
collecting information subject to the communication delays imposed by the network. For example, in §4, we
consider admission control algorithms that aim to keep the link flow rates at a user-specified set-point while
minimizing the admission buffer size, despite physically imposed communication delays and rapidly varying
source rates. In particular, we are not addressing the problem of determining what nominal operating point
the controllers should attempt to bring the network state to – we aim to extend our analysis to this problem
in future work.

By restricting ourselves to problems of this nature, we can leverage recent results in distributed optimal
control theory to classify those architectures for which the optimal algorithm and achievable performance
can be computed efficiently.1 It is well known that the optimal centralized controller, delayed or not, can
be computed efficiently via convex optimization [21]. Further, it is known that myopic distributed optimal
controllers are in general NP-hard to compute [20, 13]. Up until recently however, it was unclear if and
when coordinated distributed optimal controllers could be specified as the solution to a convex optimization
problem.

The challenge inherent in optimizing distributed control algorithms is that control actions (e.g., local
admission control decisions) can potentially serve two purposes: actions taken by local controllers can be
used to both control the state of the system in a manner consistent with performance objectives, and to
signal to other local controllers, allowing for implicit communication and coordination. Intuitively, it is
this attempt to both control the system and to implicitly communicate that makes the problem difficult
to solve computationally. However, if local controllers are able to coordinate their actions via explicit
communication, rather than by implicit signaling through the system, then the optimal controller synthesis
problem becomes computationally tractable [16, 15]. Further it is not difficult to argue that distributed
controllers using explicit communication to coordinate will outperform those relying on implicit signaling
through the system. Removing the incentive to signal through the system can be done in a network control
setting by giving control dedicated packets, i.e., packets containing the information exchanged between local
algorithms, priority in the network.2

These theoretical developments thus provide the necessary tools to explore a much larger section of the
HySDN design space in a principled manner. We propose leveraging these results to compare the performance
achievable by algorithms implemented on four different classes of architectures, described below:

1. The GOD architecture: in order to quantify the fundamental limits on achievable performance, we
propose computing the optimal controller implemented using the Globally Optimal Delay-free (GOD)
architecture. This architecture assumes instantaneous communication to and from a central decision
maker – although not possible to implement, the performance achieved by this architecture cannot be
beaten, and as such represents the standard against which other architectures should be compared.

2. The centralized architecture: this architecture corresponds to the SDN approach, in which a
centralized decision maker collects global information, computes a global control action to be taken,
and broadcasts it to the network. Although global in scope, the latency of algorithms implemented
using this architecture is determined by the communication delays inherent in collecting the global
network state and broadcasting global actions.

3. The coordinated architecture: this architecture is distributed, but allows for sufficient coordination
between local controllers so that the optimal control law can be computed efficiently [16, 15]. This
architecture takes both rapid action based on timely local information, and slower scale action based

1Throughout this discussion, we assume that the dynamics of the network are linear around a neighborhood of the nominal
operating point. This assumption holds true for many commonly used network flow models [6, 3].

2Specifically, if local controllers can communicate with each other as quickly as the effect of their actions propagate through
the network, then the resulting optimal control problem is convex. By giving such communication packets priority in the
network and ensuring that they are routed along suitably defined shortest paths, this property is guaranteed to be satisfied [15].

3

on delayed shared information, and can thus be viewed as an intermediate between centralized and
myopic architectures.

4. The myopic architecture: this architecture is one in which local controllers take action based on
local information. Although the optimal controller cannot be computed, the performance achieved
by any myopic controller can be compared with the performance achieved by an optimal coordinated
controller, thus providing a bound on the performance difference between the two architectures.

By computing the performance of each of these architectures, the network designer can then quantify
tradeoffs in implementation complexity and performance in a computationally efficient and inexpensive
manner. We demonstrate the usefulness of this approach on an admission control case study in the next
section.

3 Control Theory in Networking
Network applications use the architectural resources allocated to them to implement network logic (e.g.,
traffic engineering, network virtualization, processor/storage optimization, etc.): the objective of this network
logic is to bring the network to a state that is optimal with respect to a performance metric by appropriately
allocating network resources. It is therefore natural to view such network applications as resource allocation
controllers – the resource allocation controller determines the optimal distribution of resources within a
network so as to maximize a specified performance metric, and if applicable, a suitable means of distributing
said resources.

For example, in the case of traffic engineering, given a set of source-destination pairs and associated rate
demands, the resource allocation controller must first solve a multi-commodity flow optimization problem to
determine how the link capacities should be allocated among the source-destination pairs. It must then fur-
ther solve a suitable problem to determine routing protocols (be they path, source-destination or destination
based) to achieve these optimal flow rates in the network.

Suppose now that the source-destination rate demands fluctuate in an unpredictable manner around the
value used by the resource allocation controller to compute the optimal flow rates – it is desirable to be able to
handle such fluctuations in a principled and practical manner. One such approach is to introduce admission
controllers in between each source and the rest of the network, and to use these admission controllers to
suppress the effect of these un-modeled rate demand perturbations on the flow rates of the network. These
admission controllers are inherently feedback based, deciding their actions based on the measurements of the
state of the network (namely the flow rates and size of admission control buffers) and their model of the
network dynamics. In other words, we introduce fast time-scale feedback control in order to keep the link
flow rates as near as possible to the optimal flow rates determined by the resource allocation controller,
despite fluctuations in the demand rates.

This example serves to illustrate a general principle: the network applications determine an optimal set
point at which the network should operate under simplifying assumptions. As these simplifying assumptions
are often violated by the actual system, fast time scale perturbation controllers should then be introduced to
maintain the state of the network at the determined optimal set point – as these perturbations are inherently
unknown, feedback control is necessary.

3.1 Distributed Optimal Perturbation Control

System

Feedback
Controller Measured

Output
Control
Input

Perturbation Deviation
from Set Point

Figure 2: A centralized control problem

4

Figure 2 illustrates a standard, or centralized, optimal perturbation control problem: the objective is to
minimize the deviations of the system from a desired set-point using control inputs that are computed using
measurements of the state of the system. Mathematically, we seek the feedback policy K that minimizes the
norm of the closed loop map from perturbations to deviations, i.e., the map from perturbation to deviation
when the controller is connected to the system

minimize
Feedback Policy K

‖Closed Loop Response‖

s.t. System Dynamics.
(1)

Typical objective functions minimize the average effect of the perturbation on the deviations (known as H2

or LQG optimal control) or the worst case effect of the perturbation on the deviation (known as H∞ optimal
control). If the system is described by linear dynamics, then for such objective functions, it is known that
the optimal control policies are linear in the measurements available to the controller and are specified by
the solutions to finite dimensional convex optimization problems.

Perturbation Deviation
from Set Point

Distributed System

Distributed Controller

Measured
Outputs

Control
Inputs

Figure 3: A distributed control problem

Notice however that Figure 2 does not fully capture the nature of the types of perturbation control
problems that arise in a networking setting – in particular, both the system and the controller are spatially
distributed, as illustrated in Figure 3 For example, in the admission control problem formulated in the next
section, the feedback controller is actually comprised of several sub-controllers (each admission control buffer
is such a sub-controller), and further, each sub-controller has access to a different subset of the measurements
of the system. Even if sub-controllers are allowed to exchange their respective measurements, due to the
communication delays inherent in such an information exchange, there is an asymmetry in the information
available at each sub-controller.

This asymmetry manifests as additional constraints on the feedback policy in the optimal control problem
(1), leading to the distributed optimal control problem

minimize
Feedback Policy K

‖Closed Loop Response‖

s.t. System Dynamics
Information Exchange Constraints.

(2)

As described in the previous section, this seemingly innocuous modification to optimization problem causes
traditional methods to fail, and in fact makes the optimal control policy NP-hard to compute in general
[20, 13].

Fortunately, a class of systems for which the distributed optimal control problem can be solved via
finite dimensional convex optimization has recently been identified [16]. Such systems are characterized
by a particularly intuitive property: if sub-controllers can exchange information with each other at least
as fast as their control actions propagate through the system, then the optimal control problem is convex
[15]. This property ensures that control inputs are used only to control the system, and not as a means of
communication between sub-controllers.

Although this delay based condition may seem restrictive, it can be satisfied in a networking setting by
giving control dedicated packets priority – in this way, the communication delay between two sub-controllers
is specified by the propagation delay associated with the shortest path between them.

5

Noisy&
Src&1&

AC1&

Flow
&1&

Network&

Noisy&
Src&2&

AC2&

Noisy&
Src&3&

AC3&
In
fo
&1
& Flow

&2&In
fo
&2
& Flow

&3&In
fo
&3
&

Noisy&
Src&1&

AC1&

Flow
&1&

Network&

Noisy&
Src&2&

AC2&

Noisy&
Src&3&

AC3&

In
fo
&1
& Flow

&2&In
fo
&2
& Flow

&3&In
fo
&3
&

Noisy&
Src&1&

AC1&

Flow
&1&

Network&

Noisy&
Src&2&

AC2&

Noisy&
Src&3&

AC3&

In
fo
&1
& Flow

&2&In
fo
&2
& Flow

&3& In
fo
&3
&

Admission&Controller&

Myopic&Distributed& Coordinated&Distributed& Centralized&

Figure 4: The HySDN design space for an admission control problem with three sources. Blue arrows denote
the flow of traffic, whereas dashed black lines denote the flow of admission control related information.
Note that the dotted lines correspond to virtual connections, and can be implemented using either control
dedicated communication links, or using control dedicated tunnel overlays on the network.

4 Admission Control Design
In this section we pose an admission control problem, define the relevant HySDN design space and show
that it can be explored in a principled and quantitative manner using tools from distributed optimal control
theory. We discuss the problem at a conceptual level in this section, and refer the interested reader to §A of
the Appendix for technical details.

4.1 Problem
We consider the following admission control task: given a set of source-destination pairs (s, d), a set of

desired flow rates
(
fs,d`

)?
on each link ` for said source-destination pairs, and a fixed routing strategy that

achieves these flow rates, design an admission control policy that maintains the link flow rates fs,d` (t) as

close as possible to
(
fs,d`

)?
while minimizing the amount of data stored in each of the admission control

buffers, despite fluctuations in the source rates xs(t).
The architectural decision that the network designer is faced with is whether to implement the admission

control policy in a myopic, coordinated, or centralized manner – representative examples of these possible
architectures are illustrated in Figure 4 for the case of three sources. In the myopic distributed architecture,
local admission controllers AC1, AC2 and AC3 have policies that depend solely on their local information –
in what follows, we define the local information available to a local algorithm for the specific case studies that
we consider. In the coordinated distributed architecture, the local admission controllers take action based on
both locally available information and on information shared amongst themselves – this shared information
is delayed, as it must be communicated across the network and is therefore subject to propagation delays.
Finally, in the centralized architecture, a central decision maker collects the admission control buffer and
link flow rate states subject to appropriate delays, determines a global admission control strategy to be
implemented and broadcasts it to the local AC controllers – this strategy also suffers from delay due to the
need to collect global state information and to broadcast the global policy to each AC controller.

As described in §2, our approach to exploring the HySDN design space is to compute optimal admis-
sion controllers implemented on each of these different architectures. In particular we compute admission
controllers that minimize a performance metric of the form

N∑
t=1

s,d∑
`

(
fs,d` (t)−

(
fs,d`

)?)2

+ λ‖A(t)‖22, (3)

where A(t) is a vector containing the size of the admission control buffers and N is the optimization horizon.
Thus the controllers aim to minimize a weighted sum of flow rate deviations and admission queue lengths

6

Src1

Src2 Src3
Dst$1,2,3$

co
m
m
s$

~6ms$~3
m
s$

~9ms$
~3ms$

AC1$

AC2$
AC3$

Figure 5: Routing topology used for case study: each source-destination path is denoted by a dashed line.
Sources 1 and 2 have edge admission controllers as depicted in Figure 6, whereas Source 3 either has an edge
admission controller or an internal admission controller, as depicted in Figure 7, depending on the scenario
considered.

Noisy source
xs(t) = x?

s(t) + �s(t)

Admission
Control
Bu↵er

As(t)

Admitted flow
as(t)

Figure 6: Diagram of an edge admission controller.

over time, where λ > 0 determines the relative weighting assigned to each of these two terms in the final cost.
By solving the corresponding optimal control problems, we obtain two parameters: an optimal cost and an
admission control policy that achieves it. These optimal costs thus serve as a quantitative measure of the
performance of a given architecture, as by definition, they correspond to the best performance achievable by
any admission control policy implemented on that architecture.

4.2 Case Study
We consider a simple routing topology overlaid onto the abilene network, and two different admission control
scenarios: one in which only edge admission control is allowed (cf. Figure 6) and one in which edge and
internal admission control is allowed (cf. Figure 7). We model the dynamics of the system using a flow
based model and solve the optimal control problem with the cost (3) taken to be the infinite horizon LQG
cost using the methods described in [21] and [7] – we refer the reader to Section A for the technical details.
Intuitively, this cost measures the amount of “energy” transferred from the source rate deviations to the flow
rate deviations and buffer sizes. We assume that the nominal source rates x?s(t) and the nominal flow rates(
fs,d`

)?
are all equal to 1 (this is without loss of generality through appropriate normalization of units), and

empirically choose λ = 50 based on the observed responses of the synthesized controllers.
We compute three optimal controllers for each of the scenarios considered: a coordinated distributed

optimal controller in which local admission controllers are able to exchange information via the network
in order to coordinate their actions, as illustrated in the middle pane of Figure 4, a centralized optimal
controller subject to the delays induced by collecting global state information and broadcasting a global
control action, and the GOD controller. We also compare the performance of these controllers with the
performance achieved by the best myopic distributed controller we are able to compute (recall that optimal
myopic controllers are in general computationally intractable to compute).

We present two different settings to illustrate the benefit of our approach to exploring the HySDN design
space: one in which using a coordinated distributed algorithm leads to a significant improvement over a
centralized algorithm and a slight improvement over a myopic distributed algorithm, and one for which the
optimal GOD algorithm is inherently myopic in nature. In the former case, the significant improvement

7

Admission
Control
Bu↵er

As(t)

Ingoing flows
f1(t)

f2(t)

f3(t) a3(t)

a2(t)
a1(t)

Admitted
flows

Figure 7: Diagram of an internal admission controller.

over a centralized implementation justifies the use of a coordinated or myopic architecture, whereas in the
latter case, the myopic distributed architecture is the clear choice as it achieves the same performance as a
controller implemented using the GOD architecture.

The topology that we consider is illustrated in Figure 5 – source-destination pairs are illustrated with
dashed lines, and each source has an admission controller. We first consider the edge only admission control
scenario, where each admission controller is as depicted in Figure 6, and compute the optimal controller
implemented using the GOD architecture. Perhaps surprisingly, the optimal control policy is naturally
myopic, i.e., the admitted flow as(t) at admission control buffer s is strictly a function of As(t). In other
words, there is no loss in performance in using a myopic distributed architecture so long as the local control
actions are appropriately specified.

We next consider a scenario where Sources 1 and 2 have edge admission controllers, but now Source 3
has an internal admission controller as depicted in Figure 7. In particular, the internal admission controller
takes as inputs both the incoming flows due to Sources 1 and 2 arriving at the Denver switch, as well as the
contribution from Source 3. We once again begin by computing the optimal controller implemented using
the GOD architecture. In this case, the GOD policy requires instantaneous sharing of information between
different admission controllers and hence cannot be implemented. We then compute a centralized optimal
controller, in which we assume that the central decision maker is located at the Denver switch. At this
location, the largest round trip time between Denver and an admission controller is 18ms: we assume that
computation time is negligible, and thus, it takes 18ms for the centralized decision maker to react to local
changes.

We also compute the optimal coordinated distributed controller, in which we assume that admission
controllers have access to flow rate and admission control buffer information with delay specified by the
routing topology. For example, the admission control buffer at Source 1 has access to the admission control
buffer state at Source 2 with a delay of 3ms and to the admission control buffer state at the Denver switch
with a delay of 6ms. This information sharing protocol is sufficient for the optimal coordinated distributed
to be specified by the solution to a convex optimization problem, and can be computed efficiently using
the methods in [7]. Finally, we bound the performance of the myopic architecture using the best myopic
distributed algorithm that we are able to generate via non-linear optimization.

We normalize the costs achieved by each of the architectures by the performance achieved by the GOD
architecture: in this way, a ratio of 1 corresponds to the best possible performance achievable. The optimal
algorithm implemented using the centralized architecture achieved a cost ratio of 1.13 – thus the delay needed
to take centralized decisions leads to a 13% performance degradation over the GOD architecture performance.
We then computed the optimal coordinated distributed controller and obtained a cost ratio of 1.01 – thus,
with a mild amount of coordination, a realistic controller implementation can achieve performance nearly
identical to that of a controller using the GOD architecture. Finally, the best myopic distributed controller
we were able to synthesize achieved a cost ratio of 1.04 – these results are summarized in Table 1.

A representative example of flow deviation and admission buffer length evolution under the GOD and
coordinated distributed controllers can be found in Figure 8, with the driving source rate deviations found
in Figure 9. As there is very little quantitative difference in the performance of these two controllers, one
does not expect to see a qualitative difference in the state trajectories.

Thus, in this scenario there is a significant quantifiable advantage in adopting either a myopic or co-
ordinated distributed architecture over a centralized architecture. The difference in performance between
the two distributed architectures considered is much less significant – in this case, it is up to the network
designer to choose whether the additional complexity of implementing a coordinated algorithm is worth the

8

0 0.5 1 1.5
−0.05

0

0.05

0.1

0.15

0.2

Time (sec)

Fl
ow

 ra
te

 (D
at

a/
se

c)

GOD Controller

∆ f1
∆ f2
∆ f3

1

∆ f3
2

∆ f3
3

0 0.5 1 1.5 2
0

0.002

0.004

0.006

0.008

0.01

Time (sec)

Ad
m

iss
io

n
Co

nt
ro

l B
uf

fe
r S

ize
 (D

at
a) GOD Controller

AC1
AC2
AC31
AC32
AC33

0 0.5 1 1.5
−0.05

0

0.05

0.1

0.15

0.2

Time (sec)

Fl
ow

 ra
te

 (D
at

a/
se

c)

Coordinated Controller

∆ f1
∆ f2
∆ f3

1

∆ f3
2

∆ f3
3

0 0.5 1 1.5 2
0

0.002

0.004

0.006

0.008

0.01

Time (sec)
Ad

m
iss

io
n

Co
nt

ro
l B

uf
fe

r S
ize

 (D
at

a) Coordinated Controller

AC1
AC2
AC31
AC32
AC33

Figure 8: Sample flow deviations and admission buffer length evolution under the GOD and coordinated
distributed controllers when the system is subject to the source rate fluctuations illustrated in Figure 9.

0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Time (sec)

Fl
ow

 ra
te

Source Rate Fluctuations

∆ x1
∆ x2
∆ x3

Figure 9: Sample source rate fluctuations – these are lower bounded by -1 as the nominal source rates are
all assumed to be 1.

GOD Myopic Coordinated Centralized
Ratio 1 1.04 1.01 1.13

Table 1: Summary of admission control case study results for edge and internal admission control scenario.

9

3% performance gain over the proposed myopic algorithm.
Although the differences in performance in this case study ranged from 1% to 13%, in general, the gap

between centralized and distributed architectures can become arbitrarily large as the network size increases.
In particular, as the network size increases, the centralized approach requires an increasingly larger delay
to collect and take global actions, leading to a corresponding degradation in performance. However, this is
not true for the coordinated distributed architecture, as local actions are taken without delay, and the delay
needed for two controllers to exchange information to coordinate their control actions is independent of the
rest of the network.

5 Discussion
Localized control: We have not discussed scalability issues that arise in designing and implementing
centralized and coordinated control strategies. As we argue in [19, 18, 17], both centralized and coordinated
distributed optimal controllers require sharing global state information among decision makers – this can
quickly become impractical for even networks of moderate size. To address this issue, we have developed
the localized optimal control framework [19, 18, 17], in which the information collected by a local controller
is limited to a local neighborhood. Although the details are beyond the scope of this paper, we believe that
this theory will play an integral part in allowing optimal control methods to scale to networks comprised of
thousands of links.
Determining nominal operating points: This paper focused on the architectural tradeoffs in designing
controllers for tracking a nominal set point. However, an equally important problem is that of determining
the optimal set points themselves in a rapid, scalable and optimal manner. The challenge inherent to this
setting are the same as those faced in the tracking setting: one must trade off globally optimal performance
with scalability and latency constraints. Much as recent progress in distributed optimal control theory
[16, 15, 18, 11] has allowed us to explore different controller architectures in a principled manner, we believe
that recent advances in distributed optimization [2, 8, 12] will allow for the research program initiated by
the seminal work [3] to be further expanded, allowing for the relevant architectural space to be explored in
a principled manner as well. Our ultimate aim is to combine the nominal set point and controller synthesis
tasks into one integrated framework: we believe that this once incredibly daunting task is now within the
reach of current theory.
Additional architecture design questions: Within the realm of controller design for networks, there
natural architecture questions that we did not address in this paper. For example, how coordinated should a
coordinated distributed controller be – i.e., how much information should be shared among local algorithms,
and how quickly. Alternatively, one can ask where edge and internal admission controllers need to be
placed to achieve a desired performance level – i.e., how much actuation needs to be present in the system,
and where. Although not touched upon in this paper, the recently developed Regularization for Design
[10, 9] framework provides the controller designer with a computationally efficient means of answering such
inherently combinatorial questions in a principled manner.

6 Summary
In this paper, we propose a methodology for quantitatively comparing network architectures. In particular,
we focused on network control problems in which the task is to keep the network state as close as possible to a
nominal operating point despite physically imposed delays and varying operating conditions. We showed how
recent results in distributed optimal control theory allow for the efficient computation of optimal algorithms
implemented using the GOD, centralized and coordinated distributed architectures, and proposed using the
performance achieved by these controllers, as well as the performance achieved by a candidate myopic
distributed algorithm, as a means of comparing the respective network architectures. We applied this
approach to an admission control case study, and in particular, discovered that for the topology that we
considered, the GOD admission control policy can be implemented using a myopic distributed architecture
when only edge admission control is allowed. However, if internal admission control is also allowed, a
coordinated distributed architecture leads to the best performance.

10

References
[1] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fingerhut, F. Matus, R. Pan,

N. Yadav, G. Varghese, et al. CONGA: Distributed congestion-aware load balancing for datacenters.
In Proceedings of the 2014 ACM conference on SIGCOMM, pages 503–514. ACM, 2014.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Foundations and Trends R© in Machine
Learning, 3(1):1–122, 2011.

[3] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle. Layering as optimization decomposition: A
mathematical theory of network architectures. Proceedings of the IEEE, 95(1):255–312, 2007.

[4] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and R. Wattenhofer. Achieving
high utilization with software-driven WAN. In ACM SIGCOMM Computer Communication Review,
volume 43, pages 15–26. ACM, 2013.

[5] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou,
M. Zhu, et al. B4: Experience with a globally-deployed software defined WAN. In ACM SIGCOMM
Computer Communication Review, volume 43, pages 3–14. ACM, 2013.

[6] F. Kelly and R. Williams. Fluid model for a network operating under a fair bandwidth-sharing policy.
Annals of Applied Probability, pages 1055–1083, 2004.

[7] A. Lamperski and L. Lessard. Optimal state-feedback control under sparsity and delay constraints. In
3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems, pages 204–209, 2012.

[8] L. Lessard, B. Recht, and A. Packard. Analysis and design of optimization algorithms via integral
quadratic constraints. arXiv preprint arXiv:1408.3595, 2014.

[9] N. Matni. Communication delay co-design in H2 distributed control using atomic norm minimization.
IEEE Transactions on Networked Control Systems, Submitted to the, arXiv:1404.4911, 2015.

[10] N. Matni and V. Chandrasekaran. Regularization for design. Submitted to the IEEE Transactions on
Automatic Control, 2015.

[11] N. Matni, A. Lamperski, and J. C. Doyle. Optimal two player LQR state feedback with varying delay.
In IFAC 2014, To appear., 2014.

[12] R. Nishihara, L. Lessard, B. Recht, A. Packard, and M. I. Jordan. A general analysis of the convergence
of admm. arXiv preprint arXiv:1502.02009, 2015.

[13] C. H. Papadimitriou and J. Tsitsiklis. Intractable problems in control theory. SIAM Journal on Control
and Optimization, 24(4):639–654, 1986.

[14] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal. Fastpass: a centralized zero-queue
datacenter network. In Proceedings of the 2014 ACM conference on SIGCOMM, pages 307–318. ACM,
2014.

[15] M. Rotkowitz, R. Cogill, and S. Lall. Convexity of optimal control over networks with delays and
arbitrary topology. Int. J. Syst., Control Commun., 2(1/2/3):30–54, Jan. 2010.

[16] M. Rotkowitz and S. Lall. A characterization of convex problems in decentralized control. Automatic
Control, IEEE Transactions on, 51(2):274–286, 2006.

[17] Y.-S. Wang and N. Matni. Localized distributed optimal control with output feedback and communica-
tion delays. In Communication, Control, and Computing, IEEE 52nd Annual Allerton Conference on,
2014.

[18] Y.-S. Wang, N. Matni, and J. C. Doyle. Localized LQR optimal control. In Decision and Control
(CDC), 2014 IEEE 53rd Annual Conference on, 2014.

11

[19] Y.-S. Wang, N. Matni, S. You, and J. C. Doyle. Localized distributed state feedback control with
communication delays. In American Control Conference (ACC), 2014, pages 5748–5755. IEEE, 2014.

[20] H. S. Witsenhausen. A counterexample in stochastic optimum control. SIAM Journal on Control,
6(1):131–147, 1968.

[21] K. Zhou, J. C. Doyle, K. Glover, et al. Robust and optimal control, volume 40. Prentice Hall New
Jersey, 1996.

A Model and Problem Formulation
This section formally defines the model used §4, and formulates the admission control problem as an optimal
control problem subject to information constraints imposed by the chosen architecture (myopic, coordinated,
centralized or GOD).

A.1 Modeling
We model the network as an interconnection of a set of sources S, a set of links L and a set of switches V.
We associate to each source s ∈ S a unique source-destination pair (s, d) and a corresponding transmission
rate xs(t) at time t. We denote the incoming flow on a link ` ∈ L due to a source destination pair (s, d)

at time t by fs,d` (t), and write f`(t) for the vector of such flows on a link `, i.e., f`(t) =
(
fs,d` (t)

)
(s,d):s∈S

.

Under this convention, it follows that the total incoming flow on a given link ` at time t is given by 1>f`(t):
we denote this quantity by ψ`(t). Similarly, we denote the outgoing flow on a link ` ∈ L due to a source
destination pair (s, d) at time t by gs,d` (t), we write g`(t) for the vector of such flows on a link `, and set
φ`(t) = 1>g`(t).

Let Ledge ⊂ L denote the set of |S| links for which the incoming flow of a link e ∈ Ledge is determined
directly by a source rate. Then for each edge link e ∈ Ledge, it holds that

fde (t) =

{
xs(t) if (s, d) is a source destination pair
0 otherwise

(4)

Let Lin
v and Lout

v denote the set of incoming and outgoing links, respectively, of a switch v ∈ V. Each
switch v is equipped with a set of non-negative and possibly time varying path routing split ratios αs,dv,`(t)
satisfying ∑

`∈Lout
v

αs,dv,`(t) = 1.

Under this routing protocol, for every incoming link ` ∈ Lout
v and source-destination pair (s, d), it holds that

fs,d` (t) = αs,dv,`(t)

 ∑
k∈Lin

v

gs,dk (t− δv − δk)

 , (5)

where δv is the computation delay for switch v, and δk is the propagation delay for link k.
Each link ` ∈ L has a specific capacity c`, and is further equipped with a buffer: we denote the buffer

state at a link ` at time t by B`(t). The buffer state evolves according to the dynamics given by

Ḃ`(t) =

{
ψ`(t)− c` if B`(t) > 0

[ψ`(t)− c`]+ if B(t) = 0.
(6)

When the buffer state is empty, the incoming and outgoing flows on a link ` are equal, i.e., g`(t) = f`(t) if
B(t) = 0. When the buffer is non-empty, then the relationship is dependent on the buffering protocol in
place – without loss of generality we write g`(t) = γ`(f`(t), B`(t)) when B`(t) > 0, for some function γ` that

12

encodes the buffering protocol. Thus the dynamics of the network are fully specified by equations (4), (5),
(6) and

g`(t) =

{
γ`(f`(t), B`(t)) if B`(t) > 0

f`(t) if B(t) = 0.
(7)

A.2 Admission Control Problem Formulation
We consider two types of admission controllers, edge admission controllers and internal admission controllers.

A.2.1 Edge admission control

To a link e ∈ Ledge we can associate an edge admission control buffer (as illustrated in Figure 6) Ae(t) and
admission rate ae(t) such that the admission buffer and edge link flow rate are specified by

Ȧe(t) =

{
xs(t)− ae(t) if Ae(t) > 0

[xs(t)− ae(t)]+ if Ae(t) = 0

fe(t) = ae(t).

(8)

Notice in particular that if ae(t) = xs(t) for all t then the edge admission controller is “invisible” to the
network and we revert to the dynamics described in the previous section.

A.2.2 Internal admission control

To a switch v we can associate an internal admission control buffer (as illustrated in Figure 7). Let fs,dv (t) =∑
`∈Lin

v
fs,d` (t). We model an internal admission control buffer as having a dedicated internal state and

control action for each source-destination pair flowing through it. In particular, for each (s, d) pair that
utilizes a link ` ∈ Lin

v , we define the following admission control buffering dynamics

Ȧs,dv (t) =

{
fs,dv (t)− as,dv (t) if As,dv (t) > 0[
fs,dv (t)− as,dv (t)

]
+

if As,dv (t) = 0.
(9)

For each k ∈ Lout
v it then follows that

fs,dk (t) = αs,dv,k(t)as,dv (t). (10)

Analogously, we note that if as,dv (t) = fs,dv (t) for all t, then the internal admission controller is also “invisible”
to the network, and we revert to the dynamics described in the previous section.

A.2.3 Discrete Time Linearized Model

In what follows, we show how the dynamics described above can be appropriately linearized and used to
formulate optimal control problems. For simplicity we describe the setting in which all admission controllers
are edge controllers – an analogous argument applies to when there are both edge and internal admission
controllers.

We impose that measurements of flow rates and admission control buffers be available to controllers only
after suitable delays as specified by the topology of the system. By allowing control dedicated packets, i.e.,
packets used to communicate with the admission buffer controllers, priority in the network, we ensure that
the resulting distributed optimal control problems are tractable to solve.

We assume that we are given nominal source rates x?s, nominal flow rates f?` (which we assume to satisfy
the capacity constraints of each link), and suitable routing split ratio parameters αs,dv,` to achieve such flows.
Our objective is to determine a feedback control law for each admission control buffer so as to minimize
deviations from the optimal flow rates f?` (t) and the size of the admission control queues. Note that as
these nominal flow rates are assumed to satisfy the capacity constraints of each link, this in turn prevents
congestion in the network.

13

To that end, we linearize the system around the buffers being empty (i.e., around Bk(t) = 0 for all
k ∈ L), and around the nominal flow and source rates f?` (t) and x?s(t). As the these flows/rates are feasible,
there is no need for admission control and hence we linearize around a?e(t) = x?s(t) and A?e(t) = 0. Letting

∆fs,d` (t) := fs,d` (t)−
(
fs,d`

)?
(t), ∆xs(t) = xs(t)− x?s(t) and ∆ae(t) = a?e(t)− ae(t), the resulting dynamics

are then given by

∆fs,d` (t) =


αs,dv,`(t)

∑
k∈Lin

v
∆fs,dk (t− δv − δk)

if ` /∈ Ledge

ae(t) if ` ∈ Ledge

Ȧe(t) = ∆xs(t)−∆ae(t).

(11)

In order to apply the relevant tools from distributed optimal control theory [7], we require a discrete time
model – this is consistent with practical considerations as well, as control laws are ultimately implemented
using digital devices. To that end, let τ be the largest number such there exists a natural number nkv
satisfying

nkvτ = δv + δk (12)

for every incoming link switch pair (k, v). The number τ then corresponds to the largest sampling time with
which we can discretize the dynamics of the system while still exactly preserving its delay characteristics.
We use a simple first order hold method to discretize the admission control buffer dynamics (this is indeed
a sound approach for small sampling times) – the resulting discrete time linearized system is then governed
by the difference equations:

∆fd` (n) =

{
αd`
∑
k∈Lin

v
∆fdk (n− nkv) if ` /∈ Ledge

ae(n) if ` ∈ Ledge

Ae(n+ 1) = Ae(n) + τ (∆xs(n)−∆ae(n)) ,

(13)

where n is the discrete time index satisfying t = τn.

Let ∆fs,d` (n) =
(
fs,d` (n), fs,d` (n− 1), . . . , fs,d` (n− n`v)

)>
, ∆f`(n) =

(
∆fs,d` (n)

)
(s,d)

and ∆f(n) = (∆f`(n))`.

Further let Ae(n) = (Ae(n))e, ∆a(n) = (∆ae(n))e, and ∆x(n) = (∆xs(n))s. Then there exists a unique
routing matrix R(t) and source matrix S such that

∆f(n+ 1) = R(t)∆f(n) + S∆a(n)
Ae(n+ 1) = Ae(n) + τ (∆x(n)−∆a(n))

(14)

is compatible with the dynamics described in equation (13).
One can then formulate an optimal control problem that aims to minimize these perturbations around

the desired set point as
minimize

∆a(t)

∑N
n=1 cost (∆f(n),A(n),∆a(n))

s.t. dynamics (14)
information exchange constraints

(15)

where N is the horizon of the optimization, cost (·) is a suitably chosen cost function, and the information
exchange constraints enforce the distributed nature of the controller.

In order to leverage recently developed distributed optimal control techniques [7], we consider quadratic
costs of the form

cost (∆f(n),A(n),∆a(n)) = ∆f(n)>Qf∆f(n) + A(n)>QAA(n) + ∆a(n)>R∆a(n), (16)

where Qf , QA and R are symmetric and positive-semidefinite matrices, and at least one of QA or R are
strictly positive definite (this latter condition is required for the optimization problem to be well posed). We
typically enforce that QA be positive definite and set R ≈ 0, as there is no natural interpretation to the cost
of non-zero ∆a(n).

Information exchange constraints dictate what information each admission control buffer has access to
when deciding what action it should take. As mentioned in §4, we are concerned with myopic, coordinated,

14

centralized and GOD controllers. We briefly summarize the mathematical implications of each of these
architectures, and refer the reader to §4 for intuitive explanations for how these constraints arise. In order
to lighten notational burden, we let z(n) = (∆f(n),A(n))

> denote the state of the system (14), z(0 : n)
denote the history of the state from time 0 to n, i.e., z(0 : n) = (z(0), . . . , z(n)), and β be a generic control
policy that maps measurements to control actions.

1. GOD: The GOD controller has instantaneous access to the state of the system, and hence its control
actions take the form

∆a(n) = β(z(0 : n)), (17)

for some function β.

2. Centralized: Let d be the delay induced by a centralized implementation. The corresponding con-
straint on the admission control policies in the optimal control problem (15) is given by

∆a(n) = β(z(0 : n− d)), (18)

for some function β.

3. Coordinated: We treat each admission control buffer Ae as a local controller that seeks to compute
an admission policy of the form

∆ae(n) = βe(∆f1(0 : n− ne1), . . . ,∆fL(0 : n− ne|L|), A1(0 : n−me1), . . . , AA(0 : n−meα)) (19)

where L = |L|, α is the number of admission control buffers, ne` specifies the delay in communicating
the flow rate f` on link ` to admission control buffer Ae, and mef specifies the delay in communicating
the admission control buffer state Af to admission control buffer Ae.

A.3 Case study data
For the case study used in §4, a sampling time of τ = .003 seconds was used. The source noise terms ∆xs(t)
were taken to be independently and identically distributed, with each ∆xs(t) ∼ N (0, .1). The cost was taken
to be

lim
N→∞

1

N

N∑
n=0

E
[
‖∆f(n)‖22 + 50‖A(n)‖22

]
, (20)

and the information constraints for the respective architectures were taken to be consistent with the propa-
gation delays imposed by the network topology. In particular,

1. GOD:∆a(n) = β(z(0 : n− 1)), for some linear map β.

2. Centralized: ∆a(n) = β(z(0 : n− 6)), for some linear map β.

3. Coordinated:

∆a1(n) = β1(∆f1(0 : n− 1),∆f2(0 : n− 2),∆f2(0 : n− 3), A1(0 : n− 1), A2(0 : n− 2), A3(0 : n− 3))
∆a2(n) = β2(∆f1(0 : n− 2),∆f2(0 : n− 1),∆f2(0 : n− 2), A1(0 : n− 2), A2(0 : n− 1), A3(0 : n− 2))
∆a3(n) = β3(∆f1(0 : n− 3),∆f2(0 : n− 2),∆f2(0 : n− 1), A1(0 : n− 3), A2(0 : n− 2), A3(0 : n− 1))

for some suitable linear maps β1, β2 and β3.

Note that we have assumed a local computation delay of 1 discrete time-step, implying that all controllers
are strictly proper – this assumption can be suitably modified or removed, and qualitatively analogous results
are still obtained. The resulting optimal control problems are then all of a form amenable to the methods
presented in [7].

We assume that the link capacities are sufficiently large that congestion is not an issue, and hence are
able to ignore the buffer dynamics (6). For the simulations presented in Figure 8, the linear controller is
applied to the non-linear model described by equations (4), (5), (6) and (7) using appropriate admission
control dynamics, as specified in (8) and (9).

15

