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Abstract:  - This paper explains the Bayesian version of estimation as a method for calculating credibility 
premium or credibility number of claims for short-term insurance contracts using two ingredients: past data on the 
risk itself and collateral data from other sources considered to be relevant. The Poisson/gamma model to estimate 
the claim frequency for portfolio of policies and Normal/normal model to estimate the pure premium are 
explained and applied.  
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1 Introduction 
A typical feature of the insurance practice is the need 
to set premium at the beginning of the insurance 
contract. Number of occurrence of claims and the total 
claim amounts for insurance company in the future are 
the random events. Their sufficiently precise and 
reliable estimate is extremely important to determine 
the correct premium for next year in insurance 
company. 

Credibility theory is a technique, or set of techniques, 
for calculating premiums for short term insurance 
contracts. The technique calculates a premium for a 
risk using two ingredients: past data from the risk itself 
and collateral data, i. e. data from other sources 
considered to be relevant. The essential features of a 
credibility premium are that it is a linear function of the 
past data from the risk itself and that it allows for the 
premium to be regularly updated as more data are 
collected in the future (Waters, 1994).  

A credibility premium represents a compromise 
between the two above mentioned sources of 
information. The credibility formula for estimation of 
pure premium or claim frequency cP  in next year is: 

( ) μZPZP rc −+= 1       (1) 
where rP  is estimation based on past data from the 
own data in insurance company, or risk, and μ is 
estimation based on collateral data and Z is a number 

between zero and one, known as the credibility factor. 
Credibility factor Z is a measure of how much reliance 
the company is prepared to place on the data from the 
policy itself. 
 Credibility formula is often used in the form 

( ) μZxZPc −+= 1        (2) 
 We will present Bayesian approaches to credibility 
estimation by two important models for insurance 
practice. 

 
 

2 The Bayesian Inference 
The Bayesian philosophy (1763) involves a 
completely different approach to statistical inference. 
Suppose )...,,( 21 nxxx=x  is a random sample from a 
population specified by density function ( )θ/xf  and 
it is required to estimate parameter .Θ   

The classical approach to point estimation treats 
parameters as something fixed but unknown. The 
essential difference in the Bayesian approach to 
inference is that parameters are treated as random 
variables and therefore they have probability 
distributions.  

Prior information about Θ  that we have before 
collection of any data is prior distribution )(θΘf  that 
is probability density function or probability mass 
function. The information about Θ  provided by the 
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sample data )...,,( 21 nxxx=x  is contained in the 
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combines this information with the information 
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that determines the posterior distribution )( xθΘf .  
So after collecting appropriate data we determine the 

posterior distribution that is the basis of all inference 
concerning Θ . 

Note that ( ) ( ) ( )∫
θ

θθθ= dfff xx  does not 

involve Θ.  It is just a constant needed to make it 
a proper density that integrates to unity. A useful way 
of expressing the posterior density is to use 
proportionality. We can write  

( ) ( ) ( )θθ∝θ fff // xx      (4) 

or simply 
posterior ∝  likelihood · prior. 

 
The posterior distribution contains all available 

information about Θ and therefore should be used for 
making decisions, estimates or inferences. 

The Bayesian approach to estimation states that we 
should always start with a prior distribution for 
unknowns’ parameter, precise or vague according to 
the information available.  

Note that we are referring to a density here implying 
that Θ  is continuous.  This concerns most applications 
because even when X is discrete, as in binomial or 
Poisson distributions, the parameters π or λ will vary in 
a continuous space 1;0   or )∞+,0  respectively. 

There may be some situations in which we need 
„non-informative” prior. For example if Θ is 
a binomial probability and we have no prior 
information about Θ , the uniform distribution on 

1;0  as a prior distribution would seem appropriate.  

 We often have prior information about parameters 
based on previous practice, respectively, estimates by 
experts. 
3 The Bayesian estimator 
If we have found posterior distribution of an unknown 
parameter Θ , we need to answer the question how do 
we use the posterior distribution of Θ , given the 

sample data  )...,,( 21 nxxx=x , to obtain an estimator 
of  Θ . 
First we must specify the loss function ( )xg , which is 
a measure of the “loss” incurred when ( )xg  is used as 
an estimator of Θ. We seek a loss function which is 
zero when the estimation is exactly correct, that is 

( ) Θ=xg  and which increases as ( )xg  gets father 
away from Θ .  

There is one very commonly used loss function, 
called quadratic or squared error loss. The quadratic 
loss is defined by  

( )( ) ( )[ ]2; θθ −= xx ggL      (5) 
and it is related to mean square error from classical 
statistics.  
 We will show that the Bayesian estimator that arises 
by minimizing the expected quadratic loss is the mean 
of posterior distribution. So 

( )( )( ) ( )[ ] ( ) θθθθ d; 2 xxx fggLE ∫ −=  

and  
( )( )( )
( ) ( )[ ] ( ) θθθθ d2; xx
x
x fg

g
gLE

∫ −=
∂

∂  

equating to zero 
( ) ( ) ( )∫∫ = θθθθθ dd xxx ffg  

Because of ( )∫ =θθ 1df x , we get 

( ) ( )xx θ= Eg         (6) 
We will consider two important examples of 

derivation of the posterior distribution and the 
Bayesian estimators under the quadratic error loss for 
certain estimation situations with given prior 
distributions, important for insurance practice. 

 
  

4 The Poisson/Gamma Model 
Suppose we have to estimate the claim frequency for 
a risk whose claim numbers have a Poisson 
distribution with parameter λ. We do not know the 
value of  λ but before having any data from risk itself 
available, we assume that the prior distribution of  λ is 
a gamma distribution G(α; β).  

The claim frequency rate for a class of insurance 
business may lie anywhere between 0 and +∞. An 
insurer with a large experience may quite accurately 
estimate the rate.  

The gamma distribution may be convenient for 
representing uncertainty in a current estimate of the 
claim frequency rate. This distribution is over the 
whole positive range from 0 to + ∞, and the mean α/β 
can be set equal to the current best estimate. 



 

 

Uncertainty is represented by variance α/β2 of the 
gamma distribution G(α; β). 

Our objectives is to estimate the unknown parameter 
λ. Suppose we have n past observations 

)...,,( 21 nxxx=x . The Bayesian estimate of  λ, with 
respect to a quadratic loss function, given these data, is 

( )xλλ EB =         (7) 
that is the mean of the posterior density of  λ.  
 By assumption the density function of the prior G(α; 
β) distribution is 

( ) ( )
1
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The distribution of a number of claims is the Poisson 
distribution with a fixed but unknown parameter λ, so 
the likelihood function has the form   
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 By Bayes’ theorem we get the posterior density of  λ, 
given )...,,( 21 nxxx=x , in the form 

( ) ( ) 11/ −++−−−− ∑=⋅∑∝ ii xnxn eeef αβλαβλλ λλλλ x (10) 
that is the gamma distribution with new parameters  
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Thus the Bayesian estimator of  λ using the quadratic 
loss is 
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which can be rewritten as 
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If we put factor credibility 

n
nZ
+β

=       (13)  

then  
( ) ( )μ−+=λ=λ ZxZEB 1x    (14) 

which is the credibility formula for updating claim 
frequency rates.  
 It can be seen from the credibility factor expression, 
since n is non-negative and β is positive, that Z is in the 
range zero to one and it is increasing function of n. If 
no past data from the risk itself are available, then n = 0 
and Z = 0 too and the best estimate of λ is α/β, the 
mean of the prior gamma distribution. It can be seen 
that Z does not take the value one for any finite value 
of n. 
 The value of Z depends on the amount of data 

available for the risk n, and the collateral information 
through β, which reflect the variance α/β2 of the prior 
distribution. 
 
4.1 Application of Poisson/Gamma Model 
The annual number of claims resulting from motor 
third-party liability insurance in insurance company in 
the years 2006-2011 is given in Table 1, column 
labelled as xi.  In the Poisson/gamma model for claim 
numbers we have assumed our knowledge about the 
unknown parameter (annual claim rete) λ is 
summarized by prior G(α; β) with parameters α = 8400 
and β = 0,4.  

Last column denoted as λB contains values of Bayes 
estimators of annual claim rates xi for each year i based 
of ( i-1) past observations by equation (14). For 
calculation of credibility factors  Zi  we used equation 
(13). 
 
Table 1 Procedure to update Bayes estimate of λ 

Year 
i xi x  Zi λB 

2006  24954  ‐  0  21000 
2007  23166  24954  0,71429  23824 
2008  19402  24060  0,83333  23550 
2009  18658  22507  0,88235  22330 
2010  19142  21545  0,90909  21495 
2011  20618  21064  0,92593  21060 
2012  ‐  20990  0,93750  20991 

Source: Own calculation 

5 The Normal/Normal Model 
Our problem is to estimate the pure premium, i. e. the 
expected aggregate claims for a risk. So X  is a random 
variable denoting total claims from a risk in a coming 
year and the distribution of X is normal, depends on 
the value of an unknown parameter Θ. The conditional 
distribution of X/θ is normal and the unknown 
parameter θ is the mean of this distribution, because of  

( )2
1;~ σθθ NX      (15) 

The prior distribution of θ is normal, 
( )2

2;~ σμθ N      (16) 
where μ, 2

1σ  2
2σ   are known. Suppose we have n past 

observations of X, )...,,( 21 nxxx=x . Our problem is to 
estimate ( )θXE  and we use again the Bayesian 
estimate with respect to the quadratic loss.  
 If θ was known, the pure premium would be 

( ) θθ =XE        (17) 
So the problem of estimating ( )θXE  is the same as 
the problem of estimating of θ as a Bayesian estimator  



 

 

( )xθθ EB =        (18) 
i. e. the posterior mean of  θ given x. We need to know 
the form of the posterior density function ( )x/θf . 
 Suppose we have data of n previous observations  

)...,,( 21 nxxx=x  so we can express the likelihood 
( )x/θf  as 
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As we can see, the likelihood function is quadratic in 
θ, and can be shown to be proportional to 
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When ignoring terms not involving θ. We can 
express the normal prior distribution as being 
proportional to 
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The posterior density ( )x/θf  by Bayes` theorem is 
proportional to  
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So the posterior distribution ( )x/θf  is a normal 
distribution, say with parameters μ~ , ,~ 2σ  i. e. 
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We will find the parameters μ~ , 2~σ  by equating the 
power of θ2 and θ in two different expression of 

( )x/θf . Then  

2
2

2
1

2
2

2
1~

σ+σ
σ+σμ

=μ
n

xn
    (21) 

2
2

2
1

2
2

2
12~

σ+σ
σσ

=σ
n

     (22) 

We can find the Bayesian estimation of pure premium 
as the mean of the posterior distribution, i. e. 
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That can be rewritten as  
( ) ( ) μθ ZxZE −+= 1x      (24) 

which is a credibility estimate of the pure premium 
( )xθE  with factor credibility 
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5.1 Application of Normal/Normal Model 
Total aggregate claims in a particular insurance 
company are modelled with a normal distribution 

( )2
1;σθN ,  where θ is unknown and .000135 22

1 =σ  
Prior information about θ suggest that it is distributed 
by ( )2

2;σμN  with known parameters 0001002=μ  
and .000150 22

2 =σ  
Aggregate claims from the last seven years were not 

incorporated in the prior information and they are in 
Table 2, column named xi.  

The Bayes estimations of the pure premiums for 
each year by equation (24) with credibility factors 
calculated by (25) there are in the last column of 
Table 2. 
 
Table 2 Bayes estimations of pure premium 

i xi  Z θB 
1 2112000 0 0 2100000

2 2140000 2112000 0,55249 2106630

3 1955000 2126000 0,71174 2118505

4 2315000 2069000 0,78740 2075591

5 2280000 2130500 0,83160 2125364

6 2035000 2160400 0,86059 2151979

7 2215000 2139500 0,88106 2134802

8  2150285 0,89629 2145070

Source: Own calculation 
 
 
6 Conclusions 
Bayesian estimation theory provides methods for 
permanently updated estimates of the number of 
claims and of the pure premium for each coming year 
in insurance company. Bayesian approach combine 
prior information that are known before collected of 
any data and information provided by the sample data, 
which are number of claims or aggregate claim 
amounts in previous n years. 

The biggest advantage of the Poisson/gamma model 
and Normal/normal model for insurance practice is 
possibility to express them in the form of credibility 
formulas by (14) or (24). These formulas allow easy 



 

 

application in insurance practice, as seen from the 
examples in subsections 4.1 and 5.1. 

However, the Bayesian approach does have a few 
serious drawbacks and limitations. This approach can 
be criticized as subjective, because we should always 
start with a prior distribution of estimated parameters. 
Formulas (13) and (25) involve parameters, β in the 
former and σ1, σ2 in the latter, which we have assumed 
to be known. The values of these parameters reflect the 
subjective opinion of the decision maker; there is no 
question of estimating these parameters from data. The 
problem of estimation of unknown parameters when 
some data from related risks are available solves the 
so-called Empirical Bayes Credibility Theory, which is 
not the subject of this paper. 
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