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Preface

These notes are the second part of the tensor calculus documents which started with the

previous set of introductory notes [11]. In the present text, we continue the discussion of

selected topics of the subject at a higher level expanding, when necessary, some topics and

developing further concepts and techniques. The purpose of the present text is to solidify,

generalize, fill the gaps and make more rigorous what have been presented in the previous

set of notes and to prepare the ground for the next set of notes. Unlike the previous

notes which are largely based on a Cartesian approach, the present notes are essentially

based on assuming an underlying general curvilinear coordinate system. We also provide a

small sample of proofs to familiarize the reader with the tensor techniques inline with the

tutorial nature of the present text; however, due to the limited objectives of the present

text we do not provide comprehensive proofs and complete theoretical foundations for the

provided materials.

We generally follow the same conventions and notations used in the previous set of notes

with the following amendments:

• We use capital Gamma, Γijk, for the Christoffel symbols of the second kind which is

more elegant and readable than the curly bracket notation
{
i
jk

}
that we used in the

previous notes insisting that, despite the suggestive appearance of the Gamma notation,

the Christoffel symbols are not tensors in general.

• Due to the restriction of using real (non-complex) quantities, as stated in the previous

notes, all arguments of real-valued functions, like square roots and logarithmic functions,

are assumed to be non-negative by taking the absolute value, if necessary, without using

the absolute value symbol, as done by some authors. This is to simplify the notation and

avoid confusion with the determinant notation.

•We generalize the partial derivative notation so that ∂i can symbolize the partial deriva-

tive with respect to the ui coordinate of general curvilinear systems and not just for
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Cartesian coordinates which are usually denoted by xi. The type of coordinates, being

Cartesian or general or otherwise, will be determined by the context which should be

obvious in all cases.

• The summation symbol (i.e.
∑

) is used in most cases when a summation is needed but

the summation convention conditions do not apply or there is an ambiguity about it, e.g.

when an index is repeated more than twice or a twice-repeated index is in an upper or

lower state in both positions or a summation index is not repeated visually because it is

part of a squared symbol.

• “Tensor” and “Matrix” are not the same; however for ease of expression they are used

sometimes interchangeably and hence some tensors may be referred to as matrices meaning

the matrix representing the tensor.

• In the present text, all coordinate transformations are assumed to be continuous, single

valued and invertible.
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1 Coordinate Systems, Spaces and Transformations

• The focus of this section is coordinate systems, their types and transformations as well

as some general properties of spaces which are needed for the development of the concepts

and techniques of tensor calculus in the present and forthcoming notes.

1.1 Coordinate Systems

• In simple terms, a coordinate system is a mathematical device, essentially of geometric

nature, used by an observer to identify the location of points and objects and describe

events in generalized space which may include space-time.

• The coordinates of a system can have the same or different physical dimensions. An

example of the first is the Cartesian system where all the coordinates have the dimension

of length, while examples of the second include the cylindrical and spherical systems where

some coordinates have the dimension of length while others are dimensionless.

• Generally, the physical dimensions of the components and basis vectors of the covariant

and contravariant forms of a tensor are different.

1.2 Spaces

• A Riemannian space is a manifold characterized by the existing of a symmetric rank-2

tensor called the metric tensor. The components of this tensor, which can be in covariant

(gij) or contravariant (gij) forms, are in general continuous variable functions of coordi-

nates, i.e. gij = gij(u
1, u2, . . . , un) and gij = gij(u1, u2, . . . , un) where ui symbolize general

coordinates. This tensor facilitates, among other things, the generalization of lengths and

distances in general coordinates where the length of an element of arc, ds, is defined by:

(ds)2 = gijdu
iduj (1)
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In the special case of a Euclidean space coordinated by a rectangular system, the metric

becomes the identity tensor, that is:

gij = gij = gij = δij = δij = δij (2)

• The metric of a Riemannian space may be called the Riemannian metric. Similarly, the

geometry of the space may be described as a Riemannian geometry.

• All spaces dealt with in the present notes are Riemannian with well-defined metrics.

• A manifold or space is dubbed “flat” when it is possible to find a coordinate system for the

space with a diagonal metric tensor whose all diagonal elements are ±1; the space is called

“curved” otherwise. Examples of flat space are the 3D Euclidean space coordinated by a

rectangular Cartesian system whose metric tensor is diagonal with all the diagonal elements

being +1, and the 4D Minkowski space-time whose metric is diagonal with elements of

±1. Examples of curved space is the 4D space-time of general relativity in the presence

of matter and energy.

• When all the diagonal elements of the metric tensor of a flat space are +1, the space

and the coordinate system may be described as homogeneous.

• An nD manifold is Euclidean iff Rijkl = 0 where Rijkl is the Riemann tensor (see § 5.1);

otherwise the manifold is curved to which the general Riemannian geometry applies.

• A “field” is a function of the position vector over a region of space. Scalars, vectors

and tensors may be defined on a single point of the space or over an extended region

of the space; in the latter case we have scalar fields, vector fields and tensor fields, e.g.

temperature field, velocity field and stress field respectively.

• In metric spaces, the physical quantities are independent of the form of description, being

covariant or contravariant, as the metric tensor facilitates the transformation between the

different forms; hence making the description objective.
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1.3 Transformations

• In general terms, a transformation from an nD space to another nD space is a corre-

lation that maps a point from the first space (original) to a point in the second space

(transformed) where each point in the original and transformed spaces is identified by n

independent variables or coordinates. To distinguish between the two sets of coordinates

in the two spaces, the coordinates of the points in the transformed space may be notated

with barred symbols, e.g. (ū1, ū2, . . . , ūn) or (ū1, ū2, . . . , ūn) where the superscripts and

subscripts are indices, while the coordinates of the points in the original space are notated

with unbarred similar symbols, e.g. (u1, u2, . . . , un) or (u1, u2, . . . , un). Under certain

conditions, which will be clarified later, such a transformation is unique and hence an

inverse transformation from the transformed space to the original space is also defined.

Mathematically, each one of the direct and inverse transformations can be regarded as

a correlation expressed by a set of equations in which each coordinate in one space is

considered as a function of the coordinates in the other space. Hence the transformations

between the two sets of coordinates in the two spaces can by expressed mathematically by

the following two sets of independent relations:

ūi = ūi(u1, u2, . . . , un) & ui = ui(ū1, ū2, . . . , ūn) (3)

where i = 1, 2, . . . , n with n being the space dimension. The independence of the above

relations is guaranteed iff the Jacobian of the transformation does not vanish on any point

in the space (see about Jacobian the forthcoming points). An alternative to viewing the

transformation as a mapping between two different spaces is to view it as a correlation

of the same point in the same space but observed from two different coordinate frames

of reference which are subject to a similar transformation. The following points will be

largely based on the latter view.
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• As far as the notation is concerned, there is no fundamental difference between the

barred and unbarred systems and hence the notation can be interchanged.

• An injective transformation maps any two distinct points of the original space, r1 and

r2, onto two distinct points of the transformed space, r̄1 and r̄2. The image of an injective

transformation, r̄, is regarded as coordinates for the point, and the collection of all such

coordinates of the space points may be considered as a representation of a coordinate

system for the space. If the mapping from an original rectangular system is linear, the

coordinate system obtained from such a transformation is called “affine”. Coordinate

systems which are not affine are described as “curvilinear” such as cylindrical and spherical

systems.

• The following n × n matrix of n2 partial derivatives of the barred coordinates with

respect to the unbarred coordinates is called the “Jacobian matrix” of the transformation

between the barred and unbarred systems:

J =



∂ū1

∂u1
∂ū1

∂u2
· · · ∂ū1

∂un

∂ū2

∂u1
∂ū2

∂u2
· · · ∂ū2

∂un

...
...

. . .
...

∂ūn

∂u1
∂ūn

∂u2
· · · ∂ūn

∂un


(4)

while its determinant:

J = det(J) (5)

is called the “Jacobian” of the transformation.

• Barred and unbarred in the definition of Jacobian should be understood in a general

sense not just as two labels since the Jacobian is not restricted to transformations between

two systems of the same type but labeled as barred and unbarred. In fact the two coor-

dinate systems can be fundamentally different in nature and not of the same type such
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as Cartesian and general curvilinear. The Jacobian matrix and determinant represent

any transformation by the above partial derivative matrix system between two coordi-

nates defined by two different sets of coordinate variables not necessarily as barred and

unbarred. The objective of defining the Jacobian as between barred and unbarred systems

is generality and clarity.

• The transformation from the unbarred coordinate system to the barred coordinate system

is bijective1 iff J 6= 0 on any point in the transformed region of the space. In this case

the inverse transformation from the barred to the unbarred system is also defined and

bijective and is represented by the inverse of the Jacobian matrix:2

J̄ = J−1 (6)

Consequently, the Jacobian of the inverse transformation, being the determinant of the

inverse Jacobian matrix, is the reciprocal of the Jacobian of the original transformation:

J̄ =
1

J
(7)

• A coordinate transformation is admissible iff the transformation is bijective with non-

vanishing Jacobian and the transformation function is of class C2.3

• “Affine tensors” are tensors that correspond to admissible linear coordinate transforma-

tions from an original rectangular system of coordinates.

• Coordinate transformations are described as “proper” when they preserve the handed-

1Bijective transformation means injective (one-to-one) and surjective (onto) mapping.
2Notationally, there is no fundamental difference between the barred and unbarred systems and hence

the labeling is rather arbitrary and can be interchanged. Therefore, the Jacobian may be notated as
barred over unbarred or the other way around. Yes, in a specific context when one of these is labeled
as the Jacobian, the other one should be labeled as the inverse Jacobian to distinguish between the two
opposite Jacobians and their corresponding transformations.

3Cn continuity condition means that the function and all its first n partial derivatives do exist and
are continuous in their domain of definition. Also, some authors impose a weaker condition of being of
class C1.
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ness (right- or left-handed) of the coordinate system and “improper” when they reverse

the handedness. Improper transformations involve an odd number of coordinate axes

inversions through the origin.

• Inversion of axes may be called improper rotation while ordinary rotation is described

as proper rotation.

• Transformations of coordinates can be active, when they change the state of the observed

object such as rotating the object in the space, or passive when they are based on keeping

the state of the object and changing the state of the coordinate system which the object

is observed from. In brief, the subject of an active transformation is the object while the

subject of a passive transformation is the coordinate system.

• An object that does not change by admissible coordinate transformations is described

as “invariant” such as the value of a true scalar and the length of a vector.

• As there are essentially two different types of basis vectors, namely tangent vectors of

covariant nature and gradient vectors of contravariant nature, there are two main types

of non-scalar tensors: contravariant and covariant tensors which are based on the type

of the employed basis vectors. Tensors of mixed type employ in their definition mixed

basis vectors of the opposite type to the corresponding indices of their components. As

indicated earlier, the transformation between these different types is facilitated by the

metric tensor.

• A product or composition of coordinate transformations is a succession of transforma-

tions where the output of one transformation is taken as the input to the next transfor-

mation. In such cases, the Jacobian of the product is the product of the Jacobians of the

individual transformations of which the product is made.

• The collection of all admissible coordinate transformations with non-vanishing Jacobian

form a group, that is they satisfy the properties of closure, associativity, identity and

inverse. Hence, any convenient admissible coordinate system can be chosen as the point
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of entry since other systems can be reached, if needed, through the set of admissible

transformations. This is the cornerstone of building covariant physical theories which are

independent of the subjective choice of coordinate systems and reference frames.

• Transformation of coordinates is not a commutative operation.

1.4 Coordinate Surfaces and Curves

• The surfaces of constant coordinates at a certain point of the space meet to form curves

(i.e. curves of intersection of these surfaces in pairs). The coordinate curves are these

curves of mutual intersection of the surfaces of constant coordinates of the curvilinear

system.

• The above transformation equations (Eq. 3) are used to define the set of surfaces of

constant coordinates and coordinate curves of mutual intersection of these surfaces. These

coordinate surfaces and curves play a crucial role in the formulation and development of

this subject.

• The coordinate axes of a coordinate system can be rectilinear, and hence the coordinate

curves are straight lines and the surfaces of constant coordinates are planes, as in the

case of rectangular Cartesian systems, or curvilinear, and hence the coordinate curves are

generalized curved paths and the surfaces of constant coordinates are generalized curved

surfaces, as in the case of cylindrical and spherical systems.

• In curvilinear coordinate systems, some or all of the coordinate surfaces are not planes

and some or all of the coordinate lines are not straight lines.

• Orthogonal coordinate systems are those for which the vectors tangent to the coordinate

curves, as well as the vectors normal to the surfaces of constant coordinates, are mutually

perpendicular at all points of the space. Consequently, in orthogonal coordinates, the coor-

dinate surfaces are mutually perpendicular and the coordinate lines are also perpendicular

at the point of intersection.
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• In orthogonal coordinate systems, the corresponding covariant and contravariant basis

vectors at any given point in the space are in the same direction, i.e. the tangent vector

to a particular coordinate curve ui at a certain point and the gradient vector normal to

the surface of constant ui at the same point have the same direction although they may

be of different length.

• A necessary and sufficient condition for a coordinate system to be orthogonal is that its

metric tensor is diagonal.

• An admissible coordinate transformation from a Cartesian system defines another Carte-

sian system if the transformation is linear, and defines a curvilinear system if the trans-

formation is nonlinear.

1.5 Scale Factors

• Scale factors (usually symbolized with h1, h2, . . . hn) of a coordinate system are those

factors which are required to multiply the coordinate differentials to obtain distances

traversed during a change in the coordinate of that magnitude, e.g. ρ in the plane polar

coordinate system which multiplies the differential of the polar angle dφ to obtain the

distance L traversed by a change of magnitude dφ in the polar angle which is L = ρ dφ.

They are also used to normalize the basis vectors (refer to the previous notes [11] and

forthcoming notes).

• The scale factors for the Cartesian, cylindrical and spherical coordinate systems in 3D

spaces are given in Table 1.

• The scale factors are also used in the expressions for the differential elements of arc,

surface and volume in general orthogonal coordinates, as described in § 2.3.
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Table 1: The scale factors for the three most commonly used orthogonal coordinate systems
in 3D spaces. The squares of these entries and the reciprocals of these squares give the
diagonal elements of the covariant and contravariant metric tensors gij and gij respectively
of these systems.

Cartesian (x, y, z) Cylindrical (ρ, φ, z) Spherical (r, θ, φ)
h1 1 1 1
h2 1 ρ r
h3 1 1 r sin θ

1.6 Basis Vectors in General Curvilinear Systems

• The vectors providing the basis set for a coordinate system, which are not necessarily

of unit length or mutually orthogonal, are of covariant type when they are tangent to

the coordinate curves, and of contravariant type when they are perpendicular to the local

surfaces of constant coordinates. Formally, the covariant and contravariant basis vectors

are defined respectively by:

Ei =
∂r

∂ui
& Ei = ∇ui (8)

where r is the position vector in Cartesian coordinates (x1, x2, . . .), and ui are generalized

curvilinear coordinates.

• In general curvilinear coordinate systems, the covariant and contravariant basis sets, Ei

and Ei, are functions of coordinates, i.e.

Ei = Ei

(
u1, . . . , un

)
& Ei = Ei

(
u1, . . . , un

)
(9)

• Like other vectors, the covariant and contravariant basis vectors are related to each other

through the metric tensor, that is:

Ei = gijE
j & Ei = gijEj (10)
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• The covariant and contravariant basis vectors are reciprocal basis systems, and hence

in a 3D space with a right-handed coordinate system (u1, u2, u3) they are linked by the

following relations:

E1 =
E2 × E3

E1 · (E2 × E3)
, E2 =

E3 × E1

E1 · (E2 × E3)
, E3 =

E1 × E2

E1 · (E2 × E3)
(11)

E1 =
E2 × E3

E1 · (E2 × E3)
, E2 =

E3 × E1

E1 · (E2 × E3)
, E3 =

E1 × E2

E1 · (E2 × E3)
(12)

• The relations in the last point may be expressed in a more compact form as follow:

Ei =
Ej × Ek

Ei · (Ej × Ek)
& Ei =

Ej × Ek

Ei · (Ej × Ek)
(13)

where i, j, k take respectively the values 1, 2, 3 and the other two cyclic permutations (i.e.

2, 3, 1 and 3, 1, 2).

• The magnitude of the scalar triple product Ei · (Ej × Ek) represents the volume of the

parallelepiped formed by Ei, Ej and Ek.

• The magnitudes of the basis vectors in general orthogonal coordinates are given by:

|Ei| = hi &
∣∣Ei
∣∣ =

1

hi
(14)

where hi is the scale factor for the ith coordinate.

• The base vectors in the barred and unbarred general curvilinear coordinate systems are

related by the following transformation rules:

Ei =
∂ūj

∂ui
Ēj & Ēi =

∂uj

∂ūi
Ej

Ei =
∂ui

∂ūj
Ēj & Ēi =

∂ūi

∂uj
Ej

(15)
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where the indexed u and ū represent the coordinates in the unbarred and barred sys-

tems respectively. The transformation rules for the components can be straightforwardly

concluded from the above rules; for example for a vector A which can be represented

covariantly and contravariantly in the unbarred and barred systems as:

A = EiAi = ĒiĀi

A = EiA
i = ĒiĀ

i

(16)

the transformation equations of its components between the two systems are given respec-

tively by:

Ai =
∂ūj

∂ui
Āj & Āi =

∂uj

∂ūi
Aj

Ai =
∂ui

∂ūj
Āj & Āi =

∂ūi

∂uj
Aj

(17)

These transformation rules can be easily extended to higher rank tensors of different

variance types, as detailed in the introductory notes [11].

• For a 3D manifold with a right-handed curvilinear coordinate system, we have:

E1 · (E2 × E3) =
√
g & E1 ·

(
E2 × E3

)
=

1
√
g

(18)

where g is the determinant of the covariant metric tensor, i.e.

g = det (gij) = |gij| (19)

• Because Ei · Ej = gij (Eq. 51) we have:

JTJ = [gij] (20)

where J is the Jacobian matrix transforming between Cartesian and generalized coordi-

nates, the superscript T represents matrix transposition, [gij] is the matrix representing
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the covariant metric tensor and the product on the left is a matrix product as defined in

linear algebra which is equivalent to a dot product in tensor algebra.

• Considering Eq. 20, the relation between the determinant of the metric tensor and the

Jacobian is given by:

g = J2 (21)

where J (=
∣∣∂x
∂u

∣∣ with x for Cartesian and u for generalized coordinates) is the Jacobian

of the transformation.

• As explained earlier, in orthogonal coordinate systems the covariant and contravariant

basis vectors, Ei and Ei, at any specific point of the space are in the same direction, and

hence the normalization of each one of these basis sets, by dividing each basis vector by

its magnitude, produces identical orthonormal basis sets.4 This, however, is not true in

general curvilinear coordinates where each normalized basis set is different in general from

the other.

• When the covariant basis vectors Ei are mutually orthogonal at all points of the space,

we have:

(A) the contravariant basis vectors Ei are mutually orthogonal as well,

(B) the covariant and contravariant metric tensors, gij and gij, are diagonal with non-

vanishing diagonal elements, i.e.

gij = gij = 0 (i 6= j) (22)

gii 6= 0 & gii 6= 0 (no sum on i) (23)

(C) the diagonal elements of the covariant and contravariant metric tensors are reciprocals,

4Consequently, there is no difference between the covariant and contravariant components of tensors
with respect to such contravariant and covariant orthonormal basis sets.
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i.e.5

gii =
1

gii
(no summation) (24)

(D) the magnitude of the contravariant and covariant basis vectors are reciprocals, i.e.

∣∣Ei
∣∣ =

1

|Ei|
(25)

1.7 Covariant, Contravariant and Physical Representations

• So far we are familiar with the covariant and contravariant (including mixed) repre-

sentations of tensors. There is still another type of representation, that is the physical

representation which is the common one in the applications of tensor calculus such as fluid

and continuum mechanics.

• The covariant and contravariant basis vectors, as well as the covariant and contravariant

components of a vector, do not in general have the same physical dimensions as indicated

earlier; moreover, the basis vectors may not have the same magnitude. This motivates

the introduction of a more standard form of vectors by using physical components (which

have the same dimensions) with normalized basis vectors (which are dimensionless with

unit magnitude) where the metric tensor and the scale factors are employed to facilitate

this process. The normalization of the basis vectors is done by dividing each vector by its

magnitude. For example, the normalized covariant basis vectors of a general coordinate

system, Êi, are given by:

Êi =
Ei

|Ei|
(no sum on i) (26)

5The comment “no summation” may not be needed in this type of expressions since both indices are
of the same variance type in a generally non-Cartesian system.
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which for an orthogonal coordinate system becomes:

Êi =
Ei√
gii

=
Ei

hi
(no sum on i) (27)

where gii is the ith diagonal element of the covariant metric tensor and hi is the scale factor

of the ith coordinate as described previously. Consequently if the physical components of

a vector are notated with a hat, then for an orthogonal system we have:

A = AiEi = ÂiÊi = Âi
Ei√
gii

=⇒ Âi =
√
giiA

i = hiA
i (no sum) (28)

Similarly for the contravariant basis vectors we have:

A = AiE
i = ÂiÊ

i = Âi
Ei√
gii

=⇒ Âi =
√
giiAi =

Ai√
gii

=
Ai
hi

(no sum)

(29)

where gii is the ith diagonal element of the contravariant metric tensor. These definitions

and processes can be easily extended to tensors of higher ranks.

• The physical components of higher rank tensors are similarly defined as for rank-1 tensors

by considering the basis vectors of the coordinated space where similar simplifications

apply to orthogonal systems with mutually-perpendicular basis vectors. For example, for

a rank-2 tensor A with an orthogonal coordinate system, the physical components can be

represented by:

Âij =
Aij
hihj

(no sum on i or j, with basis ÊiÊj)

Âij = hihjA
ij (no sum on i or j, with basis ÊiÊj)

Âij =
hiA

i
j

hj
(no sum on i or j, with basis ÊiÊ

j)

(30)

• On generalizing the above pattern, the physical components of a tensor of type (m,n)
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in a general orthogonal coordinate system are given by:

Âa1...amb1...bn
=
ha1 . . . ham
hb1 . . . hbn

Aa1...amb1...bn
(31)

• As a consequence of the last points, in a space with a well defined metric any tensor

can be expressed in covariant or contravariant (including mixed) or physical forms using

different sets of basis vectors. Moreover, these forms can be transformed from each other

using the raising and lowering operators and scale factors. As before, for the Cartesian

rectangular systems the covariant, contravariant and physical components are the same

where the Kronecker delta is the metric tensor.

• For orthogonal coordinate systems, the two sets of normalized covariant and contravari-

ant basis vectors are identical as established earlier, and hence the physical components

related to the covariant and contravariant components are identical as well. Consequently,

for orthogonal systems with orthonormal basis vectors, the covariant, contravariant and

physical components are identical.

• The physical components of a tensor may be represented by the symbol of the tensor with

subscripts denoting the coordinates of the employed coordinate system. For instance, if A

is a vector in a 3D space with contravariant components Ai or covariant components Ai, its

physical components in Cartesian, cylindrical, spherical and general curvilinear systems

may be denoted by (Ax, Ay, Az), (Aρ, Aφ, Az), (Ar, Aθ, Aφ) and (Au, Av, Aw) respectively.

• For consistency and dimensional homogeneity, the tensors in scientific applications are

normally represented by their physical components with a set of normalized unit base vec-

tors. The invariance of the tensor form then guarantees that the same tensor formulation

is valid regardless of any particular coordinate system where standard tensor transforma-

tions can be used to convert from one form to another without affecting the validity and

invariance of the formulation.
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2 Special Tensors

• The subject of investigation of this section is those tensors that form an essential part of

the tensor calculus theory, namely the Kronecker, the permutation and the metric tensors.

2.1 Kronecker Tensor

• This is a rank-2 symmetric, constant, isotropic tensor in all dimensions.

• It is defined as:

δij = δij = δij = δ ji


1 (i = j)

0 (i 6= j)

(32)

• The generalized Kronecker delta is defined as:

δi1...inj1...jn
=


1 [(j1 . . . jn) is even permutation of (i1 . . . in)]

−1 [(j1 . . . jn) is odd permutation of (i1 . . . in)]

0 [repeated j’s]

(33)

It can also be defined by the following n× n determinant:

δi1...inj1...jn
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

δi1j1 δi1j2 · · · δi1jn

δi2j1 δi2j2 · · · δi2jn
...

...
. . .

...

δinj1 δinj2 · · · δinjn

∣∣∣∣∣∣∣∣∣∣∣∣∣
(34)

where the δij entries in the determinant are the normal Kronecker deltas as defined by Eq.

32.

• The relation between the rank-n permutation tensor and the generalized Kronecker delta
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in an nD space is given by:

εi1i2...in = δ1 2...n
i1i2...in

& εi1i2...in = δi1i2...in1 2...n (35)

Hence, the permutation tensor ε may be considered as a special case of the generalized Kro-

necker delta. Consequently the permutation tensor can be written as an n×n determinant

consisting of the normal Kronecker deltas.

• If we define

δijlm = δijklmk (36)

then the well known ε− δ relation (Eq. 45) will take the following form:

δijlm = δilδ
j
m − δimδ

j
l (37)

Other identities involving δ and ε can also be formulated in terms of the generalized

Kronecker delta.

2.2 Permutation Tensor

• This tensor has a rank equal to the number of dimensions of the space. Hence, a rank-n

permutation tensor has nn components.

• It is a relative tensor of weight −1 for its covariant form and +1 for its contravariant

form.

• It is isotropic and totally anti-symmetric in each pair of its indices, i.e. it changes sign

on swapping any two of its indices.

• It is a pseudo tensor since it acquires a minus sign under improper orthogonal transfor-

mation of coordinates.
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• The rank-n permutation tensor is defined as:

εi1i2...in = εi1i2...in =


1 [(i1, i2, . . . , in) is even permutation of (1, 2, . . . , n)]

−1 [(i1, i2, . . . , in) is odd permutation of (1, 2, . . . , n)]

0 [repeated index]

(38)

• For the rank-n permutation tensor we have:6

εa1a2···an =
n−1∏
i=1

[
1

i!

n∏
j=i+1

(aj − ai)

]
=

1

S(n− 1)

∏
1≤i<j≤n

(aj − ai) (39)

where S(n− 1) is the super-factorial function of (n− 1) which is defined by:

S(k) =
k∏
i=1

i! = 1! · 2! · . . . · k! (40)

• A simpler formula for the rank-n permutation tensor can be obtained from the previous

one by ignoring the magnitude of the multiplication factors and taking their signs only,

that is:

εa1a2···an =
∏

1≤i<j≤n

σ (aj − ai) (41)

where

σ(k) =


+1 (k > 0)

−1 (k < 0)

0 (k = 0)

(42)

• The sign function in the previous point can be expressed in a more direct form by dividing

each argument of the multiplicative factors in Eq. 41 by its absolute value, noting that

6The following formulae also apply to the contravariant form.
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none of these factors is zero, and hence Eq. 41 becomes:

εa1a2···an =
∏

1≤i<j≤n

(aj − ai)
|aj − ai|

(43)

• For the rank-3 permutation tensor we have:

εijkεlmn =

∣∣∣∣∣∣∣∣∣∣
δil δim δin

δjl δjm δjn

δkl δkm δkn

∣∣∣∣∣∣∣∣∣∣
(44)

εijkεlmk = δilδ
j
m − δimδ

j
l (45)

• For the rank-n permutation tensor we have:

εi1i2···in εi1i2···in = n! (46)

• For the rank-n permutation tensor we have:

εi1i2···in εj1j2···jn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

δi1j1 δi1j2 · · · δi1jn

δi2j1 δi2j2 · · · δi2jn
...

...
. . .

...

δinj1 δinj2 · · · δinjn

∣∣∣∣∣∣∣∣∣∣∣∣∣
(47)

• On comparing Eqs. 34 and 47 we obtain the following identity:

δi1...inj1...jn
= εi1...in εj1...jn (48)

• Based on the previous point, the generalized Kronecker delta is the result of multiplying

two relative tensors one of weight w = +1 and the other of weight w = −1 and hence the
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generalized Kronecker delta has a weight of w = 0; therefore the generalized Kronecker

delta is an absolute tensor.7

• As has been stated previously, εi1...in and εi1...in are relative tensors of weight +1 and

−1 respectively. It is desirable to define absolute covariant and contravariant forms of the

permutation tensor, marked with underline, by the following relations:8

εi1...in =
√
g εi1...in & εi1...in =

1
√
g
εi1...in (49)

where g is the determinant of the covariant metric tensor gpq.

• The ε− δ identity (Eqs. 37 and 45) can be generalized by employing the metric tensor

with the absolute permutation tensor:

gijεiklεjmn = gkmgln − gknglm (50)

2.3 Metric Tensor

• One of the main objectives of the metric, which is a rank-2 symmetric absolute non-

singular9 tensor, is to generalize the concept of distance to general curvilinear coordinate

frames and hence maintain the invariance of distance in different coordinate systems. This

tensor is also used to raise and lower indices and thus facilitate the transformation between

the covariant and contravariant types.

• In general, the coordinate system and the space metric are independent entities. Yes,

some coordinate systems may be defined by having a specific metric in which case the two

7The multiplication of relative tensors produces a tensor whose weight is the sum of the weights of
the original tensors.

8The contravariant form requires a sign function with details out of scope of the present text (see
[13]); however, for the rank-3 permutation tensor which is the one used mostly in the forthcoming notes
the above expression stands as it is.

9We mean that the matrix representing the tensor is invertible and hence its determinant does not
vanish at any point of the space.
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are correlated. This is the case in the Cartesian coordinate systems which are based in

their definition on presuming an underlying Euclidean metric.

• The components of the metric tensor are given by:

gij = Ei · Ej & gij = Ei · Ej (51)

where the indexed E are the covariant and contravariant basis vectors as defined previously

in § 1.6. Because of these relations, the vectors Ei and Ei may be denoted by gi and gi

respectively which is more suggestive of their relation to the metric tensor.

• As a consequence of the last point, the covariant metric tensor can also be defined as:

gij =
∂xk

∂ui
∂xk

∂uj
(52)

where

xk = xk
(
u1, . . . , un

)
(k = 1, . . . , n) (53)

are independent coordinates in an nD space with a rectangular Cartesian system, and

ui (i = 1, . . . , n) are independent generalized curvilinear coordinates. Similarly for the

contravariant metric tensor we have:

gij =
∂ui

∂xk
∂uj

∂xk
(54)

• The coefficients of the metric tensor may also be considered as the components of the

unit tensor in its two variance forms, that is:

δ = gijE
iEj = gijEiEj (55)

• As stated already, the basis vectors, whether covariant or contravariant, in general
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coordinate systems are not necessarily mutually orthogonal and hence the metric tensor

is not diagonal in general since the dot products given in Eqs. 51, 52 and 54 are not

necessarily zero when i 6= j. Moreover, since those basis vectors are not necessarily of unit

length, the entries of the metric tensor are not of unit magnitude in general. However,

since the dot product of vectors is a commutative operation, the metric tensor is necessarily

symmetric.

• The entries of the metric tensor, including the diagonal elements, can be positive or

negative.

• The covariant and contravariant forms of the metric tensor are inverses of each other

and hence:

gikgkj = δij & gikg
kj = δ ji (56)

where these equations can be seen as a matrix multiplication (row×column).

• A result from the previous points is that:

(
Ei · Ej

)
(Ej · Ek) = gijgjk = δik

(Ei · Ej)
(
Ej · Ek

)
= gijg

jk = δ ki

(57)

• As the metric tensor has an inverse, it should not be singular and hence its determinant,

which is in general a function of coordinates like the metric tensor itself, should not vanish

at any point in the space, that is:

g(u1, . . . , un) = det (gij) 6= 0 (58)

• The mixed type metric tensor is given by:

gij = Ei · Ej = δij & g j
i = Ei · Ej = δ ji (59)
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and hence it is the identity tensor. These equations represent the fact that the covariant

and contravariant basis vectors are reciprocal sets.

• From the previous points, it can be concluded that the metric tensor is in fact a trans-

formation of the Kronecker delta in its different variance types from a rectangular system

to a general curvilinear system, that is:

gij =
∂xk

∂ui
∂xl

∂uj
δkl =

∂xk

∂ui
∂xk

∂uj
= Ei · Ej (covariant)

gij =
∂ui

∂xk
∂uj

∂xl
δkl =

∂ui

∂xk
∂uj

∂xk
= Ei · Ej (contravariant)

gij =
∂ui

∂xk
∂xl

∂uj
δkl =

∂ui

∂xk
∂xk

∂uj
= Ei · Ej (mixed)

(60)

• Because of the relations:

Ai = A · Ei = AjE
j · Ei = Ajg

ji

Ai = A · Ei = AjEj · Ei = Ajgji

(61)

the metric tensor is used as an operator for raising and lowering indices and hence facili-

tating the transformation between the covariant and contravariant types of vectors. By a

similar argument, the above can be easily generalized where the contravariant metric ten-

sor is used for raising covariant indices and the covariant metric tensor is used for lowering

contravariant indices of tensors of any rank, e.g.

Aik = gijAjk & A kl
i = gijA

jkl (62)

Consequently, any tensor in a Riemannian space with well-defined metric can be cast into

covariant or contravariant or mixed forms.10

• In the raising and lowering of index operations the metric tensor acts, like a Kronecker

delta, as an index replacement operator as well as shifting the index position.

10For mixed form the rank should be > 1.
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• In general, the order of the raised and lowered indices is important and hence

gikAjk = A i
j and gikAkj = Ai j (63)

are different unless the tensor is symmetric in its two indices, i.e. Ajk = Akj. A dot may

be used to indicate the original position of the shifted index and hence the order of the

indices is recorded, e.g. A i
j · and Ai· j for the above examples respectively, although this is

redundant in the case of symmetry.11

• Raising and lowering of indices is a reversible process; hence keeping a record of the

original position of the shifted indices will facilitate the reversal.

• For a space with a coordinate system in which the metric tensor can be cast into a

diagonal form with all the diagonal entries being of unity magnitude (i.e. ±1) the metric

is called flat.

• If g and ḡ are the determinants of the covariant metric tensor in the unbarred and barred

systems respectively, i.e. g = det (gij) and ḡ = det (ḡij), then

ḡ = J2g &
√
ḡ = J

√
g (64)

where J (=
∣∣∂u
∂ū

∣∣) is the Jacobian of the transformation between the unbarred and barred

systems. Consequently, the determinant of the covariant metric and its square root are

relative scalar invariants of weight +2 and +1 respectively.

• A “conjugate” or “associated” tensor of a tensor in a metric space is a tensor obtained

by inner product multiplication, once or more, of the original tensor by the covariant or

contravariant forms of the metric tensor.

• All tensors associated with a particular tensor through the metric tensor represent the

11Dots may also be inserted in the tensor symbols to remove any ambiguity about the order of the
indices even without the action of the raising and lowering operators.
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same tensor but in different reference frames since the association is no more than raising

or lowering indices by the metric tensor which is equivalent to a representation of the

components of the tensor relative to different basis sets.

• A sufficient and necessary condition for the components of the metric tensor to be

constants in a given coordinate system is that the Christoffel symbols of the first or second

kind vanish identically (refer to 3.1).

• The metric tensor behaves as a constant with respect to covariant and absolute differen-

tiation (see § 3.2 and § 3.3). Hence, in all coordinate systems the covariant and absolute

derivatives of the metric tensor are zero; moreover, the covariant and absolute derivative

operators bypass the metric tensor in differentiating inner and outer products of tensors

involving the metric tensor.

• In general orthogonal coordinate systems in nD spaces the metric tensor and its inverse

are diagonal, that is:

gij = gij = 0 (i 6= j) (65)

moreover, we have:

gii = (hi)
2 =

1

gii
(no sum on i) (66)

det (gij) = g = g11g22 . . . gnn =
∏
i

(hi)
2 (67)

det
(
gij
)

=
1

g
=

1

g11g22 . . . gnn
=

[∏
i

(hi)
2

]−1

(68)

where hi (= |Ei|) are the scale factors, as described previously.

• A Riemannian metric, gij, in a particular coordinate system is a Euclidean metric if it

can be transformed to the identity tensor, δij, by a permissible coordinate transformation.

• The Minkowski metric, which is the metric tensor of special relativity, is given by one
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of the following two forms:

[gij] =
[
gij
]

=



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


[gij] =

[
gij
]

=



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(69)

Consequently, the line element ds can be imaginary.

• The partial derivatives of the covariant and contravariant metric tensors satisfy the

following identities:

∂kgij = −gmjgni∂kgnm

∂kg
ij = −gmjgin∂kgnm

(70)

• In the following subsections, we investigate a number of mathematical objects whose

definitions and applications are dependent on the metric tensor.

2.3.1 Dot Product

• The dot product of two basis vectors in general curvilinear coordinates was given earlier

in this section. This will be used in the following points to develop expressions for the dot

product of vectors and tensors in general.

• The dot product of two vectors, A and B, in general curvilinear coordinates using their

covariant and contravariant forms, as well as opposite forms, is given by:

A ·B = AiE
i ·BjE

j = AiBjE
i · Ej = gijAiBj = AjBj = AiB

i

A ·B = AiEi ·BjEj = AiBjEi · Ej = gijA
iBj = AjB

j = AiBi (71)

A ·B = AiE
i ·BjEj = AiB

jEi · Ej = δijAiB
j = AjB

j

A ·B = AiEi ·BjE
j = AiBjEi · Ej = δ ji A

iBj = AiBi
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In brief, the dot product of two vectors is the dot product of their two basis vectors

multiplied algebraically by the algebraic product of their components. Because the dot

product of basis vectors is a metric tensor, the metric tensor will act on the components by

raising or lowering the index of one component or by replacing the index of a component.

• The dot product operations outlined in the previous point can be easily extended to

tensors of higher ranks where the covariant and contravariant forms of the components

and basis vectors are treated in a similar manner to the above to obtain the dot product.

For instance, the dot product of a rank-2 tensor of contravariant components Aij and a

vector of covariant components Bk is given by:

A ·B =
(
AijEiEj

)
·
(
BkE

k
)

= AijBk

(
EiEj · Ek

)
= AijBkEiδ

k
j = AijBjEi (72)

that is, the ith component of this product, which is a contravariant vector, is:

[A ·B]i = AijBj (73)

• From the previous points, the dot product in general curvilinear coordinates occurs

between two vectors of opposite variance type. Therefore, to obtain the dot product of

two vectors of the same variance type, one of the vectors should be converted to the

opposite type by the raising/lowering operator, followed by the inner product operation.

This can be generalized to the dot product of higher-rank tensors where the two contracted

indices of the dot product should be of opposite variance type and hence the index-shifting

operator in the form of the metric tensor should be used, if necessary, to achieve this.

• The generalized dot product of two tensors is an invariant under permissible coordinate

transformations.
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2.3.2 Cross Product

• The cross product of two covariant basis vectors in general curvilinear coordinates is

given by:

Ei × Ej =
∂xl

∂ui
el ×

∂xm

∂uj
em =

∂xl

∂ui
∂xm

∂uj
el × em =

∂xl

∂ui
∂xm

∂uj
εlmnen (74)

where the indexed x and u are the coordinates of Cartesian and general curvilinear sys-

tems respectively, the indexed e are the Cartesian base vectors12 and εlmn = εlmn is the

permutation relative tensor as defined in Eq. 38. Now since en = en = ∂xn

∂uk
Ek, the last

equation becomes:

Ei × Ej =
∂xl

∂ui
∂xm

∂uj
∂xn

∂uk
εlmnE

k = εijkE
k (75)

where the underlined absolute covariant permutation tensor is defined as:

εijk =
∂xl

∂ui
∂xm

∂uj
∂xn

∂uk
εlmn (76)

So the final result is:

Ei × Ej = εijkE
k (77)

By a similar reasoning, we obtain the following expression for the cross product of two

contravariant basis vectors in general curvilinear coordinates:

Ei × Ej = εijkEk (78)

where the absolute contravariant permutation tensor is defined by:

εijk =
∂ui

∂xl
∂uj

∂xm
∂uk

∂xn
εlmn (79)

12For Cartesian systems, there is no difference between covariant and contravariant tensors and hence
ei = ei. We also note that for Cartesian systems g = 1.
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• Considering Eq. 49, the above equations can also be expressed as:

Ei × Ej = εijkE
k =
√
gεijkE

k (80)

Ei × Ej = εijkEk =
εijk
√
g

Ek (81)

where εijk = εijk are as defined previously (Eq. 38).

• The cross product of non-basis vectors follows similar rules to those outlined above for

the basis vectors; the only difference is that the algebraic product of the components is

used as a scale factor for the cross product of their basis vectors. For example, the cross

product of two contravariant vectors, Ai and Bj, is given by:

A×B =
(
AiEi

)
×
(
BjEj

)
= AiBj (Ei × Ej) = εijkA

iBjEk (82)

that is, the kth component of this product, which is a vector with covariant components,

is:

[A×B]k = εijkA
iBj (83)

Similarly, the cross product of two covariant vectors, Ai and Bj, is given by:

A×B =
(
AiE

i
)
×
(
BjE

j
)

= AiBj

(
Ei × Ej

)
= εijkAiBjEk (84)

with the kth contravariant component being given by:

[A×B]k = εijkAiBj (85)
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2.3.3 Line Element

• The displacement differential vector in general curvilinear coordinate systems is given

by:

dr =
∂r

∂ui
dui = Eidu

i =
∑
i

|Ei|
Ei

|Ei|
dui =

∑
i

|Ei| Êidu
i (86)

where r is the position vector as defined previously.

• The line element ds, which may also be called the differential of arc length, in general

curvilinear coordinate systems is given by:

(ds)2 = dr · dr = Eidu
i · Ejdu

j = (Ei · Ej) du
iduj = gijdu

iduj (87)

where gij is the covariant metric tensor.

• For orthogonal coordinate systems, the metric tensor is given by:

gij =


0 (i 6= j)

(hi)
2 (i = j)

(88)

where hi is the scale factor of the respective coordinate ui. Hence, the last part of Eq. 87

becomes:

(ds)2 =
∑
i

(hi)
2 duidui (89)

with no cross terms (i.e. terms of products involving more than one coordinate like duiduj

where i 6= j) which are generally present in the case of non-orthogonal curvilinear systems.

• On conducting a transformation from one coordinate system to another coordinate

system, marked with barred coordinates, ū, the line element will be expressed in the new

system as:

(ds)2 = ḡijdū
idūj (90)
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Since the line element is an invariant quantity, the same symbol (ds)2 is used in both Eqs.

87 and 90.

2.3.4 Surface Element

• In general curvilinear coordinates of a 3D space, an infinitesimal element of area on the

surface u1 = c1, where c1 is a constant, is obtained by taking the magnitude of the cross

product of the displacement vectors in the directions of the other two coordinates on that

surface. Hence, the generalized differential of area element on the surface u1 = c1 is given

by:

dA(u1 = c1) = |dr2 × dr3|

= |E2 × E3| du2du3

=
∣∣ε231E

1
∣∣ du2du3 (Eq. 77)

= |ε231|
∣∣E1
∣∣ du2du3

=
√
g
√

E1 · E1 du2du3 (Eqs. 49 & 98)

=
√
g
√
g11 du2du3 (Eq. 51)

=
√
gg11 du2du3

(91)

• On generalizing the above argument, the differential area element in a 3D space on the

surface ui = ci (i = 1, 2, 3) where ci is a constant is given by:

dA(ui = ci) =
√
ggiidujduk (i 6= j 6= k, no sum on i) (92)

• In general orthogonal coordinates in a 3D space we have:

√
ggii =

√
(hi)2(hj)2(hk)2

1

(hi)2
= hjhk (i 6= j 6= k, no sum on any index) (93)
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and hence Eq. 92 becomes:

dA(ui = ci) = hjhkdu
jduk (i 6= j 6= k, no sum on any index) (94)

The last formula represents the area of a surface differential with sides hjdu
j and hkdu

k

(no sum on j, k).

2.3.5 Volume Element

• In general curvilinear coordinates of a 3D space, an infinitesimal element of volume,

represented by a parallelepiped spanned by the three displacement vectors dri (i = 1, 2, 3),

is obtained by taking the magnitude of the scalar triple product of these vectors. Hence,

the generalized differential volume element is given by:

dV = |dr1 · (dr2 × dr3)|

= |E1 · (E2 × E3)| du1du2du3

=
∣∣E1 · ε231E

1
∣∣ du1du2du3 (Eq. 77)

=
∣∣E1 · E1

∣∣ |ε231| du1du2du3

=
∣∣δ 1

1

∣∣ |ε231| du1du2du3 (Eq. 59)

=
√
g du1du2du3 (Eq. 49)

= J du1du2du3 (Eq. 21)

(95)

where g is the determinant of the covariant metric tensor gij, and J is the Jacobian13 of

the transformation as defined previously. The last line in the last equation is particularly

relevant to the case of change of variables in multivariate integrals where the Jacobian

facilitates the transformation.

13Due to the freedom of choice in the order of the variables, which is related to the choice of the system
handedness hence affecting the sign of the determinant Jacobian, the sign of the determinant should be
adjusted if necessary to have a proper sign for the volume element.
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• The formulae in the last point for a 3D space can be extended to the differential of

generalized volume element14 in general curvilinear coordinates in an nD space as follow:

dV =
√
gdu1 . . . dun = J du1 . . . dun (96)

• In general orthogonal coordinate systems in a 3D space, the above formulae become:

dV = h1h2h3 du
1du2du3 (97)

where h1, h2 and h3 are the scale factors. The last formula represents the volume of a

parallelepiped with edges h1du
1, h2du

2 and h3du
3.

2.3.6 Magnitude of Vector

• The magnitude of a contravariant vector A is given by:

|A| =
√

A ·A =
√

(Ei · Ej)AiAj =
√
gijAiAj =

√
AjAj =

√
AiAi (98)

A similar expression can be obtained for the covariant form of the vector, that is:

|A| =
√

A ·A =
√

(Ei · Ej)AiAj =
√
gijAiAj =

√
AjAj =

√
AiAi (99)

The magnitude of a vector can also be obtained more directly from the dot product of the

covariant and contravariant forms of the vector:

|A| =
√

A ·A =
√

(Ei · Ej)AiAj =
√
δijAiA

j =
√
AiAi =

√
AjAj (100)

14Generalized volume elements are used, for instance, to represent the change of variables in multi-
variable integrations.
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2.3.7 Angle Between Vectors

• The angle θ between two contravariant or two covariant vectors A and B is given

respectively by:

cos θ =
A ·B
|A| |B|

=
gijA

iBj√
gklAkAl

√
gmnBmBn

=
gijAiBj√

gklAkAl
√
gmnBmBn

(101)

For two vectors of opposite variance type we have:

cos θ =
A ·B
|A| |B|

=
AiBi√

gklAkAl
√
gmnBmBn

=
AiB

i√
gklAkAl

√
gmnBmBn

(102)

2.3.8 Length of Curve

• In general curvilinear coordinates, the length of a t-parameterized space curve r(t)

defined by ui = ui(t), which represents the distance traversed along the curve on moving

between its start point S and end point E, is given by:15

L =

∫ E

S

√
gijduiduj =

∫ t2

t1

√
gij
dui

dt

duj

dt
dt (103)

where t is a scalar variable parameter, and t1 and t2 are the values of t corresponding to

the start and end points respectively.

• The length of curve is used to define the geodesic which is the path of the shortest distance

connecting two points in a Riemannian space. Although the geodesic is a straight line in

a Euclidean space, it is a generalized curved path in a general Riemannian space.

15Some authors add a sign indicator to ensure that the argument of the square root is positive. However,
as indicated in the Preface, such a condition is assumed when needed since we deal with non-complex
values only.
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3 Covariant and Absolute Differentiation

• The focus of this section is the investigation of covariant and absolute differentiation

operations which are closely linked. These operations represent generalization of tensor

differentiation in general curvilinear coordinate systems. Briefly, the differential change

of a tensor in general curvilinear coordinate systems is the result of a change in the

base vectors and a change in the tensor components. Hence, covariant and absolute

differentiation, in place of the normal differentiation, are defined and employed to account

for both of these changes. Since Christoffel symbols are crucial in the formulation and

application of covariant and absolute differentiation, the first subsection of the present

section will be dedicated to these symbols and their properties.

3.1 Christoffel Symbols

• We start by investigating the main properties of the Christoffel symbols which play

crucial roles in tensor calculus in general and are needed for the subsequent development

of the present and forthcoming sections as well as the future notes.

• Christoffel symbols are classified as those of the first kind and those of the second kind.

These two kinds are linked through the index raising and lowering operators. Both kinds

of Christoffel symbols are variable functions of coordinates in general.

• Christoffel symbols of the first and second kind are not tensors in general although they

are affine tensors of rank-3.

• As a consequence of the last point, if all the Christoffel symbols of either kind vanished

in a particular coordinate system they will not necessarily vanish in other systems; for

instance they all vanish in Cartesian systems but not in cylindrical or spherical systems,

as has been established previously [11] and will be investigated further in the forthcoming

points.
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• Christoffel symbols of the first kind are given by:

[ij, l] =
1

2
(∂jgil + ∂igjl − ∂lgij) (104)

where the indexed g is the covariant form of the metric tensor.

• Christoffel symbols of the second kind are obtained by raising the third index of the

Christoffel symbols of the first kind, that is:

Γkij = gkl [ij, l] =
gkl

2
(∂jgil + ∂igjl − ∂lgij) (105)

where the indexed g is the metric tensor in its contravariant and covariant forms with

implied summation over l.

• Similarly, the Christoffel symbols of the first kind can be obtained from the Christoffel

symbols of the second kind by reversing the above process through lowering the upper

index, that is:

gkmΓkij = gkmg
kl [ij, l] = δlm [ij, l] = [ij,m] (106)

• For an nD space with n covariant basis vectors (E1,E2, . . . ,En) spanning the space, the

derivative ∂jEi for any given i is a vector within the space and hence it is in general a

linear combination of all the basis vectors. The Christoffel symbols of the second kind are

the components of this linear combination, that is:

∂jEi = ΓkijEk (107)

Similarly, for the contravariant basis vectors we have:

∂jE
i = −ΓikjE

k (108)
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• By inner product multiplication of the previous relations with the basis vectors we

obtain:

Ei · ∂kEj = Γijk & Ei · ∂kEj = −Γjik (109)

Similarly:

Ek · ∂jEi = gmkE
m · ∂jEi = gmkΓ

m
ij = [ij, k] (110)

• Christoffel symbols of the first and second kind are symmetric in their paired indices,

that is:

[ij, k] = [ji, k] & Γkij = Γkji (111)

• The partial derivative of the components of the covariant metric tensor and the Christof-

fel symbols of the first kind satisfy the following identity, which is essentially based on the

forthcoming Ricci Theorem:

∂jgil = [ij, l] + [jl, i] (112)

This relation can also be written in terms of the Christoffel symbols of the second kind

using the index shifting operator:

∂jgil = gklΓ
k
ij + gkiΓ

k
jl (113)

A related formula for the partial derivative of the components of the contravariant metric

tensor, which can be obtained by partial differentiation of the relation gimg
mj = δji with

respect to the kth coordinate, is given by:

gim∂kg
mj = −gmj∂kgim (114)

• Christoffel symbols of the second kind with two identical indices of opposite variance
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type satisfy the following relations:

Γjji = Γjij =
1

2g
∂ig =

1

2
∂i (ln g) = ∂i (ln

√
g) =

1
√
g
∂i
√
g (115)

where the main relation can be derived as follow:

Γjij =
gjl

2
(∂jgil + ∂igjl − ∂lgij) (Eq. 105 with k = j)

=
gjl

2
(∂lgij + ∂igjl − ∂lgij) (relabeling dummy j, l in 1st term & gjl = glj)

=
1

2
gjl∂igjl

=
1

2g
ggjl∂igjl

=
1

2g
∂ig (derivative of determinant)

(116)

• In orthogonal coordinate systems, the Christoffel symbols of the first kind are given by:

[ij, i] = [ji, i] =
1

2
∂jgii (no sum on i)

[ii, j] = −1

2
∂jgii (i 6= j, no sum on i)

[ij, k] = 0 (i 6= j 6= k)

(117)

The first relation is a special case of Eq. 112 with l = i taking into account that the

Christoffel symbols are symmetric in their paired indices; moreover, the relation includes

the case of i = j, i.e. when all the three indices are identical.

• In orthogonal coordinate systems, the Christoffel symbols of the second kind are given

by:

Γijk =
[jk, i]

gii
= gii [jk, i] (no sum on i) (118)
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and hence from the results of the previous point we have:

Γiij = Γiji =
1

2gii
∂jgii =

gii

2
∂jgii =

1

2
∂j ln gii (no sum on i)

Γijj = − 1

2gii
∂igjj = −g

ii

2
∂igjj (no sum on i or j, and i 6= j)

Γijk = 0 (i 6= j 6= k)

(119)

As for the first kind in the last point, the first relation includes the case of i = j, i.e. when

all the three indices are identical.

• In general orthogonal coordinate systems in a 3D space, the Christoffel symbols of the

first kind vanish when the indices are all different, as shown earlier; moreover, the non-

identically vanishing symbols of the first kind are given by:

[11, 1] = +h1h1,1 [11, 2] = −h1h1,2 [11, 3] = −h1h1,3

[12, 1] = +h1h1,2 [12, 2] = +h2h2,1 [13, 1] = +h1h1,3

[13, 3] = +h3h3,1 [22, 1] = −h2h2,1 [22, 2] = +h2h2,2 (120)

[22, 3] = −h2h2,3 [23, 2] = +h2h2,3 [23, 3] = +h3h3,2

[33, 1] = −h3h3,1 [33, 2] = −h3h3,2 [33, 3] = +h3h3,3

where (1, 2, 3) stand for (u1,u2,u3) respectively, h1, h2, h3 are the scale factors as defined

previously, and the comma indicates, as always, partial derivative; for example in cylin-

drical coordinates given by (ρ, φ, z), h2,1 means the partial derivative of h2 with respect

to the first coordinate and hence h2,1 = ∂ρρ = 1 since h2 = ρ and the first coordinate is

ρ (refer to Table 1). Because the Christoffel symbols of the first kind are symmetric in

their first two indices, the [21, 1] symbol for instance can be obtained from the value of

the [12, 1] symbol.

• In general orthogonal coordinate systems in a 3D space, the Christoffel symbols of the



3.1 Christoffel Symbols 46

second kind vanish when the indices are all different, as shown earlier; moreover, the

non-identically vanishing symbols of the second kind are given by:

Γ1
11 = +

h1,1

h1

Γ2
11 = −h1h1,2

(h2)2
Γ3

11 = −h1h1,3

(h3)2

Γ1
12 = +

h1,2

h1

Γ2
12 = +h2,1

h2
Γ1

13 = +
h1,3

h1

Γ3
13 = +

h3,1

h3

Γ1
22 = −h2h2,1

(h1)2
Γ2

22 = +
h2,2

h2

(121)

Γ3
22 = −h2h2,3

(h3)2 Γ2
23 = +h2,3

h2
Γ3

23 = +
h3,2

h3

Γ1
33 = −h3h3,1

(h1)2 Γ2
33 = −h3h3,2

(h2)2
Γ3

33 = +
h3,3

h3

where (1, 2, 3) stand for (u1,u2,u3) respectively. Again, since the Christoffel symbols of the

second kind are symmetric in their lower indices, the missing non-vanishing entries can be

obtained from the given entries by permuting the lower indices.

• In Cartesian coordinate systems (x, y, z), all the Christoffel symbols of the first and

second kind are identically zero.

• In cylindrical coordinate systems (ρ, φ, z), the non-zero Christoffel symbols of the first

kind are:

[22, 1] = −ρ (122)

[12, 2] = [21, 2] = ρ

where (1, 2, 3) stand for (ρ, φ, z) respectively.

• In cylindrical coordinate systems (ρ, φ, z), the non-zero Christoffel symbols of the second
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kind are:

Γ1
22 = −ρ (123)

Γ2
12 = Γ2

21 =
1

ρ

where (1, 2, 3) stand for (ρ, φ, z) respectively.

• In spherical coordinate systems (r, θ, φ), the non-zero Christoffel symbols of the first

kind are:

[22, 1] = −r (124)

[33, 1] = −r sin2 θ

[12, 2] = [21, 2] = r

[33, 2] = −r2 sin θ cos θ

[13, 3] = [31, 3] = r sin2 θ

[23, 3] = [32, 3] = r2 sin θ cos θ

where (1, 2, 3) stand for (r, θ, φ) respectively.

• In spherical coordinate systems (r, θ, φ), the non-zero Christoffel symbols of the second
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kind are:

Γ1
22 = −r (125)

Γ1
33 = −r sin2 θ

Γ2
12 = Γ2

21 =
1

r

Γ2
33 = − sin θ cos θ

Γ3
13 = Γ3

31 =
1

r

Γ3
23 = Γ3

32 = cot θ

where (1, 2, 3) stand for (r, θ, φ) respectively.

• Because there is an element of arbitrariness in the choice of the coordinates order and

hence their indices, the Christoffel symbols may be given in terms of coordinate symbols

rather than their indices to be more explicit and avoid ambiguity; for instance in the

above examples of cylindrical and spherical coordinate systems we have: [22, 1] ≡ [φφ, ρ],

Γ2
12 ≡ Γφρφ for cylindrical, and [22, 1] ≡ [θθ, r], Γ3

13 ≡ Γφrφ for spherical.

• The Christoffel symbols may be subscripted by the symbol of the metric tensor for the

given space to reveal the metric which they are based upon.

• In any coordinate system, all the Christoffel symbols of the first and second kind vanish

identically iff all the components of the metric tensor in the given coordinate system are

constants.

• In affine coordinates, all the components of the metric tensor are constants and hence

all the Christoffel symbols of both kinds vanish identically.

• The number of independent Christoffel symbols of each kind (first and second) in general

curvilinear coordinates is given by:

NCI =
n2 (n+ 1)

2
(126)
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where n is the space dimension. The reason is that, due to the symmetry of the metric

tensor there are n(n+1)
2

independent metric components, gij, and for each independent

component there are n distinct Christoffel symbols.

• The following relations are useful in the manipulation of tensor expressions involving

Christoffel symbols:16

1
√
g
∂j
(√

ggij
)

+ gklΓikl = 0 (127)

∂j [ik, l] = gla∂jΓ
a
ik + Γaik [lj, a] + Γaik [aj, l] (128)

3.2 Covariant Derivative

• The basis vectors in general curvilinear coordinate systems undergo changes in magnitude

and direction as they move around in their own space, and hence they are functions of

position. These changes should be accounted for when calculating the derivatives of tensors

in such general systems. Therefore, terms based on using Christoffel symbols are added

to the ordinary derivative terms to correct for these changes and this more comprehensive

form of derivative is called the covariant derivative.

• Since in rectilinear coordinate systems the basis vectors are constants, the Christoffel

symbol terms vanish identically and hence the covariant derivative reduces to the ordinary

derivative, but in the other coordinate systems these terms are present in general.

• As a consequence of the last point, the ordinary derivative of a non-scalar tensor is a

tensor iff the coordinate transformations are linear.

• It has been stated that the “covariant” label is an indication that the differentiation

operator, ∇;i, is in the covariant position. However, it may also be true that “covariant”

means “invariant” as pointed out earlier in the previous set of notes.

16The first relation is a special case of the relation: Aij;j = 1√
g∂j

(√
gAij

)
+ AklΓikl noting that the

covariant derivative of the metric tensor is identically zero according to the Ricci Theorem.
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• Contravariant differentiation (∇;j) can also be defined for covariant and contravariant

tensors by raising the differentiation index using the index raising operator, e.g.

A ;j
i = gjkAi;k & Ai;j = gjkAi ;k (129)

However, practically such operations are rarely used.17

• As an example of how to obtain the covariant derivative of a tensor, let have a vector

represented by contravariant components: A = AiEi in general coordinates. We differ-

entiate this vector following the normal rules of differentiation and taking account of the

fact that the basis vectors in general coordinates are differentiable functions of position

and hence they, unlike their Cartesian counterparts, are subject to differentiation using

the product rule, that is:

∂jA = Ei∂jA
i + Ai∂jEi (product rule)

= Ei∂jA
i + AiΓkijEk (Eq. 107)

= Ei∂jA
i + AkΓi kjEi (relabeling dummy indices i & k)

=
(
∂jA

i + AkΓi kj
)
Ei

= Ai;jEi

(130)

where Ai;j, which is a rank-2 mixed tensor, is labeled the “covariant derivative” of Ai.

Similarly, for a vector represented by covariant components: A = AiE
i in general curvi-

linear coordinates we have:

∂jA = Ai;jE
i (131)

• Following the method and techniques outlined in the previous point, to obtain the

covariant derivative of a tensor in general, we start with an ordinary partial derivative

17An example of contravariant differentiation is in the definition of the Laplacian in general curvilinear
coordinates (refer to § 4.1.4).
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term of the given tensor. Then for each tensor index an extra Christoffel symbol term

is added, positive for contravariant indices and negative for covariant indices, where the

differentiation index is one of the lower indices in the Christoffel symbol. Hence, for a

general differentiable rank-n tensor A the covariant derivative is given by:

Aij...klm...p;q = ∂qA
ij...k
lm...p + ΓiaqA

aj...k
lm...p + ΓjaqA

ia...k
lm...p + · · ·+ ΓkaqA

ij...a
lm...p (132)

−ΓalqA
ij...k
am...p − ΓamqA

ij...k
la...p − · · · − ΓapqA

ij...k
lm...a

• Practically, there is only one possibility for the arrangement of the indices in the Christof-

fel symbol terms if the following rules are observed:

(A) the second subscript index of the Christoffel symbol is the differentiation index,

(B) the concerned tensor index in the Christoffel symbol term is contracted with one of

the indices of the Christoffel symbol and hence they are opposite in their lower/upper

position,

(C) the contracted index is transferred from the tensor to the Christoffel symbol keeping

its lower/upper position, and

(D) all the other indices of the tensor keep their names and position.

• The ordinary partial derivative term in the above covariant derivative expression (Eq.

132) represents the rate of change of the tensor components with change of position as a

result of moving along the coordinate curve of the differentiated index, while the Christoffel

symbol terms represent the change experienced by the local basis vectors as a result of the

same movement. This can be seen from the development of Eq. 130.

• From the above discussion it is obvious that to obtain the covariant derivative, the

Christoffel symbols are required and these symbols are dependent on the metric tensor;

hence the covariant derivative is dependent on having the space metric.

• In all coordinate systems, the covariant derivative of a differentiable scalar function of
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position, f , is the same as the ordinary partial derivative, that is:

f;i = f,i = ∂if (133)

This is justified by the fact that the covariant derivative is different from the ordinary

partial derivative because the basis vectors in general coordinate systems are dependent

on their spatial position, and since a scalar is independent of the basis vectors the covari-

ant derivative and partial derivative are identical. This can also be concluded from the

covariant derivative rule as stated in the previous points and formulated in Eq. 132.

• Several rules of normal differentiation are naturally extended to covariant differentiation.

For example, covariant differentiation is a linear operation with respect to algebraic sums

of tensor terms and hence the covariant derivative of a sum is the sum of the covariant

derivatives of the terms:

(aA± bB);i = a (A);i ± b (B);i (134)

where a and b are scalar constants and A and B are differentiable tensors. The product

rule of ordinary differentiation also applies to covariant differentiation of inner and outer

products of tensors:

(A ◦B);i = (A);i ◦B + A ◦ (B);i (135)

where the symbol ◦ denotes an inner or outer product operator.

• According to the “Ricci Theorem”, the covariant derivative of the covariant and con-

travariant metric tensor is zero. This has nothing to do with the metric tensor being a

constant function of coordinates, which is true only for the rectilinear systems, but this

arises from the fact that the covariant derivative quantifies the change with position of the

basis vectors in magnitude and direction as well as the change in components, and these
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contributions in the case of the metric tensor cancel each other resulting in a total null

effect. As a result, the metric tensor behaves as a constant with respect to the covariant

derivative operation:

gij;k = 0 & gij;k = 0 (136)

for all values of the indices, and hence the covariant derivative operator bypasses the metric

tensor:

(g ◦A);k = g ◦ (A);k (137)

where A is a general tensor, g is the metric tensor in its covariant or contravariant form

and ◦ denotes an inner or outer tensor product.18

• As a result of the Ricci Theorem, the covariant derivative operator and the index shifting

operator are commutative, e.g.

(
gikA

k
)

;j
= gikA

k
;j = Ai;j = (Ai);j =

(
gikA

k
)

;j
(138)

(gmignjA
mn);k = gmignjA

mn
;k = Aij;k = (Aij);k = (gmignjA

mn);k (139)

• Like the metric tensor, the Kronecker delta is constant with regard to the covariant

differentiation and hence the covariant derivative of the Kronecker delta is identically

zero:

δij;k = ∂kδ
i
j + δajΓ

i
ak − δiaΓajk = 0 + Γijk − Γijk = 0 (140)

The rule of the Kronecker delta may be regarded as an instance of the rule of the metric

tensor, as stated by the Ricci Theorem, since the Kronecker delta is a metric tensor.

Likewise, the covariant differentiation operator bypasses the Kronecker delta which is

18Although the metric tensor is normally used in inner product operations for raising and lowering of
indices, the possibility of its involvement in outer product operations should not be ruled out.
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involved in inner and outer tensor products:19

(δ ◦A);k = δ ◦ (A);k (141)

• Like the ordinary Kronecker delta, the covariant derivative of the generalized Kronecker

delta is identically zero.

• For a differentiable function f(x, y) of class C2 (i.e. all the second order partial derivatives

of the function do exist and are continuous), the mixed partial derivatives are equal, that

is:

∂x∂yf = ∂y∂xf (142)

However, even if the components of a tensor satisfy this condition (i.e. being of class C2),

this is not sufficient for the equality of the mixed covariant derivatives. What is required

for the mixed covariant derivatives to be equal is the vanishing of the Riemann Tensor

(see § 5.1).

• Higher order covariant derivatives are similarly defined as derivatives of derivatives

by successive repetition of the process of covariant differentiation; however the order of

differentiation should be respected as stated in the previous point. For example, the second

order mixed jk covariant derivative of a contravariant vector A is given by:

Ai;jk = ∂k∂jA
i + Γika∂jA

a − Γajk∂aA
i + Γija∂kA

a + Aa
(
∂jΓ

i
ka − ΓbjkΓ

i
ba + ΓijbΓ

b
ka

)
(143)

while the second order mixed jk covariant derivative of a covariant vector A is given by:

Ai;jk = ∂k∂jAi − Γaij∂kAa − Γaik∂jAa − Γajk∂aAi − Aa
(
∂kΓ

a
ij − ΓaibΓ

b
jk − ΓbikΓ

a
bj

)
(144)

19Like the metric tensor, the Kronecker delta is normally used in inner product operations for replace-
ment of indices; however the possibility of its involvement in outer product operations should not be ruled
out.
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• The second order mixed kj covariant derivative of contravariant and covariant vectors

can be obtained from the equations in the last point by interchanging the j and k indices

and hence the inequality of the jk and kj mixed derivatives in general can be verified

(refer to § 5.1).

• The covariant derivative of a tensor is a tensor whose covariant rank is higher than the

covariant rank of the original tensor by one. Hence, the covariant derivative of a rank-n

tensor of type (r, s) is a rank-(n+ 1) tensor of type (r, s+ 1).

• Covariant differentiation and contraction of index operations commute with each other,

e.g. (
Aijk
)

;l
δkj =

(
Aijk δ

k
j

)
;l

=
(
Aikk
)

;l
(145)

• Since the Christoffel symbols vanish when the components of the metric tensor in a

given coordinate system are constants, the covariant derivative is reduced to the ordinary

derivative in such systems. This is particularly true in Euclidean spaces coordinated by

rectilinear systems.

• The covariant derivatives of relative tensors, which are also relative tensors of the same

weight as the original tensors, are obtained by adding a weight term to the normal formulae

of covariant derivative. Hence, the covariant derivative of a relative scalar with weight w

is given by:

f;i = f,i − wfΓjji (146)

while the covariant derivative of relative tensors of higher ranks with weight w is obtained

by adding the following term to the right hand side of Eq. 132:

−wAij...klm...pΓ
a
aq (147)

• Unlike ordinary differentiation, the covariant derivative of a non-scalar tensor with con-

stant components is not zero in general due to the presence of the Christoffel symbols in
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the definition of the covariant derivative, as given by Eq. 132.

• In rectilinear coordinates, the Christoffel symbols are identically zero because the basis

vectors are constants, and hence the covariant derivative is the same as the normal partial

derivative for all tensor ranks. As a result, when the components of the metric tensor, gij,

are constants as in the case of rectangular coordinate systems, the covariant derivative

becomes the ordinary partial derivative.

• For a differentiable covariant vector A which is a gradient of a scalar we have:

Ai;j = Aj;i (148)

• The covariant derivative of the basis vectors of the covariant and contravariant types is

identically zero:

Ei;j = ∂jEi − ΓkijEk = ΓkijEk − ΓkijEk = 0

Ei
;j = ∂jE

i + ΓikjE
k = −ΓikjE

k + ΓikjE
k = 0

(149)

3.3 Absolute Derivative

• The absolute derivative of a tensor along a t-parameterized curve in an nD space with

respect to the parameter t is the inner product of the covariant derivative of the tensor and

the tangent vector to the curve. In brief, the absolute derivative is a covariant derivative

of a tensor along a curve.

• For a tensor Ai, the inner product of Ai;j, which is a tensor, with another tensor is a

tensor. Now, if the other tensor is dui

dt
, which is the tangent vector to a t-parameterized

curve L given by the equations ui = ui(t), then the inner product:

Ai;r
dur

dt
(150)

is a tensor of the same rank and type as the tensor Ai. The tensor given by the expression
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150 is called the “absolute” or “intrinsic” or “absolute covariant” derivative of the tensor

Ai along the curve L and is symbolized by:

δAi

δt
(151)

• For a differentiable scalar f , the absolute derivative, like the covariant derivative, is the

same as the ordinary derivative, that is:

δf

δt
=
df

dt
(152)

• The absolute derivative of a differentiable contravariant vector Ak with respect to the

parameter t is given by:

δAk

δt
=
dAk

dt
+ ΓkijA

idu
j

dt
(153)

Similarly for a differentiable covariant vector Ak we have:

δAk
δt

=
dAk
dt
− ΓikjAi

duj

dt
(154)

• Absolute differentiation can be easily extended to higher rank (> 1) differentiable tensors

of type (m,n) along parameterized curves. For instance, the absolute derivative of a mixed

tensor of type (1, 2) Aijk along a t-parameterized curve L is given by:

δAijk
δt

= Aijk;b

dub

dt
=
dAijk
dt

+ ΓiabA
a
jk

dub

dt
− ΓajbA

i
ak

dub

dt
− ΓabkA

i
ja

dub

dt
(155)

• As the absolute derivative is given generically by:

δA

δt
= (A);k

duk

dt
(156)
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it can be seen as an instance of the chain rule of differentiation where the two contracted

indices represent the in-between coordinate differential.

• Because the absolute derivative along a curve is just an inner product of the covariant

derivative with the vector tangent to the curve, the well known rules of ordinary dif-

ferentiation of sums and products also apply to absolute differentiation, as for covariant

differentiation, that is:

δ

δt
(aA + bB) = a

δA

δt
+ b

δB

δt
(157)

δ

δt
(A ◦B) =

(
δA

δt
◦B

)
+

(
A ◦ δB

δt

)
(158)

where a and b are constant scalars, A and B are differentiable tensors and the symbol ◦

denotes an inner or outer product of tensors.

• The covariant and contravariant metric tensors are in lieu of constants with respect to

absolute differentiation, that is:

δgij
δt

= 0 &
δgij

δt
= 0 (159)

and hence they pass through the absolute derivative operator:

δ (gijA
j)

δt
= gij

δAj

δt
&

δ (gijAj)

δt
= gij

δAj
δt

(160)

• For coordinate systems in which all the components of the metric tensor are constants,

the absolute derivative is the same as the ordinary derivative. This is the case in the

rectilinear coordinate systems.

• The absolute derivative of a tensor along a given curve is unique, and hence the ordinary

derivative of the tensor along that curve in a rectangular coordinate system is the same

as the absolute derivative of the tensor along that curve in any other system.
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4 Differential Operations

• In this section we generalize and expand what have been given in the previous notes

[11] about the main differential operations which are based on the nabla operator ∇. The

section will investigate these operations in general curvilinear coordinate systems and in

general orthogonal coordinate systems which are a special case of the general curvilinear

systems. We also investigate the two most important and widely used non-Cartesian

orthogonal coordinate systems, namely the cylindrical and spherical systems, due to their

particular importance.

4.1 General Curvilinear Coordinate System

• Here, we investigate the differential operations and operators in general curvilinear

coordinate systems, whether orthogonal or not.

• The previous definitions of the differential operations, as given in the first set of notes,

are essentially valid in general non-Cartesian coordinate systems if the operations are

extended to include the basis vectors as well as the components.

• The analytical expressions of the differential operations can be obtained directly if the

expression for the nabla operator ∇ and the spatial derivatives of the basis vectors in the

general curvilinear coordinate system are known.

4.1.1 Gradient

• The nabla operator ∇ in general curvilinear coordinate systems is defined as follow:

∇ = Ei∂i (161)
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Hence, the gradient of a differentiable scalar function of position, f , is given by:

∇f = Ei∂if = Eif,i (162)

The components of this expression represent the covariant form of a rank-1 tensor, i.e.

[∇f ]i = f,i, as it should be since the gradient operation increases the covariant rank

of a tensor by one. Since this expression consists of a contravariant basis vector and

a covariant component, the gradient in general curvilinear systems is invariant under

admissible transformations of coordinates.

• The contravariant form of the gradient of a scalar f can be obtained by using the index

raising operator, that is:

[∇f ]i = ∂if = gij∂jf = gijf,j = f ,i (163)

• The gradient of a differentiable covariant vector A can similarly be defined as follow:

∇A = Ei∂i
(
AjE

j
)

= EiEj∂iAj + EiAj∂iE
j (product rule)

= EiEj∂iAj + EiAj
(
−ΓjkiE

k
)

(Eq. 108)

= EiEj∂iAj − EiEjΓkjiAk (relabeling dummy indices j & k)

= EiEj
(
∂iAj − ΓkjiAk

)
(taking common factor EiEj)

= EiEjAj;i (definition of covariant derivative)

(164)
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Similarly, for a differentiable contravariant vector A the gradient is given by:

∇A = Ei∂i
(
AjEj

)
= EiEj∂iA

j + EiAj∂iEj (product rule)

= EiEj∂iA
j + EiAj

(
ΓkjiEk

)
(Eq. 107)

= EiEj∂iA
j + EiEjΓ

j
kiA

k (relabeling dummy indices j & k)

= EiEj

(
∂iA

j + ΓjkiA
k
)

(taking common factor EiEj)

= EiEjA
j
;i (definition of covariant derivative)

(165)

The components of the gradients of covariant and contravariant vectors represent, respec-

tively, the covariant and mixed forms of a rank-2 tensor, as they should be since the

gradient operation increases the covariant rank of a tensor by one.

• The gradient of higher rank tensors is similarly defined. For example, the gradient of a

rank-2 tensor is given by:

∇A = EiEjEk
(
∂iAjk − ΓljiAlk − ΓlkiAjl

)
= EiEjEkAjk;i (covariant) (166)

∇A = EiEjEk

(
∂iA

jk + ΓjliA
lk + ΓkliA

jl
)

= EiEjEkA
jk
;i (contravariant) (167)

∇A = EiEjEk

(
∂iA

k
j − ΓljiA

k
l + ΓkliA

l
j

)
= EiEjEkA

k
j;i (mixed) (168)

∇A = EiEjE
k
(
∂iA

j
k + ΓjliA

l
k − ΓlkiA

j
l

)
= EiEjE

kAjk;i (mixed) (169)

4.1.2 Divergence

• Generically, the divergence of a differentiable contravariant vector A is defined as follow:

∇·A = Ei∂i ·
(
AjEj

)
= Ei ·∂i

(
AjEj

)
= Ei ·

(
Aj;iEj

)
=
(
Ei · Ej

)
Aj;i = δijA

j
;i = Ai;i (170)
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In more details, the divergence of a differentiable contravariant vector Ai is a scalar ob-

tained by contracting the covariant derivative index with the contravariant index of the

vector, and hence:

∇ ·A = Ai;i

= ∂iA
i + ΓijiA

j (definition of covariant derivative)

= ∂iA
i + Aj

1
√
g
∂j (
√
g) (Eq. 115)

= ∂iA
i + Ai

1
√
g
∂i (
√
g) (renaming dummy index j)

=
1
√
g
∂i
(√

gAi
)

(product rule)

(171)

where g is the determinant of the covariant metric tensor gij. The last equality may be

called the Voss-Weyl formula.

• The divergence can also be obtained by raising the first index of the covariant derivative

of a covariant vector using a contracting contravariant metric tensor:

gjiAj;i =
(
gjiAj

)
;i

(Eq. 137)

=
(
Ai
)

;i
(raising index)

= Ai;i

= ∇ ·A (Eq. 171)

(172)

as before.

• Based on the previous point, the divergence of a covariant vector Aj is obtained by using

the raising operator, that is

Ai;i = gijAj;i (173)
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• For a rank-2 contravariant tensor A, the divergence is generically defined by:

∇ ·A = Ei∂i ·
(
AjkEjEk

)
=
(
Ei · Ej

)
EkA

jk
;i = δijEkA

jk
;i = EkA

ik
;i (174)

The components of this expression represent a contravariant vector, as it should be since

the divergence operation reduces the contravariant rank of a tensor by one.

• More generally, considering the tensor components, the divergence of a differentiable

rank-2 contravariant tensor Aij is a contravariant vector obtained by contracting the co-

variant derivative index with one of the contravariant indices, e.g.

[∇ ·A]j = Aij;i (175)

And for a rank-2 mixed tensor Aij we have:

[∇ ·A]j = Aij;i (176)

• Similarly, for a general tensor of type (m,n): A = Ai1i2···ik···imj1j2·········jn , the divergence with

respect to its kth contravariant index is defined by:

[∇ ·A]i1i2··· ···imj1j2·········jn =
(
Ai1i2···s···imj1j2·········jn

)
;s

(177)

with the absence of the contracted contravariant index ik on the left hand side.
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4.1.3 Curl

• The curl of a differentiable vector is the cross product of the nabla operator ∇ with the

vector, e.g. the curl of a vector A represented by covariant components is given by:

curl A = ∇×A

= Ei∂i × AjEj

= Ei × ∂i
(
AjE

j
)

= Ei ×
(
Aj;iE

j
)

(Eq. 131)

= Aj;i
(
Ei × Ej

)
= Aj;i ε

ijkEk (Eq. 78)

= εijkAj;iEk

=
εijk
√
g

(
∂iAj − ΓljiAl

)
Ek (Eq. 49 & definition of covariant derivative)

(178)

and hence the kth contravariant component of curl A is:

[∇×A]k =
εijk
√
g

(
∂iAj − ΓljiAl

)
(179)

On expanding the last equation for the three components of a 3D space, considering that

the terms of the Christoffel symbols cancel out due to their symmetry in the two lower

indices,20 we obtain:

[∇×A]1 =
1
√
g

(∂2A3 − ∂3A2) (180)

[∇×A]2 =
1
√
g

(∂3A1 − ∂1A3) (181)

[∇×A]3 =
1
√
g

(∂1A2 − ∂2A1) (182)

20That is: Ai;j −Aj;i = ∂jAi−AkΓkij − ∂iAj +AkΓkji = ∂jAi−AkΓkij − ∂iAj +AkΓkij = ∂jAi− ∂iAj =
Ai,j −Aj,i.
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Hence, Eq. 179 will reduce to:

[∇×A]k =
εijk
√
g
∂iAj (183)

4.1.4 Laplacian

• Generically, the Laplacian of a differentiable scalar function of position, f , is defined as

follow:

∇2f = div (grad f) = ∇ · (∇f) (184)

Hence the simplest approach for obtaining the Laplacian in general coordinates is to insert

the expression for the gradient, ∇f , into the expression for the divergence. However,

because in general curvilinear coordinates the divergence is defined only for contravariant

tensors whereas the gradient of a scalar is a covariant tensor, the index of the gradient

should be raised first before applying the divergence operation, that is:

[∇f ]i = ∂if = gij∂jf (185)

Now, according to Eq. 171 the divergence is given by:

∇ ·A = Ai;i =
1
√
g
∂i
(√

gAi
)

(186)

On defining A ≡ ∇f = Ei∂
if and replacing Ai in the last equation with ∂if we obtain:

∇2f = ∇ ·
(
Ei∂

if
)

=
1
√
g
∂i
(√

ggij∂jf
)

(187)

which is the expression for the Laplacian of a scalar function f in general curvilinear

coordinates.

• Another approach for developing the Laplacian expression in general coordinates is to
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apply the first principles by using the definitions and basic properties of the operations

involved, that is:

∇2f = ∇ · (∇f)

= Ei∂i ·
(
Ej∂jf

)
= Ei · ∂i

(
Ej∂jf

)
= Ei · ∂i

(
Ejf,j

)
= Ei ·

(
Ejf,j;i

)
(Eq. 131)

=
(
Ei · Ej

)
f,j;i

= gijf,j;i (Eq. 51)

=
(
gijf,j

)
;i

(Eq. 137)

=
(
gij∂jf

)
;i

= ∂i
(
gij∂jf

)
+
(
gkj∂jf

)
Γiki (Eq. 132)

= ∂i
(
gij∂jf

)
+
(
gij∂jf

)
Γkik (renaming dummy indices i & k)

= ∂i
(
gij∂jf

)
+
(
gij∂jf

) 1
√
g

(∂i
√
g) (Eq. 115)

=
1
√
g

[√
g∂i
(
gij∂jf

)
+
(
gij∂jf

)
∂i
√
g
]

(taking
1
√
g

factor)

=
1
√
g
∂i
(√

ggij∂jf
)

(product rule)

(188)

as before.

• The Laplacian of a scalar f may also be shorthand notated with:

∇2f = gijf,ij (189)

• The Laplacian of non-scalar tensors can be similarly defined. For example, the Laplacian

of a vector B is a vector A (i.e. A = ∇2B) which may be defined in general coordinates



4.2 General Orthogonal Coordinate System 67

as:

Ai = gjkBi
;jk and Ai = gjkBi;jk (190)

• The Laplacian of a tensor is a tensor of the same rank and variance type.

4.2 General Orthogonal Coordinate System

• In this section we state the main differential operations in general orthogonal coordinate

systems. These operations are special cases of the operations in general curvilinear systems

which were derived in the previous section. However, due to the wide spread use of

orthogonal systems, it is worth to state the most important of these operations although

they can be easily obtained from the formulae of general curvilinear systems.

• General orthogonal coordinate systems are identified in the following notes by the co-

ordinates (u1, . . . , un) with unit basis vectors (u1, . . . ,un) and scale factors (h1, . . . , hn)

where:21

ui =
∑
j

1

hi

∂xj

∂ui
ej =

∑
j

hi
∂ui

∂xj
ej (no sum on i) (191)

hi = |Ei| =
∣∣∣∣ ∂r

∂ui

∣∣∣∣ =

[∑
j

(
∂xj

∂ui

)2
]1/2

=

[∑
j

(
∂ui

∂xj

)2
]−1/2

(192)

In the last equations, xj and ej are respectively the coordinates and unit basis vectors in

the Cartesian rectangular system, and r is the position vector in that system.

4.2.1 Gradient

• The nabla operator in general orthogonal coordinates is given by:

∇ =
∑
i

ui
hi

∂

∂ui
(193)

21In orthogonal coordinates, the covariant and contravariant normalized basis vectors are identical, as
established previously in § 1.7, and hence ui = ui and ej = ej .
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Hence, the gradient of a differentiable scalar f in orthogonal coordinates is given by:

∇f =
∑
i

ui
hi

∂f

∂ui
(194)

4.2.2 Divergence

• The divergence in orthogonal coordinates can be obtained from Eq. 171. Since for

orthogonal coordinate systems the metric tensor is diagonal with
√
g = h1h2h3 in a 3D

space and hiA
i = Âi (component-wise with no summation), the last line of Eq. 171

becomes:

∇ ·A =
1
√
g

∂

∂ui
(√

gAi
)

=
1

h1h2h3

3∑
i=1

∂

∂ui

(
h1h2h3

hi
Âi
)

(195)

where A is a contravariant differentiable vector and Âi represents the physical components

(refer to Eq. 28).22 This equation is the divergence of a vector in general orthogonal

coordinates as defined in vector calculus.

4.2.3 Curl

• The curl of a differentiable vector A in orthogonal coordinate systems in 3D spaces is

given by:

∇×A =
1

h1h2h3

∣∣∣∣∣∣∣∣∣∣
h1u1 h2u2 h3u3

∂
∂u1

∂
∂u2

∂
∂u3

h1Â1 h2Â2 h3Â3

∣∣∣∣∣∣∣∣∣∣
(196)

where the hat indicates a physical component. The last equation may also be given in a

more compact form as:

[∇×A]i =
3∑

k=1

εijkhi
h1h2h3

∂(hkÂk)

∂uj
(197)

22In orthogonal coordinate systems the physical components are the same for covariant and contravari-
ant forms, as established before in § 1.7, and hence Âi = Âi.
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4.2.4 Laplacian

• For general orthogonal coordinate systems in 3D spaces we have:

√
g = h1h2h3 & gij =

δij

hihj
(no sum on i or j) (198)

and hence Eq. 187 becomes:

∇2f =
1

h1h2h3

3∑
i=1

∂

∂ui

(
h1h2h3

h2
i

∂f

∂ui

)
(199)

which is the Laplacian of a scalar function of position, f , in orthogonal coordinates as

defined in vector calculus.

4.3 Cylindrical Coordinate System

• For cylindrical systems identified by the coordinates (ρ, φ, z), the orthonormal basis

vectors are eρ, eφ and ez.
23 We use for brevity eρφ as a shorthand notation for the unit

dyad eρeφ and similar notations for the other dyads.

4.3.1 Gradient

• The gradient of a differentiable scalar f is:

∇f = eρ∂ρf + eφ
1

ρ
∂φf + ez∂zf (200)

23Hence the given components (i.e. Aρ, Aφ and Az) are physical (see § 1.7). Despite that, we do not
use hats since the components are suffixed with coordinate symbols (refer to § 1.7).
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• The gradient of a differentiable vector A is:

∇A = eρρAρ,ρ + eρφAφ,ρ + eρzAz,ρ + (201)

eφρ

(
1

ρ
Aρ,φ −

Aφ
ρ

)
+ eφφ

(
1

ρ
Aφ,φ +

Aρ
ρ

)
+ eφz

1

ρ
Az,φ +

ezρAρ,z + ezφAφ,z + ezzAz,z

4.3.2 Divergence

• The divergence of a differentiable vector A is:

∇ ·A =
1

ρ
[∂ρ (ρAρ) + ∂φAφ + ρ∂zAz] (202)

• The divergence of a differentiable rank-2 tensor A is a vector given by:24

∇ ·A = eρ

(
Aρρ,ρ +

Aρρ − Aφφ
ρ

+
1

ρ
Aφρ,φ + Azρ,z

)
+ (203)

eφ

(
Aρφ,ρ +

2Aρφ
ρ

+
1

ρ
Aφφ,φ + Azφ,z +

Aφρ − Aρφ
ρ

)
+

ez

(
Aρz,ρ +

Aρz
ρ

+
1

ρ
Aφz,φ + Azz,z

)

4.3.3 Curl

• The curl of a differentiable vector A is:

∇×A =
1

ρ

∣∣∣∣∣∣∣∣∣∣
eρ ρeφ ez

∂ρ ∂φ ∂z

Aρ ρAφ Az

∣∣∣∣∣∣∣∣∣∣
(204)

24It should be understood that ∇ · A is lower than the original tensor A by just one contravariant
index and hence, unlike the common use of this notation, it is not scalar in general.
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4.3.4 Laplacian

• The Laplacian of a differentiable scalar f is:

∇2f = ∂ρρf +
1

ρ
∂ρf +

1

ρ2
∂φφf + ∂zzf (205)

• The Laplacian of a differentiable vector A is:

∇2A = eρ

[
∂ρ

(
1

ρ
∂ρ (ρAρ)

)
+

1

ρ2
∂φφAρ + ∂zzAρ −

2

ρ2
∂φAφ

]
+ (206)

eφ

[
∂ρ

(
1

ρ
∂ρ (ρAφ)

)
+

1

ρ2
∂φφAφ + ∂zzAφ +

2

ρ2
∂φAρ

]
+

ez

[
1

ρ
∂ρ (ρ∂ρAz) +

1

ρ2
∂φφAz + ∂zzAz

]

4.4 Spherical Coordinate System

• For spherical coordinate systems identified by the coordinates (r, θ, φ), the orthonormal

basis vectors are er, eθ and eφ.25 We use for brevity erθ as a shorthand notation for the

dyad ereθ and similar notations for the other unit dyads.

4.4.1 Gradient

• The gradient of a differentiable scalar f is:

∇f = er∂rf + eθ
1

r
∂θf + eφ

1

r sin θ
∂φf (207)

25Again, the components are physical and we do not use hats.
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• The gradient of a differentiable vector A is:

∇A = errAr,r + erθAθ,r + erφAφ,r + (208)

eθr

(
Ar,θ
r
− Aθ

r

)
+ eθθ

(
Aθ,θ
r

+
Ar
r

)
+ eθφ

Aφ,θ
r

+

eφr

(
Ar,φ
r sin θ

− Aφ
r

)
+ eφθ

(
Aθ,φ
r sin θ

− Aφ cot θ

r

)
+ eφφ

(
Aφ,φ
r sin θ

+
Ar
r

+
Aθ cot θ

r

)

4.4.2 Divergence

• The divergence of a differentiable vector A is:

∇ ·A =
1

r2 sin θ

[
sin θ

∂ (r2Ar)

∂r
+ r

∂ (sin θAθ)

∂θ
+ r

∂Aφ
∂φ

]
(209)

• The divergence of a differentiable rank-2 tensor A is a vector given by:

∇ ·A = er

(
∂r (r2Arr)

r2
+
∂θ (Aθr sin θ)

r sin θ
+
∂φAφr
r sin θ

− Aθθ + Aφφ
r

)
+ (210)

eθ

(
∂r (r3Arθ)

r3
+
∂θ (Aθθ sin θ)

r sin θ
+
∂φAφθ
r sin θ

+
Aθr − Arθ − Aφφ cot θ

r

)
+

eφ

(
∂r (r3Arφ)

r3
+
∂θ (Aθφ sin θ)

r sin θ
+
∂φAφφ
r sin θ

+
Aφr − Arφ + Aφθ cot θ

r

)

4.4.3 Curl

• The curl of a differentiable vector A is:

∇×A =
1

r2 sin θ

∣∣∣∣∣∣∣∣∣∣
er reθ r sin θeφ

∂r ∂θ ∂φ

Ar rAθ r sin θAφ

∣∣∣∣∣∣∣∣∣∣
(211)
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4.4.4 Laplacian

• The Laplacian of a differentiable scalar f is:

∇2f = ∂rrf +
2

r
∂rf +

1

r2
∂θθf +

cos θ

r2 sin θ
∂θf +

1

r2 sin2 θ
∂φφf (212)

• The Laplacian of a differentiable vector A is:

∇2A = er

[
∂r

(
∂r (r2Ar)

r2

)
+
∂θ (sin θ∂θAr)

r2 sin θ
+

∂φφAr
r2 sin2 θ

− 2∂θ (Aθ sin θ)

r2 sin θ
− 2∂φAφ
r2 sin θ

]
+(213)

eθ

[
∂r (r2∂rAθ)

r2
+

1

r2
∂θ

(
∂θ (Aθ sin θ)

sin θ

)
+

∂φφAθ
r2 sin2 θ

+
2∂θAr
r2

− 2 cot θ

r2 sin θ
∂φAφ

]
+

eφ

[
∂r (r2∂rAφ)

r2
+

1

r2
∂θ

(
∂θ (Aφ sin θ)

sin θ

)
+

∂φφAφ
r2 sin2 θ

+
2∂φAr
r2 sin θ

+
2 cot θ

r2 sin θ
∂φAθ

]
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5 Tensors in Applications

• In this section we conduct a preliminary investigation of some commonly-used tensors in

physical and mathematical applications of tensor calculus in anticipation of the forthcom-

ing set of notes. Most of these tensors come from differential geometry, fluid, continuum

and relativistic mechanics, since these disciplines are intimately linked to tensor calculus as

large parts of the subject were developed, and are still developing, within these disciplines.

These tensors also form the building blocks of several physical and mathematical theories.

We would like to insist that these are just a few partially representative examples for the

use of tensors in scientific and mathematical applications to have more familiarity with

tensor language and techniques and hence they are not meant to provide a comprehensive

view in any way. We should also indicate that some tensors are defined differently in

different disciplines and hence the given definitions and properties may not be thorough

or general.

5.1 Riemann Tensor

• This rank-4 tensor, which is also called Riemann curvature tensor and Riemann-Christoffel

tensor, is a property of the space. It characterizes important properties of spaces and sur-

faces and hence it plays an important role in geometry in general and in non-Euclidean

geometries in particular.

• The covariant differentiation operators in mixed derivatives are not commutative and

hence for a covariant vector A we have:

Aj;kl − Aj;lk = Ri
jklAi (214)
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where Ri
jkl is the Riemann tensor of the second kind which is given by:

Ri
jkl = ∂kΓ

i
jl − ∂lΓijk + ΓrjlΓ

i
rk − ΓrjkΓ

i
rl (215)

• The last equation can be put into the following mnemonic determinantal form:

Ri
jkl =

∣∣∣∣∣∣∣
∂k ∂l

Γijk Γijl

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
Γrjl Γrjk

Γirl Γirk

∣∣∣∣∣∣∣ (216)

• The Riemann-Christoffel tensor of the second kind is also called the mixed Riemann-

Christoffel tensor.

• From Eq. 214, it is obvious that the mixed second order covariant derivatives are equal

iff the Riemann tensor of the second kind vanishes identically.

• On lowering the contravariant index of the Riemann tensor of the second kind, the

Riemann tensor of the first kind is obtained:

Rijkl = giaR
a
jkl (217)

• Alternatively, the Riemann tensor of the first kind can be established independently as:

Rijkl = ∂k [jl, i]− ∂l [jk, i] + [il, r] Γrjk − [ik, r] Γrjl

=
1

2
(∂j∂kgil + ∂i∂lgjk − ∂j∂lgik − ∂i∂kgjl) + [il, r] Γrjk − [ik, r] Γrjl (218)

=
1

2
(∂j∂kgil + ∂i∂lgjk − ∂j∂lgik − ∂i∂kgjl) + grs ([il, r] [jk, s]− [ik, r] [jl, s])

• The first line of the last equation can be cast in the following mnemonic determinantal

form:

Rijkl =

∣∣∣∣∣∣∣
∂k ∂l

[jk, i] [jl, i]

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
Γrjk Γrjl

[ik, r] [il, r]

∣∣∣∣∣∣∣ (219)
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• Similarly, the Riemann-Christoffel tensor of the second kind can be obtained by raising

the first covariant index of the Riemann-Christoffel tensor of the first kind:

Ri
jkl = giaRajkl (220)

• The Riemann-Christoffel tensor of the first kind is also called the covariant (or totally

covariant) Riemann-Christoffel tensor.

• The covariant differentiation operators become commutative when the metric makes the

Riemann tensor of either kind vanish.

• For the mixed second order covariant derivatives of a contravariant vector A we have:

Aj;kl − A
j
;lk = Rj

ilkA
i (221)

which is similar to Eq. 214 for a covariant vector A.

• The Riemann-Christoffel tensor vanishes identically iff the space is globally flat. Hence,

the Riemann tensor is zero in Euclidean spaces, and consequently the mixed second order

covariant derivatives, which become ordinary derivatives, are equal when the C2 continuity

condition is satisfied.

• The Riemann curvature tensor depends only on the metric which, in general curvilinear

coordinates, is a function of position and hence the Riemann tensor follows this dependency

on position. Yes, for affine coordinates the metric tensor is constant and hence the Riemann

tensor vanishes identically.

• The totally covariant Riemann tensor satisfies the following symmetric and skew-symmetric
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relations in its four indices:

Rijkl = Rklij (block symmetry)

= −Rjikl (anti-symmetry in the first two indices) (222)

= −Rijlk (anti-symmetry in the last two indices)

• The skew-symmetric property of the covariant Riemann tensor with respect to the last

two indices also applies to the mixed Riemann tensor:

Ri
jkl = −Ri

jlk (223)

• As a consequence of the first and second anti-symmetric properties of the covariant

Riemann tensor, the entries of the Riemann tensor with identical values of the first two

indices or/and the last two indices are zero.

• As a consequence of the skew-symmetric properties of the Riemann tensor, all entries of

the tensor with identical values of more than two indices (e.g. Riiji) are zero.

• In an nD space, the Riemann tensor has n4 components.

• As a consequence of the symmetric and anti-symmetric properties of the Riemann tensor,

in an nD space there are three types of distinct non-vanishing entries:

A. Entries with only two distinct indices (type Rijij) which count:

N1 =
n (n− 1)

2
(224)

B. Entries with only three distinct indices (type Rijik) which count:

N2 =
n (n− 1) (n− 2)

2
(225)
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C. Entries with four distinct indices (type Rijkl) which count:

N3 =
n (n− 1) (n− 2) (n− 3)

12
(226)

• By adding the numbers of the three types of non-zero distinct entries, as given in the

last point, it can be shown that the Riemann tensor in an nD space has a total of

NRI = N1 +N2 +N3 =
n2 (n2 − 1)

12
(227)

independent components which do not vanish identically. For example, in a 2D Rie-

mannian space the Riemann tensor has 24 = 16 components; however there is only one

independent component (with the principal suffix 1212) which is not identically zero rep-

resented by the following four dependent components:

R1212 = R2121 = −R1221 = −R2112 (228)

Similarly, in a 3D Riemannian space the Riemann tensor has 34 = 81 components but only

six of these are distinct non-zero entries which are the ones with the following principal

suffixes:

1212, 1313, 1213, 2123, 3132, 2323 (229)

where the permutations of indices in each of these suffixes are subject to the symmetric

and anti-symmetric properties of the four indices of the Riemann tensor, as in the case of a

2D space in the above example, and hence these permutations do not produce independent

entries.

• Following the pattern in the last point, in a 4D Riemannian space the Riemann tensor

has 44 = 256 components but only 20 of these are independent non-zero entries, while in

a 5D Riemannian space the Riemann tensor has 54 = 625 components but only 50 are
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independent non-zero entries.

• The Riemann tensor satisfies the following identity:

Rijkl;s +Riljk;s = Riksl;j +Rikjs;l (230)

• A necessary and sufficient condition that a manifold for which there is a coordinate

system with all the components of the metric tensor being constants26 is that:

Rijkl = 0 (231)

• On contracting the first covariant index with the contravariant index of the Riemann

tensor of the second kind we obtain:

Ri
ikl = ∂kΓ

i
il − ∂lΓiik + ΓrilΓ

i
rk − ΓrikΓ

i
rl (j = i in Eq. 215)

= ∂kΓ
i
il − ∂lΓiik + ΓrilΓ

i
rk − ΓirkΓ

r
il (relabeling dummy i, r in last term)

= ∂kΓ
i
il − ∂lΓiik

= ∂k [∂l (ln
√
g)]− ∂l [∂k (ln

√
g)] (Eq. 115)

= ∂k∂l (ln
√
g)− ∂l∂k (ln

√
g)

= ∂k∂l (ln
√
g)− ∂k∂l (ln

√
g) (C2 condition is assumed)

= 0

(232)

That is:

Ri
ikl = 0 (233)

26This may be called flat pseudo Riemannian manifold.
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5.1.1 Bianchi identities

• The Riemann tensor of the first and second kind satisfies a number of identities called

the Bianchi identities.

• The first Bianchi identity is:

Rijkl +Riljk +Riklj = 0 (first kind)

Ri
jkl +Ri

ljk +Ri
klj = 0 (second kind)

(234)

These two forms of the first identity can be obtained from each other by the raising and

lowering operators.

• The above first Bianchi identity is an instance of the fact that by fixing the position of

one of the four indices and permuting the other three indices cyclically, the algebraic sum

of these three permuting forms is zero, that is:

Rijkl +Riljk +Riklj = 0 (i fixed)

Rijkl +Rljik +Rkjli = 0 (j fixed)

Rijkl +Rlikj +Rjlki = 0 (k fixed)

Rijkl +Rkijl +Rjkil = 0 (l fixed)

(235)

• Another one of the Bianchi identities is:

Rijkl;m +Rijlm;k +Rijmk;l = 0 (first kind)

Ri
jkl;m +Ri

jlm;k +Ri
jmk;l = 0 (second kind)

(236)

Again, these two forms can be obtained from each other by the raising and lowering

operators.

• The Bianchi identities are valid regardless of the metric.
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5.2 Ricci Tensor

• The Ricci tensor of the first kind is obtained by contracting the contravariant index with

the last covariant index of the Riemann tensor of the second kind, that is:

Rij = Ra
ija = ∂jΓ

a
ia − ∂aΓaij + ΓabjΓ

b
ia − ΓabaΓ

b
ij (237)

and hence it is a rank-2 tensor.

• The Ricci tensor, as given by the last equation, can be written in the following mnemonic

determinantal form:

Rij =

∣∣∣∣∣∣∣
∂j ∂a

Γaij Γaia

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
Γabj Γaba

Γbij Γbia

∣∣∣∣∣∣∣ (238)

• Because of Eq. 115 (i.e. Γjij = ∂i
(
ln
√
g
)
), the Ricci tensor can also be written in the

following forms as well as several other forms:

Rij = ∂j∂i (ln
√
g)− ∂aΓaij + ΓabjΓ

b
ia − Γbij∂b (ln

√
g)

= ∂j∂i (ln
√
g) + ΓabjΓ

b
ia − ∂aΓaij − Γbij∂b (ln

√
g) (239)

= ∂j∂i (ln
√
g) + ΓabjΓ

b
ia −

1
√
g
∂a
(√

gΓaij
)

where g is the determinant of the covariant metric tensor.

• The Ricci tensor of the first kind is symmetric, that is:

Rij = Rji (240)

• On raising the first index of the Ricci tensor of the first kind, the Ricci tensor of the

second kind is obtained:

Ri
j = gikRkj (241)
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• The Ricci scalar, which is also called the curvature scalar and the curvature invariant,

is the result of contracting the indices of the Ricci tensor of the second kind, that is:

R = Ri
i (242)

• Since the Ricci scalar is obtained by raising a subscript index of the Ricci tensor of

the first kind using the raising operator followed by contracting the two indices, it can be

written as:

R = gijRij = gij
[
∂j∂i (ln

√
g) + ΓabjΓ

b
ia −

1
√
g
∂a
(√

gΓaij
)]

(243)

where the expression in the square brackets is obtained from the last line of Eq. 239;

similar expressions can be obtained from the other lines of that equation.

• In an nD space, the Ricci tensor has n2 entries. However, because of its symmetry it

possesses a maximum of

NRD =
n (n+ 1)

2
(244)

distinct entries. As an example, in the 4D manifold of general relativity n = 4, and hence

the Ricci tensor has 42 = 16 components. However, due to the symmetry of the Ricci

tensor there are only ten independent entries according to Eq. 244. The gravitational

field equations in a free space are obtained by setting the Ricci tensor components equal

to zero, and hence there are ten partial differential equations describing the gravitational

field in this space according to the general relativistic mechanics.
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5.3 Einstein Tensor

• The Einstein tensor G is a rank-2 tensor defined in terms of the Ricci tensor R and the

Ricci curvature scalar R as follow:27

Gmn = Rmn −
1

2
gmnR (covariant)

Gmn = Rmn − 1

2
gmnR (contravariant)

Gm
n = Rm

n −
1

2
δmn R (mixed)

(245)

• Since both the Ricci tensor and the metric tensor are symmetric, the Einstein tensor is

symmetric as well.

• The divergence of the Einstein tensor vanishes at all points of the space for any Rieman-

nian metric.

• On contracting the Bianchi identity twice with using the anti-symmetric properties of

the Riemann tensor we obtain:

Gmn
;n = 0 (246)

which is inline with the above statement. The following form can also be derived based

on the Bianchi identity:

gjkGki;j = 0 (247)

5.4 Infinitesimal Strain Tensor

• This is a rank-2 tensor which describes the state of strain in a continuum medium and

hence it is used in continuum and fluid mechanics.

27We notate this tensor with G rather than E, which is more natural, to avoid potential confusion with
the first displacement gradient tensor (see § 5.6).
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• The infinitesimal strain tensor γ is defined by:28

γ =
∇d +∇dT

2
(248)

where d is the displacement vector and the superscript T represents matrix transposi-

tion. The displacement vector d represents the change in distance and direction which an

infinitesimal element of the medium experiences as a consequence of the applied stress.

• In Cartesian coordinates with tensor notation, the last equation is given as:

γij =
∂idj + ∂jdi

2
(249)

5.5 Stress Tensor

• The stress tensor, which is also called Cauchy stress tensor, is a rank-2 symmetric29

tensor used for transforming a normal vector to a surface to a traction vector acting on

that surface, that is:

T = σn (250)

where T is the traction vector, σ is the stress tensor and n is the normal vector. This is

usually represented in tensor notation using Cartesian coordinates as:

Ti = σijnj (251)

• The diagonal components of the stress tensor represent normal stresses while the off-

diagonal components represent shear stresses.

28Some authors do not include the factor 1
2 in the definition of γ.

29In fact it is symmetric in many applications (e.g. in the flow of Newtonian fluids) but not all, as it can
be asymmetric in some cases. We also choose to define it within the context of Cauchy stress law which is
more relevant to the continuum mechanics; however it can be defined differently in other disciplines and
in a more general form.
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• Because the stress tensor is symmetric, in an nD space it possesses n(n+1)
2

independent

components instead of n2. Hence in a 3D space (which is the ordinary space for this

tensor) it has six independent components.

• In fluid dynamics, the stress tensor (or total stress tensor) is decomposed into two main

parts: a viscous contribution part and a pressure contribution part. The viscous part may

then be split into a normal stress and a shear stress while the pressure part may be split

into a hydrostatic pressure and an extra pressure.

5.6 Displacement Gradient Tensors

• These are rank-2 tensors which are denoted by E and ∆. They are defined in Cartesian

coordinates using tensor notation as:

Eij =
∂xi
∂x

′
j

& ∆ij =
∂x

′
i

∂xj
(252)

where x and x
′

represent the Cartesian coordinates of an observed continuum particle at

the present and past times respectively. These tensors may also be called deformation

gradient tensors.

• E quantifies the displacement of the particle at the present time relative to its position at

the past time, while ∆ quantifies its displacement at the past time relative to its position

at the present time.

• From their definitions, it is obvious that E and ∆ are inverses of each other and hence:

Eik∆kj = δij (253)



5.7 Finger Strain Tensor 86

5.7 Finger Strain Tensor

• This, which may also be called the left Cauchy-Green deformation tensor, is a rank-2

tensor used in the fluid and continuum mechanics to describe the strain in a continuum

object, e.g. fluid, in a series of time frames. It is defined as:

B = E · ET (254)

which in Cartesian coordinates with tensor notation becomes:

Bij =
∂xi
∂x

′
k

∂xj
∂x

′
k

(255)

where E is the first displacement gradient tensor as defined in § 5.6, the superscript T rep-

resents matrix transposition, and the indexed x and x
′
represent the Cartesian coordinates

of an element of the continuum at the present and past times respectively.

5.8 Cauchy Strain Tensor

• This, which may also be called the right Cauchy-Green deformation tensor, is the inverse

of the Finger strain tensor and hence it is denoted by B−1. Consequently, it is defined as:

B−1 = ∆T ·∆ (256)

which in Cartesian coordinates with tensor notation becomes:

B−1
ij =

∂x
′

k

∂xi

∂x
′

k

∂xj
(257)

where ∆ is the second displacement gradient tensor as defined in § 5.6.

• The Finger and Cauchy strain tensors may be labeled as “finite strain tensors” as
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opposite to infinitesimal strain tensors. They are symmetric positive definite tensors;

moreover they become the unity tensor when the change in the state of the object from

the past to the present times consists of rotation and translation with no deformation.

5.9 Velocity Gradient Tensor

• This is a rank-2 tensor which is often used in fluid dynamics and rheology. As its name

suggests, it is the gradient of the velocity vector v and hence it is given in Cartesian

coordinates by:

[∇v]ij = ∂ivj (258)

• The velocity gradient tensor in other coordinate systems can be obtained from the

expressions of the gradient of vectors in these systems, as given, for instance, in § 4.3 and

§ 4.4 for cylindrical and spherical coordinates.

• The term “velocity gradient tensor” my also be used for the transpose of this tensor, i.e.

(∇v)T .

• The velocity gradient tensor is usually decomposed into a symmetric part which is the

rate of strain tensor S (see § 5.10), and an anti-symmetric part which is the vorticity

tensor S̄ (see § 5.11), that is:

∇v = S + S̄ (259)

5.10 Rate of Strain Tensor

• This tensor, which is also called the rate of deformation tensor, is the symmetric part of

the velocity gradient tensor and hence is given by:30

S =
∇v + (∇v)T

2
(260)

30Some authors do not include the factor 1
2 in the definition of S and S̄ and hence this factor is moved

to the definition of ∇v. Also these tensors are commonly denoted by γ̇ and ω respectively.
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which, in tensor notation with Cartesian coordinates, is given by:

Sij =
∂ivj + ∂jvi

2
(261)

• The rate of strain tensor is a quantitative measure of the local rate at which neighboring

material elements of a deforming continuum move with respect to each other.

• As a rank-2 symmetric tensor, it has n(n+1)
2

independent components which is six in a

3D space.

• The rate of strain tensor is related to the infinitesimal strain tensor (refer to § 5.4) by:

S =
∂γ

∂t
(262)

where t is time. Hence, the rate of strain tensor is normally denoted by γ̇ where the dot

represents the temporal rate of change.

5.11 Vorticity Tensor

• This is the anti-symmetric part of the velocity gradient tensor and hence is given by:

S̄ =
∇v − (∇v)T

2
(263)

which, in tensor notation with Cartesian coordinates, is given by:

S̄ij =
∂ivj − ∂jvi

2
(264)

• The vorticity tensor quantifies the local rate of rotation of a deforming continuum

medium.

• As a rank-2 anti-symmetric tensor, it has n(n−1)
2

independent components which is three
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in a 3D space. These three components added to the six components of the rate of

strain tensor give nine independent components which is the total number of independent

components of their parent tensor ∇v.
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