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ABSTRACT: In this paper, a plane quadrilateral element with rotational degrees of freedom 

is developed. Present formulation is based on a hybrid functional with independent boundary 

displacement and internal optimum strain field. All the optimality constraints, including 

being rotational invariant, omitting the parasitic shear error and satisfying Fliepa’s pure 

bending test, are considered. Moreover, the static equilibrium equations are satisfied in this 

scheme. Authors’ element has only four nodes and twelve degrees of freedom. For the 

boundary displacement field, Alman’s second-order displacement function is employed. The 

validities of the proposed element are demonstrated by eleven numerical examples: thick 

curved beam, thin cantilever beam, Cooke’s skew beam, thin curved beam, cantilever beam 

with distortion parameter, high-order patch test, cantilever beam with five and four irregular 

mesh, Mc Neal’s thin cantilever beam and cantilever shear wall with and without openings. 

When utilizing the coarse and irregular meshes, numerical tests show the high accuracy, rapid 

convergence and robustness of the suggested element. Less sensitivity to distortion is another 

property of the new element. 

 

Keywords: Hybrid Functional, Plane Quadrilateral Element, Rotational Degrees of Freedom, 

Strain States. 

 

 

INTRODUCTION 

 

Up to now, various plane elements have been 

created. Most of them are quadrilateral. In 

general, utilizing these elements in distorted 

coarse mesh leads to weak responses. To 

overcome this defect, Hybrid tactic along 

with the finite element template were 

employed for presenting new efficient 

elements (Felippa, 2006). In these methods, 

the fields used for boundaries differ from the 

ones deployed inside the element. It should be 

added that the continuity constraints are not 

required to be considered in these 

formulations. Recently, a discussion on how 

to set up optimal stress in a hybrid element 

was suggested (Canhui and Suong, 2014). He 

used the assumed stress, which is based on the 

Airy fundamental solutions. Other 

researchers recently demonstrated the 

advantages of deriving the stress functions 

from the Airy formula (Cen et al., 2011a; 

Madeo et al., 2014). 

Finite element template is an algebraic 

parametric form, which is both flexible and 

diverse schemes.  In this technique, the 

stiffness matrix is considered to have two 

parts, which are named the base and high-

order portions. The higher-order part includes 

a large number of parameters. By 
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specialization of the template, high-

performance elements were achieved 

(Felippa, 2006). It is worth emphasizing; 

finding the optimality constraints and 

optimization of the matrix forms are difficult 

tasks, and they need proper innovation.  

For increasing the accuracy of the element, 

some researchers deployed Alman’s second-

order displacement field in hybrid approaches 

(Cen et al., 2011b; Choo et al., 2006; Choi et 

al., 2006). In other studies, some investigators 

tried to improve Alman’s boundary field 

(Huang et al., 2010; Cena et al., 2011; Madeo 

et al., 2012). By mixing the element, which 

has the rotational degrees of freedom, with 

the relevant flexural element, the plane shell 

elements can be obtained. Based on 

previously experiences, it is deduced that 

usage of the rotational degrees of freedom 

increases the performance of the elements in 

modeling plane problems (Huang et al., 2010; 

Madeo et al., 2014).  

In this article, by using the hybrid 

functional, a new efficient quadrilateral 

element for analyzing the plane problems is 

presented. Formulation is based on 

employing strain states in the internal field, 

satisfying equilibrium condition, using 

optimal conditions of the rotational invariant 

and eliminating the parasitic shear errors. 

Moreover, Allman’s quadratic displacement 

is used for independent boundary 

displacement of the element. The proposed 

element has four nodes. Each node has two 

translational degrees of freedom and a 

rotational one. Drilling degrees of freedom 

increase the accuracy of noval element 

(Zouaria et al., 2016; Rojasa et al., 2016; 

Xing and Zhou, 2016). To construct a flat 

shell element, it is well known that a 

membrane element with drilling degrees of 

freedom can be combined with a plate 

bending element. In order to verify the 

accuracy and efficiency of the new strategy, 

several famous numerical tests are analyzed, 

and the responses of good quadrilateral 

elements, belong to the other researchers, are 

compared to the suggested one. It should be 

reminded that some of investigators’ good 

quadrilateral elements have more than four 

nodes. Applying numerical tests disclose the 

high accuracy, rapid convergence and 

robustness of authors’ element, even in coarse 

and irregular meshes. Besides, this study 

demonstrates the less sensitivity to distortion 

for the presented element. Moreover, using 

corotational approach, the suggested element 

is extendable to large elastic deformations 

(Rezaiee-Pajand and Yaghoobi, 2014). 

 

INTERNAL FIELD BASED ON STRAIN 

 

Various researches have been conducted to 

create high-performance elements. To 

achieve great accuracy in the coarse meshes, 

it is required to find errors and try to remove 

them. In this study, the optimality constraints 

are introduced into suggested formulations. 

To reach the goal, Taylor expansion of the 

strain field is expressed around the origin as 

below: 

 

x x ° x,x °

2

x,y ° x,xx ° x,xy °

2

x,yy °

y y ° y,x °

2

y,y ° y,xx °

2

y,xy ° y,yy °

xy xy ° xy,x °

xy,y ° xy,xx °

ε (x,y)=(ε ) +(ε ) x+

x
(ε ) y+(ε ) ( )+(ε )

2

y
(x.y)+(ε ) ( )+...,

2

ε (x,y)=(ε ) +(ε ) x+

x
(ε ) y+(ε ) ( )+

2

y
(ε ) (xy)+(ε ) ( )+...,

2

γ (x,y)=(γ ) +(γ ) x+

(γ ) y+(γ )
2
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x
( )+

2

y
(γ ) (xy)+(γ ) ( )+....
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In these relations, the terms with subscript 

are named the strain states. For instance, the 

magnitude of the axial strain x
ε  in the origin 

is shown by x °
(ε ) . Moreover, within the 

neighborhood of the origin, the rate of 

changes of the axial strain x
ε  in x and y 

directions are demonstrated by x,x °
(ε ) and 

x,y °
(ε ) , respectively. In a similar manner, 

other coefficients can be defined. To obtain 

the displacement field related to the strain 

function of Eq. (1), the strain-displacement 

relations of the plane problem and the rotation 

function of the linear geometric problem are 

deployed  (Rezaiee-Pajand and Yaghoobi, 

2012, 2013, 2014, 2015). 

 

x x ° x ° xy r °

2

x,x ° x,y °

2

xy,y y,x °

y y ° xy r °

2

y ° xy,x x,y °

2

y,x ° y,y °

u =(u ) +(ε ) x+(γ /2-r ) y+

(ε ) x /2+(ε ) xy+

(γ -ε ) y /2+...

u =(u ) +(γ /2+r ) x+

(ε ) y+(γ -ε ) x /2+

(ε ) xy+(ε ) y /2+...













 (2) 

 

By considering relationship, which exists 

between the strain states and the behavioral 

characteristics of the elements, the analyst 

can detect element’s error and improve its 

performance. Note that each strain state is a 

number which denotes the scale factor of a 

specific mode in the corresponding strain 

function. The appropriate strain states are 

selected based on the identification of the 

efficient modes in each of elements’ strain 

functions. For this purpose, the optimality 

constraints are used. 

It should be reminded that Felippa’s 

bending test has been presented to specify the 

optimum template of the plane element 

(Felippa, 2006). In this test, the ability of the 

element in modeling the correct flexural 

deformations is investigated. For this 

purpose, the ratio of the correct energy to the 

energy obtained from element’s formulation 

is used. By considering the linear strain states 

related to the axial strain functions in x and y 

direction, this test can be satisfied in strain 

states. According to strain states' formulation, 

the optimality constraints of being rotational 

invariant and the ones which omit the 

parasitic shear error are satisfied when the 

field function is complete (Rezaiee-Pajand 

and Yaghoobi, 2012, 2013). If the coordinate 

axes rotate, the characteristics of the 

rotational invariant elements do not change. It 

should be mentioned that the elements may be 

placed in structural mesh with different 

angles. In these cases, being rotational 

invariant is required for creation of the 

elements. Rotational invariance is a result of 

the inclusion of all strain field terms with no 

algebraic order. For example, rotational 

mapping of a constant strain state has the 

following form:  

 
2
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y xy

x y y

x

2 2
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(γ ) 2 ((ε )

(ε ) ) sin  cos

(γ )  (cos sin )



  



  

 

 





 

 



 



 





 (3) 

  

According to this equation, an element is 

capable of representing constant strains with 

respect to any system of the coordinates, only 

if its formulation takes into account all three 

cases of the constant strain states. 

It is worth emphasizing; the axial strain 

states in the interpolation polynomial of the 

shear strain lead to the parasitic shear error. 

As a result, the created element becomes 

stiffer. In order to gain knowledge about 

parasitic shear error, the formulation of the 
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four-node rectangular element is examined. 

The interpolation functions of this element 

consist of an incomplete polynomial which 

contains neither x2 nor y2 terms. The strain 

gradient notation of these terms is as follows:  

 

x

xy r x,y

xy r

y y,x

u u (ε ) x

(γ /2 r ) y (ε ) xy

v v (γ /2 r ) x

(ε ) y (ε ) xy

  


 


   
 

 (4) 

 

Based on the strain-deformation relations, 

the interpolation functions of the element can 

be written in the following form:  

 

x x x,y

y y y,x

xy xy x,y y,x

ε (x,y) (ε ) (ε ) y

ε (x,y) (ε ) (ε ) x

γ (x,y) (γ ) (ε ) x (ε ) y

  


 
   

 (5) 

 

By examining the shear strain series, it is 

noticed that the shear strains are independent 

of the axial strain. In the shear strain 

interpolation function, two strain states 

x,y(ε )  and y,x(ε )  improperly appear. Hence, 

if the element undergoes flexural 

deformations, the strain states will be nonzero 

and will incorrectly represent a portion of the 

shear strain. It should be added that an 

element, which has strain field function with 

a complete degree, does not suffer from the 

parasitic error. In this work, the internal field 

of the linear strain is deployed for the 

suggested element. This element includes 12 

strain states.  In the plane stress and strain 

states, the static equilibrium equations of a 

homogenous elastic element have the coming 

shape:  

 

xyx
x

xy y

y

τ (x,y)σ (x,y)
+ +F (x,y)=0

x y

τ (x,y) σ (x,y)
+ +F (x,y)=0

x y




 

 

  

 (6) 

Element’s internal force field in x and y are 

denoted by 
x

F (x,y)  and 
y

F (x,y) , respectively. 

Note that these fields are expressed in 

Cartesian coordinate system. By utilizing 

strain-stress relation, Eqs. (6) are written in 

terms of strain fields, as follows: 

 

x,x y,x

xy,y x

x,y y,y

xy,x y

(2G+λ)ε (x,y)+λε (x,y)+

Gγ (x,y)+F (x,y)=0

λε (x,y)+(2G+λ)ε (x,y)+

Gγ (x,y)+F (x,y)=0









 (7) 

 

Additionally, for the plane stress and strain 

states, λ  is equal to 
νE

(1+ν)(1-2ν)
 and 

νE

(1+ν)(1-ν)

, respectively. Moreover, shear modulus, 

Poisson’s ratio and elasticity modulus are 

shown by G, ν  and E, respectively. By 

assuming a linear strain field and establishing 

the corresponding static equilibrium 

equations, two new relationships can be 

achieved. With the help of these relations, the 

stain states xy,x °
(γ )  and xy,y °

(γ )  are obtained 

based on other strain states. In other words, 

using the static equilibrium equations reduces 

the number of strain states to ten. It should be 

added that usage of these equations improves 

the performance of the proposed element. 

 

x,x °

y,x ° x

xy,y °

x,y °

y,y ° y

xy,x °

(2G+λ)(ε ) +

λ(ε ) +F (x,y)
(γ ) =-

G

λ(ε ) +(2G+λ)

(ε ) +F (x,y)
(γ ) =-

G











 (8) 
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T

x ° y ° r ° x ° y ° xy ° x,x ° y,x ° x,y ° y,y °
= [ (u ) (u ) (r ) (ε ) (ε ) (γ ) (ε ) (ε ) (ε ) (ε ) ] q  (9) 

The vector of the strain states is shown by 

q . On the other hand, the rigid body motions, 

x °
(u ) , y °

(u ) and r °
(r ) , do not produce strain in 

the element. Hence, the internal strain field of 

the element can be written as follows: 

 

q
ε=B .q  (10) 

q

1 0 0 x 0 y 0

= 0 1 0 0 x 0 y

(2G+λ) λ λ (2G+λ)
0 0 1 - y - y - x - x

G G G G

B

 
 
 
 
 
 
 

 

 (11) 
T

x ° y ° xy ° x,x ° y,x ° x,y ° y,y °
= (ε ) (ε ) (γ ) (ε ) (ε ) (ε ) (ε )q   

 

 (10) 

 

The modified vector of the strain states is 

demonstrated by q . Note the rigid body 

motions are omitted from this vector. 

Furthermore, the internal body forces of the 

element are assumed to be zero. 

 

BOUNDARY DISPLACEMENT FIELD   

 

The suggested quadrilateral element is named 

HSSQ, in which, H is the abbreviation of 

hybrid functional, SS is stand for the strain 

state, and Q shows the quadrilateral element. 

This element has four nodes and 12 degrees 

of freedom. According to Figure 1, each node 

has two translational degrees of freedom and 

a rotational one. 

To construct the boundary displacement 

field, Allman’s second-order displacements 

are employed. In the local coordinate system, 

the aforesaid field for element side ij has the 

next form: 

 

ni

ti

in 1 ij 1 2 2 ij 1 2

njt 1 2

tj

j

u

u

ωu N 0 -0.5 l  N  N N 0 0.5 l  N  N
=

uu 0 N 0 0 N 0

u

ω

 
 
 
     

    
     

 
 
  

 (13) 

 

  

 
 

Fig. 1. The geometry of element HSSQ 
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For side ij, the parameters, which exist in 

this relation, are shown in Figure 2. The side 

length is ijl . Also, the displacement fields in 

n and t directions are shown by nu  and tu , 

respectively. Furthermore, the rotation of the 

i-th node is denoted by iω . It is worth 

mentioning; the shape functions are 

calculated based on the coordinate t, which is 

shown in Figure 2. On the ij side, the value of 

this coordinate changes from -1 to 1. 

 

1 2N =0.5(1-t),   N =0.5(1+t)  (14) 

 

In the general coordinates system, Eq. (13) 

has the subsequent shape: 

 

 

x

y

1 j i 1 2 2 j i 1 2

1 j i 1 2 2 j i 1 2

xi

yi

i

xj

yj

j

u
=

u

N 0 -0.5(y -y )N N N 0 0.5(y -y )N N

0 N 0.5(x -x )N N 0 N -0.5(x -x )N N

u

u

ω

u

u

ω

ij ijN D

 
 
 

 
 
  

 
 
 
  

    
 
 
 
  

 

 (15) 

FORMULATION OF THE ELEMENT  

 

To find the governing equation of the 

element, the hybrid stress functional is 

applied. In this approach, the total energy of 

the element consists of the internal and 

boundary energy. The internal energy can be 

computed by utilizing the succeeding 

relation: 

 

u

C ij ij i ij j

V Γ

ˆΠ = -0.5 σ ε dV+ u σ n d     
(16) 

 

Furthermore, the interface functional can 

be calculated by using the next equation: 

 

i

d i ij j

Γ

Π = d σ n d    
(17) 

 

u  and 
i  show the boundary of element in 

internal and interface energy formulas, 

respectively. As a result, the stress-

displacement hybrid functional has the below 

shape (Rezaiee-Pajand and Karkon, 2014): 

 

t

d

C ij ij i i i i

V Γ Γ

ˆΠ = -0.5 σ ε dV+ d t d - d t d       
(18) 

  

 

 

 

 

 

 

 

  

 

 

 

 

 
 

 

Fig. 2. Characteristics of the boundary displacement field on side ij 
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where, id denotes the assumed boundary 

displacement field. In the other words, 
id  is 

not defined with lim ( )i
x

u x


 if    is a boundary 

point. u: is the internal displacement field. 

Besides, the displacement and boundary 

stress constraints are shown by 
iû  and it̂ , 

respectively. In these equations, the internal 

stress and strain field are shown by 
ijσ  and 

ijε

, correspondingly. Boundaries of the element 

and boundary condition with traction are 

demonstrated by   and 
t , respectively. By 

employing the Hook’s law, it is intended to 

set up the relation between stresses and 

strains. It should be added, the boundary 

stresses produced by the internal field of the 

element are shown by it . For the suggested 

element, the following parameters are 

defined: 

 

x

y q

xy

ε

ε= ε =

γ

 
 
 
 
 

B .q  (19) 

x

y

xy

x

y

xy

q

σ

σ= σ =

τ

2G+λ λ 0 ε

λ 2G+λ 0 ε =

0 0 G γ

.ε=

 
 
 
 
 

  
  
  
     

E E.B .q

 

(20) 

x
x yx

y

y y x

xy

q

=

σ
n 0 nT

= σ =
T 0 n n

τ

σ=

 
    
    
     

 

t

A . A .E.B .q

 (21) 

j i

x

ij

y -y
n = cos α =

l
 (22) 

j i

y

ij

x -x
n = sin α =-

l
 (23) 

 

where, t , 
xn and yn  are introduced for the 

side ij. In addition, the coordinates of the i-th 

element are denoted by ix  and iy . In a similar 

manner, the coordinates of the j-th node are 

shown by jx  and jy . 

 

x

y

T
=

T

  
 
  

ˆ
t̂

ˆ
 (24) 

x

y

u
=

u

 
 
 

ˆ
û

ˆ
 (25) 

 x

ij ij

y

u
= = N D

uij

ij

 
    

 
d  (26) 

 

By utilizing these equations, Eq. (18) can 

be rewritten in the following form: 

 

t

d

C

T T

q q

V

T T T T

q

Γ Γ

Π = 

-0.5 dV +

t d -t d  

 
 
 

  
     

   



 

q B EB q

ˆq B EA N D t N D

 

 (27) 

 

in which, t denotes the thickness. The entries 

of the vector denoted by D  are the element 

nodal displacements. This vector has the 

coming shape: 
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 T

1 1 1 2 2 2 3 3 3 4 4 4
= u v ω u v ω u v ω u v ωD  (28) 

 

in the next line, the stress-displacement 

hybrid functional is minimized with respect 

to element’s strain states vector: 

 
d

C

T

q q

V

T T

q

Γ

Π
= 

- dV +

t d 0





 
 
 

 
  

 





q

B EB q

B EA N D

 (29) 

 

By employing Eq. (29), the strain state 

vector can be written based on the nodal 

displacement vector in the following shape: 

 
1

T

q q

V

T T

q

Γ

= dV

t d



 
 
 

 
 

 





q B EB

B EA N D

 (30) 

 

By making Eq. (27) stationary with respect 

to the nodal displacement vector and 

substituting Eq. (30) for the vector of strain 

states, the next results are achieved: 

 

t

T
d

T TC
q

Γ

T

T

Γ

Π
= t d

- t d  0

 
 

  

 
  

 
 





B EA N
D

ˆq t N

 (31) 

t

1T
d

T T TC
q q q

Γ V

T

T T T

q

Γ Γ

Π
= t d  dV

t d - t d  0



  
   

    

  
      

   

 

 

B EA N B EB
D

ˆB EA N D t N

 

 (32) 

 

Consequently, the stiffness matrix and the 

nodal force vector of the suggested element 

are computed by the next formula: 

 
T

T T

q

Γ

1

T T T

q q q

V Γ

= t d  

dV t d



 
 

 

   
   

  



 

K B EA N

B EB B EA N

 (33) 

t

T

T

Γ

t d  ˆP t N
 

  
 
 
  (34) 

K.D = P  (35) 

 

With the help of triangular coordinates, the 

amount of T

q q

V

dVB EB can be calculated 

analytically. In this article, the integration is 

performed on the two triangles, which form 

the related quadrilateral. Then, the sum of 

these integrals is computed. Moreover, it is 

required to express the corresponding 

relations, in terms of s instead of x and y, for 

calculation of T T

q

Γ

dB EA N  . 

 

i j i

(t+1)
x=x +(x -x )

2
 (36) 

i j i

(t+1)
y=y +(y -y )

2
 (37) 

ij
l

dΓ= dt
2

 (38) 

 

T T

q

Γ

ij T

Γ

d

l
(t) dt

2
q

 



B EA N

B EA N

 (39) 

 

NUMERICAL SAMPLES 

 

At this stage, several numerical tests are 

performed to investigate the robustness of the 

proposed element. For convenient, all the 
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quantities used in this section are 

dimensionless and unit consistence. To 

compare the results, the responses of other 

researchers' well-known elements are 

presented. These elements are listed in the 

following lines: 

1. Four-node isoparametric element; Q4 

(Wisniewski and Turska, 2009)  

2. Element with internal parameters and 

formulated by the QACM-I; QACM4 

(Cen et al., 2007)  

3. Stress hybrid element; PS (Cen et al., 2009)  

4. Allman’s element; ALLMAN (Choo et al., 

2006)  

5. Membrane element with drilling degrees of 

freedom; Q4S (Cen et al., 2009)  

6. Hybrid Trefftz plane element; HT (Choo et 

al., 2006)  

7. The modified enhanced assumed strain 

element; MEAS (Choi et al., 2006; Choo 

et al., 2006)  

8. The quadrilateral Hybrid Trefftz element 

with rotational degrees of freedom; HTD 

(Choo et al., 2006)  

9. HR element with five modes in skew 

coordinates; HR5-S (Wisniewski and 

Turska, 2006, 2009)  

10. Enhanced assumed displacement gradient 

element with four modes; EADG4 

(Wisniewski and Turska, 2008, 2009)  

11. 8-node membrane element based on three 

different quadrilateral area coordinate 

methods, QACM-I, -II, and -III; CQAC-

Q8 (Long et al., 2010)  

12. 8-node element formulated by the 

quadrilateral area coordinate method; 

QACM8 (Cen et al., 2007)  

13. Conventional 8-node, 9-node and 12-

node quadrilateral isoparametric elements; 

Q8  

14. 4-node quadrilateral element with drilling 

DOFs based on a mixed formulation; 

HQ4-9β (Madeo et al., 2012). 

15. Quadrilateral element based on strain 

states' formulation with drilling degrees of 

freedom; SSQ14 (Rezaiee-Pajand and 

Yaghoobi, 2015) 

16. 8-node membrane element based on strain 

states' formulation with 18 degrees of 

freedom; SSQ18 (Rezaiee-Pajand and 

Yaghoobi, 2015) 

17. Hybrid stress element with arbitrary 

curved edges; Hybrid stress elements with 

dp = 4, dv = 2 (Santos and Moitinho de 

Almeida, 2014) 

 

Thick Curved Beam 

In this test, a thick curved beam shown in 

Figure 3 is analyzed. This structure is 

subjected to the shear force with the 

magnitude of 600. The elasticity modulus, 

Poisson’s ratio and the thickness are 1000, 0 

and 1, respectively.  To model this element, 

four elements are deployed. 

It is obvious that use of the quadrilateral 

elements with straight side leads to the errors. 

This is because the true boundaries are 

curved. The vertical displacement of Point A 

is presented in Table 1. The exact vertical 

displacement of this point is 90.1 (Cen et al., 

2007). It is apparent that the responses of the 

suggested element lead to more accurate 

results in comparison to other well-known 

elements. The number of degrees of freedom 

in analyzing benchmark problems by each 

element is different. For example, in this 

numerical test by HSSQ and Q8 elements, the 

number of degrees of freedom are 30 and 46, 

respectively. Therefore, HSSQ element used 

less computational cost, and obtained the 

more accurate results.  

 
Table 1. The displacement of Point A in the curved beam under the shear force 

 Exact (Cen et al., 2007) HSSQ SSQ18 SSQ14 QACM8 Q8 QACM4 PS Elements 

90.1 89.61 86.45 87.00 84.1 88.6 84.59 84.58 Deflection 
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Fig. 3. The geometry and load pattern of the thick curved beam 

 

Thin Cantilever Beam Under In Plane 

Shear Force 

This structure is illustrated in Figure 4. 

The length, width and thickness of the beam 

are 100, 1 and 1, respectively. Moreover, the 

elasticity modulus and Poisson’s ratio are 

10^6 and 0.3, correspondingly.  

Two types, namely 1×100 and 1×200 

meshes are deployed to model this structure. 

In 1×100 mesh, the number of elements used 

in x and y direction are 100 and 1, 

respectively. The exact displacements of 

beam's tip are 3 and 4 (Wisniewski and 

Turska, 2009). Other researchers’ responses 

are inserted in Table 2. According to these 

outcomes, element HSSQ leads to the most 

accurate results. Degrees of freedom for 

1×100 and 2×100 meshes for utilizing Q4 

element are 404 and 606, respectively. These 

amounts for HSSQ element are 606 and 909, 

respectively. Comparing the result of HSSQ 

element with 1×100 mesh with the response 

of Q4 element with 2×100 mesh show that 

HSSQ element, by using equal computational 

cost, obtained more accurate response. 

 

Table 2. The displacement of the thin cantilever beam’s tip under shear force 

yu ux×100 Mesh Elements 
2.6965 2.0222 1×100 

Q4 
2.8371 2.128 2×100 
4.0002 3 1×100 

EADG4, HR5-S 
3.9978 2.9988 2×100 

4.000242 3.000006 1×100 
SSQ14 

4.258160 3.193297 2×100 
3.996738 2.998288 1×100 

SSQ18 
3.998032 2.998900 2×100 
4.000161 3.000000 1×100 

HSSQ 
3.998936 2.999410 2×100 

4 3 Reference value (Wisniewski and Turska, 2009) 
 

600 

10 5 

A 
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Fig. 4. The geometry of the thin cantilever beam under in plane shear force 

 

Cook’s Skew Beam 
In general, cook’s cantilever trapezoidal 

beam is analyzed to investigate the robustness 

of the distorted quadrilateral elements under 

the shear deformation. The structure is shown 

in Figure 5. This cantilever beam is subjected 

to the uniformly distributed shear load of 1 at 

its end. It should be added that the elasticity 

modulus, Poisson’s ratio and thickness are 1, 

1/3 and 1, respectively. Four types meshing, 

such as, 2×2, 4×4, 8×8 and 16×16 elements 

are used to analyze cook’s cantilever 

trapezoidal beam. 

The obtained vertical displacements of 

point C are listed in Table 3. Additionally, the 

maximum stress induced in point A, and also 

the minimum stress in point B, are 

demonstrated in Table 4. To compare the 

outcomes of authors’ element, with the other 

researchers’ results, the available solutions 

are presented, as swell. In this study, answers 

of the element GT9M8, found for the 64×64 

meshes, are considered as the accurate one 

(Long  and Xu, 1994). 

Based on Table 3, it is obvious that 

utilizing the element SSQ18, HTD and 

HSSQ, with the fine mesh, leads to the most 

accurate results. Moreover, employing the 

element HSSQ, with the coarse mesh, 

produces only 6 percent error in the 

responses. It is important to note that the 

element HSSQ gives the more accurate 

stresses in comparison to the other well-

known elements. This property is rooted on 

the including of the equilibrium equations in 

authors' formulation. Using proposed element 

for a 32×32 element mesh, maximum stress 

in A is 0.2367 and minimum stress at B is -

0.2038. Also, the displacement of point C is 

23.95. The proposed element, as well as, 

famous elements of the other researcher 

converge to the stresses more than the 

reference solution. 

 

Table 3. The displacement of point C in Cook’s beam 

16×16 8×8 4×4 2×2 Elements 

23.68 22.95 20.61 15.04 HT 

23.86 23.66 23.06 21.27 ALLMAN 

23.88 23.69 23.06 21.59 MEAS 

- - 23.02 21.13 PS 

23.91 23.83 23.64 23.25 HTD 

- 23.69 22.99 20.74 QACM4 

- 23.89 23.74 22.98 QACM8 

- 23.89 23.74 22.98 CQAC-Q8 

23.88 23.74 23.37 22.14 HQ4-9β 

24.15 24.16 24.21 24.53 Hybrid stress elements with dp=4, dv=2 

32.44 31.85 30.48 27.61 SSQ14 

23.92 23.86 23.70 23.45 SSQ18 

23.90 23.79 23.44 22.55 HSSQ 

23.96 Reference value (Long and Xu, 1994) 

b=1 

L=100 

b=1 

h=1 

y 

x 

y 

z 

P=1 
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Fig. 5. The geometry and applied load pattern of the Cook’s beam 

 

Table 4. The obtained stresses of Cook’s beam for 2×2, 4×4, 8×8 and 16×16 meshes 

Minimum Stress at B Maximum Stress at A 
Elements 

16×16 8×8 4×4 2×2 16×16 8×8 4×4 2×2 

-0.1710 -0.1620 -0.2150 -0.2820 0.2310 0.2280 0.2020 0.1050 HT 

-0.1990 -0.1800 -0.1520 -0.2310 0.2380 0.2380 0.2360 0.1600 ALLMAN 

-0.1790 -0.1690 -0.1760 -0.0700 0.2410 0.2450 0.2470 0.1930 MEAS 

- - - - 0.2364 - 0.2241 0.1854 PS 

-0.1980 -0.1930 -0.1880 -0.2310 0.2350 0.2300 0.2180 0.1720 HTD 

- -0.1987 -0.1866 -0.1452 - 0.2345 0.2256 0.1936 QACM4 

- -0.2041 -0.2024 -0.2142 - 0.2389 0.2414 0.1959 QACM8 

- -0.2041 -0.2024 -0.2144 - 0.2389 0.2415 0.2523 CQAC-Q8 

- - - - - - - - HQ4-9β 

0.2038 0.2046 0.2057 0.1887 0.2366 0.2361 0.2352 0.2363 
Hybrid stress elements with 

dp=4, dv=2 

-0.1933 -0.2054 -0.2223 -0.2596 0.2805 0.2864 0.2976 0.3381 SSQ14 

-0.2047 -0.2094 -0.2014 -0.2195 0.2373 0.2378 0.2360 0.2628 SSQ18 

-0.2039 -0.2026 -0.2029 -0.2085 0.2367 0.2363 0.2357 0.2158 HSSQ 

-0.2023 0.2362 
Reference value 

(Long and Xu, 1994) 

 

Thin Curved Beam 

In this section, a thin curved beam is 

analyzed. The related meshes have the aspect 

ratio of about 5.5. Figure 6 demonstrates the 

geometry of this structure. This cantilever 

beam is subjected to shear force of 1 at its free 

end. Moreover, the elasticity modulus, 

Poisson’s ratio and beam’s thickness are 107, 

0.25 and 0.1, respectively. Note that the exact 

vertical response of the beam under shear 

force is 0.08734 (Choo et al., 2006). In Table 

5, the vertical displacements of the beam 

obtained from using other famous elements 

are listed. According to results, the suggested 

element leads to the most accurate outcomes 

in both fine and coarse meshes. 

44 

48 

44 

16 

P=1 
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Fig. 6. The geometry of the thin curved beam under shear force at its free end 

 

Table 5. Exact vertical response of the thin curved beam under the shear force 

Exact  

(Fu et al., 2010) 
HSSQ SSQ18 SSQ14 Q8 HTD MEAS ALLMAN HT Elements 

-0.0886 

-0.08797 -0.08745 -0.08748 -0.08759 -0.08420 -0.07756 -0.07756 -0.00662 6×1 

-0.08840 -0.08840 -0.08895 - -0.08808 -0.08736 -0.08736 -0.02201 12×2 

-0.08851 -0.08850 -0.08925 - -0.08843 -0.08827 -0.08808 -0.04850 24×4 

 

Cantilever Beam with Distortion 

Parameter 

A cantilever beam is shown in Figure 7. 

This structure is modeled by using two 

elements, the shapes of which vary with the 

variation of the distorted parameter e. In this 

test, the aspect ratio is 2.5 for e=0, and the 

coarse mesh is utilized. Moreover, intensive 

distortion exists in the deployed meshing. 

Based on these properties, this test is useful 

for evaluating the element sensitivity to the 

distortion. The elasticity modulus, Poisson’s 

ratio and beam’s thickness are 0.75, 0.25 and 

1, respectively. The applied load pattern is 

demonstrated in Figure 8. To employ this 

beam for the bending patch test with linear 

stress, a moment of the magnitude 1 is applied 

to structural free end. To perform the bending 

patch test, the beam should be under shear 

force of the magnitude 1 at its free end.  

     For various values of e, the responses of 

the suggested element under different load 

cases are found and inserted in Tables 6 and 

7. The exact displacements of beam’s free 

end under bending moment and shear force 

are 1 and 6.8333, respectively (Prathap and 

Senthilkumar, 2008). Based on Table 6, the 

elements SSQ14, QACM8, HSSQ and 

SSQ18 are less sensitive to distortion in 

comparison to other elements. Recall that the 

number of degrees of freedom for the element 

HSSQ is less than the other elements. 

Considering this factor, the sensitivity of the 

authors' element to the distortion is 

significantly low. According to the results of 

Table 7, the use of this element induces 6 

percent error in the responses. 

x 

y 

4.32 

4.12 
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Fig. 7. The geometry of the cantilever beam with distortion parameter e 

 
 

 

 

 

 

 

 

Fig. 8. The load cases for the cantilever beam 
 

Table 6. The normalized displacement of cantilever beam’s end under bending moment 

4 3 2 1 0.5 0 e 

14.5 13.7 13.6 17.5 24.5 31.5 HT 

17.9 31.8 56.7 90.7 95 93.8 ALLMAN 

23.1 26.9 30.8 39.2 59.5 100 MEAS 

53.1 54.7 55 62.9 81 100 PS 

57.8 83.6 100.9 99.6 99.2 100 HTD 

60.3 61.4 60.1 66.5 83.8 100 QACM4 

32.01 59.7 89.39 99.3 99.9 100 Q8 

103.7 101.9 100.7 100.2 100 100 QACM8 

- 68.3 89.4 99.1 99.8 100 HQ4-9β 

102.8 101.2 100.7 100.1 100 99.8 SSQ14 

116.8 105.3 100.4 98.5 97.6 96.6 SSQ18 

86.0 93.6 98.0 99.7 100 100 HSSQ 
 

Table 7. Normalized displacement of the cantilever beam’s end under shear force applied 

4 3 2 1 0 e 

0.3255 0.5478 0.7992 0.9298 0.9765 Q8 

0.8421 0.8489 0.8830 0.9483 0.9765 QACM8 

1.0415 1.0080 0.9948 0.9885 0.9849 SSQ14 

1.1149 1.0293 0.9920 0.9746 0.9466 SSQ18 

0.9458 0.9824 0.9884 0.9687 0.9422 HSSQ 

 

High-Order Patch Test 

In this part, a straight beam is studied. The 

length and width of the beam are 10 and 1, 

respectively. As it is shown in Figure 9, this 

structure is subjected to the pure bending. To 

analyze the straight beam, regular and 

distorted meshes are deployed. In each of 

these meshes, six elements are utilized. The 

aforementioned meshes are revealed in 

Figure 9. Furthermore, the elasticity modulus 

and Poisson’s ratio are 100 and 0, 

respectively. Note that displacements in x and 

y directions are denoted by u and v, 

respectively. The maximum displacements 

are inserted in Table 8. The exact response to 

this problem is achieved based on beam 

theory (Choi et al., 2006). It is worth 

emphasizing; the use of authors' element, 

with the distorted meshes, produces only 1 

percent error in the responses.  

e 

2 

5 5 

M=1 V=1  e e 
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Fig. 9. The load pattern and meshing of the straight beam under pure bending 

 

Table 8. Beam displacements under pure bending 

Distorted Mesh Regular Mesh 
Elements 

Maximum uy Maximum ux Maximum uy Maximum ux 

1.215 -0.498 1.5 -0.6 ALLMAN 

1.51 - 1.5 - HQ4-9β 

1.5 -0.6 1.5 -0.6 SSQ14 

1.5 -0.6 1.5 -0.6 SSQ18 

1.516 -0.598 1.5 -0.6 HSSQ 

1.5 -0.6 1.5 -0.6 Exact(Choi et al., 2006) 

 

Cantilever Beam with Five Elements and 

Irregular Mesh 

The structural geometry, applied load 

pattern and the irregular mesh, including five 

elements, are illustrated in Figure 10. It 

should be added that the elasticity modulus 

and Poisson’s ratio are 1500 and 0.25, 

respectively.  

The structure is analyzed under two load 

cases. In the first load pattern, the beam is 

subjected to the bending moment M. In this 

case; the structure is under pure bending. In 

the second load pattern, a concentrated load P 

is applied to the structure. As a result of this 

load case, linear bending is produced. Under 

these two load cases, the exact vertical 

displacements of the point A are 100.00 and 

102.60, respectively (Cen et al., 2009). The 

responses of other researchers’ elements are 

listed in Table 9. In this table, the responses 

of various elements are also compared. 

According to the obtained answers, utilizing 

the element HSSQ, in the first load case, 

produces only 0.07 percent error. On the other 

hand, 1.5 percent error is induced by 

employing this element when the structure is 

under the concentrated load P. 

 

Mcneal’s Thin Cantilever Beam 

There is an important benchmark problem 

for assessing the sensitivity to the mesh 

distortion for the quadrilateral elements 

1.6667 1.6667 1.6667 1.6667 1.6667 1.6667 
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(McNeal and Harder, 1985). It is obvious that 

utilizing the distorted parallelogram and 

trapezoidal elements with the high aspect 

ratios reduces the accuracy of results. These 

issues are investigated in this test. In Figure 

11, a thin cantilever beam, with rectangular, 

trapezoidal and parallelogram meshes, is 

illustrated. In these meshes, six elements are 

applied to analyze the structure. Elements’ 

aspect ratio in the meshing with straight side 

is 5. Furthermore, the elasticity modulus, 

Poisson’s ratio and beam’s thickness are 107, 

0.3 and 0.1, respectively. In this test, the 

structure is subjected to two load cases. In the 

first load pattern, a bending moment of 

magnitude 1 is applied to the beam. In this 

case, the structure is under pure bending. 

Moreover, a shear force is applied to the free 

end of the beam, in the second load case. The 

exact displacements of the free end under 

bending and shear load cases are 0.0054 and 

0.1081, respectively (Cen et al., 2009).  

According to Table 10, the HSSQ element, 

in both trapezoidal and parallelogram 

meshes, is insensitive to the distortion under 

the aforesaid load cases. The outcomes 

clearly demonstrated that most of other 

investigators’ elements are sensitive to the 

distortion. In fact, using them in the 

trapezoidal mesh and under the mentioned 

loads considerably increases the errors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Cantilever beam with five elements and irregular mesh 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Rectangular, trapezoidal and parallelogram meshing of McNeal’s beam 
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Table 9. The displacements of the cantilever beam 

P M Elements 

98.05 96.18 PS 

98.0 96.0 QACM4 

101.5 99.7 Q8 

102.8 101.3 QACM8 

104.16 101.66 SSQ14 

103.52 101.48 SSQ18 

101.01 99.93 HSSQ 

102.60 100.00 Exact (Cen et al., 2009) 
 

Table 10. Normalized displacement of the free end of McNeal’s beam 

Bending Moment at Free End Shear Force at Tip 
Elements 

Trapezoidal Parallelogram Rectangular Trapezoidal Parallelogram Rectangular 

- - - 0.805 0.873 0.904 ALLMAN 

- - - 0.044 0.621 0.993 MEAS 

0.167 0.852 1.00 0.221 0.798 0.993 PS 

0.046 0.722 1.00 0.052 0.635 0.993 QACM4 

0.939 0.994 1.00 0.854 0.919 0.951 Q8 

1.00 1.00 1.00 0.895 0.903 0.951 QACM8 

0.987 0.986 0.999 0.979 0.979 0.992 HQ4-9β 

0.992 0.991 0.989 0.988 0.987 0.983 SSQ14 

1.00 1.00 1.00 1.00 1.00 1.00 SSQ18 

0.998 0.992 1.00 0.988 0.984 0.993 HSSQ 

 

Cantilever Beam with Four Elements and 

Irregular Mesh 

In this test, four irregular quadrilateral 

elements are used to model the cantilever 

beam.  The geometry of the structure is 

illustrated in Figure 12. Moreover, the 

elasticity modulus, Poisson’s ratio and 

beam’s thickness are 30000, 0.25 and 1, 

respectively.  

A parabola distributed load is applied to 

the free end of the beam. The displacements 

of point A and B are given in Table 11. It is 

worth emphasizing; the displacements of 

these points equal to 0.3558 (Cen et al., 

2009). By using the current test, the 

robustness of the proposed element in shear 

deformations and for irregular meshes is 

evaluated. According to the obtained 

answers, usage of the suggested element 

produces 2 percent error in responses. It is 

worth emphasizing that comparison to the 

elements Q8, QACM8, CQAC-Q8, SSQ14 

and SSQ18, the element HSSQ has fewer 

degrees of freedom.  

 

 

Cantilever Shear Wall without Opening 

Herein, the suggested elements are used to 

analyze a cantilever shear wall which has no 

opening. In Figure 13, the geometry and 

applied load of this structure are shown. The 

elasticity modulus and Poisson’s ratio are 

2×107 and 0.2, respectively. Furthermore, the 

magnitude of loads P and q are 500 and 100, 

respectively. This structure is analyzed by 

using various meshes. These meshes are 

depicted in Figure 13-2. It should be 

reminded that the lateral displacement of the 

highest wall level is computed by utilizing the 

elements of HSSQ, SSQ18 and Q8. 

Additionally, various meshes are applied for 

the calculation of this displacement. Based on 

Figure 14, the high accuracy of the HSSQ 

element is proved.  

 

Cantilever Shear Wall with Opening  

Figure 15 demonstrates the geometry and 

applied load of the shear wall with opening. 

The elasticity modulus and Poisson’s ratio of 

this structure are 2×107 and 0.2, respectively. 

Additionally, the wall thickness is 0.4, and 

the magnitude of force P is 500.  
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To analyze this structure, two meshes, 

namely a and b, are utilized. These meshes 

are illustrated in Figure 15-2. By employing 

the presented element and the aforesaid 

meshes, the lateral displacements of the roof 

stories, 2, 4, 6 and 8, are computed. 

Moreover, the responses of the elements 

HSSQ, SSQ14, SSQ18 and Q8 are calculated 

for the aforementioned meshes. In Table 12, 

the obtained answers are listed. For 

comparison, the responses of the Q8 element 

in a fine mesh is presented, as well. In this 

meshing, the wall is divided into 0.1×0.1 

square elements. This mesh denoted by c 

includes 26880 of the Q8 elements. 

 

 

 

 

 

 

 

 

 

Fig. 12. Cantilever beam with four elements and irregular mesh 

  

 

 

 

 

 

 

 

 

 

 
 

                                                                                   mesh1 (15)         mesh2 (210)        mesh3 (420) 
 

                                         (1)                                                                            (2) 

Fig. 13. Geometry, load pattern and meshes of the cantilever shear wall without opening 

 
Table 11. The displacements of the cantilever beam under the parabola shear distributed 

Tip Deflection 
Elements 

Average Point B Point A 

0.2978 - - Q4S 

0.3293 0.3305 0.3280 QACM4 

0.3479 0.3474 0.3481 Q8 

0.3520 0.3517 0.3524 QACM8 

0.3524 0.3520 0.3529 CQAC-Q8 

0.3559 0.3559 0.3559 SSQ14 

0.3523 0.3520 0.3526 SSQ18 

0.3488 0.3469 0.3506 HSSQ 

0.3558 Exact (Cen et al., 2009) 
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Fig. 14. The normalized lateral displacement at the top of the cantilever shear wall without opening 

 

 

 

 

 

 

 

 

 

 
                                                                                              mesh a                                     mesh b 
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Fig. 15. Geometry, load pattern and meshes of the shear wall with opening 

 

Table 12. The lateral displacements of stories 2, 4, 6 and 8 of the cantilever shear wall with opening 

Lateral Displacement at Floor Level 
Model Element 
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CONCLUSIONS 

 

To present a new plane element, two 

independent fields were used. They were 

internal strain function and boundary 

displacement field. In this formulation, the 

continuity constraints were not required. The 

internal strain filed was expressed based on 

the strain states. For being rotational 

invariant, a complete strain field was 

selected. By the help of this technique, the 

errors, which were rooted in parasitic shear, 

were eliminated. Based on the results, the 

suggested element performed well in the 

Feilipa’s pure bending test. It should be added 

that the static equilibrium equations were 

satisfied for the internal strain field, as well. 

Fulfillment of these conditions reduced the 

number of strain states and increased the 

robustness of the new element. Besides, 

Alman’s second-order displacement function 

was deployed for the boundary displacement 

field. Because authors’ element has rotational 

degrees of freedom, it can be combined with 

the bending element to produce a good shell 

element. The high accuracy, rapid 

convergence, insensitivity to the distortion, in 

both fine and coarse meshes, are the most 

important characteristics of authors' 

formulation. By solving several complex and 

famous problems, the robustness of new 

element was completely investigated 

numerically.  
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