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MATHEMATICAL THOUGHT AND ITS OBJECTS

In Mathematical Thought and Its Objects, Charles Parsons examines the
notion of object, with the aim of navigating between nominalism, which
denies that distinctively mathematical objects exist, and forms of Platonism
that postulate a transcendent realm of such objects. He introduces the central
mathematical notion of structure and defends a version of the structuralist
view of mathematical objects, according to which their existence is relative
to a structure and they have no more of a “nature” than that confers on them.

Parsons also analyzes the concept of intuition and presents a conception
of it distantly inspired by that of Kant, which describes a basic kind of access
to abstract objects and an element of a first conception of the infinite. An
intuitive model witnesses the possibility of the structure of natural numbers.
However, the full concept of number and knowledge of numbers involve
more that is conceptual and rational. Parsons considers how one can talk
about numbers, even though they are not objects of intuition. He explores
the conceptual role of the principle of mathematical induction and the sense
in which it determines the natural numbers uniquely.

Parsons ends with a discussion of reason and its role in mathematical
knowledge, attempting to do justice to the complementary roles in mathe-
matical knowledge of rational insight, intuition, and the integration of our
theory as a whole.

Charles Parsons is Edgar Pierce Professor of Philosophy, Emeritus, at Harvard
University. He is a former editor of the Journal of Philosophy. He is the author
of Mathematics in Philosophy and co-editor of the posthumous works of Kurt
Gödel.
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Preface

The present work is largely concerned with a limited number of themes
in the philosophy of mathematics. The first is the notion of object as it
is deployed in mathematics. I begin in Chapter 1 with a general discus-
sion of the notion of object, not on the whole focused on mathematics.
One of the motives of this discussion is to defuse too-high expectations of
what the existence of objects of some mathematical type such as numbers
would entail. We proceed to discuss issues surrounding the structuralist
view of mathematical objects, which has had a lot of currency in the last
forty years or so but has much earlier roots. The general idea of this view
is that mathematical objects do not have a richer “nature” than is given by
the basic relations of some structure in which they reside. The problem of
giving a viable formulation developing this idea is not trivial and raises a
lot of issues. That is the concern of Chapters 2 and 3. Chapter 2 is mainly
devoted to pursuing a program that uses the structuralist idea to elimi-
nate explicit reference to mathematical objects. Along the way, I discuss
some questions about nominalism, about second-order logic, and about
how structuralism understands the application of mathematics. Some
difficulties of the eliminative program call for using modal notions, and
their use in mathematics is a subject of Chapter 3. But in the end even the
modal version of the eliminative program is rejected, and in §18 a version
of structuralism is sketched that takes the language of mathematics much
more at face value. Chapter 4 responds to an objection to the application
to set theory of the version of structuralism I defend. Along the way, it
considers other questions about the concept of set and the axioms of set
theory.

The second main theme is a particular notion of mathematical intu-
ition, which has its origin in the thought of Brouwer and Hilbert about the
most basic elements of arithmetic but whose original inspiration comes

xi
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xii Preface

from Kant. In Chapter 5, I lay out some basic distinctions concerning the
notion of intuition, about which writers who use the notion (even to crit-
icize it) are often unclear. But the main point of the chapter is to explain
the particular conception of intuition that concerns me, develop some
of its implications, and reply to some possible objections to it. Intuition
so conceived offers part of the entry of mathematical thought into the
infinite. The structure of natural numbers is shown to be witnessed by
what can be called an intuitive model.

Chapters 6, 7, and 8 all concern the arithmetic of natural numbers,
and it is in the first two of these that the work done by the conception of
intuition of Chapter 5 is visible. Chapter 6 discusses the role of natural
numbers as finite cardinals and ordinals and considers in a rather ideal-
ized way how language referring to natural numbers might originate. This
genetic method is inspired by W. V. Quine’s Roots of Reference. A conclu-
sion of the chapter is that in the sense of Chapter 5, there is not intuition
of numbers properly speaking. We also explore theories of finite sets and
discuss the question of intuition of such sets, with the conclusion that the
analogy with perception that such intuition requires would be too much
stretched if it is claimed that the theory of hereditarily finite sets rests on
intuition in the sense in which Hilbert and Bernays claimed that finitary
arithmetic does.

The latter thesis is the main subject of Chapter 7, which assumes an
interpretation of the language of arithmetic as referring to formal expres-
sions and inquires how much arithmetic is intuitively known. Primitive
recursion appears as an obstacle, and we are not able to conclude that
exponentiation or faster-growing functions can be intuitively seen to be
everywhere defined. The Hilbert school maintained that finitist arith-
metic included primitive recursive arithmetic. Our conclusion is that it is
quite doubtful that intuitively evident arithmetic extends that far.

Chapter 8 deals with some issues concerning the principle of math-
ematical induction, that any predicate that is true of 0 and is true of
n + 1 if it is true of n is true of all natural numbers. As Poincaré pointed
out a hundred years ago, this is the principle that makes arithmetic seri-
ous mathematics. I emphasize the open-endedness of “any predicate” in
the principle. It is this that makes it possible to recognize the nonstan-
dardness of a nonstandard model of formalized arithmetic and underlies
Dedekind’s proof that elementary axioms plus induction characterize the
natural numbers up to isomorphism. The rest of the chapter discusses the
uniqueness of the number structure and issues about impredicativity.
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Preface xiii

Chapter 9 turns to epistemological issues. After observing that mathe-
matics has been characterized as rational knowledge, it introduces some
issues about Reason and rational justification. Then it considers what can
be said about the justification of principles in arithmetic and set theory.

A theme that appears in various places in the book,1 but especially in
Chapter 8, concerns schematic or second-order principles in mathemat-
ics, of which the most prominent examples are mathematical induction
and the schemata of separation and replacement in set theory. As have
other writers, I emphasize what is called the open-endedness of these
principles, in that outside the context of specific formal systems they
are not intended to be limited in their scope to particular formalized
languages. But unlike some writers I do not see in this feature a convinc-
ing reason for regarding formulations in terms of second-order logic as
canonical. Reasoning with second-order logic only moves the schematic
character of principles into the logic. Furthermore, full second-order
logic introduces a new assumption, that the instances of the relevant
schemata are closed under second-order quantification, whatever one
takes second-order variables to range over.

Certain issues that have been rather prominent in philosophy of math-
ematics in the last generation are commented on in the present work at
most in passing. In one case, the question whether mathematical knowl-
edge is a priori, the reader may find the omission surprising. The tradi-
tional affirmative view was vigorously attacked by W. V. Quine in some of
his central writings. In more recent years it has been defended more than
it has been attacked. I don’t have a clear position to offer on this question.
I am not convinced that the notion of a priori knowledge is as clear as is
often assumed. It is quite obvious that experience and perception do not
play the direct role in the justification of mathematical propositions that
they play in natural science or in most factual statements of everyday life.
The mathematician in proving a theorem does not appeal to experimen-
tal results or other forms of observation. Rigorous proofs can generally be
represented as deductions from axioms. The question of the justification
of axioms is a complex one, about which something is said in this work.
Again there is no straightforward appeal to experiment and observation,
but it is less easy to show that experience does not have some more sub-
tle role that goes beyond the heuristic and motivating. In particular, that
makes it harder to rule out the possibility that some unforeseen turn in

1 And in places in Mathematics in Philosophy, for example, Essay 3.
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xiv Preface

the development of science might lead to the rejection as false of some
assumption used in current mathematics.

But there is a consideration that makes this seem very unlikely.2 That
is that a mathematical theory of an aspect of the empirical world con-
sists of taking a supposed actual system of objects and relations as an
instance of a mathematical structure (where not every item in the struc-
ture is necessarily regarded as physically real). Then what confronts the
“tribunal of experience” is the identification of a structure of this type
with something in the world. That identification is falsifiable and has on
many occasions been falsified. But then the resulting modification would
consist of replacing the mathematical structure appealed to by another
one, without abandoning the pure theory of the structure as mathemat-
ics. Thus, Euclidean geometry still plays a basic role in mathematics even
though the view that space is Euclidean was questioned more than a hun-
dred years ago and abandoned in the early twentieth century. It seems that
some conceptual revolution of which we don’t now have an idea would
be required for us to abandon Euclidean geometry as mathematics. So it
may be that much of current mathematics is “contextually a priori” in a
sense proposed some years ago by Hilary Putnam.3

Another issue only glancingly commented on in this work is Bena-
cerraf’s dilemma. If it is put in terms of a causal theory of knowledge,
according to which knowledge of certain objects requires causal rela-
tions of those objects and our minds, then I think the problem can be
dismissed: mathematical objects are simply a counterexample to that
theory of knowledge. But a more general form of the dilemma, expressed
by W. D. Hart soon after Benacerraf’s classic paper, is the difficulty of
giving a naturalistic epistemology for mathematics.4 That cannot be
dismissed so easily. The more descriptive approach to mathematical

2 I summarize here a point made in Mathematics in Philosophy, pp. 195–197.
3 It would be hard to maintain this about the part of mathematics where there is uncer-

tainty that might be serious, namely, the further reaches of set theory where very large
cardinal axioms or other principles of high consistency strength are assumed. In this
case, however, the mathematics makes no contact with actual natural science. If some
of it is upset, it is far more likely that this will be a result of its internal development.

4 See Hart, Review of Steiner, pp. 124–127. Hart’s later paper “Benacerraf’s Dilemma”
corrects the exclusively ontological focus that many have given to the problem; in par-
ticular he points out that modal knowledge would raise similar questions. Insofar as
Benacerraf’s dilemma motivates nominalist constructions, that raises a question about
the widespread use of modality in these constructions. Hartry Field may be influenced
by a problem of this kind in seeking to limit his own use of modality to “strictly logi-
cal” modality. See “Is Mathematical Knowledge Just Logical Knowledge?” and “Realism,
Mathematics, and Modality.”
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knowledge adopted in this work would probably not pass muster as nat-
uralistic in the eyes of many contemporary philosophers. I don’t see this
as a serious problem for the foundations of mathematics. Naturalism as a
philosophical tendency relies heavily on the authority of natural science.
But modern science would be inconceivable without the application of
mathematics. The actual methodology of mathematics, about which a
descriptive approach aims to say something, has been found adequate
(at least with the corrections arising in its own development, certainly
influenced by applications) for the development of science over a more
than two-thousand-year period. The absence of a naturalistic epistemol-
ogy may mean that a kind of explanation or understanding of mathe-
matical knowledge that would be desirable has not been attained. The
search for it, like any enterprise in naturalistic epistemology, is on the
boundary of philosophy and psychology. But even if it faces fundamen-
tal difficulties, they would not offer a convincing reason for abandoning
current mathematics, or for reformulating it along some nominalistic or
other lines, or for denying the claim of mathematical results to be true. To
what extent we are still left with a challenge may depend on what counts
as naturalistic, a matter that I leave to those who espouse naturalism to
determine.5 Furthermore, there are at least some reasons for doubting
that what the naturalist seeks can be attained for our rational capacities
in general, apart from the more special problems posed by mathematics.

Another omission is of any sustained discussion of the issues raised
by constructivism in general and intuitionism in particular. Such a dis-
cussion would have been natural given the role played in this work by a
conception of intuition that owes something to Brouwer. In fact, my orig-
inal plan for the book called for a chapter on constructivism. The main
reason why it is not there is that I have had my hands quite full with the
other subjects I have taken on. It would be a large task to assess what the
status of constructive mathematics and logic ought to be in the present
day, or even to say accurately what it is. One thing, however, is clear: The
use of classical logic in mathematics has survived Brouwer’s attack on it,
and mathematics obeying restrictions to ensure constructivity is a minor-
ity pursuit. A philosophical work that deals almost entirely with classical
mathematics does not have to apologize for itself.

This work has been in the making for an unconscionably long
time. During that time I have become indebted to a large number of

5 For an argument that it is a challenge, and a proposal to answer it, see Linnebo, “Episte-
mological Challenges.”
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individuals, especially for intellectual stimulation and instruction, and
to institutions for support. Columbia until 1989, and Harvard since then,
have provided an academic home and an excellent work environment.
Friends and colleagues in logic and philosophy of mathematics have
been sources of stimulation, instruction, and questioning over many
years. The late George Boolos, Solomon Feferman, Warren Goldfarb,
Allen Hazen, Richard Heck, Geoffrey Hellman, Daniel Isaacson, Yiannis
Moschovakis, Hilary Putnam, Michael Resnik, Stewart Shapiro, Wilfried
Sieg, and William Tait deserve special mention, as well as Mark van Atten,
Peter Koellner, and Agust́ın Rayo from more recent years. I still owe
much to my longtime Columbia colleagues Isaac Levi and the late Sidney
Morgenbesser. A consequence of the move to Harvard was more interac-
tion with moral philosophers, which stimulated my interest in rational
justification, dovetailing with an effort to understand ideas of Kurt Gödel.
Without that, Chapter 9 of this work might not have been written at all.
The late John Rawls provided the initial stimulus and helped me to under-
stand his own views, and T. M. Scanlon has also been especially helpful.
My fellow editors of Gödel’s works, John W. Dawson, Jr., Feferman, Gold-
farb, Sieg, Robert M. Solovay, and our Managing Editor Cheryl Dawson
all contributed to my understanding of Gödel and his contemporaries.

None of my three principal teachers, Burton Dreben, W. V. Quine, and
Hao Wang, lived to see the completion of this work. Some of the ideas were
discussed with one or another of them, and their influence is no doubt
more or less visibly present. I doubt that any of them would approve of
what has finally come of the project.

Like many of us I have learned from my Ph.D. students. Most rele-
vant to this work are R. Gregory Taylor, Richard Tieszen, Gila Sher, and
Ofra Rechter at Columbia and Emily Carson, Michael Glanzberg, Øystein
Linnebo, Michael Rescorla, and Douglas Marshall at Harvard. Tieszen
especially has followed my writing over a long period and commented on
earlier versions of many parts of this work.

In the long time that this work has been in progress, I have lectured
on parts of it (sometimes as papers that have since been published) to
many audiences. I am undoubtedly indebted to more members of these
audiences than are mentioned here in connection with specific points.
A special debt is owed to logicians and philosophers at the University of
Padua, who twice invited me for extended series of lectures, which were
accompanied by warm hospitality.

In the fall semester of 2006, the manuscript was discussed in a sem-
inar at Harvard with both student and faculty participants. Questions
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and objections have led to many changes, nearly all of which I hope
are improvements. In particular, Koellner and Vann McGee saved me
from mathematical errors. Doubtless other errors remain, for which I am
responsible.

Mihai Ganea conscientiously examined an earlier version of Chapters
1−8 for bugs of various kinds, and Jon Litland has done the same for the
final version of the whole work. Litland also has prepared the index and
assisted with proofreading.

This work has had more institutional support than any single book
deserves. Both Columbia and Harvard have provided sabbatical leaves.
The project was begun when I was an NEH Fellow and a Visiting Fel-
low of All Souls College, Oxford, and work on it was done when I was a
Guggenheim Fellow, a Fellow of the Netherlands Institute for Advanced
Study, and later a Fellow of the Center for Advanced Study in the Behavio-
rial Sciences, the last with the support of the Andrew W. Mellon Founda-
tion. I am very grateful to all these institutions. (The leaves they financed
also encouraged other projects, especially the editing of Gödel’s post-
humous works.)

Terence Moore of Cambridge University Press welcomed the project
and offered a contract on the basis of a very incomplete text. I regret
that the work was not ready to submit before his untimely death. Two
referees, one unmasked as Arnold Koslow, offered helpful suggestions. I
am grateful to the Press for its continuing interest, in particular to the
present editor Beatrice Rehl. I thank the production editor Laura Lawrie
for her work and attentiveness to my concerns.

Much of the material in this work has appeared in articles with varying
degrees of closeness to the form in which matters are presented here.
More information with copyright acknowledgments follows.

I owe more to my wife, Marjorie Parsons, than I will venture to say
here. I will, however, thank her for two specific things: for her unfailing
support and assistance during two episodes of illness and for her patience
in waiting so many years for a book to be dedicated to her.

Cambridge, February 2007
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1 Objects and Logic

§1. Abstract objects

The language of mathematics speaks of objects. This is a rather trivial
statement; it is not certain that we can conceive any developed language
that does not. What is of interest is that, taken at face value, mathemat-
ical language speaks of objects distinctively mathematical in character:
numbers, functions, sets, geometric figures, and the like. To begin with,
they are distinctive in being abstract.

Roughly speaking, an object is abstract if it is not located in space and
time and does not stand in causal relations. This criterion gives rise to
some uncertain cases and would not be accepted by all philosophers.1

1 This is close to what David Lewis calls the Way of Negation in his discussion of the
abstract-concrete distinction in On the Plurality of Worlds, §1.7. Criticisms of the crite-
rion are to be found there and in Burgess and Rosen, A Subject with no Object, §I.A.1.b.
The conterexamples offered are for the most part not mathematical objects. However,
these authors claim that some abstract objects of the kind called quasi-concrete in §7
below are located. There is one case relevant to mathematics, that of sets of concrete
objects, which will be discussed there, in note 57.

A reservation about the causal aspect that is worth mentioning is the following. There
has been some dispute about the kind of entities that enter into causal relations con-
nected with the dispute about whether events are particulars or are proposition-like
objects. Jaegwon Kim, a principal proponent of the latter view, also challenges the view
that mathematical objects are “causally inert”:

Mathematical properties, including numbers, are no worse off than such sundry physical
properties as color, mass, and volume, in respect of causal efficacy (“The Role of Perception,”
p. 347).

It is noteworthy that Kim talks of mathematical properties. The point could be put by
saying that reference to mathematical objects is as likely to occur in a causal explanation
as reference to other kinds of objects. This seems to me quite correct, but, as Mark Steiner
had previously observed (Mathematical Knowledge, ch. 4), it can be put in the other
framework, in which such reference will occur in the relevant descriptions of the events

1
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2 Objects and Logic

It is not essential for our purposes that there should be a principled and
exhaustive classification of all objects into abstract and concrete. Physical
bodies and biological organisms, such as we encounter in everyday life,
are concrete. If we assume that sense-perception necessarily involves a
causal relation between the object perceived and the organism (the event
or state of its perceiving), and that perception locates its objects at least in
some rough way, then it follows that the objects of sense-perception are
concrete. Thus it is generally assumed in discussions of abstract objects
that abstract objects cannot be perceived by the senses.

In this they are not alone. It is not merely for this reason that abstract
objects are thought to pose a general philosophical problem. Some pre-
sumably concrete objects, such as elementary particles, are far more
recondite and no more perceivable than most “ordinary” abstract objects
such as triangles and numbers. Nonetheless, some form of empiricism is
a primary motive for finding abstract objects puzzling. We think there are
elementary particles such as electrons, roughly because the assumption
that they exist belongs to a theory that presents a picture of the objective
world that accounts for the facts we can verify by perception. But why
should a view of the world give place to objects that are not in it (not
spatio-temporal) and do not interact with it? Is the existence of mathe-
matical objects not a hypothesis for which we should have no need?

If the outcome of an investigation of such questions should be that
mathematics is engaged in mythology, in speaking of remarkable con-
figurations of objects that just do not exist, it would leave the existence
of mathematics and its importance to science and practical life a much
greater mystery than its objects are at the outset. This would suggest that
what such questions should prompt us to do is to inquire more deeply into
what a mathematical object is, what the “mode of being” of mathematical
objects is. Or, in less ontological terms, we should inquire into the sense
in which mathematics speaks of objects. This will be one of the main con-
cerns of this book. It is, however, a serious question whether reference to
specifically mathematical objects can be eliminated. This question will
be addressed in Chapters 2 and 3 below. Assuming that a wholesale rejec-
tion of mathematics is not being considered, such an elimination can only
proceed by not taking the language of mathematics entirely at face value.

standing in causal relations. This removes any temptation to attribute causal efficacy
to the mathematical objects. By his emphasis on properties, Kim somewhat fudges the
latter issue.

This question will prove to have relevance later; see §30.
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§2. The concept of an object in general: Actuality

There is something absurd about inquiring, with complete generality,
what an object is. The question may seem impossibly amorphous, but it
is the extreme generality of the question, rather than vagueness in the
ordinary sense, or something like it, that is the difficulty in putting it. If
we ask what a gorilla is, an informative answer should distinguish gorillas
from other animals. But from what can we “distinguish” objects? It is
controversial whether it is meaningful to talk of “entities” that are not
objects, and, even if it is, a distinction between objects and other entities
is only part of what we are after in asking what an object is.

To the extent that philosophers discuss in general terms what an
object is, the context is likely to be an inquiry into how thought or
language can relate to objects, or, more amorphously, to “reality” or
“the world.” I will fix the way I wish to use the term “object” and
simultaneously say what I think useful in such abstract discussions by
saying that the usable general characterization of the notion of object
comes from logic. We speak of particular objects by referring to them by
singular terms: names, demonstratives, and descriptions. Since the unit
of linguistic expression is the sentence, reference to objects will typically
and standardly occur in the context of sentences, and, therefore, in the
use of singular terms, by the application to singular terms of predicates.
In its most general meaning, a “predicate” is a sentence with one or
more empty places, called argument places, to be filled by singular
terms.

Reference to objects may begin with singular terms, but it does not
end with them, since the use of predicates is bound up with the use
of those expressions which the formal logician regiments by quanti-
fiers and bound variables. Thus, in English and many other natural
languages, what I have called the “argument place” of a predicate can
be filled by expressions like ‘all men’, ‘every man’, ‘all ravens’, ‘every-
thing’, ‘something’, ‘sometime’, and others which serve to make the sen-
tence general, or by pronouns that refer back either to one of these
expressions or to a singular term. Thus, we have such sentences or
discourses as:

All men are mortal. All ravens are black.
Everything is identical to itself.
Do something!
Come around to see me sometime.
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If anyone know just cause why this man and this woman should not
be joined in holy matrimony, let him speak now or forever hold his
peace.

I saw Mr. Smith on January 10. He was in a bad temper that day.

Philosophers in the tradition of the modern theory of reference have
disagreed about whether singular terms or quantifiers and bound vari-
ables are the more fundamental vehicles of reference to objects. It is quite
evident that in practice we have to attend to both kinds of expressions.
Singular terms may be dispensable in a final regimentation of the lan-
guage of a rigorous science or mathematics, but, in order to understand
reference and the notion of object, we have to look at language as it is
before such regimentation, in which singular terms have an undoubted
place. It is even more obvious that the use of singular terms2 does not
exhaust reference to objects in the sense that the objects whose proper-
ties and relations matter to the truth of what we say are not all referred
to by singular terms, either in the statements themselves, or in any oth-
ers. Our ontological commitments, that is, what is required to exist for our
statements to be true, are not all expressed by the use of singular terms but
are also embodied in general statements; indeed, a definite description
(at least in its “attributive” use3) is a singular term such that the condition
for being its reference is the truth of a statement involving a quantifier.

The phrase “concept of an object in general” comes, of course, from
Kant’s Critique of Pure Reason. It is used in connection with the cate-
gories, in particular with the thesis that the categories are the conditions
under which what is given in experience can be thought of as an object.
For example,

The question now is whether a priori concepts do not also precede, as condi-
tions under which alone something can be, if not intuited, nevertheless thought
as object in general. (A 93/B 125)

Kant calls the categories “concepts of objects in general,” but he also
occasionally talks as if there were one concept of an object in general, that

2 I assume that bound variables (and the pronouns of natural language that play the same
role) do not count as singular terms. I don’t think it matters where we draw the line,
though with enough stretching of the category it might be made true, after all, that all
objects of reference for our discourse are denoted by singular terms, since the semantics
of quantifiers refers to assignments of objects to free variables or to interpretations in
which the denotation of names is varied.

3 In the well-known sense of Donnellan, “Reference and Definite Descriptions.”
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is, a perfectly general concept of object.4 But then it is the categories that
give it its content, so that the difference with the plural use is merely ver-
bal. Either way, Kant is thinking of objects of experience, and the proper
application of the categories is to spatiotemporal objects of the sort that
are given in perception or at least postulated in scientific theories.

In fact, when Kant talks of objects at this level of abstractness and
generality, he is pulled in two directions. On the one hand, the categories
are derived from formal logic and from the conceptual framework for
talking of any kind of object, whether or not it is empirically known. The
understanding, with its forms of judgment and categories, is more general
than sensibility, with its forms of intuition, and thus there are “pure” cat-
egories whose content relates to objects “in general and in themselves,”
and are not limited by conditions of sensibility or experience.

On the other hand, it is of course central to Kant’s theory of knowledge
that the categories only have proper application giving rise to knowledge
in application to the manifold given by sensible intuition, and thus they
serve only for knowledge of the empirically given world. It is only in this
context that he gives an informative account of consciousness of objects.
And of course it has been difficult for many generations of readers to see
how the application, even “problematic,” of the categories to things in
themselves is possible.

Even the pure categories, as a general conceptual apparatus for
speaking of objects, envisage concrete rather than abstract objects. This
is particularly true of the categories of relation: substance, causality, and
community. We gave as one of the marks of an abstract object its not
entering into causal relations. Although some marks of a substance may
be possessed by abstract objects, the primary examples of substances
in the philosophical systems of the past are paradigmatically concrete
realities: organisms for Aristotle, God for Christian Aristotelians and the
rationalists from Descartes on, and matter for Descartes and Kant. When
Kant comes to the categories of modality, what in the original table
(A 80/B 106) is called Existence (Dasein) and is later called actuality
(Wirklichkeit) is explained in a way which clearly is meant to apply to
concrete spatiotemporal objects:

That which is connected with the material conditions of experience (of sensa-
tion) is actual. (A 218/B 266)

4 A 51 / B 75, A 251. The latter passage seems to identify the concept of an object in general
with that of the “transcendental object = x.”



P1: JZP
9780521452793c01 CUNY1138/Parsons 978 0 521 45279 3 October 30, 2007 10:33

6 Objects and Logic

The postulate for cognizing the actuality of things requires perception, thus
sensation of which one is conscious, to be sure not immediate perception of
the object itself the existence of which is to be cognized, but still its connection
with some actual perception in accordance with the analogies of experience.
(A 225/B 272)

By actuality, Kant means actual existence, and it therefore has the
logical properties which, for existence per se, he appeals to in his famous
criticism of proofs of the existence of God. It is not a property of objects;
we could reconstruct it as what is expressed by the existential quantifier
in empirical judgments. But the characterization quoted gives just what
we have offered above as the marks of a concrete object.

In our modern logic, where we readily give the existential quantifier a
more general sense, it is natural to render Kant’s actuality as a restricted
quantifier, so that ‘Fs are actual’ in Kant’s sense would be rendered ‘(∃x)
(x is actual ∧ Fx)’. The German ‘wirklich’ is less awkward as a predicate
than the English ‘actual’.

Just such a transmutation is carried out by Frege, who denies that
numbers are actual (wirklich) in a sense which (probably consciously)
echoes Kant:

I heartily share his [Cantor’s] contempt for the view that in principle only finite
numbers ought to be admitted as actual. Perceptible by the senses they are
not, nor are they spatial – any more than fractions are, or negative numbers,
or irrational and complex numbers; if we restrict the actual to what acts on
our senses or at least produces effects which may cause sense-perceptions as
near or remote consequences, then naturally no number of any of these kinds
is actual.5

Frege clearly understands Wirklichkeit as a property which some objects
(such as bodies) have and others (such as numbers) do not.6 In using the
terms ‘actual’ and ‘wirklich’, I will follow Frege’s usage.

5 Grundlagen, p. 97.
6 As in the following striking passage:

Some of what is objective is actual, other not. ‘Actual’ is only one of many predicates, and
concerns logic no more particularly than, say, the predicate ‘algebraic’ applied to a curve
(Grundgesetze, I, xviii−xix, my trans.).

Frege seems pretty clearly to have the same meaning of ‘wirklich’ in mind when,
near the end of “Der Gedanke,” he questions whether thoughts are wirklich. The strict
atemporality of thoughts is “annulled” by the fact that they can be now grasped by one
person, at another time not. However, one might still recognize them as timeless on
the ground that these changes affect only the “inessential” properties of thoughts. (We
might now call them “mere Cambridge changes.”) Moreover, he is prepared to say that a



P1: JZP
9780521452793c01 CUNY1138/Parsons 978 0 521 45279 3 October 30, 2007 10:33

§2. The concept of an object in general: Actuality 7

To return to Kant, I think it would be fair to interpret him as having
a “concept of an object in general” which in its full sense connotes
concreteness. This is even so in the less-than-full sense given by the
pure categories. A problem in interpreting Kant is posed by the fact
that, although he does make reference to mathematical objects, and
is certainly not a nominalist, he does not have an explicit theory of
them. There are indications that he would treat mathematical existence
under the category of possibility; mathematical examples occur in the
elucidation of that category in the Postulates.7 There is some affinity
between Kant’s view and those now called modalist, which will occupy
us in Chapter 3. This affinity is limited by the fact that Kant conceives
possibility as “real” possibility, not certifiable by mathematical argument
(construction in pure intuition) alone. It would take us too far afield to
go into these problems, which I have discussed elsewhere.8

The expectation that objects as such should have the properties
that Kant and Frege associate with Wirklichkeit, or other more rarefied
versions that could be possessed by suprasensible concrete reality, is
deeply rooted and motivates much resistance to mathematical objects
and abstract objects generally. Taking the most general notion of object
to have its home in formal logic (in Kantian terms, the forms of judgment
rather than the categories) is intended to remove that expectation and
serves to defuse the resistance it motivates. This perspective will underlie
much of our subsequent argument.

Kant’s refusal to apply the category of actuality to mathematical objects
suggests another distinctive feature of such objects, that the distinction
between potentiality and actuality, particularly between possible and

thought “acts” (wirkt ) through being grasped and taken to be true. But because it is only
in this way that thoughts enter into the causal order, the “actuality” of thoughts is very
different from that of things:

Thoughts are not wholly unactual, but their actuality is of a quite different kind from that
of things. And their action is brought about by a performance of the thinker, without which
they would be without effect (wirkungslos), at least as far as we can see. And yet the thinker
does not create them but must take them as they are (p. 77; trans. from Logical Investigations,
pp. 29–30, with modifications).

I am indebted to Mark Notturno for calling this tantalizing passage to my attention. In
it Frege shows himself more properly “Platonist” than in his writings on the philosophy
of mathematics.

7 A220–1 / B268, A 223–4 / B271.
8 “Arithmetic and the Categories,” section I, and, in a briefer and more preliminary way,

in the Postscript to Essay 5 of Mathematics in Philosophy, pp. 147–149.
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actual existence, does not apply to them.9 This is an important point,
which will be considered briefly in §4 below and more fully in Chapters 2
and 3.

§3. Intuitability

Although Kant would resist attributing to mathematical objects the prop-
erties summed up in the concept of actuality, he does apply in the math-
ematical context another characteristic of full-blooded empirical objects
which will be important in what follows. Kant of course holds that a con-
cept is empty unless it corresponds to intuition; intuition is necessary
to establish the objective reality of a concept, that is, the possibility of
instances. The forms of intuition, space and time, are therefore condi-
tions to which all objects of experience must conform. The mathematical
objects about which Kant is most explicit are geometric figures, which
he calls forms of (empirical) objects. In proofs, they are constructed
intuitively; in that sense they can be intuited. Intuitive representation
also arises in mathematics for other mathematical objects, though for
numbers in particular it appears that the relation to intuition is more
indirect than for geometric figures. But arithmetic is according to Kant
only applicable to sensible objects, that is, to objects given according to
our forms of intuition.10

We will speak, generally and somewhat vaguely, of intuitability as a
general condition on objects. The use of the term “intuition” rather than,
say, “perception” is meant to preserve the generality of Kant’s notion,
which, in particular, is not meant to exclude the abstract. Kant means by
“intuition” an immediate representation of an individual object. What is
meant by “immediate” has been a matter of controversy.11 When talking
of intuition of objects in this work, I shall mean a mode of consciousness
of individual objects that is importantly analogous to perception. But it
is important to distinguish between intuition of objects and the different

9 In 1790 Kant’s disciple Johann Schultz wrote that “in mathematics possibility and actu-
ality are one, and the geometer says there are (es gibt ) conic sections, as soon as he
has shown their possibility a priori, without inquiring as to the actual drawing or mak-
ing them from material” (Review of vol. II of Eberhard’s Philosophisches Magazin, in
Kant’s Gesammelte Schriften, XX 386 n.) (Cf. “Arithmetic and the Categories,” p. 110 and
n. 4.)

10 Letter to Johann Schultz, November 25, 1788 (Gesammelte Schriften, X 555). This edition
is hereafter referred to as Ak.

11 See Essay 5 of Mathematics in Philosophy, especially the Postscript, the writings of
Hintikka and Howell referred to there, and “The Transcendental Aesthetic,” section I.
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but related notion of intuition as a propositional attitude. These notions
and their relations will be explored further in Chapter 5. Clearly it is
the former notion that is involved when we speak of the intuitability of
objects.

Even if one takes the notion of intuition to be understood, the notion
of intuitability poses two serious problems. As we have explained it, intu-
itability does not require that the object itself can be an object of intu-
ition. But if it is, we might call the object strongly intuitable. We con-
sider intuitable an object that can be “represented” in intuition, and we
have not said what this means. Different relations will count as such
representation; thus the notion of intuitability is to a certain degree
schematic. In the relevant senses, however, representation of abstract
objects by concrete objects or by objects relatively closer to the concrete
is a pervasive phenomenon and of great importance for understanding
abstract objects. An example is that a number could be represented by a
set or sequence of that number of objects; such a representation occurs
in Kant’s argument to the effect that 7 + 5 = 12 is synthetic. If, as in Kant’s
example, the elements of the set or the terms of the sequence are concrete,
then the representation is what in §7 will be called “quasi-concrete.” We
will consider in Chapter 6 the question whether, if they are intuitable, the
set or sequence itself is intuitable. If so, then the representation certainly
qualifies as a representation in intuition; even if not, it is still a represen-
tation in intuition of a more indirect kind, since the concrete is reached
in two steps. If such representation confers intuitability, then mathemat-
ical objects can count as intuitable even if no mathematical objects are
strongly intuitable. This may seem to make the notion too weak to be
useful; whether this is so will be considered in Chapters 5 and 6.

The second problem concerns the modal element in the notion of intu-
itability. We might call an object “perceivable” if it can be perceived, but
this “can” can be understood in different ways; for example, to be precise
we would have to determine how much to abstract from the situation and
capacities of actual perceivers. Questions of this kind arise with partic-
ular force when we ask about the intuitability of mathematical objects.
Is it true that all natural numbers can be represented in intuition in the
sense that for any n, a set of n objects can be an object of intuition? That
seems to require that in some sense we “can” take in an arbitrarily large
finite collection, but, in practice, one will very quickly run up against
limitations of time and memory. Classical conceptions of mathematical
intuition found in Kant, Brouwer, and Hilbert, by contrast, appear to be
committed to the view that in some way arbitrarily large, finite structures
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are representable in intuition. The viability of the idea of the “in princi-
ple” possibility of intuition’s extending this far, and the question whether
a conception of mathematical intuition along such lines requires it, will
occupy us later.

One can ask how the notions of intuitability and actuality are related.
The thesis that all intuitable objects are actual would rule out intuition
of mathematical objects, but it is certainly maintained by many philoso-
phers. It is interesting only if the notion of intuitability is either strong
intuitability or based on a notion of representation in intuition that is
not too liberal. The converse thesis that all actual objects are intuitable
amounts to the thesis that those objects we postulate in a causal account
of our perceptions are intuitable. Here, clearly, the question about modal-
ity is relevant, and also questions about the “theory-laden” character of
observation.

§4. Logic and the notion of object

I have mentioned actuality and intuitability not just because of their cen-
trality in Kant’s conception of an object of experience. They represent
requirements for being an object that have been applied by philosophers,
in some cases not very consciously, to issues about abstract objects and
inclined them to deny that there could be such objects, or, at least, to find
them puzzling. The view that the most general notion of object has its
home in formal logic is intended to reject such conditions as conditions
for being an object.

This outlook seems to me a characteristically modern one and may
not appear in full-blown form before Frege. Its most important advocates
in more recent times are Carnap and Quine. Speaking of objects just is
using the linguistic devices of singular terms, predication, identity, and
quantification to make serious statements. We might in many cases be
able to claim that the reference to objects in a discourse is only apparent.
But this requires either a paraphrase or a special semantical explanation
that removes it; one cannot, for example, just say that the objects in ques-
tion are fictions. One might explain “fictions” as a category of objects, but
in that case one has not fended off the interpretation that one is speaking
of objects.12

12 With reference to mathematics, one might also mean by such a claim that although the
language of mathematics is to be interpreted to speak of objects, the mathematician is
not committed to their existence because the statements in mathematics are not really
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Different writers in this tradition have stressed different parts of the
apparatus of reference to objects. Frege placed particular stress on iden-
tity, Quine on quantification. But these differences are either differences
of emphasis or concern peripheral issues. I shall assume that we do not
have objects unless we can meaningfully apply the identity predicate. I
hardly know how to begin in arguing for this. It is partly a terminologi-
cal matter, since there may be other categories of entities, for example
Frege’s functions and concepts, to which identity does not apply and
which are not objects. A more fundamental argument would have to be
one concerning objectivity, such as is to be found in Kant’s Transcenden-
tal Analytic and the tradition inaugurated by it. It is characteristic of an
object that it can be represented in different ways, from different per-
spectives. But this statement hardly makes sense unless it means that
the same object is thus represented. The possibility of representing the
same object from different perspectives is necessary for our statements
to have a content that is independent of the time of utterance and the
speaker. The former mark of objectivity especially preoccupied Kant, the
latter later philosophers who have been especially concerned with inter-
subjectivity.

The apparatus of reference to objects is very neatly regimented by first-
order quantificational logic with identity. An influential view, forcefully
maintained by Quine, is that questions of reference and ontological com-
mitment are to be settled by a paraphrase of any discourse about which
such questions arise into this first-order logic, based on classical proposi-
tional logic. This is an extreme view, which might be criticized on various

assertions but are rather to be compared with the occurrence of sentences in works of
fiction. This is the view of Hartry Field (originally in Science without Numbers), who,
indeed, insists on taking the language of mathematics at face value rather than reinter-
preting it to eliminate mathematical objects, and then bites the bullet by holding that
statements committed to mathematical objects are not true. His view then amounts to
an instrumentalist view of mathematics.

Field’s view that straightforward statements about numbers and sets are not true
seems to me an extreme one; moreover, he has devoted more of his writings to elabo-
rating his instrumentalist program and to dealing with objections than to working out
the nominalist intuitions with which he begins.

Some particulars of Field’s view are discussed in Chapters 2 and 3. Other versions
of “fictionalism” have been proposed in recent years, but I do not propose to discuss
them in this work. They tend to be even harder than Field’s to reconcile with the claim
of mathematics to be a science. I am sympathetic to the criticism in Burgess, “Mathe-
matics and Bleak House.” But it should be noted that Burgess is concerned there with
versions of fictionalism that, unlike Field’s, do not demand logical reconstruction either
of mathematics or of its relation to science.
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grounds. Because of its simplicity and power of expression, however, clas-
sical first-order logic does give an exemplary paradigm of discourse about
objects. For the present, I only want to consider how the question what an
object is is affected by possible reservations about taking this paradigm
as a universal framework.

There are three questions that require some immediate discussion. The
first is whether some intensional operators belong to logic. The second
is whether there are “entities” that are not objects and, if so, how logic
is to accommodate them. The third is whether reference to objects is
necessarily reference to objects that exist. The second and third questions
will be taken up in Sections 5 and 6, respectively.

On the first question, I confine myself to some brief remarks. The pres-
ence in our language of modal and intentional notions is obviously a
serious obstacle to regimenting all reference to objects in terms of classi-
cal first-order logic or a similar extensional logic. Modal and intentional
discourse gives rise to problems which are among the most tangled faced
by a program of analyzing the “logical form” of expressions of natural
language in terms of formal logic. Because a purely extensional logic is
adequate for formalizing mathematical theories in the standard way, it
might seem that problems of this sort can be avoided in the philoso-
phy of mathematics. For a number of reasons, which we will not go into
at this point, the matter is not so simple. Three considerations make
it obvious that problems about modal notions have to be addressed in
the philosophy of mathematics: the traditional view that mathematics
is necessary; the idea, alluded to with reference to Kant, of explicating
mathematical existence in terms of possibility; and the role, both in con-
structive mathematics and the foundations of set theory, of the con-
ception of a potential totality. But this is not the place to explore the
relevance of these considerations to a strictly Quinean conception of
ontology.13

13 See Essays 1, 7, and 10 of Mathematics in Philosophy. Epistemic notions play a cen-
tral role in intuitionistic mathematics, but they are usually not incorporated into for-
malized intuitionistic theories. Recently it has been argued that epistemic operators
should occur explicitly in the axiomatization of classical theories; this has resulted in
the development of theories of “epistemic mathematics,” in which an S4-like epistemic
operator is added to the usual language. See the papers in Shapiro, Intensional Mathe-
matics, and, for a forceful argument motivating such theories, Goodman, “The Knowing
Mathematician.”
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§5. Is whatever is an object?

This question might be posed in a number of ways, with a number of pos-
sible “nonobjects” in mind. But the consideration that is most relevant
to the ontology of mathematics is reflection on predication. In a simple
predicative statement, which we can schematize as ‘a is P ’, it is tempting
to say that the statement predicates something of a. But then that some-
thing seems to be P, and then we seem to have to say that ‘P ’ stands for
something, just as ‘a’ does. But if ‘P ’ stands for an object, then the simple
predication seems to express a relation between two objects. But then
does not the statement predicate something, expressed by ‘is’, of a and
P? To admit this would threaten a regress. At all events, taking predicates
to stand for objects has led into serious tangles.

The relevance of this problem to the question at hand is indicated by
Frege’s famous solution to it: according to him, what is predicated of a is a
concept which is not an object; the apparently relational form is avoided
because a concept is “unsaturated”; it has an empty argument place just
as does the expression ‘( ) is P ’, which is applied to ‘a ’ to yield a sentence.
Frege’s position leads to taking as basic logic a second-order logic, as
was the original Fregean logic in the Begriffschrift and its mature form
in the Grundgesetze. Frege never showed any interest in disengaging the
first-order fragment.14

By a second-order logic is normally meant an expansion of first-order
logic by the addition of variables having the syntactic form of predicates,
and quantifiers for them. The logic of the Grundgesetze is not precisely
of this form because of its assimilation of sentences and singular terms.
From this assimilation follows that predicates, for him (as for us) sen-
tences with empty argument places, are to be treated like singular terms
with empty argument places, which we will call functors. The latter have
as their reference functions; thus concepts are a special case of functions.
Indeed, it was partly on the strength of observed analogies between func-
tors and predicates that Frege adopted a theory of reference that treats
sentences like singular terms.15 Although languages of this kind arise in

14 He was not even tempted to do so by the paradoxes. On the contrary, his gradual aban-
donment of the concept of extension, which led finally to the “geometric” theory of
number sketched in the last fragments of 1924–1925 (Nachgelassene Schriften, pp. 282–
302), was accompanied by his holding firmly to his theory of functions and concepts
and to the second-order logic that went with it as “fundamental logic.”

15 This analogy, it will be recalled, was one of the starting points of Frege’s logic, before he
formulated his theory of reference; as is well known, in the Begriffschrift he says he has
replaced the concepts subject and predicate by argument and function (Preface, p. vii).
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logical work even today,16 we will usually assume that second-order vari-
ables are predicates. Much of what we say about second-order logic will
apply to logics in which quantification of predicate places is subsumed
under quantification of functor places.

Some form of generalization of predicate places is indispensable in
mathematics, and it is for the sake of such generalization that we are most
tempted to suppose that predicates have reference. Frege’s arguments in
Funktion und Begriff and elsewhere would imply the same about func-
tor places. A very fundamental way in which generalization of predicate
places occurs is in the statement of such general principles as mathe-
matical induction and the axioms of separation and replacement in set
theory. This might suggest that the underlying logic of much of mathe-
matics must be second-order. However, the matter is not at all simple.

Frege held that predicates and functors have reference as such and
that predicate and functor places can be generalized directly. This was
essential to his thesis that functions and concepts have intrinsic argu-
ment places and cannot be objects. But it requires some explanation,
because at first glance the general statements that express what I am call-
ing “generalization of predicate places” are generalizations about objects.
Consider for example the statements:

(1) Napoleon has all the qualities required in a general.17

(2) Metals are identified by such properties as malleability and
ductility.

The first statement seems to be a general statement about qualities. If we
ask for examples, we might cite bravery, decisiveness, and sense of timing.
The expressions for these qualities are not unsaturated, and Frege would
agree that they are objects. The same is evidently true of the “properties”
cited in (2). But typically these qualities and properties are denoted by
nouns or noun phrases that arise by nominalization of expressions of a

16 Particularly type theories based on the λ-calculus or combinatory logic, beginning with
Church, “A Formulation of the Simple Theory of Types.” In such logics, the syntactic
complication of introducing variables and quantifiers for what I am calling functors is
avoided byλ-abstraction. Church regarded this as an abandonment of Frege’s doctrine of
functions as “unsaturated.” See his “A Formulation of the Logic of Sense and Denotation,”
p. 4. The most significant examples of theories of this kind are intensional logics: Church’s
“logic of sense and denotation” and subsequent developments of it, and Montague’s
intensional logic.

17 Cf. Whitehead and Russell, Principia Mathematica, I, 56. In the formalization (4) below,
it might be more natural to render ‘q is required in a general’ as ‘(∀y)(y is a general →
R(y has q))’, and similarly in (3). This does not affect the points that concern us.
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predicative character. The quality of bravery is something one has if one
is brave, one has decisiveness if one is decisive, and so on.

Now consider two formalizations of the first example (where R is a
deontic operator meaning ‘it is required that’):

(3) (∀F )[R(∀y)(y is a general → Fy) → F (Napoleon)]

(4) (∀q){[q is a quality ∧ R(∀y)(y is a general → y has q)]
→ Napoleon has q}.

(3) is the version by second-order logic; (4) appeals to a kind of objects
called qualities. The sense in which (3) involves a direct generalization
of a predicate place is that we can instantiate for ‘F ’ the predicate ‘( ) is
decisive’ and obtain

(5) R(∀y)(y is a general → y is decisive) → Napoleon is decisive,

and, for example, from the assumption

R(∀y)(y is a general → y is decisive)

conclude that Napoleon is decisive. But to carry out this reasoning using
(4) instead of (3), we need to be able to replace ‘( ) has decisiveness’ by ‘( )
is decisive’ and vice versa, the latter inside the (presumably intensional)
operator R.

In much mathematical usage, as in the informal talk of qualities and
properties, generalization of predicate and functor places is not done
directly, but rather by way of generalizations about objects denoted not
by predicates or functors themselves, but by terms obtained from them by
what might be called nominalizing transformations, analogous to those
by which nouns denoting qualities or properties might be imagined to
arise from adjectives, verbs, or open sentences. Instead of qualities, prop-
erties, and relations, in mathematics one talks of sets, classes, functions,
and relations, where the latter is generally meant extensionally.

Frege held that one will “recognize the same function” in occurrences
of a functor with its argument place filled in different ways, such as in the
cases ‘2. 13 + 1’, ‘2. 43 + 4’, and ‘2. 53 + 5’.18 Evidently he is claiming that the
functor itself refers to the function. The usual present-day view would be
that these terms do not, strictly speaking, contain reference to the func-
tion Frege has in mind, which would instead be denoted by a term such
as ‘λx (2. x3 + x)’. The λ-abstraction transforms a functor into a singular
term denoting a function. Confronted with the λ-notation, Frege would

18 Funktion und Begriff, p. 6.
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no doubt have agreed that λ-terms denote objects; his own notation for
the graph (Wertverlauf ) of a function has the same character. On the view
that it is only objects that can be the reference of expressions or the values
of variables, the sense in which it is true that one “recognizes the same
function” in expressions where a functor occurs with different arguments,
would have to be that one readily sees the equivalence of a term of the
form ‘2. t3 + t’ to ‘[λx (2. x3 + x)](t)’, where the reference to a function is
explicitly made. Similarly, if one can “recognize” the statements

(6) Smith used to work for the man who murdered the second hus-
band of his youngest sister.19

(7) Miss Brown used to work for the man who murdered the second
husband of her youngest sister.

as placing Smith and Miss Brown in a common class, it is because one
can recognize (6) as equivalent to

(8) Smith ∈ {x : x used to work for the man who murdered the second
husband of x’s youngest sister},

and likewise for (7).
We can, in effect, find in ordinary and mathematical usage different

methods of generalizing predicate and functor places. We have followed
Frege in taking second-order logic as embodying a direct method, in
which predicates (and in some forms, functors) are taken as themselves
having reference and as standing in quantifiable places; Frege relies on
these assumptions in arguing that functions are essentially incomplete
and cannot be objects. A second method, illustrated by (4), might be called
the method of nominalization. This does not treat predicates and func-
tors as themselves generalizable, but rather transforms the contexts in
which they occur so that they are “nominalized” into names of qualities,
properties, relations, sets, classes, or functions.

The existence of the method of nominalization and its frequent use
both in ordinary language and in mathematics casts some doubt on
Frege’s view that predicates denote unsaturated entities which cannot be
objects. It is, however, not always available or appropriate. Frege might
have replied as follows to the above appeal to λ-abstraction in question-
ing his view that functors have reference: We are driven to the conclusion
that functors denote functions, because we must accept functors in this

19 Cf. Quine, Methods of Logic, 3rd ed., p. 111.



P1: JZP
9780521452793c01 CUNY1138/Parsons 978 0 521 45279 3 October 30, 2007 10:33

§5. Is whatever is an object? 17

role in order to apply the logical laws concerning functions. For exam-
ple, for every function f and objects x and y, if x = y, then f (x) = f (y).
Thus, if 4 = 2 + 2, then 2. 43 + 4 = 2. (2 + 2)3 + (2 + 2). The method of
nominalization requires that the inference from the above generalization
about functions to the conclusion be mediated by something like

If 4 = 2 + 2‚ then [λx(2. x3 + x)](4) = [λx(2. x3 + x)](2 + 2)‚

and the conclusion obtained by λ-conversion. But how are we to state
the logical law which is applied in the λ-conversion? If it is a general law
about functions (say that for any f and y, [λx ( fx)](y) = f (y), then, if the
generalization about functions contained in it rests on the method of
nominalization, we will be in a circle. Here we are driven to assume laws
in which functors occur as such, and not merely nominalized, because
such laws are needed to get from nominalized generalizations to their
non-nominalized instances.

Before I try to answer this Fregean argument, I shall point out another
limitation of the method of nominalization. In the case of predication,
the method works as follows: with a predicate ‘Fx’ we associate an object
which (intending neutrality as to whether it is a set, class, property, or
what) I shall designate ‘(Ox)Fx’, and we have in the language a copula-
like expression ‘η’ (‘has’, ‘falls under’, ‘is an element of’, or the like), such
that for any singular term t, ‘Ft’ is (logically) equivalent to ‘t η (Ox)Fx’.
But there must be some restriction, on pain of Russell’s paradox. For if
we let ‘Fx’ be ‘¬(x η x)’ and let t be‘(Ox)¬(x η x)’, then we have ‘¬(t η t)’
equivalent to ‘t η t’. The supposition that (Ox)Fx always exists is just the
supposition that for any predicate ‘F ’

(9) (∃y)(∀x)(x η y ↔ Fx),

which is just the inconsistent universal comprehension schema. Hence
either (Ox)Fx does not always exist (or at least does not always fall within
the range of the quantifier (∀x)), or the equivalence of ‘Ft’ to ‘t η (Ox)Fx’
does not always obtain, or the term ‘(Ox)Fx’ is not always well formed.
Whatever “way out” we choose, it will mean that a generalization of pred-
icates by the method of nominalization is failing to capture some pred-
icates as “instances.” The paradox is an argument for Frege’s view that
some generalizations are irreducibly about functions or concepts and can-
not be reduced to generalizations about their object “surrogates.”20

20 Frege was of course unaware of this argument when he developed his theory of functions
and objects, but he saw its force after Russell informed him of his paradox.



P1: JZP
9780521452793c01 CUNY1138/Parsons 978 0 521 45279 3 October 30, 2007 10:33

18 Objects and Logic

The limitations of the method of nominalization apply with particular
force to an example we mentioned above for the point that generalization
of predicate places is essential in mathematics: the axioms of separation
and replacement in set theory. As Zermelo originally stated the axiom of
separation, it is that for any “definite” propositional function P and any
set a, there is a set b consisting of exactly those elements of a for which
P holds.21 Whatever he may have meant by a “definite” propositional
function or property, it seems clear that it can be regimented by some
kind of second-order logic, and we can state the axiom as

(10) (∀z)(∀F )(∃y)(∀x)[x ∈ y ↔ (x ∈ z ∧ Fx)].

But in applying the axiom, one instantiates for the variable ‘F ’ predicates
that have not been determined to have sets as their extensions and in
fact many predicates that can be proved not to have sets as their exten-
sions. If we replaced the second-order quantifier by a quantifier over
sets, (10) would reduce to the trivial statement that any two sets have an
intersection.

Hence if we want to use the method of nominalization to express the
generality of the axiom of separation, sets cannot serve as the objects
associated with the predicates. Zermelo’s idea of “definite properties”
as another kind of object with which set theory is concerned has not
found much favor in the form in which he presented it, but it would
offer the possibility of saving the method of nominalization in this case.
Historically, it is probably the ancestor of the more respectable notion of

21 “Untersuchungen über die Grundlagen der Mengenlehre I,” p. 263. Although the trans-
lation “definite property” is in general use, Zermelo actually uses the phrase “Klassen-
aussage E(x) definit für alle Elemente einer Menge M.” The term Klassenaussage is more
appropriately translated “propositional function” by Stefan Bauer-Mengelberg in his
translation of the paper, van Heijenoort, p. 202. In fact, Zermelo’s terminology shows
some confusion; he does sometimes use the term Eigenschaft (property). In a later dis-
cussion of the notion in response to critics, he says his aim is to clarify axiomatically “the
concept of ‘definite’ properties or statements (Eigenschaften oder Aussagen)” (“Über die
Definitheit in der Axiomatik,” p. 340). But then in his development he uses the term
Aussage. I read him as being concerned with generalization of predicate places but vac-
illating, without making the distinction, between the method of nominalization and the
method of semantic ascent.

I learned much about Zermelo’s notion and its history from my student R. Gregory
Taylor; see his dissertation, especially Chapter 6, and “Zermelo, Reductionism, and the
Philosophy of Mathematics.” See also Moore, “Beyond First-Order Logic.”
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class in set theory, and we can interpret the variable ‘F ’ in (10) as ranging
over classes.22

The more usual procedure in set theory, however, is to formulate the
axioms of separation and replacement as schemata. This is in effect an
application of a third method for generalizing predicate places, which
I will call the method of semantic ascent. In axiomatizing set theory in
the usual first-order way, the formulation (10) is not available; instead, of
course, one assumes as an axiom for each formula A (x) of the language
with the free variable x

(11) (∃y)(∀x)[x ∈ y ↔(x ∈ a ∧ A (x)].

This has the consequence that we cannot express in the language of the
(formalized) theory the generality of the axiom in the formulation (10).
In the metalanguage, however, we can express such a generalization by
saying that all instances of (11) are true.

The method of semantic ascent enables us to express some general-
izations for which the method of nominalization is either unsuccessful
or inappropriate. Let us return to the Fregean argument against the claim
that general laws about functions can be adequately stated as laws about
function-objects denoted by λ-terms. The “law of logic” needed is the rule
of λ-conversion, which might be stated as follows:

(12) If s(x) is a functor and t is a singular term, then ‘[λx. s(x)](t)’ is
equivalent to s(t); i.e., (as a matter of logic) ‘[λx. s(x)](t) = s(t)’ is
true.

But stating this law in one of these metalinguistic forms, in which instead
of talking of Fregean functions one talks of functors (and the other types of
expression involved), serves the purpose. Because of the use of the truth
predicate, it is not just a statement about language. (“Equivalent” could
mean that one term can be substituted for the other, but as in other cases
where one talks of logically permissible inferences, the understanding is

22 Some of the axioms in the axiomatization of the notion of definite property that Zermelo
attempts in “Über die Definitheit” are close to axioms assumed about classes in later
work of Bernays and Gödel, for example the axioms of Group B in Gödel, The Consistency
of the Continuum Hypothesis, p. 37.

In “What is Cantor’s Continuum Problem?” Gödel refers to “property of sets” as “the
second of the primitive terms of set theory” (1964 version, p. 260 n. 18). This suggests
that something like Zermelo’s original conception is not dead.

The concept of class in set theory is discussed in relation to the problem of generalizing
predicate places in Essays 8 and 10 of Mathematics in Philosophy. In the latter essay, I
consider the relation to intensional notions.
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that truth will be preserved.) Such a metalinguistic form of statement of
laws of logic is unavoidable; Frege himself needs it in order to state the
rules of inference of his own system. According to Quine, it is the only way
in which the generality of the laws of logic can be expressed.23 We do not
need to pass judgment on this. It is indispensable in logic, and we would
naturally take many metalinguistic statements, such as that all statements
of the form ‘(∀x)Fx →Ft’ are true, as expressing logical knowledge, even
though they are not logical truths according to the usual definitions.

The method of semantic ascent offers an alternative to the direct
method for expressing the generality of the second-order principles of
mathematics, as we have already seen in the case of the axiom of sepa-
ration. This is of some importance for the axiom of induction in number
theory, since we do not think of elementary number theory as involving
commitment to properties, sets, classes, or Fregean concepts. The infor-
mal axioms have a generality that is not expressed by the statement, with
respect to a particular formal language, that all instances of the schema
in that language are true. The reason is that the informal schema need
not be thought of as confined in its application to a particular, definite
language. This is rather clear in the case of induction, where no one thinks
of the validity of induction as limited to the language of, say, first-order
number theory. If it were, then there would be nothing by virtue of which
a nonstandard model of number theory is nonstandard. In practice, in
any language in which we talk about natural numbers, we are prepared
to affirm induction for any predicate of that language.

Stated in this way, the principle of induction has an inescapable vague-
ness. The same will hold for other informal second-order principles, so
long as the method of semantic ascent is used to express them. We may
of course express the principle of induction by the method of nominal-
ization, as a generalization about sets, classes, or properties. This will in
some contexts be more precise. But the same inescapable vagueness will
appear again, as the application of such an axiom of induction will require
minor premisses to the effect that certain predicates have sets or classes
as their extensions or that they express properties.24

The same inescapable vagueness arises for the laws of logic. The model-
theoretic definition of validity of course allows a precise statement of a
law of logic in the form of a statement to the effect that a certain schema
such as ‘(∀x Fx) → Ft’ is true under any interpretation, that is, for any

23 Philosophy of Logic, pp. 11–12.
24 Cf. Quine, Philosophy of Logic, pp. 53 ff.
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assignment of a set as domain for the quantifiers, a subset of the domain
as extension for ‘F ’, and an element of the domain as denotation for ‘t’.
But the validity of the schema in this sense implies the truth of an actual
statement of that form only on the assumptions that the manner in which
the domain of the quantifiers is given makes it a set and that the predicate
‘F ’ represents has a set as its extension. This pushes the question back
to that concerning the principles of set theory, in particular the axiom
of separation. The laws of logic have a certain dialectical character, in
that the method of nominalization and the method of semantic ascent
can both be used to state them, and neither can completely displace the
other.

The systematic ambiguities which arise with respect to the notions of
‘all sets’ and ‘all predicates (of any language we might come to formulate
or understand)’ have, however, no effect on the extensional characteri-
zation of the laws of classical first-order logic, provided we recognize the
universal validity of the primitive rules of proof of some standard formal-
ization. For then the completeness theorem informs us that any formula
that is not provable has a countermodel of a very restricted sort, where
the domain is the natural numbers and the sets which are the extensions
of the predicates are arithmetical, in fact �2. As G. Kreisel observed, this
is true also if we envisage an “intuitive” conception of logical validity that
takes in interpretations where the domain is not a set.25 On common
conceptions of discourse about proper classes in set theory, such a con-
ception would involve the method of semantic ascent, and I would view
that as the way to understand such a conception outside the specifically
set-theoretic context. More needs to be said about the matter, but the
present work is not the place to pursue it.

I should make clear that as I understand the method of semantic ascent,
the objects talked about in semantic reflection are linguistic expressions.
Properties do not come in by the back door in the formulation of general
principles about the truth of sentences of a certain form. Where inten-
sional entities may be needed in semantics is for handling explicitly inten-
sional contexts, not for stating logical laws or second-order axioms for the
extensional language of standard mathematics. But as our remarks about
modality indicate, the kind of problems that give rise to intensions do
arise in reflection on mathematics. In particular, they are involved in a
treatment of proper classes in set theory that I have given elsewhere.26

25 “Informal Rigour and Completeness Proofs,” §2.
26 Mathematics in Philosophy, Essay 10, sections III–IV.
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These remarks should remind us that what has been given here is only
the beginning of a treatment of generalization of predicate places. To
begin with, just as Russell’s paradox limits the method of nominalization,
so the semantic paradoxes limit the method of semantic ascent. In the
treatment of the concept of number, the second-order character of the
principle of induction needs to be considered, as we will see especially
in chapter 8. In the foundations of set theory, we need to look closely
at all three methods, but especially the method of nominalization, since
(in different contexts) in the practice of set theory both sets and classes
serve as extensions of predicates. I have gone into some of these matters
elsewhere.27 I do wish to claim that the present discussion does show
that considerations about predication do not lead inevitably to our taking
second-order logic as our canonical framework and admitting, as values
of our second-order variables, entities that are not objects.

In talking of the direct method and taking it to be captured by second-
order logic, we may have given the impression that it already commits one
to Frege’s conclusion that what predicates designate cannot be objects.
That is not quite true. The most that the appeal to Russell’s paradox shows
is that predicates of objects in a given domain cannot always have their
reference in that domain, provided that the language can express the rela-
tion ‘η’ (Frege’s ‘falls under’). In the end, the force of the regress argument
that we alluded to at the beginning of this section obviously depends on
more about how one understands the relation of reference than we have
gone into.

The syntax of second- and higher-order logic suggests a weaker view
than Frege’s, which many readers will find more plausible: that entities
necessarily segregate into types such that expressions for entities of dif-
ferent types must be of different syntactic categories. If we admit the
types to be different categories of objects (that is, subjects of predica-
tion to which identity applies), then we can carry out a “unification of
universes” in which we suppress the differences of type and mark the
domains of variables of different type by predicates. To be sure, some
previously meaningless statements become meaningful, but their truth-
values can be settled by stipulation in a way that does minimal violence
to intuition. On this subject, I have little to add to the remarks of Quine.28

27 In Mathematics in Philosophy. The parallelism of the difficulties posed by Russell’s para-
dox and the liar paradox is a theme of Essay 9. On the methods of nominalization and
semantic ascent in set theory, see also Essays 3, 8, and 10.

28 For example Ontological Relativity, pp. 91–92.
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§6. Being and existence

The reader will recall that the third point at which reservations about
standard first-order logic as the universal measure of ontology can affect
the notion of mathematical object is the ancient question whether refer-
ence to objects is necessarily reference to objects that exist. It is tempting
to suppose that fiction, myth, and some propositional attitude construc-
tions involve reference to objects that do not exist. ‘Pegasus is a winged
horse who was captured by Bellerophon’ seems to be about Pegasus and
Bellerophon, neither of which existed. We may not accept this as quite
a genuine statement, at least not a true one. But then what of ‘Pegasus
is depicted in a statue above the entrance to the Columbia Law School’
or ‘Sherlock Holmes is more famous than any real detective, living or
dead’?29 And we can certainly say ‘Pegasus did not exist; he is a mythical
creature’. These statements, it will be said, involve reference to Pegasus
and Sherlock Holmes, and are genuine truths.

This issue does not belong to the philosophy of mathematics, and we
will not go into the merits of the claim that there is reference to nonexistent
objects. I do want to point out how the meaning of ‘object’ and of the
quantifiers might be affected. The most famous advocate of nonexistent
objects, Alexius Meinong, held that Sosein is independent of Sein; that is,
a singular proposition ‘Fa’ can predicate ‘F ’ of an object a, perhaps truly,
without imputing existence to a. ‘The golden mountain is golden’ says
truly of an object, namely the golden mountain, that it is golden. ‘The
golden mountain does not exist’ says truly of the same object that it does
not exist.

According to Meinong, as thus represented, ‘the golden mountain is
golden’ says of an object that it is golden; that is, Meinong is saying that
some object is said here to be golden. Because that object does not exist,
it seems that the quantifier-like expressions ‘some object’ and ‘an object’
do not imply existence, although we may regiment these locutions by
the existential quantifier. Indeed, ‘There exists an x such that Fx’ would
on this view be rendered ‘Some x is such that Fx and x exists’, so that
existence is expressed by a predicate. Existence is not, as Quine would
have it,30 what the existential quantifier expresses. We will call the latter
being. (The choice of this term does violence to Meinong; note that it is
Sein (being) of which Sosein is said to be independent. There is, however,

29 The second example is from Terence Parsons, Nonexistent Objects, p. 32.
30 Ontological Relativity, p. 97.
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no ready alternative, and we will adopt it provisionally and consider its
difficulties later.)

This reading of Meinong’s thesis is worth remarking on because it
arises naturally in the construction and semantic interpretation of inten-
sional logics.31 Moreover, the distinction between being and existence
is formally analogous to the distinction between existence and actual-
ity, which arose in our comparison of Kant and Frege in §2. In fact, we
might be tempted to turn on its head Quine’s reason for holding that
existence is what the existential quantifier expresses and conclude that
this Meinongian being is what we were inclined to understand by exis-
tence, whereas ‘existence’ is a predicate that might better be called “real
existence” or “reality.” The idea that the concept of object has its home
in formal logic is meant to imply that if we use the devices of singu-
lar terms, predication, identity, and quantifiers to make serious state-
ments, then we are speaking about genuine objects. Nothing more can
be demanded for the existence of objects than for the truth of state-
ments of the form ‘(∃x)Fx’. But if among our objects are the round
square and Pegasus, we certainly do violence to ordinary language by
taking the quantifier to express existence. It would follow that what the
logical approach to ontology really envisaged was what we now call
being.

It might be tempting to suppose that real existence is just Kant’s and
Frege’s actuality and that what in mathematics is called existence is merely
being. Matters are not so simple, however. The motives for admitting that
some objects do not exist certainly apply in principle to mathematical
objects. This is evident if we follow Meinong in thinking of empty defi-
nite descriptions as standing for nonexistent objects: the round square

31 A straightforward semantics for modal quantificational logic involves a domain D of
objects, which is independent of the choice of possible world. With respect to a given
possible world an object in D may or may not exist. In what is called fixed domain
semantics, the quantifiers range over D; to express existence, a predicate ‘E’ needs to be
added to the usual logical apparatus (whether or not ‘E’ is counted as logical). Quantifiers
in fixed domain semantics are often said to range over possible objects; but without some
additional assumption there is no obstacle to allowing D to contain objects of which ‘E’
is true in no world. A broader domain D is still relevant in the type of semantics (such as
what, following R. H. Thomason, I call Q3) in which for each world, the quantifiers range
over the objects existing in that world. Relative to a given world, singular terms may be
interpreted to denote, and free variables may be assigned, objects that do not exist in
that world.

The different semantic alternatives are presented briefly in Appendix 1 to Essay 11
of Mathematics in Philosophy. Thomason’s “Modal Logic and Metaphysics” is still an
instructive discussion of some general issues involved.
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is a nonexistent mathematical object; if there is such an object, then the
sense in which there is cannot be mathematical existence. This kind of
case, however, is the least persuasive for a Meinongian ontology. The
other cases where it is argued that nonexistent objects are required
are de re propositional attitudes and fiction. But on this view, surely
fiction can speak of nonexistent mathematical objects, though of course
the necessity of mathematics implies that the existence of such objects
is impossible. Although fiction is doubtless constrained by considera-
tions of coherence, it is certainly not limited to recounting the possible.
Terence Parsons gives the example of a story in which a character named
Atherton squares the circle.32 But any reason to admit the squarer as an
object applies with equal force to the construction by which he squares
the circle. But no such construction can exist. Thus, if this conception of
being were to be accepted, there would have to be a predicate of exis-
tence applicable to mathematical objects, which would differ from the
predicate of actuality.33

As I have said, I do not intend to discuss the question whether we
need to admit into the range of our quantifiers such objects as the golden
mountain, the round square, Pegasus, and Sherlock Holmes. (My incli-
nation is negative.) I do wish to point out some difficulties concerning
the notion of existence which arise on such a view. A well-known one,
arising from the treatment of existence as a predicate, is that it seems that
such a predicate can be put into a description that designates an object;
the round square is round, but it does not exist. Russell objected that ‘the
existent round square’ should, on Meinong’s grounds, stand for an exis-
tent object.34 Meinong replied that the existent round square is indeed

32 “The Methodology of Nonexistence,” p. 657.
33 However, this point does not rule out a conception of mathematical objects as nonexis-

tent objects in the context of a Meinongian ontology. It might be held that the primary
meaning of ‘existence’ is what we are calling actual existence, so that in the most basic
sense, mathematical objects do not exist. The existence predicate of mathematical lan-
guage would be different, perhaps more related to possibility. In fact, this seems to have
been the view of Meinong himself; see “Über Gegenstandstheorie,” §2 (Gesamtausgabe,
II, 488).

The incompleteness of mathematical objects is a feature they share with the nonex-
istent objects postulated by Meinongian theories. Indeed, appreciation of the fact that
incomplete objects seem to be forced on us by mathematics may lessen the resistance
that is felt to Meinongian objects. By contrast, if the analogy is too much stressed,
Meinongian objects may seem too much like abstract objects to serve the needs of
the analysis of fiction.

34 Essays in Analysis, p. 81.
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existent but still does not exist.35 Whether or not this makes sense, it
seems to drive a wedge between the predicate of existence and the more
proper sense of existence, which might be given by a quantifier.

We might try to formalize this interpretation of Meinong by means of
a logic in which the quantifiers express being and there is a predicate, ‘E’,
of existence.36 The existent round square is ιx(Ex ∧ Rx ∧ Sx) (with ‘Rx’ for
‘x is round’ and ‘Sx’ for ‘x is square’). But then if we admit that there is
such an object, that is,

(∃y)[y = ιx(Ex ∧ Rx ∧ Sx)]‚

and that it is existent, that is,

E[ιx(Ex ∧ Rx ∧ Sx)]‚

then it follows that there exists an existent round square. Thus, Meinong’s
reply is not captured. He needs to make the distinction Russell could
not see,37 between existing, even as a predicate, and being existent. The
predicate of existing must be disallowed in forming descriptions whose
objects automatically satisfy the description. But a distinction between
allowed and disallowed predicates can already be motivated by other
considerations.38

35 Über die Stellung der Gegenstandstheorie im System der Wissenschaften, p. 17 (Gesam-
tausgabe, V, 223).

36 In its accommodation of singular terms not designating existing objects, such a logic
resembles free logics, but in fact it could be just ordinary logic with the predicate ‘E’. Typ-
ically in free logic, however, the quantifiers range over existents, and ‘(∀x)Ex’ is provable.
The discussions of the relation of free logic to Meinongian ideas by Lambert (Meinong
and the Principle of Independence, ch. 5) and Routley (Exploring Meinong’s Jungle and
Beyond, §§1.8, 1.14) make this assumption about what free logic is.

In the logic we have in mind, the truly “existential” quantifier is just the quantifier ‘(∃x)’
restricted to ‘E’. The unrestricted quantifier might better, following Routley, be called the
particular quantifier (see later). The old German terms Seinszeichen and Seinsquantor
do not go naturally into English.

37 “I must confess that I see no difference between existing and being existent; and beyond
this I have no more to say on this hand” (Essays in Analysis, p. 93).

38 Terence Parsons’s neo-Meinongian theory of objects in Nonexistent Objects is based on
a distinction, which can be traced back to Meinong, between “nuclear” and “extranu-
clear” properties. To any set of nuclear properties there corresponds an object having
all those properties. Some restriction is needed to avoid paradox: if ‘the square that is
not a square’ stands for an object a that is square and not square, ‘a is square’ and ‘a is
not square’ would both be true, a contradiction. (Cf. Nonexistent Objects, p. 31. In “The
Methodology of Nonexistence,” p. 650, this is called the Paradox of Naive Object The-
ory.) Parsons avoids contradiction by concluding that not being square is not a nuclear
property.
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Meinong had a deeper reason for resisting the interpretation of his
theory of objects in terms of a being-existence distinction. He meant the
independence of Sosein from Sein to be just that: that we can predicate
things of the golden mountain does not imply that the golden moun-
tain has being in any sense (except Sosein itself). So there really is no
golden mountain; it isn’t just that there is a golden mountain that fails to
exist.

One might question whether this position would really help to ana-
lyze discourse about fiction, which is probably today the most plausible
motivation for a theory of objects. But anyway, its coherence seems to
me doubtful. Meinong needs to make general statements about objects:
He professes to have a theory of objects. The language of such a theory
will contain quantifiers. He may refuse to say that there are objects of a
certain kind, except where such exist. But he wants to deny that all objects
exist and gives such examples as the round square and fictional objects.
But what is that but to say that some objects do not exist? The conclu-
sion, “There are objects of which it is true to say that there are no such
objects,” was recognized by Meinong himself to be a paradox.39 I think it
is a contradiction unless ‘there are’ is admitted to be equivocal. One sug-
gestion, not favored by Meinong’s contemporary interpreters and apolo-
gists, is to regard the inner quantifier as objectual and as expressing being
(no longer distinguished from existence in Quine’s sense), whereas the
outer quantifier is substitutional for a substitution class which includes
what we would call singular terms lacking reference. This substitutional
quantification might be relative to objects in the range of the objectual
quantifiers.40

Our original suggestion resolves the paradox by taking the outer quan-
tifier as the basic quantifier, the inner as really restricted to existing

Existence is also not a nuclear property (Nonexistent Objects, p. 25). So we can’t assume
that the existing round square exists. However, there is a “watered down version” of the
extranuclear property of existence, which is nuclear and which might be called being
existent (ibid., pp. 43–44). If so, then the existent round square is existent but does not
exist.

A similar distinction between “characterizing” and “noncharacterizing” predicates
is used to meet this problem by Richard Routley; see Exploring Meinong’s Jungle and
Beyond, pp. 45–48, 86–91. In the latter passage, Routley considers the distinction between
sentence and predicate negation, which complicates the picture: clearly one can admit
the object b that is square and nonsquare, and conclude that b is square and b is non-
square, if one rejects the inference from the latter to ‘¬(b is square)’, even if one allows,
as Meinong did, that nothing could exist that is both square and nonsquare.

39 “Über Gegenstandstheorie,” §3 (Gesamtausgabe, II, 490).
40 In the sense of Mathematics in Philosophy, p. 214, also pp. 67–68.
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objects.41 As an interpretation of Meinong’s doctrine of Aussersein, it is
certainly an anachronistic reinterpretation. The stress on quantifiers is
not to be found in the text.42 In one crucial respect the interpretation
makes Meinong’s underlying ontological intuition not so different from
our own (derived from Frege and Quine): In considering whether there are
F ’s, we should not be guided too decisively by pictures derived from the
case of actual concrete objects. I believe this was in fact part of Meinong’s
intent. But it clearly rejects Meinong’s idea that nonexistent objects lack
any kind of being. We can accommodate part of what the latter view appar-
ently means, that not only do they not exist, but they do not have any ana-
logue of existence such as the “subsistence” that Meinong attributed to
universals and to facts.43 But on our conception of objects and existence,

41 Parsons’s version of Meinong follows this suggestion. He says that it is only a “termi-
nological” question whether nonexistent objects have any kind of being (Nonexistent
Objects, p. 10). The terminological issue would have to be whether ‘there are Fs’ implies
‘Fs have being’.

42 Meinong says on p. 494 of “Über Gegenstandstheorie” that the paradox is resolved by
the thesis that the object is by nature ausserseiend, in effect by the thesis of the inde-
pendence of Sein from Sosein itself. Apparently this is to follow from the claim that “the
whole opposition of being and non-being is primarily a matter of the Objective and not
of the object” (p. 493). (An Objective is a state of affairs; see note 43 below.) I do not
understand this, and I am not helped by Meinong’s principal interpreters. It seems to
say that the being of Fs is equivalent to the truth of ‘there are Fs’. But then how is the
implication avoided that the “objects of which it is true to say that there are no such
objects” both have and lack being?

43 We should mention another reason for admitting nonexistent objects which is certainly
historically important. This might be called “fact metaphysics.” If one holds that a true
sentence stands for, or means, a fact, then for a false one there seems to be no fact
for it to mean. Meinong held that a sentence designates an “Objective” (Objektiv) which
“subsists” (besteht ) if the sentence is true. Subsistence is the analogue for abstract objects
of existence, which Meinong limited to the concrete, as Russell also did sometimes
(e.g., The Problems of Philosophy, p. 100 of reprints). Thus a false sentence designates a
nonsubsistent – we would say nonexistent – object.

One may be content to leave a false sentence denoting nothing and to take a locution
like ‘it is false that p’ as simply another way of expressing the negation of ‘p’ and not
as predicating something of a nonexistent “objective,” state of affairs, or fact. But the
matter becomes more serious when we consider propositional attitudes. To believe that
p when it is false that p is still to believe something. If this something exists only when ‘p’ is
true, then it seems to be something nonexistent. (Cf. Grossmann, “Meinong’s Doctrine,”
p. 73.)

In spite of the central role of propositions in the logic of Principia, Russell objected to
propositions on the ground that he could not see how there could be false propositions.
For example:

Time was when I thought there were propositions, but it does not seem to me very plausible
that in addition to facts there are also these curious shadowy things going about such as
“That today is Wednesday” when in fact it is Tuesday. . . . To suppose that in the actual world
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what is expressed by the quantifier ‘there are’ or ‘some . . .’ is already an
analogue of existence.

At this point it is instructive to consider the more uncompromising
defense of Meinong’s ontological intuitions by Richard Routley.44 Rout-
ley discerns no difficulty in more comprehensive quantification than
over existing objects, which he calls “neutral” quantification; although
he advocates revisions of classical logic (particularly in the direction of
relevance logic), he admits that standard first-order logic can have a neu-
tral interpretation.45 To be sure, he (reasonably enough from his point of
view) thinks that even the notation ‘(∃x)’ for the “existential” quantifier is
bound up with the reading of it as “there exists”; read neutrally, he prefers
to call it the particular quantifier and to write ‘Px’.46 The English reading
he prefers is “some” or “something”; “there are” he seems to regard as
ambiguous between the neutral particular quantifier and the existential
quantifier.

So far, nothing substantial distinguishes Routley’s position from the
version of Meinong we have emphasized. On that view, however, ques-
tions of reference and ontological commitment should be ambiguous:
A term may lack reference to an existing object and still designate
something, namely something nonexistent; we may be committed
to F ’s, that is, to the conclusion that something is F, without being
committed to, and even while denying, that F ’s exist. It seems to me that
the logic-based notion of object implies that it is the broader rather than
the narrower notions of reference and commitment that are the more
fundamental ones.

That is emphatically not Routley’s view. According to him, reference
is to what exists; ontological commitment is commitment to existence.
This is already suggested by his describing quantification encompassing

of nature there is a whole set of false propositions going about is to my mind monstrous
(“The Philosophy of Logical Atomism,” p. 223).

One might object that to suppose that there are such propositions is not to suppose
that they are “shadowy things . . . going about” or that they belong to the “actual world
of nature.” At all events, Russell sought to meet the difficulty by treating propositional
attitudes not as relations to a proposition or fact but rather as relations to the constituents
of what would be the proposition.

44 I use the name under which the works under discussion here were published; as is well
known, Routley later took the name Richard Sylvan. In “In memoriam: Richard Sylvan,”
Robert Meyer states that substantial parts of Exploring Meinong’s Jungle and Beyond
were written in collaboration with Valerie Routley, now Val Plumwood.

45 Exploring Meinong’s Jungle and Beyond, p. 81.
46 Ibid., p. 80.



P1: JZP
9780521452793c01 CUNY1138/Parsons 978 0 521 45279 3 October 30, 2007 10:33

30 Objects and Logic

nonexistent objects as “neutral.” Routley follows Meinong in holding that
mathematical objects do not exist, but then his position is more radical:
He rejects Meinong’s whole notion of subsistence and holds that mathe-
matical objects and universals have no being at all, although he accepts
theories that quantify over them.47

It is not easy to discern what issues other than terminological sep-
arate Routley’s view from the version of the theory of objects outlined
here. In spite of his strong criticism of what he calls the Reference Theory,
his scheme of things allows a formally analogous relation between terms
and objects that he calls aboutness, designation, or signification; and
his objectual conception of “neutral” quantification preserves the con-
ception of bound variables as ranging over a domain of objects, so that
the question what that domain must contain for statements of a certain
theory to be true will still arise.48

Where a more substantive issue emerges is with Routley’s rejection of
the classical conception of predication and the principle of substitutiv-
ity of identity that goes with it.49 His main reason for this is that, with
some other intensional logicians, he takes sentences of the form ‘Fa’ to
be saying of a that it is F, even where ‘F ’ is intensional and the sentence
is not being read in a specifically de re way. In Routley’s argumentation
on this point, however, which consists mainly of criticism of alternative
views about quantifying into intensional contexts and how to understand
the well-known failures of substitutivity, he does not address the mat-
ter of ontological commitment or undertake to say why his conception
of predication, if accepted over the classical one, should make possi-
ble “ontology-free” quantification over nonexistent objects. Evidently he
thinks of the substitutivity of identity as bound up with what he calls the
Reference Theory, but precisely on the point that now concerns us one
has to distinguish two underlying ideas that form part of that “theory” as
he understands it: the idea that (roughly) truth is a matter of reference,
and the idea that reference is reference to what exists. It is the second that

47 Ibid., pp. 4, 851. Routley does not saddle his own position with the “fact metaphysics”
referred to in note 43 and thus not with Meinong’s identification of truth with the sub-
sistence of “Objectives”; see particularly pp. 855–856. On his handling of “mathematical
existence,” see later.

48 Ibid., pp. 53, 81.
49 Ibid., pp. 96 ff. It seems clear that one can accept nonexistent objects and the indepen-

dence of Sosein (true predication), at least from existence, without rejecting the classical
conception of predication or the principle of substitutivity. Motives from intensional
logic, however, can encourage both deviations from classical views, as Routley’s writing
illustrates. (He does not claim Meinong’s authority on the second issue; see ibid., p. 868.)
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bears most directly on ontological commitment, and the question I have
raised is whether, once one entertains nonexistent objects, it is more than
terminological legislation to continue to maintain that we have reference
only where the object designated exists. It is the first idea that is bound up
with the substitutivity of identity, and it continues to be so if one under-
stands ‘reference’ as Routley’s aboutness or designation. But so long as it
is separable from the second, as it appears to be, it remains unclear why
Routley’s rejection of the latter, however well grounded, should make his
views on ontological commitment themselves rest on more than termi-
nological legislation.

One reason why Routley may believe otherwise is that he thinks of items
as objects of thought. And of course it should be agreed that it should be
possible to think of an object a, without either the thinker or someone
reflecting on this situation being committed to there being such an object
as a. But on every point except that of existence and being, Routley’s con-
ception of “items” is strongly realistic. They are not creatures of mind or
language; his theory of them is not verificationist; they form a rich struc-
ture, at least as rich as the structures considered in mathematics, since
items include the objects of mathematical theories. Of the latter objects,
at least, Routley says that they “are in no way mind-dependent or tied
to a thinking or perceiving subject or to human peculiarities or behav-
ior or agreement.”50 Routley claims that the problems of platonism and
mathematical existence disappear once it is conceded that the objects of
mathematics do not exist. But in his own (admittedly sketchy) treatment
of problems in the philosophy of mathematics, problems of the same kind
reappear as problems about consistency and truth.

Where mathematical objects are concerned, however, Routley’s view
does differ from a weak Meinongian position, which holds that there are
nonexistent objects, and that mathematical objects are among them, but
otherwise (apart from the reading of the quantifiers) leaves logic and
mathematics as it is. Consider, for example, the construction by which
Atherton squared the circle, or the set of all objects that are not elements
of themselves. Mathematics tells us that there are no such objects. The
weak Meinongian position cannot stop with saying that they do not exist;
it must be false that for some x, x is a construction that squares the circle,
or x is a set containing all and only those objects that are not elements
of themselves. It can avoid this conclusion by introducing a predicate to
express what the mathematician means by existence, let us say (echoing

50 Ibid., p. 794.
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Meinong and Russell) “subsists.” Then what mathematics tells us is that
the construction by which Atherton squared the circle does not subsist.51

Routley does not comment very explicitly on this weak Meinongian
position, but implicit in his practice is a rejection of it. One reason may be
that the introduction at this point of subsistence (however it is explained)
would compromise the idea of nonexistent objects, unproblematic math-
ematical ones included, as altogether lacking being. If one is serious about
the idea that the ontological status of mathematical objects is just that of
objects of thought, no matter how fictitious or even inconsistently con-
ceived, then there are no very clear grounds on which to reject Atherton’s
construction and the set of all non-self-membered objects while accept-
ing the construction that proves the Pythagorean theorem and the set of all
countable ordinals. This leads, however, into a revisionary attitude toward
mathematics, which Routley in fact pursues in his interest in “paraconsis-
tent” theories. With the objective of working out a position “which takes
inconsistent sets as they come, as data, as objects of logical investigation,
as objects which a satisfactory theory would let one talk about freely,” he
sketches a very ambitious program for revising the logical foundations
of mathematics.52 It is easy to see that such a program goes well beyond
the weak Meinongian position. I do not wish to enter into discussion of
radical revisions of existing mathematics, particularly when they are in
large part merely projected. Routley’s statment of his motivation, how-
ever, appears to run together the problem of formulating and clarifying
existing mathematics (where any revision can be expected to have a math-
ematical motivation) and the problem of a logic for intentional discourse
where mathematical objects are concerned. A revision prompted by the
first problem can be expected to have a mathematical motivation. But it
is the second that leads to allowing for the fact that we do talk of mathe-
matical objects that do not exist. Without such a conflation, it is hard to
see why a theory of mathematical objects should reject a notion that does

51 Matters are more problematic in the Russell’s paradox case, because
‘(∃y)(∀x)[x ∈ y ↔ ¬(x ∈ x)]’ is logically false. There can be a set consisting of all
subsisting objects that are not elements of themselves, but then it does not subsist. But
there cannot be even a nonsubsisting set consisting of all objects, subsisting or not, that
are not elements of themselves. The weak Meinongian can say that the property of being
such a set is not a “nuclear” or “characterizing” property (see note 38). Dissatisfaction
at this point is one factor driving Routley toward revision of logic.

52 Ibid., pp. 797–798. Paraconsistent logics allow contradictions to be true but by other
restrictions, such as on implication, avoid the consequence that every formula becomes
provable.
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the work of that of mathematical existence, whether it is called existence,
subsistence, or something else.53

If we decide in favor of the weak interpretation of the Meinongian
view, with the concept of subsistence, we are still left with the question
whether the “true” meaning of the existential quantifier is the permissive
Meinongian one which we have called “being,” existence that allows freely
for abstract objects but that rules out impossibilia, or something like
actuality. The logic-based concept of object does not decide between
these alternatives, although, once it has been set forth, the case for the
third is weakened. But in order to understand the notions of object and
existence in mathematics we will have to put more flesh on the bare form
given by formal logic. We need to fill out the logic-based conception by
looking at cases. But as regards the three alternatives given above, it is
mainly the choice between the second and third that will be affected. We
have already indicated that considerations proper to mathematics will not
lead us to favor the first over the second. General as the notion of object
in mathematics is, there is still a constraint of possibility, coherence, or
consistency that objects postulated in Meinongian theories are allowed
to violate. But the case for such theories rests primarily on an analysis
of intentionality, and particularly of discourse about fiction, which is not
our concern.54

§7. Abstract objects and their concrete representations

We will close this chapter by making, provisionally, a distinction among
abstract objects which is quite important for the philosophy of mathemat-
ics. Some abstract objects are distinguished by the fact that they have an
intrinsic relation to the concrete; they are determined by their concrete
embodiments. I shall call such objects quasi-concrete. Sense-qualities
and shapes, among the objects prominent in traditional discussions of

53 I may be attributing to Routley a more definite rejection of mathematical existence than
he intends. In places he uses the term “consistent” with something like this meaning
or at least extension. It is not clear to me whether Routley means consistency in this
context to be a genuine property of objects (perhaps meaning something like “having
consistent properties”) or if an object is called consistent if it is talked about in the
context of a consistent theory. In any event, the underlying idea is not so different from
that of some earlier views about mathematical existence. For example, the idea that
mathematical existence is to be understood in terms of consistency was current in the
Hilbert school. See Bernays, “Mathematische Existenz und Widerspruchsfreiheit,” who
in the end understands it as a form of structuralism.

54 But cf. the remarks about “fictionalism” with respect to mathematics in note 12 above.
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universals, seem to count as quasi-concrete: They “occur” in the world as
the qualities and shapes of whatever objects have them. This is true even
on philosophical views according to which such qualities are ontolog-
ically more fundamental than, say, physical objects (or perhaps sensa)
that might be said to instantiate them: On such a view, the most basic
facts will still be of the occurrence of qualities at certain places and times
or in certain relations to other qualities.

What makes an object quasi-concrete is that it is of a kind which goes
with an intrinsic, concrete “representation,” such that different objects of
the kind in question are distinguishable by having different representa-
tions. The nature of the relation of “representation” will differ according
to the kind of object. Thus if, for the moment, we adopt an empiricist
picture according to which sense-qualities are qualities of sensa, that is
immediate objects of sense, then the relation of representation is simply
that of a sensum’s having the quality in question. Two qualities are seen
to differ by exhibiting a sensum that has one and not the other. In this
case, we would expect that two qualities would be the same if just the
same sensa have them, but perhaps we would need to allow the possibil-
ity that there are not enough actual sensa to make all distinctions among
qualities. But even then we want to say that two qualities are the same
if it is impossible that there should be a sensum having one and not the
other.

An example that does not rest on empiricist philosophy and that will be
important in the sequel is expression-types, whether of spoken or writ-
ten natural language or of artificial symbolism. Consider written natural
language, which has the advantage of being both familiar and straight-
forward. When we talk of words or sentences of a written language, we
normally refer to types, that is, we treat as the identical expressions that
are the same string of letters, spaces, and punctuations; and in deter-
mining the latter, we count a letter such as ‘A’ as the same in its many
occurrences. Nonetheless, what a sentence is, is a matter of what phys-
ical inscriptions are or would be its tokens, and a sentence (if it is not
impossibly long) can be pointed to by pointing to an inscription of it. Two
expressions are the same if they have the same tokens, except in the case
where neither has any tokens at all (that is, neither has been or will ever
be written). To begin with, we can again say that two types are the same
if, necessarily, any token of one is a token of the other. If one wishes to
do so, the most obvious way of avoiding the modal operator is to identify
the type with the sequence of its basic symbols; we can for example say
that two types are the same if for every n, the nth symbol of the one is the
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same as the nth symbol of the other. (The symbols of the alphabet can be
distinguished by actual tokens, as Quine has remarked.55)

The most important examples of quasi-concrete objects are those in
which the concrete representations are the sort of objects that can be per-
ceived. However, the concept of a quasi-concrete object is not meant to be
restricted in this way. Although sets are in general not quasi-concrete, it
does seem that sets of concrete objects should count as such; here the rela-
tion of representation would be just membership. As I am understanding
the notion, sets of physical objects that are inaccessible to observation
would also count as quasi-concrete. But the empty set is already a doubt-
ful case.

One might object, however, that an element of a set does not repre-
sent the set in the same way as a token represents its type or something
concrete represents a sense-quality.56 The reason is that one element can
hardly represent the set as a whole. Take for example the set consisting of
the prime ministers of all states of the European Union on, say, January
1, 1999. At most times its elements are widely distributed spatially; why
should we accept one, say Gerhard Schröder, as representing it? Some-
thing like the mereological sum might be better chosen as representative,
although for sufficiently complex sets one might question its concrete-
ness. Although such a sum is unquestionably located, does it enter into
causal relations? If one grants that it is concrete, that the same sum would
represent different sets is not an objection, since the same is true of tokens
and types. But I am not convinced by the objection; one can equally well
take it to show that in this case the many-one character of the represen-
tation relation is essential to it.57

55 Philosophy of Logic, p. 56.
56 Such an objection was advanced by Christian Wenzel.
57 This is an appropriate place to comment on the objection to our rough criterion of

abstractness mentioned in note 1, the claim that sets of spatiotemporally located objects
are located. (See Maddy, Realism in Mathematics, p. 59, earlier in “Perception and Mathe-
matical Intuition,” p. 179) Indeed, there seems no objection to saying that if the elements
of a set {a1 . . . an} (assuming for simplicity that it is finite) occupy the regions R1 . . . Rn

of space-time, then the set occupies the region that is the sum or union of these regions.
It is not as natural a way of speaking as it appears, however, as one can see if one consid-
ers talk of such sets in a tensed language such as natural languages. A well-entrenched
principle for talking of sets in modal contexts is that a set exists only if all its elements
exist. (See Mathematics in Philosophy, p. 299.) If we think of sets as existing in time and
apply this principle, we reach an anomalous result. Consider a set of objects no two of
whose elements exist at the same time, say the set consisting of the Roman Empire, the
Holy Roman Empire of the German Nation, and the German Empire proclaimed in 1871.
If this set existed in, say, 1900, our principle would imply that the Roman Empire and
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The kind of object with which quasi-concrete objects contrast most
sharply is what I will call pure abstract objects. Pure abstract objects have
no intrinsic concrete representation, and they are characterized not by
conditions relating them to concrete objects of a specified kind but by
conditions of a highly abstract character, involving objects in general. In
this sense, it appears that the natural numbers are pure abstract objects,
and also the pure sets that are the main object of study in set theory.58

It seems to be especially in mathematics that pure abstract objects
arise.59 The natural numbers are as elementary and indispensable an
example of such objects as can be found. Their elementariness few would
dispute. Whether they are genuinely indispensable we will consider in
the next two chapters when we discuss some strategies for eliminating
reference to mathematical objects. At this point, I shall simply explain
what is meant by saying that they are pure abstract objects.

For a particular number, say the number five, what could be meant by
an intrinsic concrete representation of it? A possible answer would be:
Any configuration of five objects. However, something is concealed by
the word “configuration.” If by a configuration is really meant something
concrete and spatial, then it does not determine the kind of object such
that it consists of five of them. For example the inscription

Elizabeth has gone to school

is a configuration of five words, but of twenty-four letters (or of
twenty-four letters and four spaces). This is a well-known point, much

the Holy Roman Empire existed at that time. We might avoid this result by saying that
a set could change its elements over time; the same reasons supporting the rigidity of
membership in modal contexts count against that. For example, our set, which intu-
itively has three elements, would at any time be identical either with a one-element set
or (as now) with the empty set. (Cf. Sharvy, “Why a Class Can’t Change its Members.”)
The conclusion we are left with is that regarding such sets as located requires the tense-
less four-dimensional point of view. It is hard to argue that we must regard such sets as
located, although the choice between rejecting such a conclusion and taking them as an
exception to our criterion of abstractness is not determined by decisive considerations.

Temporal intuitions about sets seem to differ in this respect from modal ones. If a, b,
and c are possible objects that are not compossible, then it seems quite reasonable to
say that {a, b, c} does not possibly exist, although each of its elements possibly exists.

58 The phrase “pure abstract object” seems to have originated with Michael Dummett,
who has the same examples in mind but gives a somewhat different explanation of the
notion. See Frege: Philosophy of Language, p. 503.

59 It may be that in ordinary thinking we do not find clear examples of pure abstract objects
that are not mathematical. But we do find talk of such objects in philosophical theories.
Perhaps the earliest clear reference to pure abstract objects is the discussion of the
Greatest Forms in Plato’s Sophist.



P1: JZP
9780521452793c01 CUNY1138/Parsons 978 0 521 45279 3 October 30, 2007 10:33

§7. Abstract objects and their concrete representations 37

emphasized by Frege in arguing, in the Foundations of Arithmetic, against
the view that number is a property of physical things and in favor of his
claim that a statement of (cardinal) number is a statement about a con-
cept. There is no disputing Frege’s claim that a physical configuration
can only be treated as a configuration of a definite number of objects if
a kind of object (i.e. a predicate) is given, and in a specific case there will
be alternatives.

The plausibility of the suggestion that a configuration of five objects is
a concrete representation of the number five comes from thinking of such
a configuration, consciously or unconsciously, as a set or sequence. This
does indeed avoid Frege’s objection, since a set consists of determinate
elements, and a sequence has determinate terms. But it seems clear that
sets and sequences of concrete objects are not concrete but at best quasi-
concrete. But then it might seem that numbers fail to be quasi-concrete
only because of a certain second-order character; that is, we can think of
a number as “represented” by a set of concrete objects and this set in turn
by its elements, so that the concrete is reached in two steps rather than
one. They might be called “quasi-quasi-concrete.”60

In calling the numbers pure abstract objects, I mean to deny that this
is the whole story. Here we should recall another point Frege uses in his
polemical arguments, that numbers apply to objects in general, without
any restriction. Thus we can number not only ships, stones, and pieces
of sealing-wax, but also points, lines, numbers, and sets, and in addition
gods, angels, or Platonic Forms. If the question how many angels can
dance on the head of a pin is a silly or senseless one, it is not because angel
is both a perfectly sensible concept and one such that it does not make
sense to talk of this or that number of them. Where the concept of number
does appear to cease to apply, the reason is that we are reaching or passing
the limit of speaking of objects, at least in what I am taking as the primary
sense. Prima facie, the form of words ‘there are n Fs’ is meaningful for any
predicate or common noun phrase in place of ‘F ’. The schema already
uses the plural formation, however, and this seems to rule out mass nouns.
Other exceptions may arise where neither ‘F ’ nor our understanding of
the domain carries with it a principle of individuation. For example, the
statement ‘there are n things Reagan said in his speech’ is at best very
vague. We may attribute this to a difficulty of practice or principle in
giving the identity conditions for things said. But in other cases, the lack
of such conditions may be remedied by a contextual restriction either

60 This term was proposed by an anonymous referee of this work.
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on the range of the quantifier or on the intended interpretation of ‘F ’.
Thus, ‘there are n red things’ may make no sense if it is supposed to mean
‘there are n red things in the universe’, but it can of course be used in
a context where a certain range of objects is in question and it is being
said that n of them are red. Thus, although the applicability of ‘there are
n Fs’ presupposes individuation of the Fs, it does not follow that ‘F ’ itself
must be the sort of predicate that contains a principle of individuation,
that is, a sortal. The fact that for a particular finite n, ‘there are n Fs’ is
equivalent to a formula of first-order logic with identity further reinforces
the claim that number applies to objects in general.61 But the question
whether numbers are quasi-quasi-concrete deserves further discussion,
which will take place in Chapter 6.

The concept of set has a similar generality, in that objects in general
can be elements of sets.62 In talking of sets, I will assume the iterative
conception, according to which sets are obtained by (transfinitely) iter-
ated application of the formation of a set from previously given elements,
beginning with objects that are not sets (variously called individuals, Ure-
lemente, or urelements).63 It may be that for a set no individuals enter into
its formation, that if one traces back from its elements, to the elements of
its elements, and so on, every such chain ends with the empty set. Such a
set is called a pure set.64 It is evident that pure sets are pure abstract objects

61 In these remarks, I have gone along with the thesis that the natural numbers are essen-
tially cardinals, although I will question it in later chapters. The same considerations
will emerge if one holds that they are essentially ordinals. On a more purely structuralist
view, the possibility of interpreting the numbers so as to make them quasi-concrete or
even quasi-quasi concrete is more remote.

62 It is natural to say that absolutely any objects can be elements of sets. It may then be
objected that proper classes are an exception. To this it might be replied that proper
classes are not genuine objects. On this problem, see Essays 8 and 10 of Mathematics in
Philosophy.

63 This characterization is of course crude. Expositions of the iterative conception are to
be found in a number of works on set theory, for example Shoenfield, “Axioms of Set
Theory,” Drake, Set Theory, ch. 1, or Krivine, Introduction to Axiomatic Set Theory, ch. 1.
More philosophical discussions are Boolos, “The Iterative Conception” and “Iteration
Again,” Wang, From Mathematics to Philosophy, ch. 6, my Mathematics in Philosophy,
Essay 10, and van Aken, “Axioms for the Set-Theoretic Hierarchy.” Some of the issues
about the iterative conception are discussed in Chapter 4.

64 More precisely, we can define the transitive closure TC (x) of a set x as the smallest set
containing the elements of x, and such that the elements of every set belonging to it also
belong to it. A set x is pure if TC (x) contains no individuals.

It should be pointed out that writings on set theory by mathematicians character-
istically assume a formulation that allows only for pure sets; even careful writers of
introductory books will do this without any discussion.
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in our sense; otherwise, if some individuals are pure abstract objects, then
a set formed ultimately only from such individuals will be a pure abstract
object even if not a pure set.

It is easy to give examples of sets that, from what has been said so
far, should count neither as quasi-concrete nor as pure abstract objects.
A finite set some of whose elements are concrete and some of whose
elements are pure sets would be an example, say the two-element set
consisting of the von Neumann ordinal ω and my fountain pen; obviously
such examples could be multiplied. It is reasonable to stipulate that a
set is not a pure abstract object unless all its elements are, so that its
transitive closure would have to contain only pure abstract objects (and
so no concrete objects). There is no reason to count a set as quasi-concrete
unless its elements are concrete. Thus the case of impure sets should make
clear that the notions of pure and quasi-concrete abstract object do not
provide an exhaustive classification of abstract objects, even the most
basic mathematical objects. Of nonmathematical “universals,” no doubt
the most elementary are quasi-concrete, but those proposed in theories
of morality and aesthetics, such as Plato’s Justice and Beauty, are evidently
neither quasi-concrete nor pure.65

65 Our remarks about the null set might suggest that it is both quasi-concrete and pure. It’s
not obvious that this has to be ruled out, but I think the appearance results from two
different ways of construing the null set. If we think of the sets whose elements come
from a domain of concrete objects, then the null set is one of them; why should only it
be excluded from being quasi-concrete? But the usual way of thinking of the null set is
as the set that has no elements period, whatever the domain of quantification, perhaps
taking it to be absolutely everything.
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2 Eliminative Structuralism and Nominalism

§8. The structuralist view of mathematical objects

In order to focus on problems concerning mathematical objects, I turn
now to what I call the “structuralist view” of them. By this I mean the view
that reference to mathematical objects is always in the context of some
background structure, and that the objects involved have no more by way
of a “nature” than is given by the basic relations of the structure. The idea
is succinctly expressed by Michael Resnik:

In mathematics, I claim, we do not have objects with an “internal” composition
arranged in structures, we have only structures. The objects of mathematics,
that is, the entities which our mathematical constants and quantifiers denote,
are structureless points or positions in structures. As positions in structures,
they have no identity or features outside of a structure.1

Views of this kind can be traced back to the end of the nineteenth century,
and the structuralist view in the sense I intend is an ontological concep-
tion that particularly fits the abstract mathematics that came into being
in the late nineteenth century and has flourished in the twentieth. The
statement that mathematics is about, or primarily about, structures is a
frequently offered rough description of this character of modern mathe-
matics. With reference to mathematics, the term ‘structuralism’ is often
used to refer to no more than this rough description, or to a conception
that expands on it in a different direction from what I have in view. One has

1 “Mathematics as a Science of Patterns: Ontology and Reference,” p. 530. This statement,
as well as my own preceding it, could be read as meaning that the objects have no prop-
erties and relations other than those definable in terms of the basic relations. However,
that reading ignores the fact that the objects stand in relations to other objects outside
the structure in question. See, in particular, §14.

40
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in mathematics at least a pretty definite and agreed on concept of struc-
ture, so that the natural numbers, Euclidean and other spaces, groups,
rings, and fields are paradigms of basic and relatively simple kinds of
structure; and many more complex kinds arise in the development of
mathematics. An example of a structuralist view of mathematics that is
not, or at least not primarily, a structuralist view of mathematical objects
is the view underlying the series of treatises of “N. Bourbaki,” which covers
a large part of modern mathematics. The emphasis of Bourbaki, and the
organizing principle of the work, is that mathematics is built up starting
with certain basic kinds of structure, for example, groups and topological
spaces, which then combine and interrelate to give rise to the architecture
of mathematics.

Such a view would suggest that structures themselves are the basic
mathematical objects. As exemplified by the quotation from Resnik, how-
ever, the structuralist view of mathematical objects is the view that math-
ematical objects are “positions” in structures. Typically, structures are not
taken as basic to mathematical ontology, and we shall see shortly that if
one inquires what a structure is, one is led back to familiar kinds of math-
ematical objects. But the structuralist view is supposed to include such
objects, in particular sets and functions, in its scope. Thus the statement
that mathematics is about structures, or is the science of structure, falls
short of offering the kind of view of mathematical objects that we are
looking for. One fundamental branch of mathematics, category theory,
might be read as taking structures as its basic objects (along with “arrows,”
maps between them). But that step by itself doesn’t explicate what would
be meant by the idea that reference to mathematical objects is always in
the context of a structure, and that the properties and relations of such
objects are only those that the structure in some way endows them with.

It would require some historical investigation to make clear how far
mathematicians of the turn of the century had gone in formulating for
themselves a structuralist view in the stronger sense that concerns me.
The most developed and in some ways the clearest philosophical state-
ments from before World War II are by Edmund Husserl, in explanations of
“formal” mathematics and his conception of a “theory of manifolds.”2 In

2 Although Husserl’s clearest and fullest statement is in ch. 3 of the late Formale und
transzendentale Logik, the essential ideas go back to the Logische Untersuchungen (see
especially Prolegomena, §70). Husserl certainly would have repudiated structuralism
as a complete account of mathematical objects, since certain basic objects, such as
numbers, are according to him given in a more intuitive way. His views deserve a separate
investigation.
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1950, in his paper “Mathematische Existenz und Widerspruchsfreiheit,”
Paul Bernays articulated what could be called a structuralist view of math-
ematical objects in describing the existence of mathematical objects as
typically “relative existence” (bezogene Existenz), that is as relative to a
structure.3 But one element is missing that belongs to that view as I con-
ceive it: the idea just expressed that the properties and relations of these
objects are only those that the structure in some way confers on them.
But, at least for the case of natural numbers, that idea is clearly expressed
by W. V. Quine somewhat later, in connection with his doctrine of “onto-
logical relativity.”4 And it certainly underlies certain attempts to eliminate
reference to mathematical objects, which will be discussed in this chapter
and the next.

My aim will be to exhibit some difficulties that arise in stating the view
more fully and to explore some directions in which we are led in dealing
with them. As I have indicated elsewhere, I think that something close to
the structuralist view is true.5 It will turn out, however, that it does need
some significant qualifications; in particular, some mathematical objects
for which structuralism is not the whole truth must still have their place.
I will consider in this chapter some other objections to the structural-
ist view. Moreover, in Chapter 4 we will consider a general objection to
structuralism particularly in application to sets.

In spite of the problems I see in its precise statement, the structural-
ist view is familiar. I shall remind the reader of the main considera-
tions but, because of their familiarity, not go deeply into them. Where it is
most immediately persuasive is in the case of pure mathematical objects
such as pure sets and numbers (in the broad sense, including the various
number systems), just those mathematical objects that are pure abstract
objects in the sense of §7. In these cases, we look in vain for anything else
to identify them beyond basic relations of the structure to which they
belong: for the natural numbers 0, S (successor), and perhaps arithmetic
operations, for sets membership relations and perhaps whatever individ-
uals might enter into their composition. A symptom of this is the problem
of “multiple reductions,” for a time much, probably excessively, discussed
in the literature. The context in which it entered the philosophical litera-
ture is that of logicist or set-theoretic treatments of the natural numbers:

3 For further discussion see my “Paul Bernays’s Later Philosophy of Mathematics,” §6.
4 Quine is generally most explicit when speaking of the natural numbers. For a very explicit

general statement, however, see Ontological Relativity and Other Essays, pp. 43–45.
5 Mathematics in Philosophy, pp. 189–190, also pp. 20–22.
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If one identification of the natural number sequence with a sequence of
sets or “logical objects” is available, there are others such that there are
no principled grounds on which to choose one.6 The existence of mul-
tiple reductions was, however, long familiar from the “arithmetization
of analysis” which gave rise to alternative constructions, on the basis of
the natural numbers and set theory, of positive and negative integers,
rational, real, and complex numbers.7 The structuralist point of view is
intended to dissolve this problem; I shall remind the reader how in §10.

Pure mathematical objects are to be contrasted not only with concrete
but also with quasi-concrete objects in the sense of §7, such as geometric
figures, or sets or sequences of concrete objects. A purely structuralist
account does not seem appropriate for quasi-concrete objects, because
the representation relation is something additional to intrastructural rela-
tions. Because they have a claim to be the most elementary mathematical
objects, and also for other reasons, quasi-concrete objects are important
in the foundations of mathematics. Their role leads, as we will see in §18,
to the important qualification on the structuralist view alluded to above.

§9. The concept of structure

By a structure is usually meant a domain of objects together with certain
functions and relations on the domain, satisfying certain given condi-
tions. Paradigm examples of structures are the elementary structures
considered in abstract algebra. For example, a group G consists of a
(nonempty) domain G, together with a two-argument function on G,
which we will write ◦, such that ◦ is associative, there is a (unique) ele-
ment e that is an identity element for ◦ (i.e., for all a ∈ G, a ◦ e = e ◦ a = a),
and every element a of G has a (unique) inverse with respect to ◦, that is,
for every a there is a b such that a ◦ b = b ◦ a = e. One might regard the
identity e along with ◦ as part of the structure.8 (A distinguished element

6 From Paul Benacerraf, “What Numbers Could Not Be” (1965) and my “Frege’s Theory of
Number” (1965), Essay 6 of Mathematics in Philosophy, esp. pp. 154–155.

7 Philip Kitcher points out that multiple reductions also arise for the set-theoretic devices
used in all these constructions. See “The Plight of the Platonist,” p. 126.

8 Often, however, one speaks loosely of the same structure when the basic objects and
relations are not the same. For example, Euclidean geometry can be axiomatized with
points, lines, and planes as basic objects (as in Hilbert’s classic Grundlagen der Geome-
trie ) or in a language in which points are the only individuals (as by Tarski in “What is
Elementary Geometry?” and other work). There is a natural interpretation of one for-
mulation in the other. Possibly there are reasonably precise notions of “same structure”
that cover cases of this kind.
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can be taken to be a function of 0 arguments.) The language in which
we have set forth this simple example already refers to familiar kinds of
mathematical objects: “domains,” which one readily thinks of as sets,
functions, and relations.

If we follow out this reading, then we arrive at the set-theoretic concept
of structure, familiar, for example, from model theory, which provides a
means of talking of structures as themselves mathematical objects, and
offers the resources of set theory for reasoning about them. We take the
domain of the structure as a set, and the functions and relations in the
usual set-theoretic way. The structure itself is then a tuple, a set-theoretic
object. For example, our group G will be the pair 〈G‚ ◦〉or the triple 〈G‚ ◦‚ e〉.
This way of talking about structures incorporates the dictum that math-
ematics is about structures into the familiar conception of set theory as
the canonical language for all of mathematics, so that all mathematical
objects can be construed as sets.9

Resnik’s initial statement of his view seems to require cashing in in
terms of the set-theoretic conception of structure or some variant of it. He
talks freely of structures or “patterns” (his preferred term). It thus appears
that patterns, or structures, are primary objects in his ontology, and one
will naturally ask what these are. His statement of what a pattern is (ibid.,
p. 532) is very close to the informal statement above of what a structure is.
It is clear, however, that Resnik regards sets as on the same footing as other
mathematical objects. It would take us somewhat afield to consider how
Resnik reconciles the fact that in order to state his view, he has to talk of
patterns as if they were a fundamental kind of object, while the view itself
would make the patterns themselves “positions in patterns.” We have,
however, come up against the first difficulty in stating the structuralist
view: It seems to require structures, and this concept seems to involve
familiar kinds of mathematical objects, or perhaps to call for explication
in “structuralist” terms that would threaten circularity. One answer to this
difficulty is simply to use the set-theoretic conception of structure. This
answer has an obvious difficulty: If we use it in order to give a structuralist
account of some kind of mathematical object, then we will be assuming
sets. The question will then arise how we are to give such an account of sets
themselves. I shall, however, put that inadequacy aside for the moment
and explore a version of the structuralist view that uses the set-theoretic
conception of structure.

9 Perhaps it is for this reason that Bourbaki relied on set theory as the axiomatic framework
for mathematics in their work.
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§10. Dedekind on the natural numbers

The set-theoretic conception of structure provides a very natural frame-
work for giving accounts of particular kinds of mathematical object. We
can illustrate it by the natural numbers, where an account of this kind was
already given more than a century ago by Richard Dedekind in Was sind
und was sollen die Zahlen? In this work Dedekind presents a develop-
ment of arithmetic which is remarkably close to modern developments
of arithmetic in set theory, although Dedekind’s concept of System (set)
is not axiomatized. His analysis of number, however, is presented as a
characterization of the structure of the natural numbers.10 This is given
by the definition in para. 71 of a simply infinite system. A simply infinite
system is a system (i.e., set) N such that there is a distinguished element
0 of N, and a mapping S: N → N – {0}, which is one-one and onto, such
that induction holds, that is:

(1) (∀M){[0 ∈ M ∧ (∀x) (x ∈ M → Sx ∈ M)] → N ⊂ M}.

Let us abbreviate these conditions by �(N, 0, S). I will use Dedekind’s term
‘simply infinite system’ for the structure 〈N‚ 0‚ S 〉.11 Dedekind has given
an explicit definition of the kind of structure instanced by the natural
numbers, although the presence of the quantifier (∀M ) means that it is
not first-order in N, 0, and S.

I want now to consider how Dedekind interprets talk of the natu-
ral numbers. So far, what we have been given is only a definition of a
ω-sequence or progression. Although his intent is not entirely clear, his
treatment of the natural numbers is meant to rest on two substantive
claims: the claim that simply infinite systems exist (para. 72, resting
on the argument of para. 66 that infinite sets exist), and the famous

10 Thus the aim of Dedekind’s analysis of number is quite different from that of Frege’s
Grundlagen der Arithmetik, where the main work is done by an analysis of the concept of
cardinal number. The works are nonetheless often classified together, for good reasons:
Frege’s primitive notions of concept and extension are related to, though different from,
Dedekind’s primitive notion of system, and they rely on essentially the same analysis
of mathematical induction, as Dedekind remarks in his preface to the second edition
(p. x).

11 Dedekind treats the natural numbers as beginning with 1; I follow contemporary usage
in beginning with 0.

Note that Dedekind uses the notion of mapping, that is, function. He characterizes a
mapping as a kind of law (para. 21). Once a reduction of functions to sets is available,
however, multiple reductions arise again, as Kitcher pointed out (loc. cit.). Thus we have
an additional reason for looking for a version of structuralism more thoroughgoing than
the set-theoretic.
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categoricity theorem (para. 132). What he actually proves in the latter
section is, in our terminology, that any two simply infinite systems are
isomorphic.

It is clear that Dedekind is not following the procedure, common in
contemporary books developing the number systems in set theory, and
which was followed by Zermelo, of presenting a simply infinite system and
then identifying the natural numbers with that structure. The explanation
he gives of talk about the natural numbers is somewhat awkward:

If, in considering a simply infinite system N, ordered by a mapping ϕ, one
abstracts from the specific nature of the elements, maintains only their dis-
tinguishability, and takes note only of the relations into which they are placed
by the ordering mapping ϕ, then these elements are called natural numbers
or ordinal numbers or simply numbers, and the initial element 1 is called the
initial number (Grundzahl ) of the number series N. (para. 73)

A reading of Dedekind that seems to me to accord reasonably well with
this passage takes him as holding that statements about natural numbers
are implicitly general, about any simply infinite system. A statement in
the usual language of arithmetic will be expandable to one in which the
arithmetical primitives are N, 0, and S, so that we can write it as A(N, 0,
S).12 Let �(N, 0, S) be as above. When A (N, 0, S) is taken as a statement
about the natural numbers, we are to understand N, 0, and S as variables,
and the statement is elliptical for:

(2) For any N, 0, and S, if �(N, 0, S), then A(N, 0, S).

The categoricity theorem implies that (2) holds if A(N, 0, S) holds for a
single simply infinite system 〈N‚ 0‚ S 〉.

I will call this interpretation the eliminative reading of Dedekind. It
clearly avoids singling out any one simply infinite system as the natural
numbers and expresses the general conception I have in mind in speak-
ing of the structuralist view. We shall soon see that it is probably not what
Dedekind intended. But it is worth pursuing because it exemplifies a very
natural response to the considerations on which a structuralist view is
based, to see statements about a kind of mathematical objects as general
statements about structures of a certain type and to look for a way of
eliminating reference to mathematical objects of the kind in question by

12 Eliminating functors introduced by recursion, such as addition, of course uses second-
order means. But that is in accord with what Dedekind allows himself; in fact he was the
first to show how to do this; see Was sind? §§9, 11–13.



P1: JZP
9780521452793c02 CUNY1138/Parsons 978 0 521 45279 3 October 30, 2007 17:6

§10. Dedekind on the natural numbers 47

means of this idea. The program is an instance of what I will call elimina-
tive structuralism (see §11).

Dedekind’s statement in the sentence after the above quotation, that
one can call the natural numbers “a free creation of the human mind,”
raises doubts as to whether the eliminative reading is the best reconstruc-
tion of his intention. He explains this idea somewhat further in another
text, a letter to Heinrich Weber of January 24, 1888, of which an extract was
published in Dedekind’s collected works. Weber had evidently suggested
that the basic concept of number is that of cardinal; Dedekind argues
for the priority of the ordinal concept, by which he means, I think, the
structure of initial element and successor function. He then writes:

If one wants to take your way . . . then I would advise not taking the number as
the class (the system of all finite systems similar to one another) but rather as
something new, corresponding to this class, which the mind creates. We are of
a divine kind and possess, without any doubt, creative power not only in the
material realm (railroads, telegraph) but most especially in the mental. This is
just the same question of which you speak at the end of your letter in relation
to my theory of irrationals, where you say that the irrational number is nothing
at all other than the cut itself, while I prefer to create something new, distinct
from the cut, which corresponds to the cut and of which I say that it brings
forth the cut, generates it.13

What Dedekind proposes in the cases of cardinals and real numbers is
well captured by W. W. Tait’s notion of “Dedekind abstraction”: Suppose
one has described a structure of a certain similarity type, such as the finite
von Neumann ordinals 〈ω, ∅, λx (x ∪ {x})〉, as a simply infinite system.
Then one can introduce a new structure 〈N‚ 0‚ S 〉 of that type, together
with an isomorphism from the given one.14 Clearly this does not square
with the eliminative reading, although it is still structuralist in the general

13 Dedekind, Gesammelte mathematische Werke, III, 489. I was led to look for this passage
by W. W. Tait, who rightly questioned my earlier acceptance of the eliminative reading.
In his published comment on the matter, Tait claims that “a new scandal will be created
by taking Dedekind to be a structuralist” (“Critical Notice,” pp. 590–591). He is right if
he means (as I did in the place he comments on) the eliminative reading of Dedekind or
some related eliminative structuralist interpretation. But the interpretation of Dedekind
he himself recommends makes Dedekind’s view of the number systems structuralist
in the more general sense of §8; it would, of course, not be reasonable to attribute
to Dedekind a structuralist view of sets and functions and thus a structuralist view of
mathematical objects as such.

14 Tait, “Truth and Proof,” p. 87 n. 17 (n. 12 in original). I shall not pursue the question what
meaning the term “abstraction” had for Dedekind and his contemporaries. At first sight,
at least, Tait’s conception is a reconstruction of Dedekind, not a direct interpretation.
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sense with which we began. But I shall continue to explore the eliminative
reading.

The eliminative reading avoids a difficulty faced by one crude attempt
to deal with the “multiple reduction” problem, namely, saying that any
simply infinite system can be, or can be taken to be, the natural num-
bers. Some such choices seem absurd, outside very special contexts; for
example, suppose one has the natural numbers N and then takes as one’s
“natural numbers” the even numbers of N, with the appropriate succes-
sor function.15 Again, suppose we have a certain simply infinite system
〈N ′, 0, S ′〉, and suppose we take as “the” natural numbers the system
〈N‚ 0‚ S 〉 obtained by replacing the 17th element of N ′ by Richard Nixon,
and adjusting S ′ accordingly.16 On this choice, the sentences ‘Richard
Nixon is a natural number’ and ‘Richard Nixon = 17’ become true, which
seems absurd. But it is clear that on the Dedekindian account neither can
be true.17 Another possible objection, that the application of arithmetic
requires relations of numbers that are not internal to the structure of the
numbers, will be considered in §14.

I want to consider another difficulty Dedekind’s analysis faces.
Dedekind thought it necessary to prove that simply infinite systems
exist (paras. 66, 72). This seems intuitively necessary; otherwise it seems
that one is not entitled to say (informally) that the natural numbers
exist. A more troubling fact is that on the eliminative reading, if there
are no simply infinite systems, then for any N, 0, S the statement
(2) giving the “canonical form” of an arithmetic statement A is vacu-
ously true. But then both A and ¬A have true canonical forms, which
amounts to the inconsistency of arithmetic. A version of this difficulty

15 Cf. Quine, Ontological Relativity, p. 45.
16 I.e., for m, n in N, n = Sm iff m = S ′(16)0′ and n = Richard Nixon, m = Richard Nixon

and n = S ′(18)0′, or n‚ m �= Nixon and n = S ′m.
17 This is not to say that they are false: One may wish to call a statement false only if the

canonical form (2) of its negation is true; the example in the text shows that this does
not hold for either sentence. It would be tempting to call such statements neither true
nor false. I am indebted to Martin Stokhof for pointing out that clarification was needed
here.

One might be worried because the sentence ‘Richard Nixon = 17 ∨ Richard Nixon �=
17’ is true, and therefore one or the other disjunct must be true. This is more harmless
than it seems, since we are to think of ‘17’ as containing implicit parameters for an
unspecified simply infinite system. For each value of these parameters, one disjunct is
true, but we can only assert what is true generally of simply infinite systems. The word
‘true’ is actually ambiguous in this context, since it might either presuppose particular
values for the parameters, or mean “generally true,” as it does in number-theoretic
assertions and in the remark in the text.
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is faced by eliminative structuralist accounts of natural number gener-
ally.

Dedekind sought to meet it by his famous, or notorious, argument for
the existence of infinite systems (sets) in para. 66. This appeals to a kind of
transcendental psychology. He argues that “the totality of things, which
can be objects of my thought” is infinite; for given such an object s, we
can let S(s) be the thought that s can be an object of my thought, and this
will be a new object of my thought. S is then a one-one mapping of the
potential objects of my thought into themselves, whose range does not
include objects of my thought that are not themselves thoughts. Thus,
this totality is infinite.

With our more critical attitude toward set theory, we would question the
treatment of the totality of objects of my thought as a set,18 and the intru-
sion of nonmathematical concepts into Dedekind’s argument would also
give rise to objections. To translate Dedekind’s development of arithmetic
into a modern set theory like ZF, we would need the axiom of infinity, that
is, the existence of an infinite set would simply be assumed. The question
of how much better it is possible to do than Dedekind will then arise when
we consider intuitive justifications of set-theoretic axioms. However, the
problem of nonvacuity, roughly that of the existence of an instance of
the structure, is a recurring one in structuralist treatments of objects of
different kinds, and will continue to occupy us.

Dedekind’s analysis deals neatly with the problem of multiple reduc-
tions, since no one simply infinite system is identified with the natural
numbers. It appears to do so at the price of set-theoretic economy: The
conventional development of arithmetic in set theory, for example by
taking as the natural numbers the finite von Neumann ordinals, does
not require the axiom of infinity. The difference is not quite so great as it
appears: Dedekind did not make the distinction between sets and classes,

18 Cantor, in his famous letter to Dedekind of July 28, 1899 (Gesammelte Abhandlungen,
pp. 443–447), already mentions the Inbegriff alles Denkbaren as an example of an incon-
sistent multiplicity (therefore not a set) (p. 443). He does not explicitly relate this remark
to Dedekind’s argument. But the implied objection had already been communicated
to Dedekind by Felix Bernstein. Bernstein’s note on the matter appears in Dedekind,
Gesammelte mathematische Werke, iii, 449, translated in Ewald, From Kant to Hilbert, II,
836.

Zermelo is quite explicit in criticizing Dedekind on this point, observing that the Inbe-
griff alles Denkbaren cannot be a set according to his own axioms, in “Untersuchungen
über die Grundlagen der Mengenlehre I,” p. 266 n. (trans. p. 204 n.). Fraenkel says that
Dedekind recognized the justice of this criticism after the paradoxes had become known
(Einleitung in die Mengenlehre, 2nd ed., p. 216).
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and in fact his argument does not require that there be a simply infinite
system whose domain is a set. Thus what is needed is just quantification
over classes; however, in the absence of the axiom of infinity, common
applications of induction and recursion require impredicatively defined
classes.

The comparison of Dedekind’s with the now conventional approach
makes clearer the significance of set-theoretic constructions of number
systems. These constructions should not be viewed as too literally identi-
fying a certain system of objects as the numbers in question, but as proving
that the concept of the structure in question is not vacuous.19 If a set the-
ory is assumed, this may not have much significance when the structure
in question is the natural numbers; it is more significant when we are
dealing with the positive and negative integers and the rationals, assum-
ing only the natural numbers, or with the complex numbers, assuming
only the reals (or natural numbers and sets thereof). Then, if we talk of
numbers of these kinds as if they were objects sui generis, the construction
insures that we avoid the problem of vacuity that threatened Dedekind’s
account of natural numbers.

A problem with which we began our exploration of structuralism was
that the statement of the view seemed to require reference to structures,
and we were then faced with the problem what kind of objects these are.
One lesson we might draw is that we should distinguish what is required
for a structuralist account of a particular kind of mathematical object,
such as the natural numbers, and what is required to give a general state-
ment of the structuralist view. It is the latter which at the outset required
reference to structures. That the former requires such reference is not evi-
dent. Our Dedekindian account might be found wanting on the grounds
that it builds general reference to structures into its canonical form for
arithmetical statements. In our further discussion of eliminative struc-
turalism, we will consider whether it is possible to avoid this result.

§11. Eliminative structuralism and logicism

I have described a certain reading of Dedekind’s analysis as eliminative,
in that it translates statements referring to or quantifying over numbers
into statements in which such reference is absent. Although the analysis
still assumes sets and functions, more recent developments of the same

19 Earlier, I have appropriated Kant’s term “objective reality,” which means roughly real
possibility. But that can have misleading associations, as Douglas Marshall pointed out.
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idea have sought to avoid such assumptions. By eliminative structuralism
I mean a view or program that begins with the basic idea of the structuralist
view of mathematical objects and develops it into an analysis in which
reference or commitment to such objects, or to mathematical objects
of a specific kind such as natural numbers, is claimed to be eliminated.
Whether it is really eliminated can depend on questions of ontological
commitment.

The underlying idea, although not yet the explicit program, is expressed
by Paul Benacerraf when he concludes from structuralist intuitions that
numbers are not objects and writes, “Number theory is the elaboration
of the properties of all structures of the order type of the numbers.”20

The eliminative structuralist program has attracted a number of philoso-
phers, and its tendency to be revived after attempts run into serious dif-
ficulties shows that the ontological intuition behind it exerts a powerful
attraction.

Eliminative structuralism is an important type of structuralism, which
has figured in classifications of structuralist views by several writers. We
will contrast it simply with noneliminative structuralism, that is, struc-
turalist views that do not claim to eliminate mathematical objects but
hold that they are in some way only determined by the basic relations of a
structure that is their home. Eliminative structuralism is what Dummett
calls “hardheaded structuralism.”21 Rather tendentiously, Dummett con-
trasts it with “mystical” structuralism; because these are said to be the two
types of structuralism, he seems to mean by mystical structuralism just
what we mean by noneliminative structuralism. However, he attributes
to mystical structuralism the thesis that the structures involved are free
creations of the human mind, after Dedekind. The structuralist view of
mathematical objects should surely be independent of any such thesis,
however Dedekind is interpreted.

Stewart Shapiro uses the traditional distinction of in re and ante rem
theories of universals to classify structuralisms. Eliminative structuralism

20 “What Numbers Could Not Be,” p. 291. This and some other remarks in Benacerraf’s
paper intimate an eliminative structuralist program, but he does not commit himself
to it or indicate any way other than the set-theoretic of carrying it out. Note that the
statement quoted quantifies over structures. On the same page, he talks of “systems of
objects” and “relations.” By contrast, it appears that he does want to avoid Dedekind’s
position of exempting sets from his structuralism; note his reference (p. 290) to Takeuti’s
reduction of Gödel-Bernays set theory to a theory of ordinals (see Takeuti, “Construction
of the Set Theory”).

21 Frege: Philosophy of Mathematics, p. 296.
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he regards as exemplifying an in re approach to structures; the idea is that
there is “no more to structures than the systems that exemplify them.”22

The alternative is what Shapiro describes as ante rem structuralism. In
part, this is characterized as noneliminative structuralism: Objects in
mathematics so understood are “as bona fide as any objects are.”23 But
something additional is involved, which is captured by the thesis that
“structures exist whether they are exemplified in the nonstructural realm
or not.”24 This again seems to me effectively to saddle noneliminative
structuralism with a thesis that should be independent of it. As we noted
at the end of the last section, it is not evident that a structuralist account
of a particular kind of mathematical object should require reference to
structures at all. And for a general statement of the structuralist view,
different options about what structures are should be considered.25

So far, the only structuralist view we have formulated is the one
extracted, with some violence, from Dedekind. Because of its assump-
tion of sets and functions, however, we have so far not even stated a
method of eliminating mathematical objects generally, whether or not
we adopt a structuralist view of sets (and related objects such as classes
and functions). Taken simply as an account of arithmetic, however, our
Dedekindian analysis can be readily reformulated so that the role of set
theory is taken over by second-order logic. We noted that the domains of
simply infinite systems, although they need to be within the range of the
variables, do not need to be sets. The same is true of other higher-order
entities quantified over in Dedekind’s account. His definition of a simply
infinite system can be translated directly into second-order logic; this is
simply a consequence of the fact that the structure of the natural numbers
is second-order definable. The induction clause (1) is replaced by

(3) (∀M) {[M 0 ∧ (∀x) (Mx → M (Sx))] → (∀x) (Nx → Mx)}.

We write the new definition as �′(N, 0, S). Now suppose that A is provable
in secondorder arithmetic. In second-order arithmetic, functions defin-
able by the usual kinds of recursion (in particular, primitive recursion)

22 Philosophy of Mathematics, p. 85.
23 Ibid., p. 89.
24 Ibid. Shapiro gives a similar explanation of the same classification in “Space, Number,

and Structure,” pp. 149–150. Bob Hale’s distinction between “abstract” and “pure” struc-
turalism is essentially the same as Shapiro’s; see “Structuralism’s Unpaid Epistemological
Debts,” p. 125.

25 On the classification of structuralist views, see also “Structuralism and Metaphysics,”
pp. 57–59.
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are explicitly definable. We will suppose that in A expressions for such
functions have been eliminated, so that A contains only 0, S, and logical
expressions. If A(N, 0, S) is the result of relativizing the quantifiers of A to
N, then clearly the obvious reformulation of (2):

(4) For any N, 0, and S, if �′(N, 0, S), then A(N, 0, S),

is provable in pure second-order logic with identity (including compre-
hension). Moreover, if A is merely a truth in the language of second-order
arithmetic, A(N, 0, S) will hold in all standard models of �′(N, 0, S).

This simple translation of the language of arithmetic into that of
second-order logic has been offered as a basis for a defense of the view that
arithmetic is a part of logic. This form of logicism is a variety known as “if-
thenism” or “deductivism.” We will consider shortly a well-known defense
of this view offered some years ago by Hilary Putnam,26 which, however,
used first-order formulations. Harold Hodes has vigorously defended
the second-order form presented above, following Frege in interpreting
second-order variables as ranging over functions and concepts.27 Such a
use of Frege’s theory of functions gives this sort of if-thenism a claim to
eliminate mathematical objects. A virtue of the second-order language,
however, is the variety of interpretations to which it is susceptible; hence
there may be other ways of using the above translation, or modifications
of it that are still second-order, in an eliminative program. But, as Putnam’s
example illustrates, first-order versions have been pursued. Because they
have tended to proceed by trying to approximate the second-order ver-
sion, we will concentrate on the latter.

This version of logicism does not escape all traditional objections,
for example to handling induction by means of a definition.28 Nonethe-
less, it is worth some further exploration, if for no other reason because
of the general applicability of the strategy. For example, two- or three-
dimensional Euclidean geometry also has a categorical second-order
axiomatization; we can then interpret Euclidean geometry along the same
lines. We can also, it seems, meet the demand for a treatment of set the-
ory, by formulating the axioms of separation and replacement as sin-
gle statements in a second-order language, so that ZF becomes finitely
axiomatizable.29 This case illustrates that the second-order variables are

26 “The Thesis that Mathematics is Logic.”
27 “Logicism and the Ontological Commitments of Arithmetic.”
28 I discuss this in Mathematics in Philosophy, pp. 167–170, 173–175.
29 Relative, of course, to the logic: The full comprehension schema, which is here counted

as logical, can of course not be replaced by a finite list of axioms, and even with it
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doing the work of the set-theoretic notion of class rather than that of
set.

This logicist eliminative program faces the same problem of the
possible emptiness of the generalizations (4) as Dedekind’s original
formulation: if, no matter how N, 0, and S are interpreted, �′(N, 0, S)
is false, then (4) is vacuously true, and is equally true if we replace A by
¬A. We can, as Putnam does, view the matter in terms of provability:
If we can prove both (4) and its counterpart for ¬A, then �′(N, 0, S)
will have proved inconsistent, and vice versa. The problem also arises
on versions of the strategy that replace �′(N, 0, S) by a first-order state-
ment.

What reason have we, on if-thenist grounds, to believe that things will
not collapse in this way? We can in some cases appeal to another theory,
within which it is possible to construct a model of the theory at hand or
otherwise prove its consistency. Our proposal bears some resemblance
to Frege’s reinterpretation of Hilbert’s idea that the axioms of geome-
try “define” the concepts of geometry.30 Hilbert had made copious use of
arithmetical and analytical models to establish consistency and indepen-
dence.31 But for the most elementary mathematical structures, something
more than reference to another mathematical theory is needed to con-
vince ourselves of the existence of structures of the relevant type, or even
that their theories are consistent. This is particularly true of the natural
numbers. Recall that this is just the point at which Dedekind found it
necessary to appeal to transcendental psychology. We may not be able to
avoid going outside the strictly mathematical, at least as understood by
eliminative structuralism, in order to convince ourselves of something so
basic.

At the time he defended if-thenism, Putnam was quite aware of this
difficulty.32 He replied that we do not need to assume the actual existence
of structures satisfying the conditions in which we are interested, but only

the axiomatization of logic remains incomplete for the standard semantics, for which
validity is not recursively axiomatizable.

30 See Frege’s correspondence with Hilbert and Korselt, in Wissenschaftlicher Briefwechsel
and his two series of articles “Über die Grundlagen der Geometrie,” in Kleine Schriften.
This material is collected in translation in Frege on the Foundations of Geometry and
Formal Theories in Arithmetic. It is instructively discussed by Resnik in Frege and the
Philosophy of Mathematics, ch. 3.

31 David Hilbert, Grundlagen der Geometrie.
32 “The Thesis that Mathematics is Logic,” pp. 26–33. For reasons that do not concern us,

he saw the problem as arising in connection with the application of mathematics.



P1: JZP
9780521452793c02 CUNY1138/Parsons 978 0 521 45279 3 October 30, 2007 17:6

§11. Eliminative structuralism and logicism 55

that they could exist (ibid., pp. 32–33).33 This would presumably preclude
the logical validity, in any reasonable sense, of the canonical versions, in
the manner of (4), of both a statement and its negation. The formulation
suggests the use of modality in explicating mathematical existence: What
would be presupposed (in the case of arithmetic) is that it is possible that
there are N, 0, S such that �′(N, 0, S) hold. This statement, however, is not
interpreted in if-thenist terms, although it does not necessarily go out-
side the framework of eliminative structuralism more broadly conceived.
Putnam made a version of this move shortly afterward,34 as have many
others since.

In the earlier paper, Putnam seems uncertain about the meaning of
the modal term and says that whatever it means it implies syntactic con-
sistency, which he thinks sufficient for the use he is making of the math-
ematical theory (in his case a version of the simple theory of types). One
might question the adequacy of this in view of the deductive incomplete-
ness of whatever axiomatization is involved.35 To this it can be replied
that we do not have better assurance of the “existence” of such a struc-
ture as the natural numbers than such consistency statements would

33 Putnam admits that relying on our “intuitive conviction that certain infinite structures
could exist” implies that mathematics is not fully reducible to logic (p. 41).

34 “Mathematics without Foundations.”
35 On the second-order version of if-thenism that we have emphasized, this incomplete-

ness resides in the logic; on Putnam’s own first-order version, it resides in the axioms
whose schematized versions form the antecedent of the conditional that is the canonical
form of a mathematical statement.

Positions closely related to what we call if-thenism are instructively discussed in
Rosemarie Rheinwald, Der Formalismus und seine Grenzen, Chapter II, under the name
Implikationismus. The distinction she makes between the syntactic and semantic ver-
sion there recalls ours between the “standpoint of provability” and that of semantic
validity. As her name for the position suggests, however, there is an important difference
between her interpretation and ours. She interprets a mathematical statement, made in
the context of an axiomatic theory, as expressing logical implication of the “naive” state-
ment by the axioms; it is for that reason that she says that if the mathematical statement
is taken as an if-then statement, “if . . . then . . .” cannot be the material conditional (p. 49).
Then the question arises whether by “implication” is meant logical derivability, seman-
tic consequence, or something else; hence her distinction of syntactic and semantic
implicationism.

In my view, Rheinwald’s “implicationism” introduces an element of reflection into
the interpretation of mathematical statements which is not essential to the idea of if-
thenism or of eliminative structuralism. In the canonical forms we consider, such as (1),
“if . . . then . . .” is the material conditional; the thesis is then (for example), that the
truth of the arithmetical statement A consists in the logical validity of (1). Of course the
syntactic/semantic distinction then arises for the interpretation of logical validity. But
the reflection belongs not to the content of individual mathematical statements but to
the account of that content.
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give us. But for the if-thenist view, a problem arises about the interpre-
tation of the consistency statement. A theory T (in this context, we can
take �′ or another antecedent as a theory) is consistent if there does not
exist a logical proof of a contradiction from its axioms. Ordinarily we take
this as a mathematical statement; a proof is an array of symbols satis-
fying certain conditions; these symbols are types and therefore abstract
objects. This reading is at first sight outside the if-thenist framework;
but note that symbols and proofs are not obviously pure mathematical
objects and are plausibly quasi-concrete. It would, of course, be possi-
ble to regard the syntactical objects as themselves merely a structure,
but then the appeal to consistency would be simply another form of
reduction to another mathematical theory, or the consistency statement
is actually being used in an applied context. What counts is what we can
expect when we actually construct proofs. One way of taking the consis-
tency statement, which bypasses both the structuralist understanding of
syntax and the interpretation of it as about quasi-concrete but abstract
symbol-types, is to take it as a statement of nominalistic syntax, where
the objects are physical inscriptions. This offers a way of reconciling usual
ways of understanding mathematical theories with nominalism: We inter-
pret the theories in the if-thenist way, but deal with the problem of pos-
sibility by appealing to consistency, nominalistically interpreted.36 This
suggestion offers us the opportunity to discuss some issues concerning
nominalism.

§12. Nominalism

I shall understand the term ‘nominalism’ in the sense most usual in con-
temporary philosophy of logic and mathematics, as the rejection (per-
haps programmatic) of all abstract entities. It is this demand that would
lead to the use of an interpretation of syntactical statements as referring
to physical inscriptions. I shall take nominalism, moreover, to involve
extensionalism, so that we are not allowed to use a modal language in
talking about such physical objects as inscriptions. The view that allows
modality but is otherwise nominalistic, which can be called modal nom-
inalism, will be considered in Chapter 3.

36 In “The Thesis that Mathematics is Logic,” Putnam does not focus on nominalism and
does not make this suggestion. The criticism of it made below is not meant to be a
criticism of Putnam, even of his views of 1963 (evidently when the paper was written;
see p. 17).
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It appears that in the eliminative structuralist program, the problem of
the possibility of the natural numbers would have a simpler solution than
Putnam’s appeal to consistency: One would just describe (by a predicate)
a domain of physical objects, a zero object, and a successor relation that
would satisfy �′. The simultaneous refusal of abstract objects and modal-
ity means, however, that the quantifiers range over actual objects.37 If we
can give such a physical model of the natural numbers, then the physical
universe is in some way infinite. Although recent nominalism has tended
to be physicalist, the issue is the same if one seeks the model in some
domain of mental objects, such as sensations, ideas, or thoughts.38 Now,
that the physical world is in some respect infinite is no doubt true. I am
not sure whether according to current physical theory there are infinitely
many physical particles or other objects that can claim to be “physical
objects”; however, physical theories are based on a geometry in which
space (or space-time) is infinitely divisible (whether or not it is infinite in
extent). But should it be taken as a presupposition of elementary mathe-
matics that the real world instantiates a mathematical conception of the
infinite? This would have the consequence that mathematics is hostage to
the possible future development of physics. Can we rule out the possibility
that physics will abandon infinitely divisible space-time and replace it by
some “quantized” conception? If not, and if this were to happen, then even
accepting Hartry Field’s claim that points and regions of space-time are
physical and acceptable to the nominalist would not save the infinite in
the physical world.39 Would we be obliged to abandon the mathematics of
the infinite, even the infinity of the natural numbers?40 A great deal of the
historically given mathematics would have to be jettisoned in this case.

37 The second-order character of �′ seems to pose a problem. This will be discussed later
in this section and in §13.

38 Note that Dedekind’s model in para. 66 is not exactly of this kind, since he speaks of objects
of his thought; moreover, the thoughts themselves seem to be not mental occurrences
but rather thoughts in something like Frege’s sense. (In fact Frege interpreted Dedekind
in this way; see “Logik” (1897), in Nachgelassene Schriften, p. 147 n.)

39 Science without Numbers, p. 31. Although Field is not an eliminative structuralist, in
this work and subsequent papers (which importantly modify his position), he makes a
number of moves that an eliminative structuralist might make, and some of the issues
raised here arise for him. An adequate discussion of his views, however, would take us
too far afield, and there is already a considerable critical literature on his work by others.
We will discuss in §13 only one aspect of his position, his conception of second-order
logic.

40 Observe that the simple (first-order) statement that S maps N one-one into N – {0}
already has only infinite models.
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The problem with the appeal to a physical model to deal with the
problem of the possibility of a structure is that it makes mathematics
presuppose an hypothesis that is stronger and more specific than needed,
as I have argued elsewhere.41 Any particular such hypothesis would be
vulnerable to a refutation which would not upset the mathematics that is
claimed to presuppose it. The nominalist might call attention to the fact
that the world as we now understand it contains many different models of
infinity, and then take the holistic position that no one of them is required
for the infinity of the natural numbers.42 In view of the dependence of all
infinities in the real world on infinities in space and time, it is not clear
that this position is really an advance over the Fieldian one just proposed;
at any rate, it seems conceivable that all the hypotheses about infinities
in the real world might be abandoned.

Let us now return to the suggestion mentioned at the end of §11, that
the possible truth of the antecedent of the if-thenist’s conditionals need
amount to no more than formal consistency, interpreted as a proposition
of nominalistic syntax. Such a syntax will have to be carefully formulated
in order to avoid assuming that actual inscriptions are closed under the
usual operations of logical syntax. But, no matter how this is done, the
statement of consistency says no more than that there is no actual inscrip-
tion that is a proof of a contradiction from whatever axioms are in ques-
tion. This is of course not quite so weak as it seems, as future inscriptions
are allowed: It says that no proof of a contradiction will ever be written
down. Nonetheless, it cannot be stronger than the statement that no proof
of a contradiction is physically possible, and such possibilities are con-
strained, for example, by the physical structure of space-time, in such a
way as to make the consistency statement weaker than on its usual math-
ematical understanding. It is also hard to see what grounds other than
inductive the nominalist can have for believing consistency statements
for theories having only infinite models to be true. The most elementary
mathematics used in proof theory, such as primitive recursive arithmetic,
will not be known to be sound on any nominalistic interpretation,43 and

41 Mathematics in Philosophy, pp. 184–186.
42 This possibility was suggested to me by Isaac Levi.
43 If the inscriptions of nominalistic syntax do not satisfy the closure conditions of usual

syntax, then the following kind of anomaly can arise: Suppose that for a given formal
theory T we can give instructions for constructing a proof in T of a contradiction, so that
we can give a strictly constructive proof (say, in primitive recursive arithmetic) that T is
inconsistent. We might, however, be able to give a lower bound for the length of a proof
of a contradiction in T, so large that on physical grounds it will be impossible actually to
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the intuitive idea that the axioms of such theories describe coherent pos-
sibilities is tainted with modality. That the consistency-based if-thenist
form of nominalism is on stronger ground than other forms of strict nom-
inalism is not evident. The other strategy suggested by Putnam’s response
to the problem of possibility, taking possible existence seriously, seems
more promising but goes beyond strict nominalism.

I have assumed that the nominalist’s objective is to interpret a reason-
able amount of existing mathematics. It is for this reason that the con-
ditionals of the if-thenist reconstruction have antecedents with no finite
models. Some nominalist work has tried to dispense with any infinitistic
assumption.44 Such an attitude will of course avoid the kind of difficulty
that I discern in the nominalist view. But it seems to me to have an even
greater difficulty: At best, it suspends judgment about the truth even of the
most elementary mathematics. For essentially this reason, work on the
nominalist program in recent years has extended the allowed resources
in one or two ways, either by allowing geometrical objects, as does Field,
or by admitting modality. Discussion of any form of modal nominalism
is deferred until Chapter 3.

Before we take leave of nominalism, however, I want to consider the
possibility, more congenial to nominalism, that the logic of if-thenism
should be first-order. In such cases as arithmetic and Euclidean geom-
etry, it appears that the if-thenist has to jettison the intuition that these
branches of mathematics describe a unique structure. In the if-thenist
translation of an arithmetical statement, for example, �′(N, 0, S ′) will
have to be replaced by a list of axioms that is no longer fixed once and for
all but which must depend on the context of the statement. Consider, for
example, the manner of doing this that disrupts the second-order formu-
lation the least: Return to the set-theoretic formulation �(N, 0, S) (leaving
S as a function symbol); add to it comprehension axioms corresponding to
those of second-order logic with first-order comprehension, which must
now, however, count as nonlogical axioms. They will correspond closely
to those for classes in NB; it is thus best to think of the objects involved
as classes rather than sets.45 In this language, we can describe a finitely

write down such a proof. Then ‘T is consistent’ interpreted nominalistically will be true.
If T contains primitive recursive arithmetic, we will be able to write down a proof in T of
the (arithmetized) statement that T is inconsistent.

44 For example Goodman and Quine, “Steps towards a Constructive Nominalism.” I was
reminded of this by Michael Resnik.

45 It is simplest to have two sorts of variables, for individuals and classes; but of course a
one-sorted formulation is readily available; then one needs the predicate ‘is a class’.
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axiomatizable conservative extension of the usual first-order arithmetic
PA, related to it roughly as NB is to ZF; call the conjunction of its axioms
�1 (N, 0, S).46 What one does, in effect, is to incorporate the second-order
entities into the structure that is being considered only hypothetically.

Of course, if we use �1 instead of � in our canonical form (2) the truth
of the statement A amounts to its provability in this conservative exten-
sion of PA; because of the completeness theorem, it makes no difference
whether we understand logical validity as semantic consequence or in
terms of provability. Thus arithmetic truth becomes relative to the axioms
assumed. Putnam was willing to accept this consequence.47 The formu-
lation we have chosen has the advantage that it makes the relativism arise
in a natural place: Extensions of the axioms will be obtained by stronger
comprehension axioms about classes or whatever other second-order
entities one appeals to. These extensions will give rise to different trans-
lations of ordinary arithmetic statements.

The relativistic position is quite counterintuitive, not only because it
contradicts the idea that the natural numbers are a unique structure (as
are other number systems, and Euclidean space of a fixed number of
dimensions), but because it makes the meaning of statements in these
parts of mathematics depend on what axioms one is assuming, not only
about the structure with which one is immediately concerned, but about
classes and even about other objects, where reference to them may give
rise to relevant comprehension axioms. But it would be difficult to refute
categorically without more analysis of the intuition of the uniqueness
of such structures as the natural numbers. That will be undertaken in
Chapter 8. In the next section, we will consider whether the nominalist
can after all use full second-order logic.

Concerning the problem avoiding vacuity in conditionals used to inter-
pret mathematical statements, no solution has been found so far that pre-
serves the purity of structuralism. Putnam’s suggestion that the consis-
tency of the antecedents is sufficient, if interpreted conventionally rather
than nominalistically, compromises structuralism only by admitting

46 A little delicacy is needed to obtain finite axiomatizability. Comparison with the axiom-
atization of NB shows that one must have pairing and projection functions. These can
either be primitive or defined in terms of simple arithmetic functions, but in the latter
case a few of these must be primitive, with recursion equations as axioms.

Some issues about the interpretation of theories of this kind and their relation to
more conventional axiomatizations by schemata are discussed in Essays 1, 3, and 8 of
Mathematics in Philosophy.

47 “The Thesis that Mathematics is Logic,” esp. pp. 22–25.
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quasi-concrete mathematical objects, the expressions of formal syntax.
(We have, however, not considered the problem of knowing such consis-
tency presuppositions to be true.) But once one does that, one can take
the expressions directly as an instance of the structure. Alternatively, one
might give this role to expressions or other quasi-concrete objects but deal
with them in some modal nominalist manner. That would solve the prob-
lem of nonvacuity in a natural way, based on the idea that it is sufficient if
the existence of an instance of the structure is possible. Moreover, modal
nominalism is a more promising account of syntax than strict, extension-
alist nominalism. Although such an interpretation still leaves a dilution
of the structuralist position, it suggests a general strategy for eliminat-
ing mathematical objects: Pure mathematical objects are dealt with in an
eliminative structuralist way, while quasi-concrete objects are interpreted
in a modal nominalist manner. This strategy will be examined in §15.

§13. Nominalism and second-order logic

The question still deserves discussion whether some way of interpreting
second-order logic is available to the nominalist or, more generally, to
the eliminative structuralist. It will be observed that in many of the cases
to which the strategy we have been considering applies, number the-
ory included, impredicative second-order logic is needed for the deduc-
tive development of the theory translated in one of the ways proposed.48

Thus whatever entities comprise the range of the second-order variables
will have to satisfy impredicative comprehension. An obvious candidate
interpretation, advocated by Hodes (see note 26), is by Fregean concepts.
Frege effectively embodied a comprehension principle for concepts and
functions in his logic.49 Although the question of predicativity had not
been raised at the time (nor did Frege take note of it when it became
an issue in the Poincaré-Russell debate), Frege’s procedure is no doubt
an expression of realism about the reference of predicates, a view that
would have been shared both before and since. It is certainly not in the
spirit of nominalism as we have been understanding it. In an eliminative

48 However, some work on the question to what extent one can get around that will be
discussed in Chapter 8, §50.

49 It is worth noting how comprehension arises in Frege’s logic. It is embodied in his axiom
IIb of universal instantiation for function quantifiers and in his rules of substitution
for Latin letters (free variables). See Grundgesetze I, §§25, 48 (rule 9). Behind these is
of course Frege’s conception of a function name; he took function names to be closed
under quantification over functions.
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structuralist program more generally, it is not ruled out of court, but what
would be demanded is a justification of such realism independently of
mathematical objects and compatible with the eliminative structuralist’s
reasons for wanting to eliminate them. Frege, whose conception of object
was certainly meant to accommodate mathematical objects, did not take
on any such burden himself. Moreover, the most visible internal diffi-
culty of Frege’s theory of concepts is that he is not in practice able to
do without nominalizing predicates in talking about concepts. But this
nominalization has to be rejected by the program of eliminating mathe-
matical objects.50 The history of the debate about Frege’s theory does not
encourage the view that concepts according to his conception are less
problematic than mathematical objects.

Workers on the nominalist program have in fact preferred two other
approaches. First, for many purposes mereology, otherwise known as the
calculus of individuals, can do the work of second-order logic. Nelson
Goodman played a role in developing the theory, and his motive was
surely to have a logical tool for nominalist constructions.51 It has been
accepted as such a tool by nearly all more recent nominalists. Second,
in two papers of the 1980s, George Boolos proposed an interpretation of
monadic second-order logic as a logic of plurality and argued that theories
formulated in this logic so interpreted have no ontological commitment
beyond that to the objects over which their individual variables range.52

Boolos’s claim has also been embraced by nominalists.
Mereology is central to Hartry Field’s construction. He interprets

Hilbert’s geometry, a second-order theory, by taking the second-order
variables to range over regions, which in turn can be taken to be sums
of points in the calculus of individuals.53 Field exploits the fact that in a
context where the individuals are atoms, that is, have no proper parts,
a version of mereology will simulate monadic second-order logic. Field

50 One can, of course, interpret this nominalization or the second-order language itself by
means of semantic ascent. But then the theory one obtains is predicative relative to the
underlying domain of objects, and does not serve the purpose at hand. (Cf. Mathematics
in Philosophy, Essays 3 and 8.) The interpretation by semantic ascent is still highly
relevant to structuralism; see later and §18.

51 See The Structure of Appearance, Chapter 2, §4. For a full exposition of mereology see
Simons, Parts.

52 “To Be is to Be the Value of a Variable (or to be Some Values of Some Variables)” and
“Nominalist Platonism.” By “monadic second-order logic,” I mean a restricted version
of second-order logic in which all quantifiable second-order variables are monadic. But
many-place predicates, and so all the apparatus of polyadic first-order logic, are allowed.

53 Science without Numbers, pp. 37–38.
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describes the logic he accepts as “what might be called the complete logic
of the part/whole relation or the complete logic of Goodmanian sums.”54

Platonistically, one can characterize this logic as postulating a domain of
individuals such that for any nonempty set of individuals in the domain,
there is an individual that is the sum of all of them.55 No comparable nom-
inalistic characterization of this logic is available, but it is at least clear
that a form of full comprehension holds: Given a predicate of individuals
that is true of at least one individual, there is a sum of just the individuals
of which the predicate is true,56 and moreover, the admissible predicates
will be closed under quantification over all individuals, including these
very sums. In the point-region case, one has, for any predicate of points, a
region containing just the points of which the predicate is true (provided
there are any), and these predicates will be closed under quantification
over regions. As Field is well aware, this logic has properties parallel to
those of standard second-order logic; in particular, it is not recursively
axiomatizable.

Field introduces this logic for purposes somewhat different from those
of the eliminative structuralist program we have been discussing, but
still in the service of a program for eliminating mathematical objects. Its
adaptation to our setting poses some problems, because it offers an inter-
pretation of the usual second-order language only when the objects the
individual variables range over are atoms in the sense of the calculus of
individuals, that is, without proper parts. That would restrict the inter-
pretation of the kind of translation of mathematical statements that we
have been considering. Even with this restriction, however, given Field’s
assumptions, models of classical arithmetic and analysis are available.
In any case it is worthwhile to consider Field’s approach to second-order
logic in its own terms.

We can understand Field’s conception better without the help of set
theory by adapting an understanding of second-order language that will
concern us later. This is that the comprehension principle will hold for any
predicate true or false of individuals. The point is that what will count as a
predicate well-defined in this sense is entirely open-ended; in particular,
it is not limited by the resources of any particular formalized language.
It is most reasonably regarded as indeterminate at a given time, as it

54 Ibid., p. 38.
55 This amounts to saying that the individuals form a complete Boolean algebra, minus the

zero element.
56 This is the principle (Cs) of “On Conservativeness and Incompleteness,” §4.
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depends on what we will come to be able to express and understand.
Since predicates can contain parameters (both first- and second-order)
this allows the possibility that even a single instance of comprehension
will, by generalization, yield more second-order entities than there are
predicates in a particular (say, formalized) language.

So far, this understanding corresponds to the understanding of second-
order principles in mathematical practice (cf. §5), and also in the design
of new formal systems, where one expects principles such as mathe-
matical induction or separation and replacement to be valid for a new
formalized language. So long as the domain of individuals is treated as
given, impredicativity enters only when we regard our stock of predicates
as closed under quantification over second-order entities, in Field’s case
regions. This latter assumption is independent of the first one, that com-
prehension is to hold for any predicate that we recognize as well defined.

One version of this conception would regard the second-order entities
as constituted in some way by the predicates themselves. Then the closure
assumption just cited is very dubious; if it is indeed undetermined what
predicates will or can be added to our language, then it is doubtful that
a predicate quantifying over all such predicates will be definitely true or
false of each individual. Appearances to the contrary arise from an implicit
reducibility assumption; for example, to each such predicate corresponds
an extension a; then in an extensional context we can replace the predicate
‘F ’ by the predicate ‘( ) ∈ a’, and thus replace the quantification over
second-order entities by quantification over sets. This is of course not a
procedure that Field could accept.

For Field, regions are to be physical entities. Then the assumption
that the class of predicates is closed under quantification over regions
is natural enough given a realistic attitude toward the physical world.
If one were to question it, it would not be on the ground that it does
not fit with the idea of regions as physical. What is more questionable
is the transfer to this situation of the undoubted intuitive plausibility of
comprehension principles. Field, as a nominalist, should reject the idea
of an object associated with a predicate as something like its reference,
as well as the “quasi-combinatorial” picture of “selecting” the elements
of a given set that satisfy a given predicate that is often appealed to in
motivating the axiom of separation.57 It is not clear what direct argument
for his principle Field can offer that would not trade on intuitions that

57 For example Hao Wang, From Mathematics to Philosophy, p. 184.
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support non-nominalist principles, in particular, the existence of sets of
points.58

The best position for Field would probably be to say that the com-
prehension principle is a hypothesis justified by its consequences in sys-
tematizing the geometrical basis of physics that constitutes, according to
Field, the central part of true (as opposed to fictive) mathematics. The
most direct use made of it, however, is logical, in Field’s arguments for
the conservativeness of platonistic mathematics over nominalistic the-
ories.59 Field’s view, on this reading, puts him in a position in which we
have found other formulations of nominalism: making the justification of
mathematics turn on some hypothesis about the physical world, which
is more vulnerable to refutation than the mathematics.

In §17 we will consider what can be accomplished by combining mere-
ology with modality.

Let us now turn to Boolos’s reading of monadic second-order language,
although he did not advance it in the service of eliminative structuralism
or any other program for eliminating mathematical objects in general.
However, as the title of the second paper, “Nominalist Platonism,” sug-
gests, he did have an eliminative motive for advancing his interpretation.
He claimed that a monadic second-order version of set theory is not, under
this interpretation, committed to classes over and above sets, that is, not
to proper classes.60

58 If regions are construed as arbitrary nonempty sets of points, then, of course, it can be
proved set-theoretically that regions satisfy Field’s logic, that is, that they form a com-
plete Boolean algebra without the zero element.

In “On Conservativeness and Incompleteness,” p. 137 n. 12, Field responds to the
objection that “the intuitive basis of the complete theory of the part of relation is deriva-
tive from the idea of a set.” He claims that “set theory has the theory of the part of relation
as its main intuitive basis.” It is certainly true that ideas of whole and part enter into the
intuitive understanding of set-theoretic concepts and entered into the historical ori-
gin of the mathematical concept of set. Equally central to the origin of the set-theoretic
approach to mathematics, however, were ideas about functions. But the crucial question
for Field is what independent motivation he can give for logically strong principles of
mereology such as his comprehension principles.

Field attributes this objection to “one of the journal editors” (i.e., of the Journal of
Philosophy). I confess to having been the editor in question. But I have no record of the
wording that was communicated to him.

59 Science without Numbers, Chapter 1, and “On Conservativeness and Incompleteness.”
It should be acknowledged that in the latter paper Field backs away from his earlier
commitment to what he prefers to call the complete logic of the part-of relation. In the
introduction to Realism, Mathematics, and Modality, p. 51, he describes his attitude
toward the logical devices he uses as experimental.

60 His skepticism about proper classes was of long standing; see “Reply to Parsons.”
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Boolos reads second-order formulae by paraphrasing monadic
second-order quantifiers by plural quantifiers of natural language. If the
first-order quantifiers of a second-order language range over, say, Gs, then
the second-order quantifier ‘(∃F )’ is to be read ‘there are some Gs’ and an
occurrence within its scope of, say, ‘Fx’, as ‘x is one of them’ (assuming
that what ‘them’ cross-refers to will be unambiguous, but elaboration can
take care of the problem if it is not). Thus, consider for example, in the
second-order language of set theory, the comprehension axiom

(5) (∃F ) (∀x) [Fx ↔ ¬ (x ∈ x)].

This will be paraphrased as

(6) There are some sets such that each set is one of them if and only
if it is not an element of itself.

This reading of monadic second-order logic has been criticized on the
ground that there is not a natural reading of the universal quantifier, and
Boolos in fact had to rely on the reduction of the universal quantifier to
the existential. We can, however, do a little better than that, and render
‘(∀F )’ for monadic F as ‘whenever there are some Fs . . .’.61

Boolos appears to hold that the paraphrase of a monadic second-
order sentence will not involve any ontological commitment to entities
other than those that would be values of the individual variables. But
at first glance, it appears that in a context of this kind a quantifier such
as ‘there are some sets’ is saying that there is a plurality of some kind.
Cantor’s notion of “multiplicity” and Russell’s of “class as many” were
more explicit versions of this intuitive notion, both attempting to allow
that pluralities might fail to constitute sets.

With respect to a number of nonfirstorderizable examples, Boolos
argues that they do not involve commitment to classes.62 In part, this
rests on the absence of explicit mention of classes in the sentences in
question (such as (6)). Now the same could be said of pluralities (a possi-
ble commitment Boolos does not explicitly address). The difficulty is that
speaking of pluralities is already a kind of reduction of plural quantifica-
tion to singular; to put (6) in terms of pluralities, one would replace ‘there
are some sets’ by ‘there is a plurality of sets’, and then ‘each set is one of
them’ by something like ‘each set belongs to it’. If the result is taken as the

61 David Lewis, Parts of Classes, p. 63. In §3.2 of this work Lewis argues in favor of the
ontological claim of Boolos; see later.

62 “Nominalist Platonism,” pp. 73–78.
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canonical form, Boolos’s intention seems to be violated: On his view, it is
plural quantification that is canonical.

Still, there is in sentences making essential use of such plural quan-
tification a form of generalization and cross-reference that one does not
find in straightforwardly firstorderizable sentences. Thus, in (8) and other
examples obtained by paraphrasing second-order formulae one has the
pronoun ‘them’ referring back to ‘some sets’; in effect, what follows ‘there
are some sets’ has to say something about some sets: we would like to say, a
certain (indefinitely indicated) plurality of sets; this is distinguished from
saying something about a set, which would be indicated by an individual
variable. The same is true in the example from Geach and Kaplan, more
natural in English:

(7) Some critics admire only one another.

Here the cross-reference is carried by ‘one another’; again, that they
admire only one another is said about some critics, not about an indefi-
nitely indicated critic.

These observations express a discomfort not unlike one felt by Boolos
himself, which he undertakes to deal with. He quotes the following state-
ment by Harold Hodes: “Unless we posit such further entities [as Fregean
concepts], second-order variables are without values, and quantifica-
tional expressions binding such variables can’t be interpreted referen-
tially.”63 In reply to this, Boolos offers an inductive definition of satis-
faction for a monadic second-order language, which, he argues, obviates
the notion of values of the second-order variables.64 It is assumed that
the metalanguage can express a pairing function for individuals (thus
enabling a reduction of polyadic second-order logic to monadic) and
indeed sequences of individuals, as well as the usual syntactical notions.65

The inductively defined predicate is ‘R and s satisfy F’, where R is a second-
order variable, s ranges over sequences of individuals, and F over formu-
lae. All the clauses of the definition are the typical ones, except that for

63 “Logicism and the Ontological Commitments of Arithmetic,” p. 130.
64 “Nominalist Platonism,” pp. 81–83.
65 The role of sequences is the usual in satisfaction definitions; thus finite sequences would

be sufficient. Boolos is concerned with the case where the individuals are sets and the
nonlogical apparatus is that of set theory, so that this assumption holds. It will not
necessarily hold in applications for strictly nominalistic purposes; see later.



P1: JZP
9780521452793c02 CUNY1138/Parsons 978 0 521 45279 3 October 30, 2007 17:6

68 Structuralism and nominalism

second-order quantification, which reads:

(8) If F is (∃V ) G, then R and s satisfy F iff
(∃X ) (∃T ) {(∀x) (Xx ↔ T 〈V, x 〉) ∧
(∀U ) [(‘U ’ is a second-order variable ∧ ‘U ’ �= ‘V ’)
→ (∀x) (T 〈U, x 〉 ↔R 〈U, x 〉)] ∧ T and s satisfy G}.

Looking at the matter “platonistically,” R codes an assignment of
second-order entities to the variables of the language; to the variable
V is assigned λx R 〈V, x 〉. Then what the definiens of (8) says is that there
is a (second-order entity) X and an assignment T such that T assigns X to
V and agrees with R in what it assigns to other variables, such that T and
s satisfy G.66

It is hard to agree with Boolos in finding that the treatment of second-
order variables in this definition does not offer scope for the notion of a
value comparable to what it offers to the notion of a value of an individual
variable. The values of the individual variables, Boolos says, are just the
terms of the sequences. Why should we not say, similarly, that X is a value
of a second-order variable if it is λx R 〈V, x 〉 for some R and V, that is, if
(∃R) (∃V ) (∀x) (Xx ↔ R 〈V, x 〉)? The difference between the treatment of
first- and second-order variables seems to lie just in the facts that in the
second-order case functions are coded by predicates and that a function
from individuals to n-argument second-order entities can be coded by
an (n + 1)-argument second-order entity.67

It might also be pointed out that Boolos inductively defines a predicate
with a second-order argument (the “assignment” R), to express satisfac-
tion for a language in which there are no such primitive predicates, that
is, in which second-order variables occur only predicatively (in atomic
contexts of the form Vv). The straightforward way of eliminating this
predicate would be by third-order logic; thus, whether one undertakes to
eliminate it or not, one is stuck with atomic predication with second-order
arguments. This is an enlargement of what Boolos has considered in his
argument about ontological commitment. Although the English plural
can still be used to read it, that does not cause the distinction between
this sort of case and ones where predicates with second-order arguments
are absent to disappear. Thus to read (8), let us call a variable-pair an

66 This way of putting things assumes the second-order entities are extension-like; but if
the language is not extensional, Boolos’s definition will have to be modified in any case.

67 An early criticism of Boolos’s ontological claim is Resnik, “Second-order Logic Still Wild.”
References to further literature and an even-handed summary of the issues are to be
found in Linnebo, “Plural Quantification.”
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ordered pair whose first term is a variable. Then (8) might be read: There
are some objects and some variable-pairs such that each object is among
the former if and only if it is the second term of one of the latter pairs
whose first term is V, and every other second-order variable U is such
that for each object, the pair whose first term is U and whose second
term is it is one of the latter pairs if and only if it is one of the R s, and the
latter pairs and s satisfy G. This has the difficulty that nothing marks the
final “the latter pairs” as a second-order argument; ‘the latter pairs and s
satisfy G’ could say that all or most of the latter pairs are x’s such that x
and s satisfy G.

There are, however, cases where plural noun phrases unambigu-
ously express second-order arguments; ‘the latter pairs are infinite in
number’ would be an example. But what is the principle by which
such cases are distinguished? Since Boolos’s publications, it has been
pointed out, notably by James Higginbotham,68 that much simpler and
more mundane English sentences have plural subjects where a render-
ing of them as second-order arguments, or at least an essential use of
second-order logic, is tempting. These are the so-called collective read-
ings of action sentences (and no doubt others) with plural subjects,
as in:

(9) The men lifted the piano.

(10) Some men lifted the piano.

Each of these might be read as saying of certain men that each of them
lifted the piano, but given the weight of pianos that is less plausible than
to understand them as saying of the men, or some men, that they collec-
tively lifted the piano. It might be tempting to render (10), for example, in
second-order terms as

(11) (∃F )[there are at least two Fs ∧ (∀x)(Fx → x is a man)
∧ F lifted the piano],

thus understanding ‘lifted the piano’ as a predicate with a second-order
argument, like ‘are infinite in number’ mentioned earlier. Apart from the
fact that one might object intuitively to the idea of a second-order entity as
lifting a piano, this reading raises the question how ‘lifted’ with a second-
order first argument is related to the same verb with a first-order first
argument. Higginbotham prefers a Davidsonian reading involving events,

68 “On Higher-Order Logic and Natural Language,” §§5–6.
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so that (10) is rendered as:

(12) (∃e){Lifting(e) ∧ Of(e, the piano) ∧ (∃F )[there are at least two Fs
∧(∀x)(Fx → x is a man) ∧ (∀x)(Agent(x, e) ↔ Fx)]}.69

This reading still leaves open the question of interpretation for the
second-order logic involved. The case for its ontological innocence might
seem to be furthered by the fact that it arises in examples as simple as
(9) and (10). In such examples, however, the second-order entities, if we
admit them, have finite extensions, and finite sets arise fairly early in the
understanding of arithmetic, plausibly still at the common-sense level.70

These considerations reinforce, it seems to me, an ontological intu-
ition a little different from but complementing Quine’s, according to
which ontological commitment is carried by the expressions that indi-
cate what one is talking about. We might say that they play the role of
subjects, but here we must be careful not to revive the usage of tradi-
tional logic. But in logical terms they typically occur as arguments. In a
primitive second-level predicate, second-order variables or expressions
that can be substituted for them play that role. The same is evidently true
of plural expressions in Boolos’s paraphrases of second-order formulae,
as I have indicated earlier. Boolos has, in my view, not made a convincing
case for the claim that his interpretation of second-order logic is ontolog-
ically noncommittal. The great interest of his reading, in my view, is that it
breathes new life into the older conception of pluralities or multiplicities.
As a source of second-order logical forms, the plural and plural quantifi-
cation are rightly distinguished from what was so much emphasized by
Frege, predication and, more generally, expressions with argument places.
In particular, if it is the idea of generalization of predicate places that we
appeal to in making sense of second-order logic, then the most natural
interpretations will be relative substitutional or by semantic ascent, and
these will not license impredicative comprehension, and it is hard to see
how that will be justified.71 But if one views examples such as Boolos’s as

69 An alternative treatment develops a logical regimentation that takes the plural much
more at face value. For different versions of this sort of treatment, see Byeong-Uk Yi, “Is
Two a Property?” and Rayo, “Word and Objects.”

70 This issue will be explored in chapter 6; in §32 it will be argued that there is a possible
genesis of notions of cardinality in which the concept of set plays no role; however, in
§34 an alternative possible genesis will be developed that does involve finite sets.

71 Cf. Mathematics in Philosophy, Essay 8 and elsewhere. Concentrating on natural lan-
guage, Higginbotham (op. cit., §7) proposes replacing the introduction of second-order
logic by admitting “classes as many” in the sense of the early Russell (see note 66), which
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involving “pluralities,” they are more like sets as understood in set the-
ory in that no definition by a predicate is indicated, so that one need not
expect them to be definable at all. Thus one obstacle to the acceptance
of impredicative comprehension is removed.72

An advocate of Boolos’s interpretation in an eliminative structuralist
setting could grant my claims about ontological commitment, but then
take a position analogous to the Fregean: Second-order variables indeed
have pluralities as their values, but these are not objects. Like Frege’s claim
about functions and concepts, this position would base an ontological dif-
ference, of objects and pluralities, on the grammatical difference between
the singular and plural terms that refer to each. It does not seem to me
to have the same intuitive force as Frege’s position, since there is no ana-
logue to the regress argument that can be made if one views the reference
of a predicate as an object. There will still be, just as with Frege’s concepts,
the irresistible temptation to talk of pluralities as if they were objects, as
we have already noted above. The only gain this interpetation offers over
the Fregean is the removal of an objection to impredicativity.73

Suppose, however, that one does not accept our view of the matter.
Intuitions about ontological commitment are disputable, and those nom-
inalists who have applied second-order logic and Boolos’s reading of it
have not been persuaded by the arguments against Boolos’s “meontolog-
ical” claim. The disputable character of such intuitions was surely one
of Quine’s reasons for insisting on regimentation in terms of first-order
logic and resisting not only higher-order logic but also modal logic or

are very close to what I call pluralites. He sees this as a rejection of second-order logic
rather than an alternative interpretation of it because he assumes that second-order
logic will be so interpreted that second-order entities are “predicational,” that is, in
some way derived from predicates. Given the entrenched character of the understand-
ing of second-order entities as sets, this assumption seems questionable. But the issue
may in the end be terminological.

72 It would be going too far, however, to hold that on this interpretation impredicative
comprehension is obvious in general.

73 In reflecting on set-theoretic paradoxes, both Cantor and Russell entertain the idea of
pluralities that are not “unities”: Cantor, in the letter cited in note 18, uses the term
“inconsistent multiplicity”; Russell speaks of objects that form a class as many but do
not form a class as one, such as “the classes which as one are not members of themselves”
(Principles of Mathematics, p. 102). In explaining the distinction of class as many and
class as one, Russell appeals to the difference between plural and singular reference
(ibid., pp. 68–69); his use of the plural in deploying the former notion resembles that in
Boolos’s examples and in his reading of second-order formulae.

It is of course an inference from certain pluralities failing to be unities to their failing
to be objects. On this issue with reference to Cantor, see Mathematics in Philosophy,
pp. 280–286.
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generalized quantifiers in the apparatus of a theory whose ontological
commitment is to be assessed. Whatever else may be said of Quine’s pro-
cedure, it at least makes such questions reasonably definite questions.
One also might respond by saying that just because of its disputable char-
acter ontological commitment should not be a central issue in the foun-
dations of mathematics.74 Boolos would hardly dispute that if monadic
second-order logic is added to a theory that admits pairing of individu-
als, then the power of the theory is greatly increased; one can go from a
theory whose proof-theoretic analysis is quite straightforward, as is the
case with first-order arithmetic, to one that it is beyond the most power-
ful resources of contemporary proof theory to analyze, full second-order
arithmetic. It is somewhat telling that there are significant intermediate
stages given by admitting the comprehension schema

(13) (∃F )(∀x)[Fx ↔ A(x)]

with restrictions on the formulae A(x) that are admitted. Thus, we may
admit only first-order comprehension, that is, not allow A to contain
bound second-order variables, or any of a number of weaker restrictions
designed to insure predicativity. If we read the second-order variables as
ranging over sets, then the most natural readings of them order them in
a straightforward way so that each logically stronger one admits more
sets. Does that not create a burden of proof for someone who wants to
argue that, on the reading by means of the plural, the differences are not
ontological differences? If there is no enlargement of ontological com-
mitment as one passes to less restricted versions of the comprehension
schema, then perhaps that speaks against the importance of the notion.
But that is an objection to nominalism: Of all the main trends in the foun-
dations of mathematics, it is nominalism that gives greatest weight to
ontology.

One consequence of the attention given to the plural by logicians from
Boolos on is that plural logic has come to be a logic in its own right.75

The ontological issues canvassed above then come to be issues about the
ontological commitments of theories in plural logic. But a consequence
of this development is that many issues concerning the plural and its
logical force can be discussed independently of controversial questions
about ontology. And, as John Burgess has illustrated, it becomes possible

74 Cf. Wang’s remarks many years ago, in “What Is an Individual?”
75 Two somewhat differing formulations are given in Rayo, “Word and Objects,” and Yi,

“The Logic and Meaning of Plurals.” Linnebo, “Plural Quantification,” follows Rayo.
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to show what plural logic can accomplish in set theory while leaving for
separate discussion the issue about commitment to classes or the like that
motivated Boolos.76 But I don’t think the issues discussed in this section
would be materially changed by putting things in the language of plural
logic rather than monadic second-order logic.77

We can sum up our discussion of second-order logic as follows: If the
eliminative structuralist uses it, he will not be able to avoid ontological
commitments more uncomfortable on balance than that to mathematical
objects, either to Fregean concepts or to multiplicites that are not “uni-
ties.” If he does not, he is faced with the relativistic consequences that
have made if-thenism an unpersuasive view for some time. Although we
will look at this issue again in §16 in connection with “modalist” versions
of eliminative structuralism, this picture will not change.

§14. Structuralism and application

Any view of the nature of basic mathematical objects has to provide for the
application of the relevant mathematical theories. For this reason we have
to consider objections to a structuralist view of numbers that raise this
issue. The objections can be discussed with a version of the eliminative
reading of Dedekind as our paradigm, whether formulated in terms of set
theory as in §10 or in terms of second-order logic interpreted in one of
the ways we have discussed.

The structuralist view implies that the application of numbers as cardi-
nals is not directly reflected in their identity, as it was in the constructions
of Frege and Russell. They seem themselves to have regarded this fact
as an objection. Frege rightly held that any view of the foundations of
arithmetic and analysis must make provision for their applications. As he
famously remarked, “It is applicability alone that raises arithmetic from
the rank of a game to that of a science. Applicability therefore belongs to it
of necessity.”78 But as Dummett has emphasized (p. 61), he criticized oth-
ers’ accounts of real numbers on the ground that “the principle governing
all possible applications of the real numbers should be displayed in their
definition.” The same idea presumably lay behind his procedure in the
foundations of arithmetic, where the conception of numbers as cardinals

76 Burgess, “E pluribus unum.” Cf. Fixing Frege, §§3.6–3.7.
77 I hope to pursue the questions further elsewhere.
78 Grundgesetze II §91, translation from Dummett, Frege: Philosophy of Mathematics, p. 60.

All quotations from Dummett in this section are from this work, which is cited by page
number in the text.
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was a driving idea of the analysis. The analysis of cardinality is used to but-
tress the thesis that numbers are objects by leading Frege to his criterion
of identity for numbers, that the number of Fs is the same as the number
of Gs just in case there is a one-one correspondence of the Fs and the
Gs.79 One can be led into confusion here: An analysis of the locution “the
(cardinal) number of the Fs” should certainly lead to the consequence
that Frege’s criterion is true. But Frege seems to have demanded more,
that the sense of arithmetical propositions, including those of pure arith-
metic that on their surface do not refer to cardinality, should in some way
incorporate their role as cardinals. Once he introduces his explicit defini-
tion of the number of Fs as the extension of the concept ‘equinumerous
with the concept F ’, the proof of his criterion uses only the definition,
the basic property of extensions (i.e., the notorius axiom V), and simple
logic.

One might object to Frege’s view on the ground that the ordinal concep-
tion of number is more fundamental than the cardinal; indeed, Dummett
offers just this criticism of Frege (p. 293). But the structuralist view has a
more general quarrel with the attitude we are attributing to Frege. Once
we have the natural numbers with their structure, then that is sufficient
for applications. For the cardinal use of the natural numbers, one needs
some understanding of cardinality, and for this we can for the moment fol-
low Frege (who himself followed Cantor). But as Dedekind seems already
to have seen, a structuralist understanding of what the numbers are does
not stand in the way of a reasonable account of their cardinal use.

It is true that the application of arithmetic requires relations of num-
bers that are not internal to the structure of the numbers themselves or
even to some larger universe of mathematical objects. We can see that
the structuralist view should not be formulated so as to hold that mathe-
matical objects have no properties or relations other than those definable
in terms of the basic relations of the structure in which they reside. For
example, according to a widely accepted analysis of counting, in counting
a group of objects a one-to-one correspondence is established between
the numbers from 1 to a certain number n and the objects of the group.
Such relations in which the elements of a structure may stand will be called

79 Grundlagen, §§62–68; cf. Mathematics in Philosophy, p. 153. This criterion has been
much discussed; see in particular Wright, Frege’s Conception of Numbers as Objects, and
many of the essays in Demopoulos, Frege’s Philosophy of Mathematics. More will be said
about it in Chapter 6. But I do not attempt in this work to deal seriously with Wright’s
“neo-Fregean” program. On that, see now also Hale and Wright, The Reason’s Proper
Study.
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external relations. Evidently, the structuralist view has to allow numbers
or other objects it treats to have external relations.

Clearly, those relations between elements of a simply infinite system
and other objects will only count as relations of numbers if they are in a
certain sense invariant under choices of realization of the structure. Let
〈N, 0, S 〉 and 〈M, 0, R 〉 be simply infinite systems in the sense of §10.
By Dedekind’s theorem, they are isomorphic; let h be the isomorphic
mapping of N onto M. If, now, for n ∈ N, f is a one-one correspondence of
some objects, say the Fs, and {m: m ∈ N ∧ m ≤S n}, then, of course, if we
set g(x) = h [ f (x)], g is such a correspondence between the F ’s and {m:
m ∈ M ∧ m ≤R h(n)}.80 Thus if, using N as “realization” of the numbers,
one concludes on the basis of f that there are n Fs, using M one would
conclude on the basis of g that there are h (n) Fs, which is the right result.

This treatment of external relations is generally applicable; suppose
S = 〈S, . . .〉 and T = 〈T, . . .〉 are structures, and h is an isomorphism of S
onto T. Then if R is a relation of elements of S to elements of another set
U, and we set

xR ′y iff (∃z ∈ S) [x = h (z) ∧ zRy ],

then for any x in S, y in U, xRy obtains if and only if h(x)R ′y, and R ′ can
do the same work as R. This statement is of course vague and would have
to be filled out in particular cases, as we have done for the example of
counting. It should also be clear that it does not depend specifically on
the set-theoretic conception of structure, and this treatment of external
relations will be applicable to other structuralist views of such objects as
numbers. If the eliminative structuralist view is formulated in terms of
second-order logic, then in this argument only simple cases of first-order
comprehension are used.

The idea is simply that the relations of numbers to other objects that
are needed for applications are essentially invariant under isomorphism,
so that the form of structuralism that denies that there is a more intrin-
sic characterization of what the numbers are can accommodate these
relations. It is of course a further demand that the general principle for
the application of the natural numbers or the real numbers should be
explained. In the case of the natural numbers, one can well question
whether there is a single such general principle, as the reduction of the
cardinal use to the ordinal or vice versa could be questioned. The anal-
ysis of cardinality that Cantor made mathematically usable and general,

80 ≤S is the order relation induced by S as successor; similarly for ≤R.
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which was then used by Frege, certainly offers an account of one very
general such principle. But it is far from evident that its work requires
that their role as cardinals be determinative of what objects the natural
numbers are.

Some other objections to a structuralist view of the natural numbers
are more technical. A simply infinite system or progression, as we defined
it, is a structure with a distinguished initial element and a unary operation
satisfying Dedekind’s conditions. This does not tell us whether the initial
element is to count as 0 or as 1; if we have a progression 〈N, a, f 〉, then
the structure 〈N – {a}, f(a), f 〉 is also a progression and isomorphic to it.
But this influences how we interpret any Arabic numeral with respect to
the progression; if the initial element is 0, then 3 is the fourth element;
if it is 1, then 3 is the third. Also, given our progression, we can give two
definitions of finite cardinality. Let n be an element of our progression
〈N, a, f 〉. Then we have:

(9) (Nx)Fx = n iff the Fs are equinumerous with the terms
preceding n.

(10) (Nx)Fx = n iff the Fs are equinumerous with the terms up to n.

(9) is the correct definition if we take the initial element a as 0, but (10) is
correct if we take it as 1.

Dummett takes this observation to be a serious objection to a struc-
turalist view of the natural numbers (pp. 52–53). He holds that it cannot
be right to say that 0 is just the initial element of a progression, or that
3 is the third element; and in fact these are incompatible. This claim is
undoubtedly right: ‘0’ does not mean ‘the distinguished (initial) element
of a progression supposed given’, and the translations considered in §§10–
11 of arithmetic language cannot just presume that the distinguished
element is 0. But how fatal is this observation to structuralism?

One might at first reply that what is needed is simply more structure;
although the numbers beginning with 0 and those beginning with 1 are
isomorphic, this ceases to be so if we expand the structure to include
addition, since n + 0 = n while n + 1 �= n for any natural number n.
Dummett replies that the structuralist must have in mind the second-
order characterization, since it is categorical. At all events, one also might
reply on his behalf that, given a progression, there are two possible ways
of introducing addition, say by primitive recursion:

(11) m + a = m; m + fn = f (m + n).

(12) m + a = fm; m + fn = f (m + n).
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(11) gives a the role of 0, while (12) gives it the role of 1.81 Which is the
“real” addition?

It seems to me that the correct reply for the structuralist is that if
we have a progression, and we want to go on to develop mathemat-
ics, then whether we take the initial element to be 0 or 1 is a conven-
tion. In the versions of eliminative structuralism that we have consid-
ered, this will be reflected in the manner in which arithmetical language
is translated, and in the choice of second-order explicit definitions of
addition, whether to mirror the recursion (11) or (12), and then other
operations. Frege gave a good reason for preferring the convention that
the initial element is treated as 0, as otherwise the progression would
not contain a cardinal number for empty concepts, but this reason is
relevant only when cardinality is at issue, and even then one can post-
pone introducing 0 until, for example, one is also introducing negative
numbers.82

If this seems unnatural, it is because a structuralist understanding of
arithmetic belongs to sophisticated mathematics; it is not part of the lay-
man’s understanding of arithmetic or even the mathematician’s before
a certain amount of foundational reflection has been undertaken. That,
as Dummett says, “we take them [the natural numbers] as too intimately
connected with certain immediate applications of them to regard them as
identifiable solely through the internal structure of the natural-number
system” (p. 52) is true. It does not follow that such a connection is what
individuates the numbers as objects, or even that they have such individ-
uation at all.

Dummett makes a further objection in the following eloquent passage:

The identity of a mathematical object may sometimes be fixed by its relation
to what lies outside the structure to which it belongs; what is constitutive of
the number 3 is not its position in any progression whatever, or even in some
particular progression, nor yet the result of adding 3 to another number, or of
multiplying it by 3, but something more fundamental than any of these: the
fact that if certain objects are counted ‘One, two, three’, or, equally ‘Nought,

81 This observation is made by Tait, “Frege versus Cantor and Dedekind,” p. 225.
82 An illustration for this conventional character might be the following: In the ordinal use

of number concepts in everyday language, the initial term of an ordering or sequence is
described as “the first” and thus made to correspond to the number 1. It is not clear that
this everyday usage gives any place to 0 as an ordinal number. But in mathematical usage,
in particular in mathematical logic, it is quite common to assign 0 to the initial element
of a sequence, and that is in keeping with the very entrenched practice of regarding the
ordinals as beginning with 0.
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one, two’, then there are 3 of them. The point is so simple that it needs a
sophisticated intellect to overlook it; and it shows Frege to have been right,
as against Dedekind, to have made the use of the natural numbers as finite
cardinals intrinsic to their characterisation. (p. 53)83

In our terms, Dummett claims here that 3 is characterized by an external
relation rather than internally to the structure of numbers with just an
initial element and the successor function or relation. The point really
comes back to the question whether the initial element of a progression is
understood as 0 or 1, as 3 is characterized as S2 and 2 as S1, so that once the
convention regarding 0 and 1 has been made, 3 is after all characterized
in intrastructural terms, without expanding the structure.

Dummett attributes to Frege the view that numbers are “specific
objects,” and he reasonably enough regards Benacerraf as denying this.
Eliminative structuralism will in general deny this, for it, ‘3’ might be taken
to signify rather a role. A difficulty for the alternative that Dummett does
not address is that on the standard constructions of the number systems,
there is the positive integer 3, the rational number 3, the real number 3,
and the complex number 3, and these are not strictly identical, although
there is a canonical mapping of each system into the next in which the
next 3 is the image of the preceding one. In other words, if one considers
the full use of ‘3’ in mathematics, it’s far from clear that being 3 is not a
role of some sort rather than being a “specific object.”84

Given the above treatment of external relations, we might answer the
demand that some stronger constraint than the structuralist allows on
what objects the natural or real numbers are is needed for application
as follows, taking this time the real numbers as our example: Let R0 be
the real numbers, so understood that they obey the constraint; let R1

be some copy of the structure of the real numbers. If we have got the
right structure, then R0 and R1 are isomorphic. Let g be the isomorphism
of R0 onto R1. But now R0 provides for applications, by hypothesis. In
particular, there are truths such as that the ratio of the magnitudes m1

83 The “sophisticated intellect” is presumably that of Paul Benacerraf, whose view in “What
Numbers Could Not Be” is the primary target of the objections by Dummett we have
been discussing.

84 This is before one considers that a 3 might arise in still other structures, for example,
fields of characteristic p for p > 3.

To be sure Dummett does not claim that the observation in our quotation shows that
3 is a specific object; one option about the natural numbers he considers left open is
“that they are not specific objects at all, even though capable of being characterised by
reference to their application, rather than by pure structure” (p. 54).
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and m2 is r, for r ∈ R0.85 But surely we could provide for the same appli-
cations by, for s ∈ R1, giving to ‘the ratio of the magnitudes m1 and m2 is
s’ just the truth-conditions presumed already given for ‘the ratio of the
magnitudes m1 and m2 is r’ where r = g −1 (s). Furthermore, suppose
that the general principle concerning applications (such as the Fregean
one we have presumed) that governs our understanding of statements
about real numbers should prove inadequate; applications arise that are
not covered by the principle. By virtue of what are these applications of
the real numbers? I do not see any answer to this question other than
that the mathematical structure involved is that of the real numbers.86 I
conclude that at this stage there is no reason to conclude that concern
for applications should lead one to reject a structuralist view.

85 Concern for applications led Frege to undertake to define real numbers as ratios of
magnitudes. Ri (i = 0, 1) is of course the domain of Ri.

86 Quine, commenting on views of Russell, remarks, “Always, if the structure is there, the
applications will fall into place” (“Ontological Relativity,” p. 44). Much of the argument
of this section is an elaboration of that remark.
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§15. Mathematical modality

In §§11–12 the use of modal notions appeared attractive as a way of for-
mulating eliminative structuralist views of mathematical objects so as to
deal with the vacuity problem that such views faced. Before I pursue that
idea, I shall consider modal notions more directly in relation to mathe-
matics. Although this provides necessary background for continuing the
previous line of argument, it is also of interest in its own right and will be
relevant also to other parts of the present work.

Modality is what is expressed primarily by the words ‘necessary’ and
‘possible’ and by the modal auxiliaries ‘can’ and ‘must’. These words have
such a variety of uses, some of quite different character, that we could
not hope to survey them in a brief compass (and probably to do so
at all would be a major linguistic undertaking). However, two distinc-
tions made between uses of modal words or between modalities are of
general importance and important for our purposes: (a) that between
epistemic and nonepistemic and (b) that between absolute and non-
absolute.

(a) In Naming and Necessity, Kripke stresses the difference between
the epistemological notion of the a priori and the notions of necessity
and possibility with which he is concerned, which he says belong to
metaphysics (pp. 35–36). In this discussion, he does not emphasize the
idea of epistemic modalities or epistemic uses of modal words, but of
course such can be found. In everyday language, the modal auxiliaries
especially are often used in relation to the speaker’s or the community’s
knowledge; for example ‘it can rain tomorrow’ is most likely to mean ‘for
all I (we) know, it will rain tomorrow’. Kripke acknowledges such an epis-
temic use when discussing our inclination to say that “the answer to the

80
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question whether Hesperus is Phosphorus might have turned out either
way” (p. 103). He observes that “the four-color theorem might turn out
to be true and might turn out to be false” (ibid., evidently as of 1970).
“Obviously, the ‘might’ here is purely epistemic.”1

In mathematics, modality naturally arises in two ways: First, mathe-
matical truths are thought to be necessary, and second, mathematical
existence is intimately related to possibility. Whether or not the modal
notions arising in these two ways are identical, they are certainly prima
facie nonepistemic.

Nonetheless, there is a notion that has been treated as a modality in
logical work, namely provability, which is certainly prima facie epistemic.
There are two types of studies in which modal logic is used with �A
having the intended meaning ‘It is provable that A’. In the first, prov-
ability is provability in a given formal system. In that situation, if the
system satisfies the conditions of Gödel’s incompleteness theorem, the
modal logic cannot be an aletheic modal logic of the usual kind. For
the axiom schema T (�A → A) would amount to a “reflection princi-
ple,” the principle that what is provable is true. A well-known theorem of
Löb’s states that for any formula of arithmetic one can prove that if the
corresponding instance of the reflection schema is provable, then the for-
mula itself is already provable. Thus, on the provability interpretation, the
schema L:

�(�A → A) → �A

1 It is not so clear that Kripke means by this to acknowledge epistemic modalities. With
respect to the statement ‘Gold might turn out not to be an element’, he seems to regard
‘might’ as a sort of shorthand for something purely epistemological (p. 143 n. 72). He goes
on to say, “If I say, ‘Gold might have turned out not to be an element,’ I seem to mean this
metaphysically and my statement is subject to the correction noted in the text.” That is,
it is not really correct but is, rather, a loose way of saying that it might (metaphysically)
have been the case that there is a substance with all the properties originally known of
gold but not an element.

In these cases, the idea of epistemic modality has the difficulty that one seems to
acknowledge the epistemic possibility of states of affairs that are not metaphysically or
“logically” possible, contradicting the idea that the latter is the most general kind of
possibility. In applying modal logic to epistemic notions, for example in the standard
epistemic logics, epistemic possibility is identified as truth in some world that is an
“epistemic alternative” for the knower. But then this implies truth in some possible
world or other. Hence either epistemic possibility implies possibility tout court (and the
sort of statement Kripke considers is not epistemically possible, at least on his view of
what is possible tout court), or else for the analysis of the epistemic notions some more
generous notion of possible world is needed, so that some epistemic alternatives are not
“really” possible worlds.
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is sound. If to the minimal normal modal logic K (which is sound on
the provability interpretation2) we add both T and L, obviously we can
infer �A for every A; on the provability interpretation, this amounts to
the inconsistency of the system. A modal logic sound for the provability
interpretation, then, would be one in which one replaces the schema T
by the schema L. (Following Boolos, we call the resulting logic GL.) This
logic turns out to have considerable mathematical interest; in particular, it
turns out to be complete in the following sense: If a propositional formula
is not provable in GL, then arithmetical formulae can be instantiated for
its sentence letters such that, on the interpretation of �A as ‘A is provable
in first-order arithmetic’, the resulting instance is not provable in first-
order arithmetic.3

In another type of study, the necessity operator has as intended mean-
ing something like “informally provable” or “provable by arbitrary correct
means.” In this case �A → A is sound, and the reasonable modal logic will
at least contain S4. A certain amount of work has been done developing
mathematical theories in which such an operator is added to a classical
theory; the resulting “epistemic mathematics” has interesting relations to
intuitionistic mathematics.4 Another interesting line of research studies
in an epistemic-logical way the issues surrounding the connection, real
or alleged, between Gödel’s theorem and mechanism.5

On its face, the necessity of mathematics is not epistemic; however, it
may be related to the fact that mathematical knowledge is characteristi-
cally obtained by proof. The fact that Goldbach’s conjecture is not known
to be true or false does not alter the fact that if true, it is necessary; if false,
it is necessarily false. I need not go into this point because it has been
vividly illustrated by Kripke.6

2 This soundness is closely related to the first two of the “derivability conditions” proved
by Hilbert and Bernays in their proof of Gödel’s second incompleteness theorem. See
Grundlagen der Mathematik, II, §5 (d). But the second condition amounts to the sound-
ness of the schema 4

�A → ��A
characteristically assumed in systems of epistemic logic. That schema is derivable in GL.
For the modal-logical treatment of these matters see Boolos and Jeffrey, Computability
and Logic, ch. 27, and, more extensively, Boolos, The Logic of Provability.

3 This rather difficult result is due to R. M. Solovay. See Boolos, The Logic of Provability,
ch. 9.

4 An introduction to the subject is provided by the papers in Stewart Shapiro (ed.),
Intensional Mathematics. For an informal treatment with philosophical motivation see
Goodman, “The Knowing Mathematician.”

5 Reinhardt, “Epistemic Theories.”
6 Naming and Necessity, esp. pp. 36–37.
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Whether the possibility related to mathematical existence is epistemic
may seem more controversial, since the constructivist view that exis-
tence involves construction has been developed in a manner in which
explanations in terms of truth-conditions are replaced by those in terms
of proof-conditions. For a structuralist understanding of classical math-
ematics, however, such a conception is inappropriate. If, for example, we
think of the existence of a structure of pure mathematical objects in a
rough way as consisting in the possibility of an instance of it, the realist
point of view about mathematical objects and truth will require this pos-
sibility to be independent of our knowledge. In the further development
of the structuralist view, I will assume that the modalities involved are
nonepistemic.

(b) What necessity or possibility in some absolute sense would be con-
trasted with is what is necessary or possible at some point in time, in some
situation, or by virtue of some aspect of how things are. Thus everyday
use of modal words, especially the auxiliaries ‘can’ and ‘must’, often indi-
cates necessity or possibility of the latter kind. Thus today it is possible for
me to go to New York tomorrow (assuming I have no pressing obligation
preventing it); but on, say, January 1, 1936, it was not possible for me to go
to New York the next day, because a child less than three years old cannot
undertake such a journey. Though it is possible for me to go to New York
tomorrow, under a number of easily conceivable conditions it would not
have been possible. Thus, it seems that the possibility depends not only
on the time but on a variety of contingent facts.

The idea of an absolute modality has a very simple model in terms
of possible worlds: Given a domain of possible worlds, there is a natu-
ral necessity operator � such that �A is true if and only if A is true in
all the worlds in the domain; �A is true if and only if A is true in some
world. Then the resulting modalities satisfy S5; in particular, �A implies
��A. In terms of possible worlds, the difference between absolute and
nonabsolute modalities is represented by the difference between unre-
stricted and restricted quantification. Interpretations of normal modal
logics weaker than S5, where �A is true at a world i if A is true at every
world j that is “accessible” from i, clearly give rise to nonabsolute modal-
ities (except in the trivial case where every world is accessible from every
other).

The “metaphysical” or “broadly logical” modalities central to much
recent writing on modality clearly seem to be understood as absolute; it
is generally taken as clear that they satisfy S5 and, in particular, that they
give rise to a class of possible worlds such that necessary truth is truth in
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all possible worlds. In fact, the term ‘absolutely necessary’ is often used
to mean ‘necessary in the strictest sense’.7 That the strictest necessity
should be absolute in the above sense is to be expected, for to obtain
such a strict necessity one would generalize over all the conditions on
which a nonabsolute necessity might depend.

Among nonepistemic modalities four should be distinguished (roughly
in order of stringency of necessity):

(i) “Physical or natural”; this would be the necessity that the laws of
nature possess. What is allowed by the laws of nature, and is not otherwise
contradictory or incoherent, is physically possible.

(ii) Metaphysical or “broadly logical.”8 Several different writers seem
to aim at the same notion, which Kripke generally calls simply necessity,
or necessity tout court. Generally it is regarded as obvious that necessity
in this sense is stricter than physical or natural necessity, and that many
stories that conflict with the laws of nature nonetheless describe logical
possibilities. Thus Alvin Plantinga writes:

Unlike Superman, furthermore, the rest of us are incapable of leaping tall
buildings at a single bound or (without auxiliary power of some kind) traveling
faster than a speeding bullet. These things are impossible for us; but not in the
broadly logical sense.9

The prevalence of “science-fiction” examples in many philosophical dis-
cussions suggests a widespread belief on the part of philosophers that the
philosophically relevant sense of possibility is much more liberal than the
physical or natural.

Both Kripke and Plantinga refer to the necessity that concerns them as
strict necessity, necessity in the highest degree. When we turn to modal
ideas associated directly with mathematics and logic, we shall, how-
ever, allow that some truths are not necessary in one of the latter senses
that are yet metaphysically necessary. We can reconcile this apparent

7 I myself recommended the term ‘absolute necessity’ for strict necessity in the sense I
took Kripke to intend (Mathematics in Philosophy, p. 177). I now prefer to use the term
‘absolute’ in the more formal way indicated in the text.

8 Clearly this notion is meant to share some of the properties of the notion of “logical”
necessity prominent in analytical philosophy before Quine’s critique of the analytic had
wide impact. Neither this earlier notion nor that in modal realist literature was meant to
be particularly tied to formal logic; hence the term ‘broadly logical’. This latter term is
the one favored by Plantinga to distinguish the notion he works with from other notions
of necessity; see, for example, The Nature of Necessity, p. 2.

9 Ibid. Kripke, however, declines to commit himself as to whether there really is a difference
between physical necessity and strict necessity (Naming and Necessity, p. 99).
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contradiction by saying that the more liberal possibility allowed by the
logico-mathematical notions is not “real” possibility. This traditional term
is, however, far from clear.

Whether or not it is what this traditional term envisaged, we can see
that metaphysical modality obeys a constraint that in considering math-
ematical and logical modality we will violate. To make out a statement as
expressing a metaphysical possibility, one describes a situation in which
it is true. This description will not serve its purpose unless it does no
violence to the meanings of the terms in the statement. Take, for exam-
ple, the old chestnut, ‘Something is both red all over and green all over’.
It is generally thought that one cannot make that out as possible in the
relevant sense. In order to do so, one would have to describe something
that is both red all over and green all over, and it would have to be clear
that it was red in just the same the sense in which everyday things are
red, likewise green in just the sense in which everyday things are green,
and what may be the more delicate aspect, the relevant sense of ‘all over’
also has to be respected. For example, it can’t be something just cov-
ered with red and green spots. Regarding an example in the above quo-
tation from Plantinga, if we ask whether it is possible that he should leap
over a tall building in a single bound,10 we are to describe a situation
in which someone does this (which appears easy enough to conceive
because it is involves only a great enlargement of scale of capacities that
some real athletes possess) and furthermore that this person is Alvin
Plantinga. Particularly assuming names to be rigid designators, this lat-
ter possibility is perhaps not so easy to make out; one gets into ques-
tions about just what is necessary to be the particular individual that
one is.

Whatever the idea of logical modality connected with formal logic
might turn out to be, it will not be constrained in such a way as to give rise
to such delicate questions. To make out a statement as logically possible,
it should be sufficient to construct a model in which it is true. But in such
a model the name ‘Alvin Plantinga’ can stand for anything satisfying the
condition which, in the model, represents leaping over a tall building in a
single bound. Thus, although it may not be clear whether it is metaphys-
ically possible that Plantinga leaps over a tall building in a single bound,
its logical possibility in the narrower sense seems to be a triviality.

10 Possibly we should distinguish between the possibility, considered by Plantinga, that he
leaps over a tall building in a single bound and the possibility, whether weighed by him
or by another, that Plantinga does this. I assume that it is the latter that is in question.
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It may be claimed that the constraint we have discerned in the notion
of metaphysical modality is one that any reasonable modal notion should
obey; otherwise, how is the possibility that Alvin Plantinga leaps over a
tall building in a single bound the possibility of that state of affairs and
not some other (say that a “counterpart” of Plantinga performs this feat)?
I shall consider this question further in connection with the “formal”
modalities that violate the constraint.

(iii) Mathematical modality, which I defer until I have taken up
(iv) Logical modality in the strict sense. The idea here is that formal

logic carries with it its own notion of necessity. The extent to which such a
notion has been developed in the literature is remarkably slight; the more
usual conception of “logical modality” would make necessity coincide
either with analyticity or with metaphysical necessity. We have already
briefly indicated the difference between the latter and formal logical
necessity; this difference should be still clearer if we consider the range of
necessary truths claimed in Naming and Necessity or other recent modal
realist works.

The idea of a formal logical notion of modality is that logical truths, or
logically valid statements, should be necessary, but only such statements
should be necessary. Thus, a sentence should express a possible truth if it
cannot be refuted by pure logic, or if it has a model. Because we have not
yet specified what “logic” includes, clearly we have to allow the possibility
that these will not be equivalent.

Let us assume first that nonmodal logic is just classical first-order
logic.11 Then a sentence in this language (thus without modalities) will
express a necessary truth just in case it expresses a logical truth in the
usual sense. Suppose we now extend the language by the usual modal
operators thus interpreted. We know the truth-conditions for sentences
of the form �A, where A contains no modal operators; namely �A is true
if and only if A is true in all models. Because this no longer depends on
the model, for a given model we can make it the condition for �A to be
true in that model. Then the stipulation determines the truth-conditions
for all sentences of the extended language. Consider, for example, a given
(usual first-order) model M and a sentence A with no nested modalities,
in which � has been eliminated in favor of ¬�¬. Consider a subformula
of A of the form �B. This is true, regardless of M and the assignment to
the free variables of B, just in case B is logically valid. Replacing �B by T

11 My earlier discussion of logical modality in Essay 7 of Mathematics in Philosophy also
made this assumption.
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or F according as B is or is not valid, we obtain an equivalent of A without
modalities. But then we can determine the truth-value of �A in M by the
same criterion. This interpretation amounts to a possible worlds model
structure in which � is absolute in the sense mentioned earlier, and the
possible worlds are a collection of models rich enough so that every non-
modal formula of the language that is not valid has a countermodel in the
collection.12 The interpretation is “absolute” in another sense: If D is such
a collection of models, and D′ is an extension of D, then the truth-value
of a modal formula at a model in D is the same if the necessity operator
is interpreted over D′ as if it is interpreted over D.

By adding such an operator of “logical necessity,” however, we lose
nice properties of first-order logic. Clearly the absolute character of the
operator implies that a closed and modally closed formula is true just in
case it is logically necessary. But if A is a nonmodal formula, ¬�A is true
just in case A is not valid in the usual first-order sense, and thus it is “log-
ically true” just in that case. But such A are not recursively enumerable.
It follows that there can be no proof procedure for logical validity in the
extended language.13

So long as one thinks of logical necessity as having the properties of
first-order logical truth this will be an unacceptable result. The matter
looks different in the context of our discussion of eliminative structural-
ism, since there we have used second-order logic and have considered
analogues of the standard semantics, where the valid formulae are already
not recursively enumerable.

There is, however, a more philosophical objection to the idea that
formal logic gives rise to absolute modalities. That a statement (say in
first-order logic) is not logically valid is made out by a mathematical con-
struction, typically of a countermodel but possibly a more proof-theoretic
argument showing the impossibility of a derivation. The idea that a log-
ical possibility obtains with logical necessity, if it obtains at all, implies
that arguments of this kind themselves yield logical necessities. Many

12 This is not quite sufficient, as a formula B may contain free variables to which objects
are assigned before one searches for a world that might falsify it. It would be sufficient
to have models whose domains are sets of natural numbers, such that for any satisfiable
formula A with n free variables, for any sequence of natural numbers of length n the
collection contains a model that satisfies A with the given sequence assigned to its free
variables.

13 Two alternative definitions of logical modalities are more briefly considered in Mathe-
matics in Philosophy, pp. 180–181. They are in my opinion less attractive than the one
discussed in the text.
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arguments concerning logicism have taken the existential commitments
of mathematics to show that it is not part of logic (or that it would be
only if such commitments could be eliminated).14 There is thus a conflict
between the idea that mathematical existence goes beyond logic and the
treatment of logical modality as absolute.

Because with this interpretation statements of the form �A are equiv-
alent to consistency statements, some will be quite strong from a proof-
theoretic point of view. For example, von Neumann-Bernays-Gödel set
theory NB can be formulated as a finitely axiomatizable first-order the-
ory. Hence there is a single first-order sentence A such that �A is equiv-
alent to the consistency of NB. Because this consistency could only be
proved with the help of strong abstract principles, which from some philo-
sophical points of view could be rejected or held to be unintelligible, the
assumption that, if true, it is logically necessary, is incompatible with one
possible conception of logic, namely, that logic codifies the principles
that are necessary for all reasoning about objects in general.

If we allow to logic richer means of expression, such as second-order
quantifiers or generalized quantifiers, then possibility statements have
correspondingly greater expressive power. For example, considering ZF
as a second-order theory (i.e., replacing the schema of replacement by
a single second-order statement), it is finitely axiomatizable.15 Its stan-
dard models are structures 〈Vα, ∈〉 where α is a strongly inaccessible
cardinal; hence there is a single second-order sentence A whose stan-
dard models are just these structures.16 �A is not quite equivalent to the
existence of a strongly inaccessible cardinal, because the possible truth
of A does not imply that there is a model of it whose domain is a set.
Still, it amounts to the possibility of a structure (class) of sets where the
power set is the full power set, and the axioms of ZF hold. Of course, to A
large cardinal axioms can be added. Because much stronger conditions
on α can be expressed by second-order sentences, possibilities in stan-
dard second-order logic can imply the possible existence of very large
cardinals.17

14 I endorsed this view in Mathematics in Philosophy, pp. 131, 165–166.
15 Relative to the underlying logic; see note 29 of Chapter 2.
16 V is the set of sets of rank < α, that is, the result of iterating the power set operation

α times beginning with ∅, or, in the more general situation where urelements are admit-
ted, beginning with the set of urelements.

17 This is true even for second-order indescribable types of cardinals, such as measurables.
(See Drake, Set Theory, pp. 281–282.) For let B(x ) be a formula of first-order set theory
saying ‘x is a measurable cardinal’. If A is the conjunction of the axioms of second-order
ZF, as in the text, then a standard model of A ∧ (∃x )B(x ) will be a structure〈Vα ,〉 where α
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These considerations, together with the well-known ones about delin-
eating the class of logical constants, make it in my opinion very doubtful
that a generous notion of logical possibility would be distinguishable in
a principled way from the mathematical possibility appealed to by other
writers.18 What we can do is to single out a more restricted case of math-
ematical modality, such as the one based on first-order logic considered
earlier, and describe this as logical modality. If it is to do more than to
identify the specific manner in which the restriction has been defined,
however, the label ‘logical’ is not of great significance.

To return to the issue of absoluteness, statements of logical possibility
of the kind we have been considering are made on the basis of mathe-
matics, and the considerations in favor of regarding mathematical truths
as necessary also favor regarding them as necessary – in whatever sense
mathematics is necessary. These doubts about the absoluteness of logi-
cal necessity have force if one regards the difference between logical and
mathematical modality as a principled one. Otherwise, as statements of
logical possibility are anyway mathematically necessary, taking them to
be logically necessary is simply imposing a constraint on the specific
notion of logical necessity being introduced.

(iii) To return to mathematical modality, the notion arises in two
contexts: first, as possibly the appropriate interpretation of modality for
the thesis that mathematical truths are necessary, and second, as an expli-
cation of the idea that what mathematical constructions establish is a kind
of possibility.

If one takes the view about mathematical existence and logic men-
tioned in the discussion of logical modality above, the necessity of
mathematics will not be strict logical necessity. Otherwise, if one does

is a strongly inaccessible cardinal such that there is a measurable cardinal κ < α. Thus
�[A ∧ (∃x )B(x )] implies that the existence of a measurable cardinal is possible.

18 In this I appear to differ from Field in “Is Mathematical Knowledge Just Logical
Knowledge?” He regards the notion of modality he uses as strictly logical (pp. 84–85). In
note 7, he contrasts it with mathematical modality as Putnam described it in “Mathe-
matics without Foundations.” In my opinion, he misinterprets Putnam here. According
to Putnam, it is surely mathematically possible, say, that there should be no sets of
uncountable rank, although it is a theorem of ZF that there are such sets.

Field does apparently regard his logical modalities as first-order; see the remarks on
NB, p. 88. Putnam’s treatment of set theory has the modal operator do some of the work
of second-order apparatus. In the text, at least for the purpose of giving eliminative
structuralism the best possible run, I have used modal statements where second-order
quantifiers are assumed to have a standard reading. Of course this is a further step than
Field takes down the slippery slope toward mathematical modality.
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hold that the necessity of mathematics is strictly logical, one’s idea of log-
ical necessity will not be much different from mathematical necessity as
here understood.

Mathematical truths are no doubt necessary in the “metaphysical or
broadly logical” sense considered earlier; hence, one might ask why a
particularly mathematical modality should be appealed to for an inter-
pretation of the necessity of mathematics. Questions of metaphysical
modality have to do with the nature of objects of this or that kind. In
practice, the kind of objects is generally one that we know from experi-
ence or from some other relation of the objects to ourselves and repre-
sents some aspect of ourselves or the natural world (or the supernatural
if there should be such). There are necessities considered in the literature
on these matters where specific kinds of object seem not to be involved.
An example would be the necessity of true statements where the identity
predicate is flanked by names. But these also would hold if the necessity is
understood in a logical or mathematical sense. Because of the generality
of the content of mathematical statements, they resemble the necessity
of identities rather than such cases as that gold has atomic number 79.
Indeed, the structuralist view of mathematical objects in effect denies that
mathematical objects have “natures” at all. The necessity of mathematics
should have the same formal character as the content of mathematical
statements themselves.

When we turn to possibility, moreover, in the case of mathemati-
cal possibility we do not have the problems noted earlier with meta-
physical possibility. The friends of metaphysical possibility, where it is
to go beyond physical or natural possibility, have to make judgments
on the basis of intuitions presumably expressing their understanding
of the notions involved in the statements whose possibility is being
assessed. This must in general be done without the help of a devel-
oped body of theory. Intuitive judgments of mathematical possibility are
also made, for example concerning structures of sets that satisfy large
cardinal axioms or determinacy assumptions; and in such cases there
has been uncertainty and controversy. In contrast to the metaphysical
case, it is possible to attack the question by developing mathematics
on the basis of the axioms questioned and seeing how the theory that
emerges coheres with the rest of mathematics. Thus there is a richer
and more exact theoretical setting in which intuitions can be tested.
Questions of consistency can also sometimes be settled by less prob-
lematic methods, as, for example, with those set-theoretic statements
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that follow either from Gödel’s axiom of constructibility or from Martin’s
axiom.

Another relevant observation has been made by Geoffrey Hell-
man.19 This is that we might express some mathematical necessities as
counterfactuals: “If 〈N, 0, S 〉 were a ω-sequence, then . . .” In counterfac-
tuals in everyday language, there is a background of relevant conditions
that is not explicitly stated. This is not true in these mathematical cases,
and the problems that are notorious in the theory of counterfactuals do
not arise. But it is not so clear that they are absent with metaphysical
modalities.

Let us now return to the question which of the different modal notions
considered above is the appropriate one for stating eliminative struc-
turalism on modal lines. Physical or natural possibility is too restrictive,
as we indicated earlier in our remarks on nominalism: It demands too
much to ask that the structures considered in mathematics be physi-
cally possible; indeed, in the case of higher set theory, there is every
reason to believe that they are not physically possible.20 At the other
end of the spectrum, formal logical modality was found either to be an
awkward notion generally or not in the end to differ from mathemati-
cal modality. Thus, mathematical and metaphysical modalities are the
survivors.

It should be clear from this discussion that, in my view, mathematical
modality avoids some difficulties that metaphysical modality is subject to
and that it is altogether more appropriate to our purpose. But it may seem
that in an eliminative structuralist account of mathematical objects we
are dealing with statements that contain only logical expressions essen-
tially and therefore that the two kinds of modality will not differ. This is
indeed true on certain understandings of mathematical modalities. But if
one takes the language of mathematics at face value, then the usual intu-
ition that mathematics is necessary has the consequence that any pure
mathematical objects that there are exist necessarily. If we take metaphys-
ical necessity to be a unitary notion, it should certainly have this prop-
erty. However, thinking of mathematical existence as potential seems to
underlie eliminative structuralist proposals, and it has its attractiveness
outside that context. That is a reason for interpreting the necessity in (3)
and (4) below as mathematical necessity, where this is to be distinguished

19 Mathematics without Numbers, p. 36.
20 Mathematics in Philosophy, pp. 191–193.
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from metaphysical necessity in particular in this respect.21 But many of
the remarks later will be independent of this choice.

However, it is not evident that mathematical modality is a unitary
notion. In commenting on Hartry Field, I attributed to Putnam a notion of
mathematical possibility that allows it to be mathematically possible that
there should be no sets of uncountable rank (see note 18). I consider that
the natural notion for many purposes. But it will be replied that the axioms
of ZF are true, and it is a theorem of ZF that there are sets of uncountable
rank. Since mathematical truths are necessary, it is necessary that there
are sets of uncountable rank. Since that’s a contradiction, it seems that
there have to be different standards of necessity and possibility at work.
Different points of view will offer different ways of resolving this difficulty.
One will be presented in the next section. But our preferred solution will
be offered in §18.

§16. Modalism

By “modalism,” I mean the program of eliminating mathematical objects
in favor of modalities, or the thesis that mathematical objects can be elim-
inated in this manner.22 The simplest version of modalism would simply
expand the resources of the if-thenism considered in the last chapter by
claiming the possible existence of the structure in the framework of which
mathematical statements are interpreted; for example, statements about
natural numbers could still have the canonical form

(1) (∀M )(∀x)(∀f )[�′(M, x, f ) → A(M, x, f )]

21 Cf. Ibid., pp. 327–328. It should be clear to the reader of that essay that I allow mathe-
matical modalities to be de re. I mention this here because Timothy McCarthy points
out some technical difficulties for Putnam’s modalist interpretation of set theory unless
his modality is allowed to be de re (“Platonism and Possibility,” pp. 288–289). McCarthy,
however, seems to suppose that if that is conceded, then the modality is metaphysical
in the above Kripke-derived sense. I do not agree. Moreover, in spite of remarks that give
his interpretation a basis in the text, I think McCarthy is probably wrong in attributing
to Putnam an intended interpretation of mathematical modalities close to what above
is called strictly logical. It is this that gives rise to the difficulty he points out.

22 The term has been used in roughly this sense by other writers, for example Rheinwald,
Der Formalismus, ch. III. The inventor of modalism was perhaps Putnam, who, how-
ever, seems to repudiate it at the outset (“Mathematics without Foundations,” p. 57).
But what he is denying is not that mathematical objects can be eliminated in favor of
modalities but that this account of them is in all respects clearer or more fundamental
than taking mathematical language at face value as referring to mathematical objects
(the “mathematical-objects picture”).
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(in effect (2.4) of §11). But a presupposition for number-theoretic state-
ments in general would be the possibility of a simply infinite system, i.e.,

(2) �(∃M )(∃x)(∃f ) �′(M, x, f ).

Once we have introduced modality, however, it would be more in keeping
with the idea to hold that the mathematical truth of A consists, not in the
logical truth of (1), but rather in its necessary truth. This can readily be
incorporated into the canonical form by replacing (1) by its necessitation.
There is then a simplification, because the mathematical truth of A will
consist simply in the truth of its canonical form, which in the case of a
number-theoretic statement will be:

(3) �(∀M )(∀x)(∀f ) [�′(M, x, f ) → A(M, x, f )].

It is also possible to take the necessity operator as obviating the
quantifiers; that is, we can think of the canonical form as simply

(4) �[�′(N, 0, S ) → A′(N, 0, S )].23

On the basis of the discussion in the previous section, I will assume
that the modal operators are understood either in the sense of mathe-
matical modality or of metaphysical modality. Modalism seems to give a
satisfactory solution to the problem of nonvacuity. (2) demands no more
than that a simply infinite system should be possible, in a sense that may
require some further explanation, but which (at least if one of (i)–(iii) of
§15 is chosen) is weaker than physical possibility. An analogous claim
would hold in the case of other structures. There may be an epistemo-
logical problem about how we know a statement such as (2) to be true.
But its truth seems to follow from the supposition that theories in physics
describe coherent possibilities, and perhaps it can be seen in more direct
and intuitive ways, as I will argue in §29.

The modal version of eliminative structuralism offers a resolution of
the apparent ambiguity of the notion of mathematical modality noted
at the end of the last section. It allows seeing the ambiguity not as one
in the modality but in the mathematical statements said to be necessary
or possible. Let A be the set-theoretic statement that there are sets of

23 (4) is obviously equivalent to the result of replacing ‘→’ by the strict conditional in the
result of dropping the outer quantifiers in (1). Whether the difference of (3) and (4) is
significant depends on the interpretation of the modal operators and on refinements of
modal logic.
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uncountable rank. Considering it as a theorem of set theory, the modal
translation might render it as of the form

�(∀R)[ZF2(R) → A(R )],

where R is a binary predicate symbol, and ZF2(R) and A(R) are respectively
the conjunction of the axioms of second-order ZF and A, with ∈ replaced
by R. Assuming that the modal logic satisfies at least S4, the translation
is necessarily true. The possibility of the nonexistence of such sets would
be the possibility of a structure, say of the hereditarily finite sets, that
does not admit them. This can be expressed directly in the second-order
modal language, and it is not incompatible with the translation given
above. Thus the “modalist” way of rendering mathematical statements
allows for a unitary notion of mathematical modality.

The translation of arithmetic might be objected to on constructivist
grounds; in the context of classical logic, which we have not questioned,
(2) seems to state the possibility of an “actual” infinity. Indeed, a more
thoroughgoing modalism might replace (2) by a weaker statement, to the
effect that any structure of the type of an initial segment of the natu-
ral numbers can be extended.24 I will not pursue or reply to this sort of
objection here, since even the weaker statement allows various means of
interpreting classical arithmetic, and constructivism is a large subject in
itself.

There are two types of objections in the literature that I do wish to
consider. The first questions the faithfulness to mathematical discourse
of the canonical forms the modalist offers. The second questions whether,
given the apparatus that the modalist’s translations must use, there really
is a reduction of reference to mathematical objects.

Thus our first question is whether it is at all reasonable to suppose
that the modalist’s canonical forms represent what the mathematician
actually means by a mathematical statement of the relevant sort. Turning
in particular to arithmetic and thus to (3) or (4), one obvious objection

24 In the logical context we are assuming, this would follow from the sort of statement
claimed to be intuitively evident in Chapter 5, §29. It should perhaps be pointed out that
a “modalist” treatment of arithmetic using such a weaker statement seems to require
quantifying into modal contexts and thus an interpretation of the modal operators that
goes with that; see for example Mathematics in Philosophy, p. 47 n. 10. (In line 3 from
below of the portion of this note on p. 47, ‘members’ should be ‘numbers’; in line 17 of
the portion on p. 48, ‘(∀x )Zx’ should be ‘(∃x )Zx’. I am indebted to the late J. M. B. Moss
for pointing out these and a number of other such misprints, which are corrected in the
2005 paperback edition.)
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can, I think, be discounted. When the number theorist talks of num-
bers, surely he does not refer to objects of a merely hypothetical domain;
although one ought perhaps not to make too much of what is involved
in the idea that number theory involves genuine reference to objects
called numbers, genuine reference there is. But the emphasis we have
placed on the problem of nonvacuity should make clear that the views
we have considered do not regard the reference involved as reference
to purely hypothetical objects. The canonical form (3) or (4) arises in a
context in which there is the presupposition (2); (2) plays a role analo-
gous to that played by existential presuppositions in the use of singular
terms.

Nonetheless, there is a related discomfort, which perhaps will be felt
more strongly about (3) (as well as its ancestor (1)) than about (4):
Do the intuitions behind structuralism really support the interpreta-
tion of arithmetic statements as of this explicitly general second-order
form? The generality also appears in the presupposition (2), since that
the possibility of which is presupposed is an existential generalization.
The vagueness of Dedekind’s talk of abstraction perhaps had its point.
Even if we cannot single out one simply infinite system that is the num-
bers par excellence, perhaps it is falsifying the sense of discourse about
natural numbers to take the step we took in interpreting Dedekind, of
taking arithmetical statements to be really about every simply infinite
system.

It should be observed that an objection of this kind can be made to
any of the canonical forms proposed by different versions of elimina-
tive structuralism. What force is granted to it depends on the importance
of eliminating mathematical objects relative to other objectives. Given a
domain of mathematical objects that, like the natural numbers, forms a
second-order definable structure, statements about them will implicitly
have the same kind of generality, by the counterpart of Dedekind’s iso-
morphism theorem. Putting this generality into the explicit content of the
statements will for some be a small price to pay for avoiding an ontol-
ogy of mathematical objects. A noneliminative version of structuralism
should, however, be able to avoid it.25

25 As does the position of Field, who insists on taking the language of mathematics at
face value and then claims that statements involving reference to pure mathematical
objects are not true. This view is reiterated in “Is Mathematical Knowledge Just Logical
Knowledge?” where Field enlarges the logic he admits to include modalities and adopts
a position having some kinship with what I am calling modalism.
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§17. Difficulties of modalism: Rejection of eliminative structuralism

Let us turn now to the second type of objection to modalism, whether the
modalist’s apparatus really does offer an elimination of mathematical
objects. A first question would touch any reductive program making use
of modality: Does not the modal operator itself involve us in an ontology
of possible worlds? Although possible worlds are not paradigmatic math-
ematical objects, they are in one way or another problematic enough,
so that eliminating mathematical objects in favor of possible worlds is a
dubious gain.

There is no need to dwell on this objection, since the ontology of possi-
ble worlds arises not directly from modal discourse but from a semantical
treatment of it that was expressly designed to use conventional (exten-
sional) mathematics. If we simply take modalities at face value, there is
no reason to take a statement, say, of possibility as involving the existence
of anything. Commitment to possible worlds only becomes a problem in
a framework in which the modalities are primitive if the modal logic is
powerful enough to simulate quantification over possible worlds. Such
a logic may be needed for some modalist treatments of set theory,26 but
in this case there is another more intuitive objection to the eliminative
program, as we shall see.

Second-order logic, however, is still a problem for the modalist. The
discussion of §13 did not leave him in a significantly better position than
the nominalist. In our discussion of arithmetic, it appeared that the only
alternative to using second-order logic in eliminative structuralist reduc-
tions was a relativism that we found unacceptable. Putnam still takes that
position in his modalist treatment of arithmetic in “Mathematics with-
out Foundations” (pp. 47–48). When he turns to set theory, however, he
claims to do better. He seeks to capture the notion of a standard model of
set theory by means of first-order modal logic; he asserts that this notion
“can be expressed using no ‘non-nominalistic’ notions except the ‘�’”
(p. 57). Thus the difficulties posed by second-order logic would be
bypassed.

The models in question are to be certain graphs; Putnam writes:

The model will be called standard if (1) there are no infinite-descending ‘arrow’
paths; and (2) it is not possible to extend the model by adding more ‘sets’
without adding to the number of ‘ranks’ in the model. (p. 57)

26 Mathematics in Philosophy, pp. 324–325.



P1: JZP
9780521452793c03 CUNY1138/Parsons 978 0 521 45279 3 October 30, 2007 10:45

§17. Difficulties of modalism 97

This definition is not on its face first-order. But it appears that Putnam
intends the graphs in question to be thought of as individuals, so that
the modalized quantification over graphs in (2) is first-order. Moreover, it
seems that both the “paths” of (1) and the “ranks” of (2) are to be internal to
the model. How the definition is supposed to work, without assumptions
about graphs that would defeat the purpose, is still not clear to me; it is
not clear to me how any definition of the sort he proposes can work given
the non-finite axiomatizability of Zermelo set theory. Neither Putnam nor
anyone else has published a working out of the idea.27

The problems concerning second-order logic may not seem fatal to
everyone. We also might point out that one serious problem we raised, that
of nonvacuity, seems to be solvable on a modal nominalist basis at least
for arithmetic, and it will also be solvable for classical analysis if (like Field)
one is willing to grant that the physical world instantiates in some way or
other one of the standard Euclidean or non-Euclidean geometries. Even
without this hypothesis, a lot of mathematics can be rescued: Because,
as we pointed out earlier, many basic results of analysis can be proved
in rather weak theories, the modal nominalist solution to the problem
of nonvacuity is available for a lot of everyday analysis. Moreover, the
eliminative structuralist who admits second-order logic of course has
second-order arithmetic at his disposal, that is, classical analysis with the
real numbers interpreted as second-order entities rather than as objects.

The question remains how from this point of view one might convince
oneself of the possibility of more elaborate structures, either defined in
higher than second-order terms or involving domains of objects of higher
cardinalities. Any structuralist approach to set theory involves admitting
the possibility of such structures; conversely, set theory allows rich pos-
sibilities for constructing models of theories and therefore of showing
the possibility of structures where no more nominalist way of doing so is
available.

Modalist eliminations of set existence assumptions have been pro-
posed, such as that of Putnam in “Mathematics without Foundations”
just discussed. At least with the help of second-order modal logic, the
technical part of such a program can be carried out. But then, it seems

27 In understanding Putnam’s definition, I have been much helped by Timothy McCarthy’s
exposition (see note 21), in spite of the disagreements noted above. But I do not see how
his own version would work without ordinals external to the model to serve as ranks.
In correspondence, McCarthy has proposed a new reconstruction which, however, does
not purport to give the kind of eliminating translation that the use of Putnam’s idea for
the eliminative structuralist program would require.
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to me, any such elimination faces a very simple and fatal difficulty. The
nonvacuity assumption, of the form of (2) or perhaps some weaker alter-
native, will still have to be made. But then the concept of object in terms of
which objects satisfying the required conditions are possible is a very gen-
eral one; there is no reason to believe that structures of the required kinds
are possible where the objects involved have any of the characteristic
marks of concreteness. In cardinality they will outstrip anything that can
be represented in the physical world. One may, like Putnam, begin with
a spatial conception that models some aspects of the concept of set, and
then conclude that a space is possible whose cardinality is high enough
so that it can contain a standard model of some set theory.28 Here, I think,
there is a slide between the notion of physical space and the notion of a
space as a structure of the general sort considered in geometry. Putnam
is, to be sure, not claiming that such a space is physically possible. What
he claims is the mathematical possibility of a physical space satisfying
certain conditions. If one goes beyond conditions of a geometric charac-
ter, and the cardinality, what is to be added to make this possibility that
of a physical space? And, more to the point, of what relevance would it be
to the acceptability of set theory as mathematics?

It might be thought that matters are different if we suppose that there
is possibly some structure of the mind that satisfies whatever conditions
are required, or that there is some plausible weaker modal condition on
operations of the mind whose truth is sufficient for an eliminative modal-
ist interpretation of set theory. Many writers on the concept of set, who
could appeal to remarks of Cantor himself, have given a central place to
a mental operation of “collecting” in their account of the concept. If the
operation gives rise, by a kind of synthesis, to the set as a new object,
it does not help in the present context.29 But the role of the object can
perhaps be played by the operation itself.30 Then, the idea goes, quantifi-
cation over sets can be interpreted in terms of possibilities of collecting.
Such a view, however, meets the same kind of difficulties. It is not only

28 “Mathematics without Foundations,” p. 57; cf. Mathematics in Philosophy, p. 192 n. 32.
29 This was the proposal of Husserl in Philosophie der Arithmetik, which, in spite of its

psychologistic guise, is of particular historical interest because Husserl was Cantor’s
colleague at the time. Husserl evidently thought later that the basic idea was not essen-
tially bound up with the psychologism that he had rejected, since it reappears in the
late Erfahrung und Urteil, §61. The most immediate difficulty with Husserl’s proposal
seems to me to be not psychologism but how to make it apply to infinite sets. The idea
is discussed further in §34.

30 As is proposed by Philip Kitcher in The Nature of Mathematical Knowledge, ch. 6, for
whom, however, the operation of “collecting” is not mental but an overt action.
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that we are asked to accept as mathematically possible iterations of men-
tal operations that go well beyond the actual capabilities of the human
mind. Such an extension of human capability, whether or not it is thought
of mentalistically, seems to be involved in the much more entrenched
idea of computability or constructibility “in principle.”31 Computations,
and at least the more elementary constructions, however, can at least be
thought of spatiotemporally. But for the possibility of “collectings” of a
large transfinite number of objects, iterated through a large transfinite
sequence, we need at least the possibility of a “time” that would be much
richer than actual space-time or any possible space-time that physical
considerations would lead us to consider.32 The concept of mental oper-
ation is thus extended by rather extravagant analogies. We may see the
concept of object that allows such objects as large transfinite sets as an
analogical extension of a concept of object that doubtless begins with
the physical objects, organisms, and events of everyday experience. But
particularly if it is understood so as to be purged of some of the pictures
traditionally associated with platonism, this extension is limited to what
the mathematics actually requires. It is hard to see what problem with
mathematical objects is really helped by assuming the possibility of a
physical space, or a system of mental operations, with the kind of struc-
ture higher set theory requires.33 It is probably only the (perhaps inchoate)
sense that there is some scandal to human reason in supposing that there
are (or even that there possibly are) objects that stand in relations that the
conception of a particular mathematical structure such as a model of set
theory calls for, with perhaps nothing more to them than that (or only
something more of a very abstract character) that leads philosophers to
entertain such ideas. In my view, such an attitude should be turned on
its head. We are able to understand higher set theory and to have enough
of an intuition concerning the principles of set theory to create a highly
developed theory, which shows no sign of being inconsistent or incoher-
ent, and about which there is too much agreement for it to be ad hoc. If

31 I discuss the question in what sense this is so in “What Can We Do ‘In Principle’?”
32 Compare the remarks on Wang in Essay 10 of Mathematics in Philosophy, pp. 272–280,

and on Kitcher in my review of The Nature of Mathematical Knowledge, pp. 133–134.
33 In recent years, a favorite reason for seeking to eliminate mathematical objects has been

the dilemma posed by Benacerraf in “Mathematical Truth.” It is easy to see that the kind
of assumption considered here is of no help with Benacerraf’s problem. First, only what
is actual stands in causal relations to our knowledge; second, once we consider the sort
of space or mental operations that is required, we no longer have any idea of what a
causal theory of knowledge involving them would be like. More generally, we do not
have an idea of what a naturalistic explanation of such knowledge would be.
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a “formal” concept of object is the only one that can interpret set theory
without assuming extravagant possibilities, that is a strong argument in
favor of such a concept of object.

§18. A noneliminative structuralism

Eliminative structuralism begins with the observation that there is in the
end nothing to the pure abstract objects of mathematics other than their
being related in certain structures, and infers that talk of objects with so
little of an intrinsic nature must be only a façon de parler. The conclu-
sion of our discussion is that, at least when we come to higher set theory,
we have no reason to suppose even the possibility of objects making up
the structure that are more “concrete” than pure mathematical objects.
A structuralist view of higher set theory would then oblige us to accept
the idea of a system of objects that is really no more than a structure. But
then there is no convincing reason not to accept it in other domains of
mathematics, in particular in the case of the natural numbers. It would
be highly paradoxical to accept Benacerraf’s conclusion that numbers are
not objects and yet accept as such the sets of higher set theory. One might,
indeed, conclude that set theory should be an exception to a structural-
ist conception of mathematical objects. In §19, we will indeed consider
an argument that would imply that conclusion. First, however, I wish to
set forth a version of the structuralist view that does not undertake to
eliminate reference to mathematical objects.

If we abandon eliminative structuralism, we need no longer seek a
canonical form for the languages of various mathematical theories that
reinterprets them in the manner of the proposals we have been discussing.
We can take the language of mathematics more at face value. We will not
regard talk of natural, real, and complex numbers, sets and functions on
them, or various spaces and their points and mappings as a façon de
parler for something else that would be more acceptable from a nomi-
nalistic or other reductionist point of view. If so, how is our position still
structuralist? The main point is that taking the language of mathemat-
ics at face value does not require us to take more as objectively deter-
mined about the objects about which it speaks than that language itself
specifies.

Let us concentrate for the moment on the natural numbers. I assume
that we have at our disposal a language that contains ‘0’, ‘S’, ‘ = ’, and
probably additional predicates or functors, such as ‘+’ or ‘×’. I will also
assume that it includes the apparatus of quantificational logic, with either
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a predicate N read as ‘natural number’, or the natural numbers as the
intended domain, or the natural numbers segregated as a type.

To see how our view of the natural numbers is structuralist, it is use-
ful to consider another view that is sometimes advanced, according to
which natural numbers are sui generis; in particular, no natural number
is identical with an object given independently. Natural numbers are just
what they are; in particular they are not sets or other objects that might
be introduced to cash in Frege’s idea that numbers are “logical objects.”
The view says nothing about whether other objects might be reduced to
numbers, so that the qualification “given independently” is important.
A classical version of the view, at least, would say that natural numbers
are nonspatial and nontemporal and do not stand in causal relations. So
this much could be said about their “nature.” It’s not clear what such a
view would say about the role of numbers as cardinals and ordinals; of
course all would agree that it is necessary that they should be able to play
that role, but versions of the sui generis view might differ as to whether
either the cardinal or ordinal role is essential to what objects they are and
whether one is prior to the other.

Such a view is not obviously incompatible with the aspect of the struc-
turalist view stressed by Bernays, that existence for mathematical objects
is in the context of a background structure. But the sui generis view
implies that for the natural numbers that structure must be the natu-
ral numbers in some distinguished sense, and it must distinguish natural
numbers from all objects given otherwise, either by making such iden-
tities false or ruling them out of the language by singling out a type of
natural numbers.

One further step that the structuralist view takes is to reject the demand
for any further story about what objects the natural numbers are, except
in certain special contexts, in particular, to reject the idea that they are
essentially cardinals, or, for that matter, essentially ordinals. I will put
aside for the moment the question what to say about their abstract
character.

But that seems to imply that if an isomorphic copy of the natural num-
bers can be constructed in another structure, then it is a question whether
the copy is not just as good as the original, an equal claimant to be the
natural numbers. Some copies do not have a good claim, such as progres-
sions constructed within the natural numbers or in some other way that
obviously presupposes the natural numbers. But others are not so easy to
rule out, the most prominent being the number sequences constructed
in set theory and higher-order logic.
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Suppose we accept in some context a progression constructed in some
larger structure, most likely in set theory, as being the natural numbers.
That seems to be what is done when someone developing arithmetic in
set theory defines 0 as a certain set, and Sx by some operation on sets (say
as x ∪ {x}), and Nx in such a way that induction (as a generalization about
sets or classes) will hold. Why should we not accept this progression as
being the natural numbers? One may have the worry that it is not really
a progression but a nonstandard model. If (as we can reasonably expect)
induction can be proved for any predicate of the larger theory, we should
be able to prove that our structure is not a nonstandard model. But the
existence of nonstandard models of the larger theory might lead to doubts
as to whether this result can be taken at face value. We will not consider
such doubts now but will address them in §§48–49.

Now the question is, what reason is there not to accept our progression
as the natural numbers? It cannot be a difficulty in developing pure num-
ber theory in the theory of the larger structure, at least if the latter is well
chosen. In particular, set theory would offer the resources for developing
the relations to other structures that are needed to prove more sophisti-
cated results in number theory, even those that are in the end provable
in PA. For reasons developed in §14, the difficulty cannot be a concern
about the application of arithmetic. Thus it seems that it has to be some
philosophical concern, in a broad sense metaphysical, about the identity
of the natural numbers as objects.

Structuralist views have been encouraged by the once much debated
“multiple reductions” problem, that is, that in the construction of the
number systems in set theory (or higher-order logic, on the model of
Principia Mathematica), the constructions do not give a unique identity
to the numbers involved. An example that goes back to the nineteenth
century is the two classic constructions of the real numbers, as Dedekind
cuts or as equivalence classes of Cauchy sequences. But what has drama-
tized the matter for philosophers is the existence of different progressions
of sets that offer usable models of arithmetic, in particular the finite von
Neumann ordinals and the so-called Zermelo numbers, where 0 is defined
as ∅ and Sx as {x}.

Different reactions have been expressed to this situation. (For simplic-
ity, we will consider only the natural-number case.) Roughly, they take
the form of saying that all identities of numbers and sets are false, that
there is no fact of the matter as to whether a natural number is identical
to a set (even if the candidates are only those that arise in constructions
actually used), and that such identities are context-dependent. There is
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a fourth reaction, of a different nature from the first three, that numbers
are not objects at all.

The first reaction fits well with the sui generis view of the natural num-
bers that we discussed above. But it is actually otherwise quite unnatural.
It requires (as talk of natural numbers in more comprehensive first-order
theories would) regarding such identities as meaningful, but rejecting
identities actually used in mathematics, in the construction of arithmetic
in set theory, and in other contexts such as representing numbers in the
λ-calculus.

The second would fit well a canonical language in which there is a
syntactically segregated type of natural numbers, which is also conge-
nial to the sui generis view. Other ways of realizing it will be discussed
after we consider the third. The latter seems a plausible formulation
of the structuralist intuition and allows that someone working within
a set-theoretic construction is nonetheless talking about the natural
numbers.

This third reaction is tempting in that it seems in accord with the idea
of structuralism and is maximally accommodating to the actual use of
mathematical language.34 But it faces a serious difficulty. It seems to have
as a consequence that in one context, call it c (perhaps a lecturer devel-
oping arithmetic in ZF), ‘2 = {∅, {∅}}’ is true, while in another context c′

(perhaps the development of the Zermelo numbers in §12 of Quine’s Set
Theory and its Logic), ‘2 = {{∅}}’ is true. But now it is surely the case that
‘{∅, {∅}} �= {{∅}}’ is true in both contexts. But this implies that either
the numeral 2 has changed its reference from c to c′, or one of the two set
terms has. The second hypothesis is rather implausible.

There are, it seems to me, good reasons for saying that it is the numeral
that has changed its reference. It is the only plausible response consis-
tent with the idea of the third reaction. And it seems called for by the
general idea that mathematical existence, and with it reference to math-
ematical objects, is in the context of a structure. Although there is no
change in background structure between identifying natural numbers
with von Neumann numbers and identifying them with Zermelo num-
bers, other changes of background structure do motivate the idea that
numerals change reference, for example, from considering the natural
numbers as a stand-alone structure and taking the background structure
as consisting of sets.

34 It is at least suggested by a remark of mine in “Structuralism and Metaphysics,”
p. 76.
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In §14, considering the case of the natural number 2, the rational num-
ber 2, the real number 2, and the complex number 2, it seemed forced on
us to say that across these contexts 2 is more a role than a definite object.
The difficulty we have raised for the third reaction to multiple reductions
implies that already the natural number 2 has this character. That would
be a way of understanding the apparently metaphorical talk by other writ-
ers of numbers and other mathematical objects as “places in structures”
or “positions in patterns.” But before drawing this conclusion we should
revisit the second reaction.

Each of the other reactions implies that there is an element of fiction in
the development of arithmetic in set theory as well as in traditional logi-
cism, though in the latter case unintended by Frege or Russell. Either the
identity sign is used without the speaker or writer quite meaning it, or he
does not quite mean it in saying that in this context numerals designate
natural numbers and that the objects satisfying the defined number pred-
icate are the natural numbers. They would be surrogates for the natural
numbers, as surrogates for many objects (not necessarily mathematical)
arise in the construction of models. The latter choice is probably the more
workable one, since the former would make the identity sign ambiguous
within set-theoretic usage.

This very moderate degree of fictionalism about mathematical refer-
ence does not trouble me much as such. But it seems to presuppose
that there is genuine, nonfictive reference to them, which will be present
only when the background structure is the natural numbers. A manner in
which this is realized that fits the second reaction is by treating the natural
numbers as a type, so that identities with other objects cannot be stated.
This is, of course, the way they are treated in some attractive formal theo-
ries, for example, the typed theories of constructions used by Martin-Löf
for intuitionistic mathematics and by Tait for classical mathematics. But
is it really evident that this is what reference to natural numbers in infor-
mal mathematics aims at, as opposed to a first-order theory in which such
identities can be stated? And are we really justified in privileging in this
way one framework for talking of numbers?

In this connection we might consider the introduction of natural
numbers by Dedekind abstraction, as described by Tait.35 Suppose we
have a structure 〈M, a, f 〉 that is a progression, that is, it satisfies
Dedekind’s definition of a simply infinite system or some other condition
doing the same work (such as the treatment of induction in §47, if the

35 “Truth and Proof,” p. 87 n. 17 (p. 369 n. 12 in original publication).
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progression is explicitly given). It may be a system of sets of the sort
we have been discussing, or it may consist of quasi-concrete objects as
proposed in chapter 5; there are no doubt further alternatives.36 Then
we introduce a new structure 〈N, 0, S 〉 and an isomorphism onto the
given one. This will evidently also be a progression. But it conforms to the
basic structuralist intuition in that the number terms introduced do not
give us more than the structure. This procedure provides a very sugges-
tive model of how reference to natural numbers might be introduced.37

But it gets its force from the use of a typed language. Thus, the ques-
tion arises what is to prevent us from later, for some specific purpose,
speaking of numbers in a first-order language and even affirming iden-
tities of numbers and objects given otherwise. If it is taken as the last
word about reference to natural numbers, it faces the problems discussed
earlier.

One might ask on what grounds we can say that Julius Caesar is not a
natural number. The conclusion that natural numbers are in the end roles
rather than objects with a definite identity might imply that we cannot
rule it out. That would be implied by the view that any progression can
be treated as the natural numbers. But although there is evidently scope
for convention with respect to what progression is treated as the natural
numbers, it does not follow that anything goes. A convention in which a
certain number (say 15) is Julius Caesar is not a very good convention, for
example, because it either makes the existence of Julius Caesar necessary
or that of 15 contingent, or because it would upset the relation of at
least one of them to space and time. That may seem question-begging.
If we do not assume it false that Caesar = 15, how can we be sure that
the one contingently exists and the other necessarily? I would reply that
this difference is a feature of our informal talk about Caesar and about
numbers, the “grammar” of these expressions before we offer a more
explicit account of what objects ‘Caesar’ and ‘15’ designate. There is no
prior deep metaphysical reason why Caesar and 15 cannot be treated as
identical.38

36 For example the finite cardinals of a neo-Fregean introduction of arithmetic.
37 These remarks indicate what I would now defend of my earlier remark, “Tait’s idea of

Dedekind abstraction . . . can be adapted to give a convincing description of discourse
about the natural numbers” (“The Structuralist View,” p. 336).

38 For further discussion see the Appendix to “Structuralism and Metaphysics.” However,
it is not made clear there that the context-dependence of some identity statements
involving numerical expressions can imply context-dependence of what these expres-
sions designate.
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Whatever one’s stance toward the specific problems we have been dis-
cussing, the considerations underlying structuralist views of mathemati-
cal objects have sometimes been expressed by saying that mathematical
objects are “incomplete,” meaning by this that there is only a certain
specific range of predicates such that there is a fact of the matter as to
whether they are true of the object in question. In view of the fact that there
are different background structures relative to which we can use the nat-
ural number vocabulary, a definite range of predicates can be given in
advance only when that is specified. But the description is itself incom-
plete, for it neglects the fact that the relations of a structure are them-
selves given only by formal conditions, and in different realizations of a
type of structure, not only will there be different domains of objects, but
these relations will have different realizations. The “incompleteness” of
the pure abstract objects of mathematics is for this reason more radical
than that of another kind of object often said to be incomplete: fictional
or nonexistent objects (assuming, for the sake of argument, that there
are such objects). Fictional objects are taken to be undetermined with
respect to properties and relations whose holding or not cannot be rea-
sonably inferred from the story; a more drastic incompleteness obtains
for Meinongian objects like the golden mountain, since what we have to
go on is only that it is a mountain and that it is golden. In these situa-
tions, however, we do not envisage any reinterpretation of the predicates
applied to the objects; Sherlock Holmes is a detective in a sense that we
can take to be fixed, also when we consider other detectives (real or ficti-
tious). We have, independently of the story, an understanding of notions
such as that of a detective, of a murder, of London, of Baker Street (because
these are real places). There is at least some level of understanding of this
kind of simple mathematical notions like addition, multiplication, or set
membership, and of more complex ones such as curve or surface or com-
putation. On a purely structuralist view, however, none of these notions
is fixed in a way in which the nonfictional vocabulary used to describe a
fictional situation is. Their role in mathematics, rather, is in the genesis
and motivation of mathematical conceptions, and in the application of
mathematics.

Another difficulty that will be raised is whether we are still entitled to
reject Benacerraf’s claim that numbers are not objects. The view we have
defended implies that they are not definite objects, in that the reference
of terms such as ‘the natural number 2’ is not invariant over all contexts.
That is clearly part of what Benacerraf has in mind. But it is still reference
to objects by a singular term. I find Benacerraf’s train of thought at this
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point difficult to follow, but that he means to deny this is suggested by the
turn toward eliminative structuralism and perhaps more explicitly by the
following statement:

That a system of objects exhibits the structure of the integers implies that
the elements of that system have some properties not dependent on struc-
ture. It must be possible to individuate these objects independently of the role
they play in that structure. But this is precisely what cannot be done with the
numbers.39

Whatever the interpretation of Benacerraf, what I’m most concerned to
reject is the idea that we don’t have genuine reference to objects if the
“objects” are impoverished in the way in which elements of mathematical
structures appear to be.

Another problem that may arise for our view is what to say about a
number of properties of pure mathematical objects apparently shared by
all of them: that they are abstract, that they are not in space and time,
that they do not exist contingently. It might be objected that these prop-
erties go beyond being “places in a structure” but cannot be treated as
we treated external relations. It then appears incompatible with struc-
turalism to admit them.40 I would regard these as what one might call
metaproperties, consequences of the general grammar of the language
of pure abstract objects. The scope for convention in identifying the nat-
ural numbers with given progressions implies that this grammar might
sometimes be violated for special purposes. The structure of sets is too
rich to be instantiated in space and time, but that is not true of the nat-
ural and real numbers. It may not be a good convention to use numer-
als to refer to objects located in space and time, but it is not logically
absurd.

A further objection, apparently affecting any noneliminative struc-
turalist view, was made briefly by John Burgess and more extensively
by Jukka Keränen.41 They see a problem concerning the individuation
of objects on this view, if the structure that is their home has nontrivial
automorphisms. To take some simple cases, for the complex numbers,
there is such an automorphism interchanging i and –i. Thus it seems
that the basic relations of the structure do not distinguish i from –i.
Worse cases are Euclidean spaces of a fixed dimension (say the plane or

39 “What Numbers Could Not Be,” p. 291.
40 That one might make such an objection was suggested to me by Øystein Linnebo.
41 Burgess, Review of Shapiro; Keränen, “The Identity Problem.”
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3-space) or some simple graphs such as the four-element directed graph
with edges so that a → b → c → d → a. In these cases, for every pair of
elements of the structure there is an automorphism carrying one to the
other.

Elsewhere I have replied to this objection by distinguishing basic from
constructed structures.42 Basic structures are those that are assumed in
mathematics without the obligation to construct them within other struc-
tures. The prime examples would be the natural numbers, the real num-
bers, and structures of sets. Constructed structures, such as examples
relevant to some general statement about structures of a certain type
(such as fields) will naturally have properties inherited from the basic
relations of the underlying structure, which can go beyond the relations
of the structure that is constructed. The main claim of the reply is that
the principal basic structures do not have nontrivial automorphisms. The
complex numbers do not in my view have to be regarded as a basic struc-
ture. But the case of the Euclidean plane and 3-space, which of course do
have nontrivial automorphisms, is more complicated.43

Although this reply meets the requirements of the structuralist view,
a more dismissive attitude toward the objection is also possible. Given
the conception of object presented in Chapter 1, why should we insist,
for objects to be distinct, that there be anything that distinguishes them?
This view might be implemented by treating identity as one of the basic
relations of the structure. That is proposed by Hannes Leitgeb and James
Ladyman in a paper building on a debate in the journal Analysis on the
connection between structuralism and the Identity of Indiscernibles.44

They defend this view by considering graph theory and give exam-
ples from graph theory of structures with elements that are otherwise

42 “Structuralism and Metaphysics,” Section IV.
43 Ibid., pp. 70–71. In this case one element of what is called below the dismissive attitude

toward the objection is required. In a prerelativistic view of the physical world, we have
a structure consisting of points and physical bodies (and perhaps more) in which points
are distinguished by their relations to bodies. Some points are for example literally on
the surface of bodies. The claim is that this model is at least mathematically coherent. We
can think of pure geometry as arrived at from a model like this by a Dedekind abstrac-
tion, in which only the geometrical structure is taken up. But then identity has to be
taken as a basic relation of the structure for the points to be distinguished within the
structure.

44 Leitgeb and Ladyman, “Criteria of Identity and Structuralist Ontology.” A more “meta-
physical” point of view, which in general I resist, has been maintained by Fraser MacBride.
See, for example, his “Structuralism Reconsidered.” Some of the same issues arise with
respect to particles in physics. See Saunders, “Are Quantum Particles Objects?” I am
indebted to Saunders for calling the Analysis debate to my attention.
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indiscernible.45 A simple example is a two-element graph with no edges,
which offers a mathematical model of some cases discussed in connec-
tion with the Identity of Indiscernibles. It appears from their discussion
that graph theorists do not regard these graphs as constructed struc-
tures, but they are simple enough so that they could be if inquiry into
the foundations of their subject required it. Leitgeb and Ladyman give
to the dismissive attitude both intuitive force and some motivation from
mathematical practice. But it seems likely that the debate will continue.

In this discussion, we have emphasized the point going back to Bernays
that reference to mathematical objects is relative to a background struc-
ture. In some sense that is context-dependent, and it is also a matter
of interpretation, particularly in the case of informal mathematical dis-
course. With respect to the former, we have emphasized cases in which
context-dependence makes it not literally true to say that the same object
is designated even by such straightforward terms as ‘the natural number
2’. But that is not inevitable even when the background structure changes.
In set theory, for example, the background structure might be the sets up
to a certain rank; then if we consider the sets up to a higher rank, or even
an absolute universe, we are not forced to say that terms designating sets
of low rank change their reference. In fact, in the case of well-founded
sets, it is not obvious that there are cases other than contrived ones where
terms intuitively designating the “same” set have to change reference for
the sort of reason we have given for numerals. A set like (ω) will have
to be different, for example, in the constructible sets and in a context
where large cardinal axioms are assumed. But if one takes seriously the
idea of the true power set, then one of these is nonstandard. A more likely
analogue of the situation with numerals might arise in different category-
theoretic constructions of sets. But I have to leave category theory out of
account because of insufficient knowledge.

How are we to identify the background structure in a serious discourse
in unformalized mathematics? Let us imagine it to be number-theoretic,
so that the natural numbers will be especially salient. Still, we will have
further objects of familiar kinds: functions, sets, numbers of other num-
ber systems, probably even structures as mathematical objects, such as
groups, fields, and topological spaces.

45 Considering this structure as a basic structure can be defended on the same grounds as
are applied to the four-element graph mentioned in the previous paragraph. Any defense
of the Euclidean plane as a basic structure will carry over to these cases.
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Even before we consider ontological questions, two different ways sug-
gest themselves of describing such a situation in structural terms. Each
offers a formulation of the idea that in talking of mathematical objects,
there is always a background structure in which the objects “reside.” The
first idea is that the objects referred to all fit into a single comprehen-
sive structure, of which the most obvious example would be sets with
the membership relation. The other is that we might have a number of
different structures that provide “homes” for objects of different kinds.
The second fits better with the language of informal mathematics, before
logicians undertake to formalize it. It also provides a good setting for
discussing the issues that arise for structuralist views.

Nonetheless, there is a reason from mathematical practice for adopting
the first picture.46 Work on an actual mathematical problem can often
not be confined to the consideration of a very limited range of structures,
such as those actually invoked in the statement of the problem itself. If
the problem is difficult enough, it may be necessary to make connections
with ostensibly remote parts of mathematics in order to arrive at a proof. It
then becomes natural to represent the mathematician as working within
a comprehensive theory, within which all the mathematical domains that
turn out to be relevant can be constructed. Set theory is the theory that
has been developed most fully for this purpose and remains the leading
candidate for the role of framework for all of mathematics.47

This point of view leads to an objection to structuralism only if one
takes it with excessive metaphysical seriousness. The framing of a part
of mathematics in set theory involves representing as sets at least the
numbers of various number systems, spaces from geometry, other struc-
tures described abstractly, and mappings from one structure to another.
Of course, this can be done in well-known ways. But it is equally well

46 This was urged on me by Yiannis Moschovakis.
47 I use the term “framework” rather than the more common “foundation” because the

latter has to a philosopher’s ear misleading associations. Although she uses the lat-
ter term in this way, Maddy gives a very instructive discussion of the sense in which
set theory is and is not a foundation for mathematics in Naturalism in Mathematics,
Part I, Chapter 2. The terms “framework” and “framing” derive from Müller, “Framing
Mathematics.”

That there is a single comprehensive structure within which all of mathematics can
be constructed can still be questioned on the ground that there is no single absolute
universe of sets. This claim (with which I have elsewhere expressed sympathy) raises
large and difficult issues. But nearly all actual mathematical work outside of higher set
theory itself can be framed in a rather limited set theory. ZFC is more than sufficient.
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known that the ways of doing it are not unique, and in many instances
the choice of one rather than another is largely conventional and made
for a particular purpose that is likely to lead to a different choice under
other circumstances. It is an illusion that the framing of mathematics
in set theory yields a determinate ontology for each individual part of
mathematics.

The second picture perhaps captures how mathematics would proceed
without making the choices involved in the construction of each structure
by means of sets. According to it, natural numbers are given as natural
numbers, rational numbers as rational numbers, real numbers as real
numbers, and so on. Nothing forces questions of identity of elements of
different structures among these to arise, and that is still the case if we
consider functions mapping one of them into another. They might be
prevented from arising by adopting a many-sorted or typed language, as
we have suggested earlier.48

Another element of context-dependence concerns which relations
and even objects count as the basic ones for what we would intuitively
consider the “same” structure. Informal mathematical discourse would
not choose among different interdefinable possibilities, for example, in
Euclidean plane geometry between a formulation in which points and
lines are individuals and incidence is a basic relation and one in which
only points are individuals.49

Let us now turn to the concept of structure itself. I have resisted the
interpretation of structuralism that would make it an interpretation of
mathematical statements as about structures, thus giving rise to the ques-
tion what manner of objects these are. On the contrary, a structural-
ist account of a particular kind of mathematical object does not view
statements about that kind of object as about structures at all (except in
the special case where structures are themselves mathematical objects,
as in model theory). Still, a concept of structure is needed to state the
view itself. The most fundamental notion of structure for this purpose is
metalinguistic: The “domain” is given by a predicate, and the relations

48 Such a framework would not allow the formation of mixed sets, whose elements are of
different sorts or types. My conjecture is that most of mathematics gets along without
such sets, but there is no principled reason for ruling them out. The framework envisaged
would allow them to be coded in one way or another, for example as functions.

49 This example was brought to my attention by Frank Veltman. One might offer it as an
objection to eliminative structuralism; however, logical reconstructions in general tend
to make choices where unformalized discourse usually does not.
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and functions by further predicates and functors.50 The most concrete
way of giving a structure would be by predicates and functors that are
antecedently understood, so that there is some independent verification
of fundamental propositions about the structure (say, axioms for the the-
ory of this kind of structure). Brouwer and Hilbert could be taken to have
been attempting something like this in their descriptions of the intu-
itive basis of arithmetic. A less problematic, but also less philosophically
interesting, case is where a type of structure is defined in the abstract and
then examples are given from different branches of mathematics, but in
this case, the “realizations” of one type of structure are simply found in
another structure.

We can now see the difference between arithmetic and set theory in a
different light: In the case of arithmetic, a realization of the structure can
be described in the more concrete way by giving an intuitive model of
which the most developed example is Hilbert’s strings of strokes. In the
latter case, the predicate ‘x is a string of strokes’ defines the domain, and
the zero element and successor functor can also be directly explained.51

Induction can be stated, at the cost of vagueness, in the metalinguistic
way mentioned in the discussion of second-order logic in §13.52

We can then think of discourse about the natural numbers as intro-
duced by Dedekind abstraction in the sense of Tait, although for reasons
given above this is not the last word about reference to natural numbers.53

The idea that the natural numbers are a unique structure, although it
influences the particular form that a structuralist account of them will
take, does not seem essential to the idea of a structuralist account of a
kind of mathematical object. The corresponding uniqueness claim about
the universe of sets is much more questionable, but that fact tends to
make the application of the structuralist idea to set theory more rather

50 As in §5, by a functor I simply mean a singular term with one or more argument places;
hence the use of a functor does not of itself commit one to the existence of any function.

51 See §28–29. In §29 and §41 we defend the claim that the elementary Peano axioms are
intuitively known to be true when interpreted with respect to this model.

52 Issues concerning induction will be pursued in Chapter 8.
53 Because first-order arithmetic is not categorical, it might seem that impredicative

second-order logic is needed for the proof of Dedekind’s categoricity theorem. That
is not true. To show that two predicates N1 and N2 define isomorphic domains, it is
sufficient that for each we can apply induction to first-order predicates containing the
other. See §49.

Tait, using an idea of F. W. Lawvere, points out that the categoricity theorem also holds
in an intuitionistic setting. See “Against Intuitionism,” p. 177 and n. 12.
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than less plausible.54 The absence of uniqueness would, however, give
a kind of vagueness to quantification over all sets and possibly to other
parts of set-theoretic language.

Many will not agree with this picture of number theory according to
which the nonvacuity of the conception of natural numbers is made out
by an example in which the objects are quasi-concrete. However that
may be, the situation in set theory is different, and our understanding
of set theory has to proceed by pulling ourselves up by our bootstraps.
In its developed form in set theory, the concept of set draws on two ele-
mentary notions, neither of which is a purely structural one: that of a
set as a “collection” or “totality” of its elements, and that of the exten-
sion of a predicate, that is, of an object associated with a predicate, with
extensional identity conditions. A third notion of “plurality,” motivated by
plural expressions such as those discussed by Boolos (see §13) also might
be distinguished.55 Although these ideas would allow the construction
of in some sense intuitive models, the idea of collection seems to me to
depart from concrete intuition at least when it admits infinite sets, that
of extension when it admits impredicatively defined sets. The result of
these extensions, however, is that the elements of the original ideas that
are unquestionably preserved in the theory have a purely formal charac-
ter, as will be argued more fully in Chapter 4. For example, the priority of
the elements of a set to the set, which is usually motivated by appealing
to the first of these informal conceptions, is reflected in the theory itself
by the fact that membership is a well-founded relation. It is important
to our understanding of set theory and to the possibility of structures of
sets, however, that for the bottom of the set-theoretic hierarchy we do
have more intuitive models.

In this situation, what does the metalinguistic notion of structure
mean? We can define “structures” to interpret the language of set the-
ory by using our mathematical vocabulary, including the predicates ‘( )
is a set’ and ‘( ) is an element of [ ]’. Without such vocabulary, or other

54 On this point, earlier expositions of mine might have been misleading. I am indebted to
a member of an audience at the University of Amsterdam for prompting clarification.

A paraphrase of set-theoretic language along eliminative structuralist lines will have
“relativist” features like those of the first-order versions for number theory, as on no rea-
sonable theory is the universe of sets even second-order definable. Because the intuition
that the universe of sets is a unique structure is not so strong, this is a more acceptable
result; even the consequence that the meaning of a set-theoretic statement can depend
on a presupposed axiom system does not seem to me to be a fatal objection to an elim-
inative structuralist account of set theory.

55 These conceptions are discussed more fully in §20.
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mathematical vocabulary of similar abstraction, we will not be able to
describe a structure satisfying the axioms of set theory; that is the “boot-
strapping” aspect of the understanding of set theory. But otherwise, the
metalinguistic conception of structure works in the same way as it does
in the more elementary cases.

Why should I regard the metalinguistic conception of structure as more
appropriate for my purpose than the set-theoretic? I have just denied an
obvious reason, that it would enable one to describe structures for set
theory independent of the concept of set. Indeed, the “bootstrapping”
involved in the understanding of the concept of set weakens resistance
to the use of the set-theoretic concept of structure here. What decides in
favor of the metalinguistic conception in the present context is a feature
of set theory itself: We want to talk of structures for set theory without
supposing that their domains are sets. Also, the set-theoretic conception
requires a decision about the ontology of set theory itself (say, in favor of
ZF rather than a von Neumann–style formulation), which the most fun-
damental conception of structure should not make. These considerations
are a symptom of the fact that giving a structure in the sense of introduc-
ing a (one-place) predicate, together with certain further predicates (in
general not one-place) and functors that apply to the objects of which
the first predicate is true, is, on a structuralist conception, the most ele-
mentary way of describing a kind of mathematical object; any method of
generalizing about this, whether by taking structures to be set-theoretic
objects or otherwise, will come later and will be subject to the limitations
discussed already in §5.

At this point, we should revisit the difficulty about mathematical
modality that arose at the end of §15. The upshot of the version of the
structuralist view we have presented is that mathematical possibility is
the most fundamental mathematical modal notion. We have just sketched
ways of making out the mathematical possibility of the structure of natu-
ral numbers and of a structure of sets, possibly not a unique one. I would
argue that it follows from what I would call the coherence of the theory
of the structure. But much more would need to be said about coherence
than I am prepared to say in this work.56 It is by no means certain that this
notion of possibility obeys classical modal logic. The assumption that
it does underlies modalist eliminative structuralist constructions, and
one can justify it by consistency proofs relative to standard mathematical

56 This term has been used with a similar intention by other writers, for example Shapiro,
Philosophy of Mathematics, esp. pp. 95, 132–136.
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theories (for set theory, say, second-order ZF). But that justification may
depend on the restricted context of the application.

But if mathematical existence is relative to a structure, it follows that
the necessity of mathematical truths has a more internal character. We
could express the necessity of the existence of sets of uncountable rank as
the necessity that within the structure of sets as we normally conceive it,
there must be sets of uncountable rank. The qualification “as we normally
conceive it” is needed because we do have conceptions of more truncated
such structures, for example, natural models of Zermelo set theory or of
predicative theories. We could represent this necessity as conditional only
by being more explicit in characterizing the structure than we normally
wish to be, or than we could be without begging the question in favor of a
negative answer to the disputed question whether we can take quantifi-
cation over absolutely all sets at face value. Still, it resembles conditional
necessity in having a presupposition.

Although I have presented what I consider to be a defensible version
of the structuralist view, an outcome of our investigation is that struc-
turalism is not the whole truth about mathematical objects. In the state-
ment of the view using the metalinguistic conception of structure, we
appeal to linguistic objects such as predicates and functors. These are
quasi-concrete objects, and so long as they are viewed in this way the
structuralist view will not hold for them. The relation of linguistic types
to their tokens (and in general of quasi-concrete objects to their concrete
“representations”) is not an external relation in the sense of §14.

It will be objected that any mathematical theory, that of linguistic
objects included, can be interpreted as talking about objects for which
the structuralist view holds. With regard to mathematical structuralism
based on the metalinguistic conception of structure, the proposal is that
syntax be viewed in this way, with the notions of string and concatenation,
and perhaps others, as basic relations. There will be vagueness about this,
but not necessarily more so than on the construal I have proposed; with
regard to the domain of objects over which predicates are interpreted,
such vagueness is unavoidable.57 I also don’t think it can be objected to
on the ground of circularity.

57 In response to the difficulty I state in §9, Resnik considers a theory in which structures
themselves are considered directly as “only structurally determined” objects (“Mathe-
matics as a Science of Patterns,” pp. 538–539). The interpretation of this theory will give
rise to the same systematic ambiguities. My preference for the metalinguistic concep-
tion rests in part on the fact that on it such systematic ambiguity arises at a place, with
the notion of truth, where it will arise anyway.
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I am not prepared to argue that unifying in this way the concept of
structure used in stating the structuralist view with other reference to
objects in mathematics is wrong. The philosophical gain it achieves, how-
ever, is only apparent. In this case as well, it carries out the transition in
the development of mathematics from dealing with domains of a more
concrete nature to speaking of objects only in a purely structural way.
But this transition leaves a residue. The more concrete domains, often
of quasi-concrete objects, still play an ineliminable role in the explana-
tion and motivation of mathematical concepts and theories. In particular,
this is true of any mathematical treatment of formalized or natural lan-
guages. Thus, if the structuralist view of mathematical objects is taken
to mean that all mathematical objects are only structurally determined,
it has to rest on legislation about what counts as a mathematical object.
The explanatory and justificatory role of more concrete models implies,
in my view, that it is not the right legislation even for the interpretation
of modern mathematics.
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4 A Problem About Sets

§19. An objection

In the last section, we put aside the question whether sets should sim-
ply be an exception to a general structuralism about pure mathematical
objects. Structuralism about sets is not immediately implied by what has
been argued up to now, even the argument against eliminative structural-
ism in §17. Indeed we would save eliminative structuralism in application
to other kinds of objects (such as those of pure geometry) by denying it
here, although, to be sure, we would not thereby save eliminative struc-
turalism as a program for eliminating all mathematical objects or even all
pure mathematical objects. We still have to consider whether the universe
of sets consists of more than a domain of “objects” related by relation
called “membership” satisfying conditions that can then be stated in the
language of set theory.

We can see the difficulty from our examination of how attempts to use
the structuralist idea to eliminate reference to mathematical objects of
various kinds founder when applied to higher set theory. Such attempts
still require that one make out that a structure of the kind required is in
some way possible. I argued in §17 that in the present state of knowledge,
this possibility can be made out for higher set theory only by domains
of pure abstract objects, of which pure mathematical objects are a
paradigmatic instance.1 That this possibility be made out is, however, still
required by the noneliminative structuralism of §18. Does this imply that,
to establish the possibility of the kind of structure described in axiomatic

1 See also Mathematics in Philosophy, pp. 22, 191–192, where, however, I did not distin-
guish between a strictly structuralist conception of the universe of sets and the “onto-
logical” view to be stated presently, where the latter view allows for ontological relativity
and “incompleteness.”
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set theory, we need to appeal to a system consisting of sets? Such an admis-
sion would threaten a structuralist view of set theory with circularity and
perhaps force us to embrace the horn of our dilemma that takes sets as an
exception to a structuralist view of mathematical objects. The purpose of
the present chapter is to explore this objection to a structuralist view of
the objects of set theory and to argue that it is not in the end sustained.

In stating the objection, I said “threaten” and “perhaps” because what
would defeat the structuralist view is not reliance on a system of sets
per se, but such reliance where what we are appealing to is something
more than a domain of “objects” related in a relation called “member-
ship” satisfying conditions that can then be stated in the language of set
theory. We can put aside a case of such reliance that is trivial from the
point of view of the present problem. Where individuals (Urelemente) are
involved, they might be identifiable independently and not be preserved
in an isomorphic structure. Surely, however, that is just an element of gen-
erality in the notion of the “universe of sets”: It is not a unique structure
because set theory does not determine what is an individual, how many
there are, or what structure they have other than belonging to the sets
they do. A structuralist view of set theory with individuals should treat
the specific domain of individuals as belonging to the realization of the
structure rather than as fixed.2

There is, however, a more serious reason arising from this consider-
ation for thinking a structuralist view of set theory to be false. It comes
from intuitions about sets of a more general ontological character. For
example, there is the conception of a set as a totality “constituted” by its
elements, so that it stands in some kind of ontological dependence on its
elements, but not vice versa. This would give to the membership relation
some additional content, still very abstract but recognizably more than a
pure structuralism would admit. The “iterative conception of set” (a con-
ception, not primarily of what a set is, but of what the “universe of sets”

2 The principle that there is a set of all individuals requires separate discussion, since it
implies that there are not as many individuals as there are sets. On the point of view just
stated, however, it would be true for most realizations that would be at all natural.

If we think in terms of the formation of sets from their elements, then it is natural to
think of the individuals as “available” prior to the formation of any sets. Then that there
is a set of them is a consequence of the principle that any available objects can constitute
a set. On the usual understanding of an individual as an object other than the null set
that has no elements, it might be thought a mathematical accident that this point of
view is workable: Other objects that must be posterior to some sets, such as ordinals
and functions, can as it turns out be represented as sets. However, if this were not so the
remedy might be just to revise the definition of individual.
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is, and therefore of what sets there are) is usually explained with appeal to
such general ontological conceptions, although also with appeal to ideas
that cannot in the end be taken literally. One might put the objection in
the following way: The coherence or nonvacuity of the concept of set,
which on the structuralist view needs to be made out, cannot be made
out except by describing structures consisting of sets (or some functional
equivalent), where a set may still be ontologically impoverished com-
pared to a concrete object but is still more than structurally determined.3

We might call this view the “ontological” conception of the objects of set
theory, as opposed to the structuralist one.

It should be stressed at the outset that the objection to structuralism
based on this ontological point rests on an epistemological one. The struc-
turalist conception of set theory is rejected on the ground that without
a richer conception of sets we cannot know that set theories describe
coherent possibilities. Although it then becomes natural to interpret set
theory by that richer conception, it does not follow that a structuralist
interpretation of set theory is not possible at all and will not sometimes
be found at work in mathematics, as it obviously will be in the study of
models of set theory.

§20. Ontological conceptions of set

The claim made in the objection is that in order to convince ourselves of
the possibility of rich enough structures to interpret set theory, we need
to appeal to certain “ontological” marks of the concept of set. That in fact
such ontological conceptions are appealed to in justifying the axioms
of set theory can readily be seen by examining well-known expositions
on the subject. The question is then whether this appeal in fact has the
implications the objection claims.

One consideration that might make us doubtful is the following: Differ-
ing characterizations of what a set is have been advanced in the history of
the subject, and it appears that at different points in the development of
the subject different characterizations are appealed to. Characterizations
have used three basic ideas: the idea of collection, the idea of plurality,
and the idea of extension. By a collection, I mean an object that consists
of or is constituted by its elements. It is typically thought of as in some way
“formed” from them by some kind of activity, though that is not essential.

3 An objection along these lines was sketched to me very briefly in conversation several
years ago by Timothy McCarthy. Whether its further development here corresponds to
what he had in mind I do not know.
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If one wanted to give a genetic story about the concept of collection, one
would start, as some writers on the subject do, with the activity of col-
lecting. Because the formation of collections needs to be thought of in an
abstract and general way for the notion even to begin to be adequate for
set theory, it is not difficult to cast the notion into disrepute. But it has
survived, perhaps because it motivates something central to the avoid-
ance of paradox in axiomatic set theory, the priority of the elements of a
set to the set: thought of as a collection, a set is formed from objects that
are already “available” or “given.”

Pluralities I think of as given by plural constructions: the cats in my
house, the prime numbers, the critics who, in a famous sentence, are said
to admire only one another.4 Writers who talk of “multiplicities” or “mul-
titudes” often have this idea in mind. In Cantor’s informal explanations
of the concept of set, one can discern both the idea of collection and
the idea of plurality.5 Where the notion of plurality occurs most clearly
in the history of the foundations of set theory is in Russell’s Principles of
Mathematics. What he there calls a “class as many” is what I want to call
a plurality. (A “class as one” is a set, roughly as explained by Cantor.) One
may doubt that there is a clear distinction between the idea of collection
and that of plurality; one might think of them as rather two different ways
of arriving at the same conception. Or one might resist the identification
only by purism about the plural: It is already regimentation to think of
the cats in my house as a plurality, but if one resists such regimentation,
plural descriptions like the preceding simple examples needn’t be taken
to designate objects. The fact that this question arises in a way it doesn’t
for the idea of collection shows that there is an initial distinction. George
Boolos relies on purism about the plural in his use of what I have been
calling the idea of plurality to interpret second-order logic and the notion
of class in set theory.6 Even if one does not agree with the claims Boolos
makes in his writings on this subject, the fact that plural logic has in recent
years come to be developed as a subject in its own right is a consideration
in favor of Boolos’s purism.7

4 See (2.7) in §13.
5 See “Genetic explanation,” p. 283. Cantor thinks of a set as a plurality that is a unity;

that could specify what a collection is. If pluralities derive from the plural, and the plural
can be applied to any predicate, then this appears to yield comprehension principles
without independent appeal to the idea of extension. But what it actually accomplishes is
to restate the question what predicates have extensions as the question what pluralities
are unities.

6 “Nominalist Platonism.”
7 See §13 and references given there.
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The last conception, that of extension, is possibly the clearest, because
of its explanation by Frege: Roughly, extensions would be objects cor-
related with predicates, such that coextensive predicates have the same
extension. It is an “extensionalized” version of the very traditional idea of
a property or attribute, which is so entrenched in our ordinary thought
that even well-trained philosophers take for granted that predicates des-
ignate properties, in spite of the vulnerability to Russell’s paradox of an
unrestricted version of that view.8 In most discussions of the basic ideas
of set theory, the idea of extension plays rather a background role. But
for one important philosophical writer on set theory, W. V. Quine, it is the
central concept.9

The view I would defend of the role of these conceptions of what a set
is, is that they do play an indispensable role in the development of the
concept but that none of them is adequate to set theory as it now stands
(or even as it was constructed in Cantor’s time). They certainly appear
at important points in the history of set theory, especially, as one might
expect, at the beginning, and it is entirely reasonable that they should be
used to explain set theory to beginners. Here one has to consider begin-
ners of two different types: both absolute beginners with the concept of
set, who nowadays might be elementary school children, and beginners
in axiomatic set theory, who have some familiarity with the set concept
and its use in mathematics, but who are beginners in set theory as a sys-
tematic axiomatic theory. It is the latter audience that is addressed in the
type of exposition commented on later.

I won’t try to argue here that none of these conceptions by itself is
adequate to set theory, even if they are taken to be clear enough by them-
selves, as has been questioned especially for the notion of collection.10

8 On this point, see §5. What I, following Frege, call extensions some writers call logical
collections, in effect using the term “collection” as a generic term for any entity that might
do duty for sets or classes. An example is Penelope Maddy, Realism in Mathematics,
pp. 102–103. That usage seems to leave us without a term for what I call a collection, at
least if one distinguishes, as I argue in the text should be done, between the notion of
collection and that of plurality. Maddy’s term ‘combinatorial collection’ (ibid., p. 102)
is close to my term ‘collection’, but her usage is more specifically tied to the iterative
conception of the universe of sets.

9 This is documented and discussed in Mathematics and Philosophy, pp. 197–205; cf. also
Section III of “Genetic Explanation.”

10 Frege’s criticisms of some of his contemporaries amounted to the claim that this notion
could not be clearly distinguished from that of a mereological sum. Nelson Goodman’s
well-known rejection of classes is again in the first instance a rejection of collections.
(Cf. “Genetic Explanation,” p. 284.) See also Max Black, “The Elusiveness of Sets.” In my
terms, Black is severe with the idea of collection but friendly to that of plurality.
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I have made large parts of the case in previous writings.11 It is relevant
to our present concern that a more structuralist conception of set theory
also played a role in its earlier history in the work of Zermelo.12 All this
is a pretty good indication that an ontological conception of set theory
can’t be right. But it doesn’t prove it. For all three of our rough and ready
notions may be just crude forms of a more sophisticated and adequate
notion of set, which is still richer than the structuralist view allows. In order
to come to some sort of conclusion as to whether such a conception is
needed, I shall examine some considerations offered in justification of
axioms of set theory. These arguments, however, leave the question how
they themselves should be taken. Where something more than a struc-
turalist conception would allow is involved, is it intended literally? Does
it possibly belong to a genetic account, something that belongs to the
conception of set at a certain point in its development but not to that of
mature set theory? And if the answer to this question is affirmative, where
does that leave the matter of commitment to sets in some richer sense?

§21. The iterative conception of set

A common method of explaining the axioms of Zermelo-Fraenkel set
theory (ZF) relies on what was called in §20 the notion of collection, more
specifically on the idea that sets are “formed” from their elements, one
could almost say “constructed,” in stages. That this “formation” proceeds
in stages is a consequence of the ontological priority of the elements to
the set. It belongs to the picture that the stages are well-ordered. Thus,
speaking of Russell’s paradox, Joseph Shoenfield writes:

The explanation is not really difficult. When we are forming a set z by choosing
its members, we do not yet have the object z, and hence cannot use it as a
member of z. . . . Putting the matter in a positive way, a set z can have as
members only those sets which are formed before z. . . . Carrying the analysis a
bit further, we arrive at the following: Sets are formed in stages. For each stage
S, there are certain stages which are before S. At each stage S, each collection
consisting of sets formed at stages before S is formed into a set.13

11 In particular “Sets and Classes” and “What is the Iterative Conception of Set?” (Essays 8
and 10 of Mathematics in Philosophy ) and “Genetic Explanation.”

12 “Genetic Explanation,” pp. 285–6.
13 “Axioms of Set Theory,” p. 323. In a footnote Shoenfield states that ‘before’ is to be under-

stood “in a logical rather than a temporal sense.”
It is possible, given other assumptions about stages, to derive the statement that they

are well ordered (which will yield the axiom of foundation) from the assumption that
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Shoenfield proceeds to argue for the axioms of ZF using these ideas. Sim-
ilar presentations can be found in other writings on the elements of set
theory. These explanations make use of somewhat pictorial ideas, but
the authors generally do not make clear to what extent they are to be
taken literally. Thus, in the explanation quoted, Shoenfield talks of the
“forming” of a set from its elements by us. It seems that this could be a
practical possibility at most in the case of finite sets, and not too large
ones at that. By analogy with other parts of the foundations of math-
ematics, one could claim that it is possible “in principle” to form any
finite set of given objects. But already in the case of an infinite set defined
by a clearly understood predicate, this way of speaking is metaphorical,
at least if the set is to be formed from its elements. When we come to
sets of sufficiently high rank, moreover, it is very difficult to take seri-
ously the idea that all the intermediate sets that arise in the construction
of this set from individuals can be formed by us. This “forming” would
have to take place in time and could require many more stages than
there are points in time. The idea that for any ordinal number time could
have had a structure so rich that that ordinal could have been embedded
into it is hardly plausible enough to lend intelligibility and plausibility
to the axioms of set theory. It is incompatible with the idea that time is
modeled by a structure whose underlying set has the cardinality of the
continuum.

These remarks summarize a critical discussion I gave some years ago,
where I also attempted to reformulate some of these justifications in such
a way that this sort of objection will not apply.14 In considering the rele-
vance of “intuitive” justifications of the axioms to structuralism, however,
we should allow for the possibility that no such explanations will be suc-
cessful and that any attempt to justify the axioms directly will make use
of metaphors or other notions that cannot be taken literally. Another rel-
evant point is that the arguments that have actually been offered have
rested on different ideas that don’t clearly blend into a whole. Thus some
writers have offered serious reasons for seeing these arguments as heuris-
tic principles that have a certain suggestive role but that are not adequate

they are partially ordered. See ibid., p. 327. (This was first shown by Dana Scott; see
“Axiomatizing Set Theory.”) For fuller discussion see George Boolos, “Iteration Again.”
I doubt that this somewhat remarkable technical fact is of much philosophical signifi-
cance, since it is hard to see how the existence of a partially ordered sequence of stages
is more evident than the existence of a well-ordered sequence.

14 Essay 10 of Mathematics in Philosophy.
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for the justification of the whole system of axioms.15 That parallels the
way I treat conceptions of what a set is.

On these grounds, one might question the objectivity of set theory or
at least whether our concept of set is sharp enough to determine objec-
tively all questions of set theory or to give rise to a structure determined
up to isomorphism. The latter position would fit well with a structuralist
conception, since it would imply that the ontological conceptions con-
cerning sets that cause difficulties for the structuralist view are part of
an explanation by analogies and not necessarily part of the literal truth
about sets. Conversely, looking at the structuralist view itself, one might
ask whether it concedes to set theory the degree of objectivity that many
set theorists are themselves inclined to claim, following the example of
Gödel in “What is Cantor’s Continuum Problem?” I am not undertaking
here to defend a definite view on the still actively disputed question how
far the objectivity of set theory extends. I do wish to argue that to the extent
that they are persuasive, the considerations offered in favor of axioms of
set theory are compatible with a structuralist view.

§22. “Intuitive” arguments for axioms of set theory

At this point one might observe that the set theorist has more argument for
the axioms that he uses than the direct, intuitive, and perhaps metaphor-
infused arguments that occur in expositions like Shoenfield’s. Many of
the analogies used are of a much more mathematical kind, especially
in the case of large cardinal axioms where it is a matter of generalizing
properties of ω and other smaller infinite cardinals. Another very impor-
tant type of argument might be called a posteriori: It is argued that an
axiom is likely to be true because it leads to a theory of some domain
that unifies a number of phenomena in a satisfying way and settles ques-
tions that cannot be settled otherwise and in a way that is in harmony
with the results based on axioms already accepted. As Kurt Gödel put the
matter:

There might exist axioms so abundant in their verifiable consequences, shed-
ding so much light on a whole field, and yielding such powerful methods for
solving problems . . . that, no matter whether or not they are intrinsically

15 I take this to be the intention of the somewhat skeptical discussion of such justifications
by Maddy, “Believing the Axioms.” Similarly Boolos, “Iteration Again,” sees some axioms
as coming naturally from the “iterative conception of set” and others quite independently
from the idea of limitation of size.
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necessary, they would have to be accepted at least in the same sense as any
well-established physical theory.16

For example, such arguments are used for the assumption of Projective
Determinacy, which made it possible to extend through the whole hierar-
chy of projective sets the theory developed at the lowest levels of the hier-
archy by the classical descriptive set theorists. An alternative in this case
might have been the axiom of constructibility, which had also been shown
to yield a theory, but the theory yielded by determinacy was regarded as
more satisfactory and cohered with large cardinal axioms, inconsistent
with constructibility, that set theorists were disposed to accept. A kind of
holistic justification is possible in set theory, in which there is a certain
amount of mutual reinforcement of axioms and their consequences. In
this case, there is also reinforcement of axioms of different kinds: deter-
minacy axioms and large cardinal axioms.17 In this context, evidently the
term “a posteriori” does not have its Kantian connotation of “empirical.”

A posteriori arguments of this kind seem to me to have no definite
bearing one way or the other on the question whether a structuralist
view of sets is correct. The reason is simple: They undertake to justify the
axioms by their logical consequences, and what these consequences are
is independent of the issue between the structuralist and the ontological
view of sets. It follows that one important structuralist, W. V. Quine, is
immune to the objection I am considering. In his view, except perhaps
for the “obvious but false” idea that is embodied in the universal com-
prehension schema, the justification of axioms of set theory is entirely a
posteriori.18

16 “What is Cantor’s Continuum Problem?” (1964 version), p. 261.
17 For a rather brief account of the theory of projective sets and of Projective Determinacy

and its consequences, see Martin, “Descriptive Set Theory.” A fuller account of the theory
is Moschovakis, Descriptive Set Theory. The introduction to that work gives a lucid sketch
of the historical development and methodological problems of the subject.

In the 1980s, after the just mentioned publications, it was shown by Martin, Steel, and
Woodin that strong large cardinal axioms imply that determinacy holds in L[R] (the sets
constructible relative to arbitrary sets of integers), a much stronger principle. I don’t
think, however, that this reduction abolishes the mutual reinforcement of determinacy
assumptions and large cardinal axioms, since its yielding given determinacy principles
and their consequences in descriptive set theory would be offered as an a posteriori
argument for a large cardinal axiom. On the variety of considerations used by set theorists
in justifying their assumptions, see Maddy, “Believing the Axioms,” and on the special
case of determinacy Martin, “Mathematical Evidence.”

18 This view is the one most explicitly expressed by Quine and the dominant view before
The Roots of Reference. The latter work makes some concessions to more usual ways of
looking at set theory. See my “Genetic Explanation.”
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For this reason, although a posteriori arguments are of great impor-
tance for the larger question of the objectivity of set theory, I will largely
leave them out of account in discussing the relevance to structuralism of
arguments for the axioms. Also, the difficulties for eliminative structural-
ism already arise in application to ZF, which, moreover, codifies modes
of reasoning in set theory that in their main lines had developed before
the specific axioms were formulated. Moreover, some expositions seem
to rest on the presupposition that ZF can be justified without a posteriori
arguments;19 that makes it a better testing ground for the significance of
more intuitive justifications. I shall therefore consider only the axioms of
ZF and not large cardinal, determinacy, or other axioms.20

We should begin with the idea that Shoenfield expresses with his talk
of formation but which at least can be divorced from the idea that sets
come into being by human action (or perhaps by Husserlian “acts”). A
somewhat vague principle used by Shoenfield and others in explaining
axioms of set theory is that a set can be formed from any given objects. A
way of putting it is to say that any given objects can constitute a set. The
latter formulation removes the implication of formation as an action; it
still contains the unexplained term ‘given’, which is meant to express the
priority of the elements of a set to the set. But in the modal formulation
this term may be superfluous, because the word ‘can’ already expresses
the fact that the set is potential relative to its elements. In other words,
‘given’ means roughly actual, and the principle says that there can be a
set with these objects as elements. Russell’s paradox will then show that
in some cases there is not an actual such set.

The modality here would still give rise to a number of problems, but
I would like now to point to another: the principle uses a plural quan-
tifier ‘any objects’. This is the point where Cantor used the terms Vieles
and Vielheit and other writers have used such terms as ‘multiplicity’ and
‘multitude’.21 In our earlier terms, the notion of plurality is invoked. If,
with Boolos (see §13), one regards such plural quantification as clear and
ontologically noncommittal, even in such an abstract setting as this, one

19 This will be questioned in §23.
20 Although the axiom of choice is not considered later in spite of the fact that it is treated

by most set theorists as part of basic set theory and thus comparable to (the rest of) ZF,
I do not believe it would raise any new problems.

21 Cantor, Gesammelte Abhandungen, pp. 204, 443, and elsewhere; Wang; From Mathemat-
ics to Philosophy pp. 281–284. The choice of language already seems to force a choice as
to whether one will regiment the plural by the singular. The more conservative choice is
not to do so, and I will try to avoid it.
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will not see a problem. I argued in §13, however, that it is at least not onto-
logically noncommittal, and, moreover, other views of the semantics of
such plural quantification in natural languages introduce reference to
sets or classes. In particular cases, however, either the plural quantifier
can be cashed in by first-order quantifers or our principle about sets takes
the form of a comprehension principle. A case of the former kind is that
of the axiom of pairing. Given objects x and y, our principle says that they
can constitute a set, that is, a set whose elements are just x and y.

It should be noted that if we formalize the preceding instance by a
modal quantificational logic of the usual kind, the variables will have
objects assigned to them rigidly, so that (viewing the matter in terms of
possible-worlds semantics) in a possible world in which the set {x, y}
exists, its elements will be the very x and y for which it is claimed that a
pair set can exist.

In the general case, however, Boolos’s way of reading second-order
formulas is helpful. Our principle could be stated a little more explicitly
as follows: For any objects there can be a set such that every object is an
element of it if and only if it is one of them. This suggests something that
is essential if the formulation is to escape Russell’s paradox: The plural
quantifier is outside the scope of the modal operator; what objects are
referred to is settled before one considers alternate possibilities. If one
thinks of the formula in the usual syntax of second-order logic, that is, as

(1) (∀F ) � (∃y)(∀x)(x ∈ y ↔ Fx),

then with the interpretation of second-order variables usual in second-
order modal logic one has to either have scope operators that put ‘Fx’
outside the scope of ‘�’ or, for arbitrary F, assume only that the possibility
claim holds for an equivalent of F that is fully rigid.22 The intuitive con-
ception of pluralities or “multiplicities,” however, we have taken to imply
full rigidity.23

22 Mathematics in Philosophy, pp. 315–318. The idea is that what F is true of does not
change if one goes to an alternative possible world.

23 Thus if we assume that the second-order variables range only over pluralities, we can use
(1) without modification. Moreover, we can simplify the second-order logic. We would
have for the second-order variables rigidity axioms (the RS, RS/, and BFS of Mathematics
in Philosophy, p. 335), and the comprehension schema would be expressed just as in
nonmodal second-order logic, i.e., as follows:

(∃F )(∀x1 . . . xn)[F x1 . . . xn ↔ A]

(A is any formula; typically, but not necessarily, x1 . . . xn are just the free variables of
A). But its force is not that of the usual comprehension axiom in second-order modal
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Let us return to the very simple case of the axiom of pairing. Does our
relating it to the general principle tell us anything about what the set is
that either confirms or disconfirms the structuralist view? The principle
surely is not informative by itself, without either explicating its content
further or examining why it seems evident. One way of reading the term
‘constitute’ is so that in the case at hand x and y are constituents, that
is to say analogous to parts, of the set {x, y}. This way of thinking about
the set-element relation can be found in Cantor and, given the promi-
nence of conceptions about wholes and parts in both ordinary think-
ing and in the metaphysical tradition, derives no doubt from the origins
of the mathematical concept of set.24 If it is regarded as a general mark of
the element-set relation, it motivates the priority of element to set that is
the keystone for the accepted strategy of avoiding the paradoxes.

Although this analogy of the set-element and whole-part relations may
contribute to our understanding of the set-theoretic notions and even,
therefore, to the evidence of principles such as the pairing axiom, the
question is really whether it is essential that sets be thought of in that
way. I would argue that it is not. For just the pairing axiom, this is even
obvious, since it is certainly true on the conception of “sets” as exten-
sions of predicates. But there are other intuitive representations of the
set-element relation that do not rely on the whole-part concept. One fre-
quently appealed to by set theorists is the conception of sets as trees,
where the set is the root, its elements are immediately connected with
it, their elements are immediately connected with them, and so on, so
that the end points either represent the empty set or are “labeled” by
individuals. To make this intuitive, one is likely to think of it spatially,
although that brings in some extra structure (the typical plane represen-
tation in diagrams of trees would entail an ordering of the elements of
a set) and, what is more important, it does not generalize to higher car-
dinalities. The intention behind this kind of representation seems to me
really structuralist: It illustrates the idea that what matters among sets is

logic, but rather of extensional comprehension (ibid., p. 336, from Gallin, Intensional
and Higher-Order Modal Logic, p. 77). This simplification, unfortunately, is of limited
use for the axiomatization of set theory in a modal language. To obtain the force of the
usual axioms of separation and replacement, we need to instantiate for the second-order
variables predicates that are not fully rigid. That situation is likely to obtain more widely
than for the particular theories developed in Essay 11 of Mathematics in Philosophy.

24 One can see this clearly in one of the earliest explanations of the concept of set as a math-
ematical concept, in Bernard Bolzano’s Wissenschaftslehre, §82; see also Paradoxien des
Unendlichen, §3.
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which ones are connected with which others by the set-element relation.
It seems to me that one might also think of the “formation” of sets from
given objects as a kind of labeling of the objects, such that to each object
(many) labels are attached with a proviso of extensionality: No two dis-
tinct labels can agree with respect to what objects they are attached to.
This picture also has a kind of structuralist character: The principle “any
objects can constitute a set” is taken to mean that objects (“labels”) can be
assigned to given objects in a many-to-one way, quite arbitrarily except
for the proviso of extensionality. Thus it seems to me that quite generally,
the principle that any given objects can constitute a set does not depend
for its persuasiveness on a conception of what sets are that is incompati-
ble with structuralism; rather, the existence of different ways of expressing
it “intuitively” tend rather to favor the structuralist conception.

One can also see the relation between the set-element relation and
the whole-part relation in a somewhat different way, possibly more satis-
factory because in terms of it the connection of set theory with a formal
theory of the whole-part relation, that is, mereology, has been worked
out by David Lewis.25 According to this conception the parts of a set are
its non-empty subsets, so that one-element sets are mereological atoms,
lacking proper parts. In a monadic second-order version of mereology, it
is possible to develop set theory with a single set-theoretic primitive, the
singleton relation y = {x}. On this account, the analogy to the whole-part
relation of the relation of {x, y} to x and y is condemned as misleading:
{x} and {y} are literally parts of {x, y}, and x and y themselves can seem
to be so only by confusing an object with its singleton. In particular, x is
in no way a part of {x}. One could argue for this by the observation that if
x were a part of {x}, it would have to be a proper part, since otherwise the
distinction between x and {x} would collapse and we would not have set
theory but just mereology; but it is hard to see how x could be a proper
part of {x}.

In his book, Lewis explains his conception of set theory in a thoroughly
ontological way. One could not cite him as an authority in favor of struc-
turalism. It is noteworthy, however, that the ontological conception from
which he starts is quite different from those appealed to in the earlier his-
tory of the subject. The kind of constitution by elements peculiar to the
conception of sets as collections could be assumed only for one-element
sets, and that must, for reasons just given, be distinguished from the

25 Parts of Classes; see also “Mathematics is Megethology.”
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part-whole relation.26 The rest of the work is done by mereology. That
is, however, a somewhat misleading statement because the mereology
Lewis uses is a monadic second-order theory understood as a logic of
plurality, along the lines proposed by Boolos, as discussed in §13. Even
if (as Lewis does not) we take this logic to be committed to pluralities, a
plurality is not a set. To assume that any objects can constitute a set is not
only not part of Lewis’s theory but would not be easy to reconcile with
it.27 A lot more should be said about Lewis’s treatment of the foundations
of set theory. But provisionally, we can find in it some support for our
view, because he arrives at ZF on the basis of ontological intuitions that
differ importantly from those usually appealed to. It should be pointed
out, however, that Lewis does make use of the idea of “limitation of size,”
of which more shortly.28

§23. The replacement and power set axioms

I shall now consider two cases that are harder for the justification of the
axioms, whatever one’s point of view on the issue that immediately con-
cerns us. These are the axiom of replacement and the power set axiom. In
both cases, there are intuitive plausibility arguments for these axioms, but

26 Lewis seems to me in fact not to rely on the idea of the priority of the elements of a set to
the set. The paradoxes are avoided by two features of the theory: the fact that compre-
hension occurs in the setting of second-order logic (so that it does not yield a Fregean
extension) and the use of the limitation of size idea, which is ingeniously adapted to the
mereological setting.

Lewis does consider a view he calls structuralism; it is in effect eliminative structural-
ism applied to the specific case of the singleton relation. Because he allows himself
only monadic second-order logic as a framework, this poses a technical problem of how
to obtain dyadic second-order quantification. Solutions (dependent on mereological
assumptions about how close “Reality” is to being atomic) are offered in the Appendix
to Parts of Classes by Burgess, Hazen, and Lewis.

Should Lewis’s construction lead me to reconsider my rejection of eliminative struc-
turalism as an approach to set theory? Even if one grants him monadic second-order
mereology as in effect a part of logic, and the atomicity assumptions needed to obtain
dyadic second-order quantification, the answer is no. For the question still arises what
domain of objects could possibly make out the possibility of the structure satisfying the
formal properties of the singleton relation with all the mereological fusions the logic
then yields. Lewis’s own answer to this problem is in effect that such an hypothesis is
needed for standard mathematics. I can accept this answer, but then the distinction
between an eliminative and noneliminative structuralism about sets as Lewis conceives
them virtually disappears.

27 Our own reading of that principle would fit uneasily into Lewis’s metaphysics, because
of his reduction of modality to possible worlds.

28 In “Mathematics is Megethology,” Lewis takes a more structuralist view.
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arguments of different kinds are to be found in the literature. There is not
complete agreement about the “intuitive basis” of either, and that inclines
to the conclusion that a posteriori considerations play an important role
in the acceptance of both.

Informally, the axiom of replacement says that if we have a set a and
a relation R that to an element x of a associates at most one object Rx,
then there is a set whose elements are the Rx. A picture is that we can
“replace” in a each element x by its counterpart Rx (deleting it if it has
no counterpart), and the result will be a set. The axiom of replacement
was proposed independently by Fraenkel and Skolem at about the same
time. The precise formulation used today is due to Skolem, but this more
intuitive conception of the axiom is due to Fraenkel.

In the iterative conception, the objects Rx will be objects that are avail-
able at certain stages; this will be the case if they are either individuals
(assumed to be available before the “formation” of any sets) or sets.29

One type of argument for the axiom proceeds by considering, for each
x ∈ a, the stage Sx at which Rx is “formed” (more literally, the first stage
at which all the elements of Rx are available). Shoenfield, for example,
claims there will be a stage S after all the Sx for x ∈ a.30 Clearly all the Rx

are available before S; hence a set consisting of all of them can be formed
at S. Unfortunately, Shoenfield does not argue for the claim that there will
be such a stage S; in his book Mathematical Logic he states the principle
involved as a “cofinality principle” and argues that since the set a can
be “visualized as a single object,” the same is true of the stages Sx for all
x ∈ a (p. 240). But that visualizability as a single object is preserved by
replacement of x by Sx is, given the point of view of Shoenfield in this
work, just the principle of replacement itself.31

This argument might be interpreted in two ways: The claim that the Sx

can be visualized as a single object may be taken to imply that there is a
set of all of them, and then S is just the stage at which it is formed. Then
Shoenfield is literally assuming a case of the principle of replacement.
The other reading, however, could simply be to take the assumption as
one about givenness or “availability” of objects: The elements of a are all
“given”; and this possibility of being simultaneously available is what is

29 Although this does not happen in the usual way of doing set theory, it would be theoret-
ically possible that there could be objects other than sets that are generated in stages;
for example, to avoid the Burali-Forti paradox it is natural to think of ordinals that way
quite independently of the von Neumann treatment of them as sets. Cf. note 2.

30 “Axioms of Set Theory,” p. 326.
31 As already argued in Mathematics in Philosophy, p. 280 n. 16.
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preserved by “replacement.” Then S is just the stage at which all the Sx

are available. If we look at the argument this way, then we can proceed
(as does Hao Wang32) without reference to stages: Since the elements of
a are given objects, so also are the Rx, and therefore they can constitute
a set. One way of thinking of the axiom of replacement suggested by
these considerations is that what underlies it is a principle about when
objects can be considered as given or “available” or, in Cantor’s language,
“existing together.”33 Then, although an ontological intuition of a kind
is being appealed to, it is not one specifically about sets and thus not
incompatible with a structuralist conception of sets.

The axiom of replacement arises naturally from the idea of “limitation
of size,” which has often been considered independent of the iterative
conception. A crude way in which the idea is expressed is that a collection
is a set if it is not too large, and that a collection fails to be a set if it is too
large. This formulation uses the term “collection” in a generic way (cf. note
8), in particular, obviously, so as not to presuppose that collections are
sets. But clearly other notions such as class or plurality can be substituted
if one attributes to them the requisite generality. Applications of the idea
are best understood if we think of it as a second-order principle, in the
general sense that it involves generalization of predicate places in our
language, whether or not we take the further step of formulating it in terms
of second-order logic. Issues concerning such principles were already
addressed in §5.

At least if we think of “too large” in terms of cardinality, the axiom of
replacement falls rather directly out of the limitation-of-size idea: If a set
a is given, then it is not too large, and there are not more Rx’s for x in a,
so that the “collection” of them cannot be too large either. (The second-
order reasoning used here has minimal presuppositions.34 A more serious

32 From Mathematics to Philosophy, p. 186; cf. Mathematics in Philosophy, pp. 279–280.
33 In one kind of modal theory, the “theories of potential sets” of Essay 11 of Mathematics

in Philosophy, the role of the axiom of replacement is taken by a purely modal-logical
reflection principle.

34 In a second-order language, we can state a principle of limitation of size as an axiom: A
plurality is a set if and only if it is not equinumerous with the universe. This axiom implies
the axiom of replacement (and of, course, separation). A more anomalous consequence
is that it implies that the universe is well ordered: For, by the Burali-Forti paradox, the
ordinals are not a set; hence they must be equinumerous with the universe. That is,
there is a one-to-one map of the ordinals onto the whole universe, which induces a
well-ordering of the latter.

The axiom in question was put forth (in a variant formulation) as Axiom IV.2 in §3 of
J. von Neumann, “Eine Axiomatisierung der Mengenlehre.” Cf. the discussion in §2 of
the paper.
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question concerning replacement is what counts as an admissible
relation; the standard first-order version is already quite strong, since
it admits nesting of quantification over the whole universe of sets.)

Some care needs to be observed with the limitation-of-size idea. It has
in the past been understood as a kind of device for separating sheep from
goats among collections or pluralities, or as a criterion for a predicate to
have an extension, either way arising from a diagnosis of the paradoxes.
This also makes it more specific to sets than seems to me warranted.
Behind this understanding of the principle lies an interpretation that
represents the universe of sets as a determinate reality and quantification
over it as not different from other forms of quantification.

On the contrary, “limitation of size” is more properly understood in
terms of the idea of inexhaustibility, emphasized by Gödel as early as
193335 but in a way implicit in Cantor’s distinction between the transfinite
and the absolutely infinite. In a sense, there are no “collections” that are
“too large” to be sets. If we try to form an idea of such a collection, as
soon as it assumes a certain degree of definiteness we become able to
conceive of a still larger collection. For example, we try to describe the
universe of sets by its containing the natural numbers or some other
basic infinite set and being closed under the operations of power set and
replacement (taking for granted more elementary operations). But it is
arbitrary to suppose that this gives us everything, we have, since 1930,36

a clear conception of a set closed under these operations: the set of sets
of rank less than α, for α a strongly inaccessible cardinal.

It is significant that the axiom of replacement follows from a reflection
principle, that is, a principle saying roughly that something that holds
in the universe also holds within some set. The principle required is the
basic, first-order reflection principle, according to which for any formula
A in the first-order language of set theory we have

(2) A → (∃z)(z is transitive ∧ Az)

Where Az is the result of restricting all quantifiers of A (in primitive nota-
tion) to z.37 A may contain parameters, but z may be chosen so that
their values are all elements of z. This reflection principle and stronger

35 “The Present Situation in the Foundations of Mathematics.”
36 Cf. Zermelo, “Über Grenzzahlen.”
37 In the usual formulation of the principle z is taken to be Vα for some α. Then the proof of

the principle from the usual axioms of ZF requires Foundation. I do not know whether
Foundation is required to prove (2) in ZF.
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principles of the same kind that have been studied are meant to cash
in one interpretation of inexhaustibility, that one cannot circumscribe
the universe of sets by statements in the first-order language of set the-
ory, or even certain higher-order statements.38 How much this does to
strengthen an “intuitive” case for the axiom might be questioned; for
example, instances of the reflection principle quantify over all sets. How-
ever, the idea of taking reflection principles as basic does have a certain
conceptual character. (See further Chapter 9, note 46.)

In practice the axiom schema of replacement seems to have been
adopted partly from intuitions about inexhaustibility but largely because
it had great technical convenience, particularly for developing von
Neumann’s theory of ordinals and for constructing the levels of the cumu-
lative hierarchy within set theory. Some writers express discomfort about
the fact that it plays this technical role but also yields rather high infini-
ties, beyond those yielded by Zermelo set theory or theories developed to
obtain the technical advantages of ZF without assuming higher infinities
than were available in Zermelo set theory.39

Our way of looking at “limitation of size” illuminates the role of
the power set axiom, which, as we shall see, is difficult to justify intu-
itively. We can’t show, starting with the limitation of size conception
and the other ideas I have canvassed, that the sets of integers would
not be a too large totality or that they are not inexhaustible as are
the ordinals or the sets themselves. As Michael Dummett observes, the
concept “set of natural numbers” could be an indefinitely extensible con-
cept, and the different forms of predicativism present a perfectly coher-
ent conception according to which that is so. But the power set axiom
does cohere with the limitation of size conception in a satisfying way,
because it provides a way of going to larger and larger sets. Without it,

38 Paul Bernays, “Zur Frage der Unendlichkeitsschemata,” formulates a second-order
reflection principle that implies the existence of inaccessible and Mahlo cardinals.
The problem of formulating higher-order reflection principles faces difficulties where
parameters of higher than second order are used, but there is a workable solution due
to Tait; see “Constructing Cardinals from Below.” However, Peter Koellner has shown
that the resulting principles can all be satisfied in Vκ where κ is the Erdös cardinal κ(ω).
This cardinal is well below a measurable, and its existence is consistent with V = L. For
a brief summary, see Koellner, “The Question of Absolute Undecidability,” §2. (For the
definition of Erdös cardinal see footnote 19.) An elegant presentation of a theory based
on Bernays’s principle is in Burgess, Fixing Frege, §3.6, and in connection with plural
logic, “E pluribus unum.”

39 An example is the theory ZU of Potter, Set Theory and its Philosophy. Potter’s very infor-
mative and acute discussion of the reflection principle and of Replacement is accordingly
skeptical. (See §§13.2–13.6).
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we could not prove it false that all sets are either finite or denumerably
infinite.

The idea of limitation of size does not make any demand on the concept
of set that is incompatible with structuralism. We might note that the
inexhaustibility that underlies it applies as well to ordinals and cardinals
as to sets. But the main point is that it is a maxim that tells us something
about when sets exist, without requiring anything further of what they are
to be; that is, that there will be a set a such that anything is an element of it
if and only if a certain condition holds, and no more. One could thus view
it as a principle about extensions (the most “structuralist” of the three
conceptions mentioned in §20), but in its application it is combined with
principles that the conception of extension would not give rise to. If we
think in genetic terms, limitation of size tells us that we can go on, that
there is more to the “universe of sets” than we have so far got hold of,
but it doesn’t tell us that this “more” is more than a richer structure,
more objects, some of which stand in the membership relation to some
others.

I now turn to the power set axiom, which is probably the most difficult
case for the whole enterprise of justification of axioms of set theory by
intuitive considerations. There is no agreed upon approach. The power
set axiom does not arise directly from an intuitive conception in the way
in which, for example, Pairing arises from the idea that any objects can
constitute a set, or Replacement from the idea of limitation of size. It is, to
be sure, a pillar of the iterative conception. But in practice that conception
assumes the power set operation; according to it, sets are what is obtained
by iterating the power set operation starting with an initial domain of
individuals.

It is possible to understand the iterative conception in a weaker way,
according to which sets are obtained by iterating the operation of forming
arbitrary subsets. Then, however, suppose we have at a certain stage S a
set a. Then any subset of a can be formed at the next stage. However, that
allows the possibility that the formation of subsets of a will stretch out
indefinitely through the stages. In that situation there is never a stage at
which all the subsets of a are available, which would be necessary to form
the power set. In other words, this version of the conception does not rule
out the idea that the totality of subsets of a set is irremediably potential,
like the totality of sets itself.

At this point, writers on the subject appeal to a principle of plenitude:
If a is formed at a certain stage S, then its elements are available at S, and
therefore any subset of a could have been formed at S. It is then concluded
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that all subsets of a are formed at S and are thus available at the next stage,
at which (a) can be formed.40

This principle makes a nice connection between the power set axiom
and an idea from the metaphysical tradition, but it is not at all clear why
we are obliged to accept it. It does, however, distinguish the power set
from the totality of sets or ordinals. Because there is no stage at which
any set or ordinal could have been formed, one cannot infer by plenitude
that a set of all sets or ordinals can be formed at the next stage.

The situation is not essentially changed by Paul Bernays’s classic
description of reasoning about arbitrary sets and functions of natural
numbers as “quasi-combinatorial”: By analogy of the infinite to the finite,
we “imagine functions engendered by an infinity of independent deter-
minations which assign to each integer an integer, and we reason about
the totality of these functions.”41 As Bernays implicitly recognizes, the
analogy in question has two distinguishable aspects: an understanding
of an arbitrary function on the natural numbers (or of an arbitrary set),
and the further step of regarding the “totality of these functions” as com-
pleted, or as giving rise to a set. The weak iterative conception can appeal
to the first aspect of the analogy, and then the question raised concerns the
second. Both for their argumentative force and for their relevance to the
structuralist view what is important is that what is offered are analogies,
so that not everything in the picture is intended to be literally true. In par-
ticular, we cannot take Bernays’s “independent determinations” literally
as choices (which would certainly be incompatible with structuralism).

I think we have to admit that an essential part of the justification of
the power set axiom is a posteriori. It enables us to formulate in terms
of set theory the ideas about the continuum that underlie and come out
of classical analysis, in particular as it was reformulated in rigorous form
in the nineteenth century.42 Once one accepts the continuum as a set,
the power set axiom is a general principle to which the set-theoretic con-
struction of the continuum can be reduced. Power sets of denumerable

40 Such an appeal to plenitude is implicit in Shoenfield, “Axioms of Set Theory,” p. 326. It
is embodied in axiom IX of George Boolos, “The Iterative Conception of Set.”

41 “Sur le platonisme,” p. 54, trans. p. 260.
42 Shaughan Lavine argues persuasively that the power set was not assumed in the theory

of sets and transfinite numbers as Cantor originally worked it out, and that reasoning
that would require the power set axiom appears in his work only after 1890. In Lavine’s
view, Cantor’s assuming at that point of an equivalent of the power set axiom led to
the consequence that the real numbers are a set, something which Cantor had earlier
hoped to prove by, in effect, proving the Continuum Hypothesis. See Understanding the
Infinite, Chapter IV.
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sets already present the conceptual problems that the idea of power set
gives rise to. It would be arbitrary to accept the reals or the set of sets
of natural numbers as a set and not to accept the power set operation in
general. And as we have noted above, acceptance of the power set coheres
with other principles motivating the axioms of set theory.

This discussion of the arguments that are actually in the literature
should make plausible that there is not a set of persuasive, direct and
“intuitive” considerations in favor of the axioms of ZF that are incom-
patible with a structuralist conception of what talk of sets is. If we add
to this the neutrality of a posteriori considerations with respect to this
issue, we can conclude that an ontologically richer conception of set is
not needed for ZF. Although I have not argued this here, in my view, the
considerations that are offered in favor of axioms going beyond ZF are not
fundamentally different, although the role of a posteriori considerations
is certainly greater when one comes to the stronger axioms of infinity
postulating measurable and larger cardinals.
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§24. Intuition: Basic distinctions

The concept of intuition occupies an uneasy place among the different
notions deployed by philosophers and others in order to describe knowl-
edge and belief. Some such notions, such as that of knowledge itself, have
been thought to be definite enough in prephilosophical usage, and of
sufficient importance, so that considerable philosophical effort has been
devoted to their “analysis,” in the hope of giving, in clearer terms, neces-
sary and sufficient conditions for knowledge, or, failing that, stating inter-
esting general principles. Others have been from the beginning technical
terms, so that no one has hoped to get from them a better understand-
ing than can be derived from philosophers’ explanations. Kant’s terms
‘analytic’ and ‘synthetic’ would be examples.

The word “intuition” undoubtedly has a prephilosophical use from
which its use in philosophy in some way derives. But there does not seem
to be conviction on the part of philosophers that there is a fundamental
notion behind that use, which philosophical analysis might make clear.
By contrast, at least in comparatively recent discussion, there is also not
a technical usage to which writers discussing intuition have been ready
to defer, except in rather restricted contexts such as the interpretation of
Kant. Thus, in his useful encyclopedia article on intuition, Richard Rorty
goes so far as to say that “nothing can be said about intuition in general.”1

To be sure, one use may be an exception to this state of affairs, namely the

1 Rorty, “Intuition,” p. 204 (1st ed.), p. 722 (2nd ed.). Rorty does, however, proceed to
distinguish four principal meanings of the term. Rorty’s article and the two addenda by
George Bealer and Bruce Russell in the second edition of the Encyclopedia illustrate well
the lack of fixed anchors in the use of the word.

138
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use of the term in linguistics, when the “intuitions” of native speakers of a
language are discussed. But probably this generalizes at best by analogy.

In application to mathematics, which of course particularly concerns
me, this general difficulty I mentioned is very much in evidence, and it is
not at all clear that those who defend the idea of mathematical intuition,
and those who attack it, have the same concept in mind. In our time, there
has not been a developed positive conception of mathematical intuition
that is sufficiently salient either as a model to be developed and defended
or as a target to be attacked. One might contrast this state of affairs with
what prevailed in the late nineteenth and early twentieth centuries, when
Kant offered a kind of paradigm of a philosophical conception of intuition
applied to mathematics (whether or not he was interpreted correctly or
even consistently). That is no longer the case.

In this chapter, I shall be concerned to develop a conception of mathe-
matical intuition that is in a general way Kantian, although I will not claim
that it was Kant’s, and it has a more immediate historical antecedent in the
work of Hilbert and Brouwer. But before doing so, I shall rehearse some
elementary distinctions about intuition, which apply quite generally.

In the philosophical tradition, intuition is spoken of both in relation to
objects and in relation to propositions, one might say as a propositional
attitude.2 I have used the terms ‘intuition of ’ and ‘intuition that’ to mark
this distinction. Probably the latter usage has dominated in the philo-
sophical tradition, and it also occurs in ordinary speech. The distinction
is simply an observation about how the term (and others that would be
translated as ‘intuition’3) have been used, and it should be obvious and
noncontroversial. In particular, making it should be compatible with the
views of those who reject the whole idea of mathematical intuition or are
cool to claims of intuition in general.4

What gives intuition of an important place in philosophy is probably
the fact that Kant’s Anschauung is intuition of objects. However, Kant cer-
tainly allows for intuitive knowledge or evidence that would be a species
of intuition that. I think it is quite clear that Kant has such a conception,

2 I try to use the term “proposition” as neutrally as possible.
3 In particular intuitio in Latin and Anschauung in German.
4 Hale and Wright may miss this point when they preface a critical discussion of my own

conception of what is called in §28 Hilbertian intuition with “Parsons’ explication of
intuition of . . .” (“Benacerraf’s dilemma revisited,” p. 105). Neither in the present work
nor in earlier writings have I said that Hilbertian intuition (even beyond the simple
version that I consider in detail) is the only, or even the only viable form of intuition of
objects, even of abstract objects.
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but he doesn’t designate it by the term Anschauung or even use such a
phrase as anschauliche Erkenntnis. It is not so clear to what extent this
priority of intuition of is preserved in the rather loosely Kantian talk about
intuition in late-nineteenth- and early-twentieth-century writing about
the foundations of mathematics; but it is preserved in the most important
developments of broadly Kantian conceptions of intuition in this period,
in the work of Brouwer and Hilbert.

It would be natural to talk of intuition of objects and intuition of truths,
but the latter usage adopts one resolution of a further ambiguity. In propo-
sitional attitude uses, ‘intuition’ is not always used for a mode of knowl-
edge. In particular, it is not necessarily factive. If one has the intuition that
p, it by no means always follows that p. When a philosopher talks of his
or others’ intuitions, that usually means what the person concerned is
inclined to believe at the outset of an inquiry, or as a matter of common
sense; intuitions in this sense not only need not be true: They can be
very fallible guides to the truth. To take another example, the intuitions
of a native speaker about when a sentence is grammatical are, again, not
necessarily correct, although in this case they are, in contemporary gram-
matical theory, taken as very important guides to truth. It is not easy to
find a contemporary propositional attitude use of ‘intuition’ that is fac-
tive. But what Descartes in the Rules for the Direction of the Mind called
intuitio was not genuine unless it was knowledge.5 Rorty, in the ency-
clopedia article mentioned earlier, distinguishes four meanings of the
term. The first two are instances of intuition that; the last two of intu-
ition of. But all but the first6 are by definition knowledge. His sense (2),
which he justifiably regards as philosophically most important, is worth
quoting:

Intuition as immediate knowledge of the truth of a proposition, where “imme-
diate” means “not preceded by inference.” (ibid.)

This is a good first approximation to a characterization covering
the important uses of intuition that. But use of “intuition” with the

5 I take this to be implied by his characterization in Rule Three of intuition as “the con-
ception of a clear and attentive mind, which is so easy and distinct that there can be no
room for doubt about what we are understanding” (Philosophical Writings, I, 14).

Concerning Descartes’ mature notion of clear and distinct perception, however, the
possibility that one has clearly and distinctly perceived that p and yet p is false is a live
one until his argument for the truth of clear and distinct perception, appealing to the
veracity of God, has been carried out.

6 “Intuition as unjustified true belief not preceded by inference; in this (the commonest)
sense ‘an intuition’ means ‘a hunch’” (ibid.).
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connotation of knowledge, and therefore truth, is likely to cause mis-
understanding in the circumstances of today; it may even lead a reader
to think one has in mind something like intuitions in the less strict senses
we have mentioned with the extra property of being infallible. When one
wants to make clear one is speaking of knowledge, it is probably best
to use a term like ‘intuitive knowledge’ rather than simply ‘intuition’.
Here, however, what would count as intuitive knowledge would depend
on the underlying conception of intuition, as is shown by the fact that
in the philosophy of mathematics ‘intuitive knowledge’ has had a more
special sense, connected with Hilbert’s version of a Kantian notion of
intuition.7 That is the sense in which I will be using the term in §28 and
later.

Thus I will use the term ‘intuition’, as in the above examples, so that it
is not ipso facto knowledge, and one’s having the intuition that p doesn’t
imply the truth of p. Within this usage, differences are possible as to how
much is or ought to be claimed for intuition as a source of knowledge
or as a guide to the truth. Philosophers’ intuitions are not claimed to
be an autonomous source of knowledge, and their reliability will vary
greatly. But, as we noted, the intuitions of native speakers of a language do
create a presumption of truth. Moreover, it could be that in some domain,
intuition, if carefully enough cultivated, is a source of knowledge and a
quite reliable guide to the truth, without actually constituting knowledge
in the sense (again) that an agent’s having the intuition that p implies p. It
can, I believe, be shown quite convincingly that that is the way Kurt Gödel,
the twentieth-century philosopher who claims the most for mathematical
intuition, uses the term.8 It should be clear that the issue between this
usage and that of Descartes is first of all terminological: Suppose one
has what is to all appearances a convincing intuition that p, but after a
time something comes to light that causes one to withdraw assent to p.
(Perhaps p, together with other equally convincing assumptions, leads to
a contradiction.) On Descartes’ usage, one will then say that one did not
really have intuition that p; on the usage I am attributing to Gödel, it can
be that one had an intuition that turned out to be wrong. Someone who
believes that, under the right circumstances and by exercising sufficient
care, one can get into a state which guarantees the truth of what one is

7 Consider, for example, the use of the terms ‘anschauliche Evidenz’ and ‘anschauliche
Erkenntnis’ in Gödel, “Über eine bisher noch nicht benützte Erweiterung des finiten
Standpunktes,” pp. 240, 242.

8 See my “Platonism and Mathematical Intuition in Kurt Gödel’s Thought,” Sections IV
and V.
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claiming, is more likely to adopt the Cartesian usage, but such a belief is
not a necessary condition for it.

Descartes contrasted intuition with deduction; on his usage, the con-
clusion of an inference would not be an intuition. In describing possible
sources of knowledge, not only would intuition be distinguishable from
the results of arguments involving inferences, but such results could not
be intuitions, although possibly the same proposition could be, or could
have been, known by intuition.9 Descartes’ usage agrees with the most
common present-day usage; what is most distinctive about “intuitions” is
that they are not the conclusions of arguments. More properly, the status
of a proposition as an intuition cannot result from its being the conclusion
of an argument, although in philosophy and other fields, even to some
extent in mathematics, an argument may be defended on the ground that
its conclusions agree with intuition.

In this usage, what is most characteristic of intuition is that it is belief, or
inclination toward belief, independent of any articulation of its grounds,
possibly coupled with expression of doubt as to whether it could be rein-
forced by grounds of another kind, that is, by argument (taking this word
in its most general sense, which would incorporate deductive arguments,
including mathematical proof, empirical or “inductive” arguments, and
arguments of a less rigorous structure such as are characteristic of
philosophy).

Evidently Rorty, in the definition I have cited, takes this as what the
“immediacy” of intuition that consists in. That is no doubt true for many
uses of the term. But it cannot be the whole story for the uses that most
interest us. For if it were, the simplest and most evident logical truths
would be intuitively known, and the immediacy of the simplest logical
inferences would also be of the same type as what we would call intu-
itive. But the intuitive is contrasted not just with what is inferred but also
with the conceptual. This is the usage of Kant, which has been followed
by philosophers who are not particularly Kantian in other respects. For
example, the “knowledge without observation” that we have of our own
intentional bodily movements is not usually described as intuition or
intuitive knowledge, although it satisfies Rorty’s definition. On this point,
the philosophical tradition divides. In insisting that only sensibility gives
rise to intuitions, Kant is breaking both terminologically and substantively

9 This is not to say that the individual inferences of a deduction might not be intuitions
or rest on intuitions in some important sense, as was surely the view of Descartes and,
for a more Kantian sense of ‘intuition’, traditional intuitionism and the Hilbert school.
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from the earlier rationalistic tradition, for which “intuitive knowledge”
can represent a high development of what we would call conceptual.
This earlier tradition has not lost its influence, and, moreover, there are
uses of ‘intuition’ that are neutral on the issues it would raise. Although
my own development of the concept will be in the Kantian tradition, the
other tradition will not completely disappear from what follows.

Another ambiguity is also worth mentioning: The distinction between
intuition of and intuition that does not quite coincide with that between
intuition with nonpropositional and intuition with propositional objects.
For if one takes propositions seriously as objects, in principle one might
grant that one could intuit a proposition, in such a way that one could
conclude its existence and perhaps something about its structure, while
emphasizing that such intuition of the proposition as an object is not
apprehension of its truth. In other words, intuition of the proposition
that p as object is not the same as intuition that p.10

§25. Intuition and perception

At this point we need to turn to intuition of. Although Kant, at least in his
official explanations, did think of intuition as Erkenntnis (see for example
A 320/B 376–377), it is cognition or knowledge of objects and not in the
first instance propositional knowledge.11 Kant’s Anschauung is a case of

10 A philosopher to whom this observation is relevant is Husserl. The basic notion for
Husserl is intuition of; nonetheless intuition is what distinguishes different ways of
entertaining a proposition from actively knowing it. But it seems to me that Husserl
reduces intuition that to a form of intuition of, where the object is not what we would
call a proposition but rather a state of affairs (Sachverhalt).

11 It does not follow that there is essentially nonpropositional knowledge according to Kant.
His view that intuitions without concepts are blind, and that the use the understanding
makes of concepts is to judge by means of them (A 68/B 93), implies that knowledge of
objects is manifested by propositional knowledge about them. On the other hand intel-
lectual intuition, which he denies that we have, would presumably be nonpropositional.

It is a somewhat vexed question how far Kant’s Erkenntnis corresponds to our term
‘knowledge’. That was the rendering in the long-standard translation of Norman Kemp
Smith, and the substitute ‘cognition’ adopted in much recent writing on Kant and in the
translation of Guyer and Wood is rather transparently a technical term chosen for the
purpose. ‘Knowledge’ conveys more immediately what Kant is talking about, and it is
inevitable that one will paraphrase much of what Kant says in terms of knowledge. It
has the disadvantage that it is not a count noun in English, while Kant uses Erkenntnis
as a count noun, which led Kemp Smith to translate the plural Erkenntnisse awkwardly
as ‘modes of knowledge’. (‘Items of knowledge’ might have been better.) More substan-
tively, it is not evident that where an Erkenntnis is propositional (that is, is a judgment), it
must be true. Furthermore, Kant distinguishes Erkenntnis from Wissen, and it has been
argued that this distinction is important for understanding some major claims of Kant,
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intuition of. This is forced by what we might anachronistically call its
“logical form”: An intuition is a singular representation, contrasted with
concepts, which are general.12 Intuitions are also said to be “immediate”;
the meaning of this has been a matter of controversy.13 One aspect that
is not controversial is that empirical intuition arises from perception.
A situation in which a subject has an empirical intuition of an object,
however it is described further, is one in which he perceives the object;
in particular, he is affected by the object. Kant’s notion of intuition in this
sense generalizes the concept of a representation arising from perception.
One element of the controversy about Kant’s notion of intuition is how
much of the presence to the mind of the object in perception carries over
to other cases of intuition.

It is hard to see what could make a cognitive relation to objects count as
intuition if not some analogy with perception. And, indeed, we find such
an analogy claimed or appealed to by writers advancing very different
conceptions. Thus, in our own time, Gödel famously claimed that “we
do have something like a perception of the objects of set theory.”14 In
the paper “Is mathematics syntax of language?” that he worked on in the
1950s but never published, he also stresses this analogy, going so far as
to speak of an analogy between reason and an “additional sense.”15 But
Gödel is not alone in discerning such an analogy.

The Latin intuitio is derived from intueri, meaning ‘to look at, to gaze at’.
Descartes’ explanation of intuitio in the Rules relies on the analogy with
perception only in this choice of terminology, on which no doubt nothing
in particular turns. It is clearly intuition that; the examples that he gives in
Rule Three are all propositional. The analogy with perception is, however,
used in Descartes’ later definition of clear and distinct perception:

I call a perception “clear” when it is present and accessible to the attentive
mind – just as we say that we see something clearly when it is present to the
eye’s gaze and stimulates it with a sufficient degree of strength and accessibility.
I call a perception “distinct” if, as well as being clear, it is so sharply separated
from all other perceptions that it contains within itself only what is clear.16

for example concerning things in themselves. But this issue is not especially relevant to
the present inquiry.

12 A 320/B 376–7, also Logik, Ak. IX 91.
13 See Mathematics in Philosophy, pp. 111–115, 142–145, and the writings of Hintikka,

Howell, and Thompson cited there, also my “The Transcendental Aesthetic,” section I.
14 “What is Cantor’s Continuum Problem?” (1964 version), p. 268.
15 For example pp. 353 n. 43, 354 (version III).
16 Principles, I, 45 (Philosophical Writings, I, 207–208).
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By contrast, Leibniz does not use such analogies in his explanations of
clear and distinct knowledge in “Meditations on knowledge, truth, and
ideas” (1684). There he makes a contrast between intuitive and “blind
or symbolic” knowledge; knowledge of a notion is intuitive when we can
“consider all of its component notions at the same time.”17

Edmund Husserl is a philosopher for whom the notion of intuition
takes on a very general significance. He makes a sustained attempt to
develop a theory both of knowledge of abstract objects and of rational
evidence based on an analogy with perception. Basic to his theory of
meaning is a distinction between meaning intentions and their fulfill-
ment. The acts or intentional experiences that constitute our conscious-
ness have intentionality, relation to an object. Such a relation is realized
or fulfilled if the object is present in intuition (or at least represented in
imagination);18 in the case of actual intuition, where there is a certain kind
of unity of the intended sense and the sense of the act fulfilling it, one has
knowledge of the object. Intuitions are in one place described as “the acts
that in knowledge are called to the fulfillment of other intentions.”19 The
examples by which Husserl explains these ideas tend to be perceptual.
Acts of outer perception have the characteristic that they contain both
fulfilled and unfulfilled intentions; for example, a perception of a cup sit-
ting on a table will represent it as having a bottom, but, since the bottom
is not visible, that intention is not fulfilled.

In the Logical Investigations, the idea of intuition where the object may
be abstract is explicitly represented as an extension of the concepts of
intuition and perception. The intention/fulfillment schema invites gen-
eralizing the notion of intuition in a way that parallels the generalization
of the notion of object:

Thus, also in generally customary speech, aggregates, indeterminate multi-
tudes, totalities, numbers, disjunctives, predicates (“being just”), and states of
affairs become “objects”; the acts, through which they appear as given, become
“perceptions.” (VI §45, A 615/B2 143)

17 Philosophical Essays, p. 25. I would conjecture that this essay had an influence on Gödel,
but it is unlikely that Gödel derived from it the idea of thinking of reason as an “additional
sense.” As regards the influence of Husserl, the various versions of “Is Mathematics
Syntax of Language?” were in all probability written before Gödel began his serious
study of his writings in 1959.

18 Logische Untersuchungen (hereafter LU), I §9, §14. The distinction between intention
and fulfillment and the relations between them are explored more thoroughly in Inves-
tigation VI.

19 LU VI §10 (A 511/B2 39).
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Something common to Kant, Husserl, and Gödel is a close connection
between what I am calling intuition that and intuition of. According to
Kant, intuition (which as I have remarked is intuition of ) in mathematics
confers evidence that is immediate. Thus axioms are said to be “imme-
diately certain” (A732/B760):

Mathematics . . . can have axioms, since by means of the construction of con-
cepts in the intuition of the object it can combine the predicates of the object
both a priori and immediately, as, for instance, in the proposition that three
points always lie in a plane. (ibid.)

Evidently, the immediacy of the judgment derives from a construction “in
the intuition of the object.”20

Husserl seems to regard intuition that as a species of intuition of : Evi-
dence of a judgment is a situation in which the state of affairs that obtains
if it is true is “itself given.” Because, typically, a proposition involves refer-
ence to objects, evidence will involve intuition of those objects, but they
play the role of constituents of a state of affairs that is also intuitively
present, at least in the ideal case.21

For Gödel, that we have “something like a perception of the objects of
set theory” is supposed to be “seen from the fact that the axioms force
themselves upon us as being true.”22 The latter appears to be a matter
of intuition that; it is clearly a matter of the evident character of certain
statements. Even if we grant this, why should it follow that there is intuition
of “the objects of set theory”? Gödel’s particular reason for thinking this
was very probably that in talking of the objects of set theory, he had in
mind not only sets but also concepts, and for him rational evidence of a

20 Kant does not explicitly claim immediate certainty for all mathematical propositions;
the question naturally arises whether it is limited to axioms. In the Hilbert school and
later, the idea of intuitive evidence has been applied also to the results of proof, with,
however, strong restrictions on the admissible methods. It is doubtful that Kant would
make such an extension; for example, he glosses “propositions that are synthetic and
immediately certain” as “indemonstrabilia” (A164/B204). Here, where he is talking about
arithmetic, he clearly has in mind numerical formulae such as 7 + 5 = 12. In these
cases, however, one clearly needs to carry out the operations (which Kant certainly
thought of as constructions). Although apparently a construction is sufficient to make
such propositions evident, the construction can be quite complex, and in the case of large
numbers evidently will be. For this reason one should not read “immediately certain” as
“self-evident,” as Frege did (Grundlagen, §5).

21 In his discussion of truth, Husserl talks of the “ideal of final fulfillment” (LU VI §§37–39).
Later, he concedes that this is in interesting cases not achieved or even achievable, so
that final fulfillment is a kind of Kantian Idea.

22 “What is Cantor’s Continuum Problem?” (1964 version), p. 271.
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proposition involved “perception” of the concepts occurring in it.23 What
Gödel calls perception would in our terminology be intuition, since it is
clearly perception only in an extended sense.24

That intuition that should in some way rest on, or at least be intimately
connected with, intuition of is what one would expect if intuition that is
analogous to perception, since one of the central elements of perception
is the presence of the object perceived; one knows by perception that my
bicycle is blue by seeing my bicycle. Someone who has never seen my
bicycle might know this, but he would not know it by perception in the
most straightforward sense.

It is this that makes Gödel’s inference natural, even apart from the par-
ticular context of his views about concepts and perception of concepts. I
propose to use the term ‘intuition’ so that a mode of evidence does not
count as intuition unless it is analogous to perception in a definite way.
In the case of some proposed kind of intuition that, one way in which the
analogy can be made out is that it involves intuition of certain objects.
Unlike Gödel, I will not argue that all rational evidence of principles that
are not the conclusions of deductive or empirical arguments is a case
of intuition, or even that intuition extends very far into the conceptual
domain. The following inquiry will be in the tradition of Kant, for whom
intuition and Reason are of a different nature, rather than in the tradi-
tion of Spinoza and Leibniz, for whom intuitive knowledge is possible
at high levels of abstraction and rational integration. Taking the analogy
with perception as what distinguishes intuition that from other forms of
“intrinsic plausibility” that statements might have does not force one to
be in Kant’s rather than the other camp on this matter (as the example of
Gödel shows), but the adherent of the other tradition is required to stretch
the analogy much further, as one can see by comparing Gödel’s remarks
in “Is mathematics syntax of language?” with the conception of intuition
presented in §26 and later.

Beginning in §27, I will argue that a form of intuition in which the
objects can be described as mathematical exists. A conception of intu-
itive knowledge will be associated with this conception of intuition. But
the very idea of such an intuition seems at first sight outrageous, and
the defense of intuition in the tradition of Kant may seem to deny the

23 This claim is documented in “Platonism and Mathematical Intuition in Kurt Gödel’s
Thought.”

24 When Gödel uses the term ‘intuition’, he usually means intuition that, but this is not
always the case, in particular not when he is talking about a Kantian notion of intuition.
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accomplishments in the foundations of mathematics since the late nine-
teenth century, so much of which was directed against either Kant’s own
views or views deriving from Kant. In the next section, I will consider some
objections.

§26. Objections to the very idea of mathematical intuition

Many critics of theories of mathematical intuition such as Gödel’s accuse
these theories of postulating a special faculty of intuition. Even if this
criticism can be answered in the particular case where it is advanced,
behind it lies a point that has to be taken seriously. By its very nature,
intuition is not the sort of thing that should be “postulated.” If mathe-
matical objects are given to us in a way similar to that in which physical
objects are given to our senses, should it not be obvious that this is so?
But the history of philosophical discussion about mathematics seems to
show that it is not. Whatever mysteries and philosophical puzzles there
may be about perception, it works to a large extent as a straightforward
empirical concept. We can make a lot of assured judgments about when
we perceive something, and confidence about this description of our
experience can often survive doubt about what it is an experience of.
Thus the proposition that I now see before me a computer with text on
its screen is one that I expect that no other philosopher, were he now in
the room where I am writing, would dispute except on the basis of skep-
tical arguments, and many of these would not touch weaker statements
such as that it looks to me as if I see these things. There is a phenomeno-
logical datum here that is as close to being undisputed as anything is in
philosophy.

It is hard to maintain that the case is the same for mathematical objects.
Is it obvious that there is an experience of intuiting the number 7, or a tri-
angle, or at least of its “looking” as if I were intuiting 7 or a triangle? But if it
isn’t obvious, how could it be true, or how could our intuiting these objects
have a relevance to mathematical knowledge comparable to that my see-
ing my computer screen has to my knowledge that, for example, some
sentence I have just typed contains a typographical error? One can put
the question in another way by asking whether there are any experiences
we can appeal to in the mathematical cases that are anywhere nearly as
indisputed as my present experience of seeing the computer screen. If we
don’t know what to point to, that already appears to be a serious disanal-
ogy between sense-perception and whatever consciousness we have of
mathematical objects.
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This embarrassment is connected with an obvious disanalogy. In nor-
mal cases of perception, there is a physical action of the object perceived
on our sense-organs. Our perception is in some way founded on this
action, and there are serious reasons for holding that such a causal rela-
tion is a necessary condition for perceiving an object. But it would be
implausible to hold that in mathematical intuition there is a causal action
of a mathematical object on the mind. In fact, this is no part of the view of
the upholders of mathematical intuition that I have mentioned, though it
is sometimes included in popular conceptions of Platonism, or attributed
to philosophers like Gödel by their critics.25 Though in the case of Gödel
it is not justified by the texts, it is not an unnatural error, since one might
expect that if mathematical intuition is like perception it should share
with it this central feature.

In the first instance, these difficulties apply to intuition of mathemat-
ical objects, to which both Husserl and Gödel have to be interpreted as
being committed. Kant does not say this straightforwardly, and indeed
mathematical objects do not play an explicit role in his philosophy of
mathematics. In my own view, he simply does not face the questions that
in our own time surround the notion of mathematical object.26 Although
it does not follow that he is not in any way committed to them, other inter-
preters have held that Kant’s conception of mathematics has no room for
mathematical objects.27

25 Thus in “Mathematical Truth” Paul Benacerraf writes:

He [Gödel] sees, I think, that something must be said to bridge the chasm created by his
realistic and platonistic interpretation of mathematical propositions, between the entities
that form the subject matter of mathematics and the human knower. Instead of tinkering
with the logical form of mathematical propositions or with the nature of the objects known,
he postulates a special faculty through which we “interact” with these objects. (p. 416 of
reprint)

The quotes around “interact” indicate that Benacerraf thinks that even for Gödel such
talk is not to be taken literally, but it is not clear to me what he thinks Gödel wishes to
substitute for literal action of mathematical objects on this “special faculty.”

My own reading of Gödel’s conception of mathematical intuition does not give place
to anything like interaction between ourselves and either mathematical objects or the
concepts that are more prominent in Gödel’s discussion of these matters; see “Platonism
and Mathematical Intuition,” Sections IV and V. I agree with the earlier criticism of
Benacerraf’s remark by Tait, “Truth and Proof,” footnote 3, although I do not entirely
agree with the interpretation Tait wishes to put in its place; see pp. 66–67 and n. 44 of
my paper. (That interpretation does not correspond entirely to Tait’s present views.)

26 See “Arithmetic and the Categories,” section I, which expands Mathematics in Philoso-
phy, pp. 147–149.

27 Friedman, Kant and the Exact Sciences.
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Still, Kant expresses puzzlement about how intuition can be a priori,
related to the difficulty about causality. In §8 of the Prolegomena, after
introducing the notion of pure intuition, he writes:

An intuition is such a representation as would immediately depend on the
presence of the object. Hence it seems impossible to intuit spontaneously
(ursprünglich) a priori because intuition would in that event have to take place
without either a former or a present object to refer to, and in consequence could
not be an intuition. . . . But how can the intuition of an object precede the object
itself? (Ak. IV, 281–82, Beck trans.)

It is clear from the context that by ‘object’ Kant means here real object,
in practice physical object. The problem does not directly concern intu-
ition of mathematical objects, except insofar as such intuition is to yield
mathematics that is applicable to the real world. The question is how it is
possible for a priori intuition to be “of” objects that are not given a priori.

Kant’s own solution to the puzzle, given in §9, appeals to the idea that
a priori intuition contains only the form of our sensibility. This evidently
removes the causal dependence of intuition on the object. It is a nice
question what is left of the characterization of intuition that gives rise to
the puzzle.28 Kant’s solution seems to allow the phenomenological pres-
ence of an object to be preserved, but it is a further question whether what
one has is a representation of a physical object, not individually identified
and not really present, or a representation of a mathematical object. The
former is not ruled out by the a priori character of pure intuition, as the
“presence” might be that characteristic of imagination rather than sense.
In fact, a number of passages in Kant indicate that just that is his position.

Kant’s puzzle may have force for us, but we are not likely to accept the
view that pure intuition contains only the form of our sensibility, a central
part of Kant’s transcendental idealism, at least not as Kant understood it.
In what follows, I will not claim that mathematical intuition is a priori,
but this concession does not fully remove the force of the puzzle. For
suppose that intuition of certain objects underlies our knowledge of a
mathematical truth, say 7 + 5 = 12. We have this intuition at a certain
place and time, and yet the proposition is general in its implications; it is
applicable to the “first three minutes” after the Big Bang and also to the
world long after we are dead. Moreover, we generally understand such

28 In fact, the characterization does not comport fully with Kant’s conception of intuition
as explained and deployed elsewhere.
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statements to be necessary, and I myself have defended that view.29 I
shall return to the problem in §30.

Another difficulty for the idea of intuition of mathematical objects
is posed by the structuralist view of such objects, already discussed at
length in Chapters 2 and 3. According to it, the properties and relations
of mathematical objects that matter for mathematics are those deter-
mined by the basic relations of some system or structure to which all the
objects involved belong, or perhaps several such structures and mappings
between them. For applications, what in §14 are called external relations
also matter, but they are independent of the choice of a system of objects
to realize the structure.

On the structuralist view, mathematical objects are in a way not indi-
vidually identifiable at all. But then how is it possible that they should
be objects of intuition? For example, unless one is presupposing a struc-
ture including numbers and sets, it seems indeterminate whether the
number 2 is identical to the one-element set {{∅}}}, the two-element set
{∅}, {∅}}}, or neither. How can this be if numbers and sets are objects
of mathematical intuition? Can such intuition be a significant source of
mathematical knowledge if it does not determine the answers to such
simple questions?

It will turn out in Chapter 6 that numbers are not objects of the intuition
that will be affirmed in this chapter; this is generally true of the pure
mathematical objects for which the structuralist view is most persuasive.
The outcome of our examination of the structuralist view, however, was
a qualification on it; we still had to admit quasi-concrete objects that are
properly mathematical, and yet the structuralist view is not true for them
(§18).

However, that does not quite dispose of the objection in this case. It
appears that the quasi-concrete objects that one might admit in mathe-
matics, such as expression-types and geometrical figures, are still incom-
plete in Leibniz’s sense. That they have intrinsic concrete instantiations
is not enough to endow them with the range of properties and relations a
concrete object would have, and it is not clear that they do not suffer from
the same indeterminacy of identity that pure abstract objects appear to
suffer from. This is shown by the fact that in the development of math-
ematics nothing that the mathematician normally attends to is lost by
thinking of them in a structural way, so that expressions, for example, are
simply built up from arbitrary objects called “symbols” by a relation called

29 See §15 and especially Essay 7 of Mathematics in Philosophy.
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“concatenation” that is specified in a purely structural way. On that way
of looking at them, their relation to their tokens is an external relation.

At present I will not concern myself with whether these claims about
quasi-concrete objects are true. They are plausible enough so that a view
according to which there is intuition of such objects will have to deal
with them. The matter will be addressed again when I present my own
conception of intuition.

The objections put forth in this section have all been to the idea of
intuition of mathematical objects. Intuition as a propositional attitude is
not at the outset as questionable an idea. First of all, there is no doubt
that principles in mathematics have “intrinsic plausibility,”30 and reduc-
tionist programs in mathematical epistemology that would remove any
necessity to rely on this plausibility have not fared very well. But then,
as I have structured the question, whether we should talk of intuition
depends on whether we can make out a significant analogy with percep-
tual knowledge. If, as I have suggested is likely, part of this analogy will be
dependence on intuition of, the above objections become relevant. The
“obviousness” objection does have some independent force. One might
put it this way: If on reflection we do not find a certain mathematical
principle (such as an axiom of set theory) obvious without appealing to a
proof, then it is doubtful that we can regard it as a deliverance of intuition.

Because I prefer to use the term ‘intuition’ in a way related to Kant’s
and to view questions of rational evidence as for the most part not involv-
ing intuition, the idea of intuition that as more or less independent of
intuition of will not be pursued further. However, some of the issues
that have been discussed historically under this heading will come up in
Chapter 9.

§27. Toward a viable conception of intuition: Perception
and the abstract

Thus, in undertaking to present a defensible conception of intuition, my
focus will be on intuition of. I propose to show that there is at least a
limited application of this notion that will be able to meet the objections.

First, let us review briefly the reasons why one might introduce the
concept. Intuition that becomes a persuasive idea when one reflects on
the obviousness of elementary truths of mathematics. Two alternative
views have had influential advocates in this century: conventionalism,

30 On this notion, see Chapter 9.
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the view that at least some mathematical propositions are true by con-
vention, and a form of empiricism according to which mathematics is
continuous with science, and the axioms of mathematics have a status
similar to that of high-level theoretical hypotheses. Both these views have
unattractive features. Conventionalism has been much criticized, and I
need not repeat the criticisms here.31

The empiricist view, even in the subtle and complex form it takes in the
work of Quine, seems subject to the objection that it leaves unaccounted
for precisely the obviousness of elementary mathematics (and perhaps
also of logic). It seeks to meet the difficulties of early empiricist views of
mathematics by assimilating mathematics to the theoretical part of sci-
ence. But there are great differences: first, the “topic neutrality” of logic,
which receives considerable recognition in Quine’s writings, although he
insists that it depends on a specification of the logical constants that is at
bottom arbitrary; second, the very close connection of mathematics and
logic. The potential field of application of mathematics is as wide as that
of logic, in spite of the fact that the existence of mathematical objects
makes mathematics not strictly topic-neutral. Connected with this is a
third difference: In mathematics there are very general principles that are
universally regarded as obvious, where on an empiricist view one would
expect them to be bold hypotheses, about which a prudent scientist would
maintain reserve, keeping in mind that experience might not bear them
out. A fourth is that differences about logic and elementary mathemat-
ics, such as the issues raised by intuitionism, are naturally explained as
differences about meaning. Quine recognizes this by the role that logic
plays in his theory of translation, but the obviousness of logic is a premise
of that theory.

For the moment I will bracket the question of the obviousness of logic.
The most elementary logical evidences are of logical truths and inferences
that do not involve any distinctly logical or mathematical reference, at
least on the view taken in §5 that the understanding of predicates and
sentences is prior to any apprehension of or commitment to such objects
as propositions and attributes. For this reason, the idea I want to pursue

31 It has been recently argued that the view of Carnap, at least in Logical Syntax, is not
what is usually criticized under the name of conventionalism; see in particular Goldfarb
and Ricketts, “Carnap and the Philosophy of Mathematics.” Carnap’s view still rests on
assumptions that few would accept today.
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now, of intuition of mathematical objects, is not of any help in dealing
with it.

In the case of arithmetic, the situation is different because, unlike logic,
it has ontological commitments. It may be that the idea of logic as true by
virtue of meaning can still be defended. But it would be another matter
to extend it to arithmetic. That a structure such as the natural numbers
should exist, or at least should be possible in some mathematically rele-
vant way, is hard to make out as true by virtue of the meanings of arith-
metical or other expressions.32 One might reasonably regard a structure
as not the natural numbers if it is not infinite, and let us grant that one
might express this by saying that it is contained in the concept “system
of natural numbers” that it should be infinite. But that doesn’t make it
by virtue of the concept, or of our meaning what we do by talk of natural
numbers, that there is or could possibly be such a system. Gödel was pre-
pared to assume that the axioms of type theory or set theory are analytic
in something like this sense, but, appreciating this difficulty, said that it
did not contradict his view that mathematics is “based on axioms with a
real content.”33

Just at this point, the idea of intuition of suggests itself. We are taking
as a gross fact about arithmetic, that a considerable body of arithmetical
truths is known to us in some more direct way than is the case for the
knowledge we acquire by empirical reasoning. And this knowledge takes
the form of truths about certain objects – the natural numbers. What
is more natural than the hypothesis that we have direct knowledge of
these truths because the objects they are about are given to us in some
direct way? The model we offer of this givenness is the manner in which
a physical body is given to us in perception.34

32 Gödel, in his remarks in “Russell’s Mathematical Logic” about the analyticity of the
axioms of Principia Mathematica and in other writings about axioms of set theory,
attempts to do just that. Although I don’t regard Gödel’s attempt as successful, for the
present it should suffice to remark that it is based on the premise that understanding
the propositions of higher-order logic or set theory involves apprehension of concepts,
so that some ontology is, so to speak, already given with meaning. Just for that rea-
son Gödel’s affirmations of analyticity go with his realistic point of view. In particular,
he admits that the question of the existence of a structure like the natural numbers is
pushed back to the question of the “existence” of the concept of natural number.

33 “Russell’s Mathematical Logic,” note 47. Cf. Gibbs lecture, pp. 320–321, and “Is Mathe-
matics Syntax of Language?”

34 Just what this is, is of course a very large question. Precisely by talking of physical bodies
as given, the sense is different from that in the notorious “myth of the given.”
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We will see in Chapter 6 that this is an oversimplified picture of our
knowledge of natural numbers. As we remarked in the last section, that
is already suggested by the structuralist view of numbers. For working
out a positive conception of intuition, the case of quasi-concrete objects
(§7) has the advantage of being simpler and closer to perception. Discus-
sion of mathematical intuition has suffered from aiming too high (e.g.,
at set theory) and not looking closely at simple cases. Moreover, in §18
we saw the usefulness of quasi-concrete objects for the structuralist view
in making out the possibility of an instance of the structure of natural
numbers.

Even in this case, however, one should not demand too much in the way
of closeness to perception. Here we can be guided by Kant and Husserl.
Kant viewed pure intuition as giving the form of empirical intuition;
our own conception will echo that, although probably not in the sense
that Kant intended. Although Husserl is even prepared to call categorial
intuition “perception” (Wahrnehmung), he contrasts sense-perception
as schlicht,35 in which the object is “immediately given,” with categorial
intuition which is founded in other “acts” such as ordinary perceptions
and imaginings.36 Without adopting Husserl’s whole apparatus of acts,
we will still view the intuition that concerns us as founded on perception
and imagination.

The observation from which I will start is that consciousness of objects
that in the usual classification count as abstract is pervasive and com-
monplace and closely intertwined with perception. In my view, it is closely
enough intertwined so that in many cases it is appropriate to call the con-
sciousness itself perception or intuition. An example with which I might

35 LU VI §46. Findlay translates schlicht as “straightforward.” It also might be rendered
as “simple”; very likely, Findlay thought this would have misleading associations. I will
follow his translation.

36 Ibid. The sense in which an act of ordinary perception is straightforward, and its object
immediately given, seems to amount just to the fact that it is not founded on other acts.
“Categorial” intuitions, by contrast, are founded on perceptions and imaginings. (See in
particular A 618–619/B2 145–146.)

Gödel also says that “mathematical intuition need not be conceived of as a faculty giv-
ing an immediate knowledge of the objects concerned” (“What is Cantor’s Continuum
Problem?” p. 268). Although this remark was written at a time when Gödel had recently
been studying Husserl quite seriously, it is doubtful that he means by “immediate” some-
thing close to what Husserl means, since the “something besides the sensations” that
he asserts to be “immediately given” are evidently conceptual elements of knowledge,
which according to Husserl would be the objects of founded acts. Nonetheless, it can
hardly be doubted that Gödel found congenial Husserl’s view that there are objects of
intuition that are abstract and conceptual.
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begin, although it is not mathematical, is what in the empiricist tradition
are called sense-qualities. We all perceive colors, and a natural way of
describing such experiences is as seeing this or that color, say red or blue.
To see red is not the same as to see that some object is red, although of
course they are related. Looking to the left of my computer, I see bright
blue. It is also true that I see a folder that is bright blue, but I could see
bright blue without seeing that the folder is blue, either because I fail to
identify it, or because there is something in the setting that misleads me
about the color of the folder and in fact it isn’t bright blue although it
looks so. It is the latter possibility that is of greatest importance in the
philosophical discussion of color, but I would like to dwell for a moment
on the former. If in fact there is a bright blue folder before me, and look-
ing in that direction I see bright blue, then in the absence of some grossly
abnormal conditions I do see a bright blue folder. But seeing the color is
different from seeing that the folder has that color, or even from seeing, of
some demonstratively identified object, that it has that color. One thing
that marks the difference is individuation. If, in similar lighting, I look
at another folder just like this one, I will see the same color but not the
same folder. In semidarkness, I may be able to see the same folder but
not see its color at all. This difference is also enough to distinguish seeing
bright blue from seeing a bright blue object, even though under normal
conditions they go together (at least if one counts something like a flash
of light as an object).

There are two kinds of conditions in which they appear not to go
together. The first is where lighting or other conditions might cause an
object to look some color other than its real color. Then it seems that I
might look at a green object and see bright blue, because the object looks
bright blue to me. That seems to me to be the natural way to describe this
sort of case, particularly since if my color vision is normal the blue that
I see is a real physical phenomenon. The second type of case is an after-
image or hallucination, where I might “see” a color but there is no object
out there that I am seeing at all. In this sort of case, someone might deny
that I really see the color, because the experience is not a perception of a
real color phenomenon in my immediate environment. For the purpose
of the present discussion it is not of great moment whether such cases
are, or are not, accepted as genuine cases of seeing colors.

It appears that the color we see is a universal, in the sense that it can be
instantiated at a great variety of places and times. Although I see bright
blue in a certain location, that is not to say that the color itself is located.
What is located is not the color but its manifestations, typically objects
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that have that color or at least look that color to an observer.37 It may be
that what we see is still something more particular than a color as iden-
tified by a color-word. For example, a blue computer disk on my table
is not quite the same color as the folder. In each case, I can properly be
described as seeing blue, but one might say that this is only by virtue of
my seeing a color that is a variety of blue, so that my seeing blue while
looking at the disk and my seeing blue while looking at the folder are not
cases of seeing the same color. This does not alter the fact that the indi-
viduation of what is seen is different from that of located spatiotemporal
objects.

Color and color perception have many complications that have noth-
ing to do with our main theme, and so I will not pursue the subject further.
Language offers an example closer to mathematics to reinforce the claim
that perception of objects that are abstract is a commonplace experience
and acknowledged as such in our perceptual vocabulary.

The vocabulary of seeing and hearing is often used with objects that
are linguistic and neither particular events nor physical objects. Thus,
one often talks of seeing letters, words, and sentences, and of hearing
words and sentences.38 Often when what is heard or seen is a particular
event, it is still naturally described in terms referring to linguistic objects,
for example as someone’s uttering certain words. The word ‘hear’ is also
used with what would be called propositional objects; that is, one hears
what someone said and could naturally report this using a that-clause.
That-clauses also occur in descriptions where the object of hearing is
legitimately construed as an event: One can say that one heard someone
say that p.39 One would take in the same information visually by reading
it, but we usually talk of reading what someone says or writes rather than
seeing it.

37 Whether that should count as a “manifestation” of the color is a question that would
have to be addressed in a fuller account of color.

Some philosophers have maintained that there are “abstract particulars,” in our exam-
ple what one might call the particular blue of my folder. On such a view that might
properly be called the manifestation of the color. This would allow one to hold that see-
ing bright blue is a case of seeing that something is bright blue; namely one sees the
color-particular, and sees that it is bright blue. Husserl, for example, would distinguish
between the color-moment of the folder, which is just such an abstract particular, and
the color blue, which is a universal. The former is quite properly located. Presumably
even the folder’s looking bright blue now (even if, perhaps, it isn’t really) has a particular
moment of the folder corresponding to it.

38 Hearing letters probably does occur, but only when a particular letter sound is salient.
39 If I hear someone say that p, then I might sensibly say that I have heard that p. If I see

someone write that p, something further is needed for me to see that p.
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The cases of reports by that-clauses obviously introduce a serious com-
plication, as is indicated by the continuing disagreement as to what, if any,
the objects of indirect discourse and propositional attitudes are. I want
to leave that at one side, as there is no doubt that we do talk of seeing and
hearing words and sentences, and at least seeing letters, and there is not
the same disagreement as to what these objects are. Here, however, it may
be objected that in talk of syntactic objects such as words and sentences,
the objects might be types or tokens. If we understand written tokens
as physical inscriptions, and spoken tokens as particular events,40 then
perception of tokens is no counterexample to the view that the objects
of perception are always concrete. But it seems to me evident that the
vocabulary of perception is used where the natural reading is to take the
objects as being types, as for example when I report what I heard someone
say by giving the exact words. The question whether another hearer heard
the same will be answered in the affirmative if he reports the same words,
and not otherwise, where it is the words spoken that are at issue; that is, an
indirect-discourse report that would involve paraphrase or translation is
not what is called for. And I may also report that I heard a certain word or
sentence in a situation where I could not identify the speaker or the loca-
tion from which the sound came. In such a case I, in a sense, identify what
I heard, namely, this or that linguistic expression, but I do not identify a
particular object or event. This kind of case is less significant for my claim,
however, because in cases where abstract objects are not at issue one’s
identification of what one perceives can be very partial, and this kind of
case can be described in that way. I also think one can talk of perception
of linguistic expressions in situations where the perception of an actual
object or event is illusory or mistaken, and there was not actually a speaker
in the neighborhood who uttered those words; but, even if that is agreed,
its significance can be read in different ways, and I will not insist on it.

Just what is involved in the perception of words and sentences will be
as complex as other questions about perception, perhaps more so just
because the objects are linguistic, and specifically linguistic abilities are
exercised. None of this is evidently incompatible with the possibility of
describing cases of perception of linguistic types in ways that remove

40 I don’t find the concept of a particular event as clear as some do. But however that
may be, it seems evident that events are concrete rather than abstract, according to the
rough criterion of §1, as they are located in space and time and stand in causal relations.
One would have to take a position on controversial questions about what events are in
order to use perception of events to buttress the idea that perception where the object
is abstract is a common phenomenon.
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the commitment to types.41 All I have tried to do in this discussion is to
make the case that talk of perception of types is something normal and
everyday. A convinced nominalist might still respond to this by saying
that there must be a reduction in which such talk is shown not really to
be committed to types.

§28. Hilbertian intuition

I want now to describe a situation that resembles that of perception of
linguistic types but is much simplified. Following Hilbert we begin by con-
sidering the “syntax” of a “language” with a single basic symbol ‘| ’ (stroke),
whose well-formed expressions are just arbitrary strings containing just
this symbol, i.e., | , | | , | | | , . . .42 This sequence of strings is isomorphic to
the natural numbers, if one takes ‘| ’ as 0 and the operation of adding one
more ‘| ’ on the right as the successor operation. 43 It gives rise to an inter-
pretation of arithmetic as a kind of geometry of strings of strokes. For the
purpose of making out a conception of intuition, we could equally have
taken a more complex formal language, with more than one primitive
symbol. The one-symbol case already contains what is essential to our
discussion, as the fact that Hilbert’s language is a model of arithmetic
indicates.

I think it is clear that we stand in a perceptual relation to the expressions
of this simple formal language. The same reasons for talking of percep-
tion of expression-types with reference to natural language arise also with

41 Bromberger and Halle, in “The Ontology of Phonology,” argue that expression-types
are not fundamental objects in phonology, that phonology need not be committed to
them, that they are merely a façon de parler (p. 226). I am not entirely convinced by
their case. However their claims do not contradict mine directly: I am claiming that the
straightforward reading of certain ordinary locutions about perception of language will
be in terms of perception of types. Whether reference to types can be eliminated in a
certain linguistic theory, phonology, is another matter. We will, however, return to the
question of the possibility of eliminating reference to types.

42 David Hilbert, “Über das Unendliche,” p. 171 (trans. p. 377), and a number of other
writings. In the exposition of finitary arithmetic in volume I of Grundlagen der Mathe-
matik, Hilbert and Bernays treat the symbols of this sequence as the objects of the theory
(p. 21).

Both in Hilbert’s papers and in Hilbert and Bernays, the symbol ‘1’ is used instead
of ‘| ’. For our purposes it seems desirable to have the greatest possible typographical
simplicity; moreover, the term ‘stroke’ is convenient.

43 It is perhaps more natural to think of ‘| ’ as 1, thus obtaining a model of the positive
integers. So long as one has only an initial element and a successor function or relation,
the two structures are isomorphic; that, of course, ceases to be so as soon as one has
addition.
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reference to this language. I shall, however, prefer to use the term ‘intu-
ition’ for reasons that will emerge. Although more needs to be said about
it, we know when we are confronted with the same symbol, or the same
string of symbols. The objects count as abstract by the rough criterion
of §1, because two tokens that instantiate the same symbol or string can
be separated in space, without one having arisen from the motion of the
other. Moreover, we don’t think of strings as causal agents; what acts on
our sense organs are, roughly, their tokens. Still, they are quasi-concrete;
for example, the basic situations in which we have intuition of types are
typically those in which we perceive tokens of that type.

We can think of the strings of strokes as forms, in that describing a token
as a token of a certain string is characterizing it as of a certain form. A
string is like a geometric figure: It is spatial in that it is a form instantiated
by objects in space, but it does not itself have a particular location in
space. Letters of a written language can differ considerably in shape and
still be occurrences of the same letter, and can resemble each other in
shape and be occurrences of different letters.44 Strokes are individuated
more strictly and more simply. What counts as a stroke is a symbol of the
same shape as the samples that have been presented, and the same will
be true of the strings that arise by concatenation.

The nature of the objects with which we are concerned can be made
clearer by at first attempting to understand what I am calling intuition
of types in this symbolism in a nominalist way. Let us call an inscrip-
tion of the form ‘| ’ a stroke-inscription. (I will sometimes call such an
inscription simply a stroke.) A stroke is a string-inscription; if to a string-
inscription a we add another stroke on the right, then the result b is again
a string-inscription, which we can call a successor of a.45 These rules
suffice to generate all string-inscriptions; we might think of them as the

44 This is pointed out by Linda Wetzel in “Expressions vs. Numbers.” She makes the strong
claim that two tokens of different types can be more similar to one another than either
is to more “distant” tokens of its own type (p. 187). This is probably correct. I mean to
avoid this complication by the design of the symbolism in the text. I don’t think Wetzel’s
considerations show, even for natural language, that identification of types cannot be
perceptual, but it does tell against a nominalist or modal nominalist understanding of
expression-types of natural language, where the relation “same type” is understood in
terms of physical or visual or auditory similarity. A deeper consideration of what under-
standing of the relation would be satisfactory (as in Bromberger, “Types and Tokens in
Linguistics”) introduces ideas (such as speakers’ intentions) that hardly yield a nomi-
nalist construal of talk about types.

45 Although they do not attempt a nominalist explanation, Hilbert and Bernays (p. 21)
appeal to the same inductive generation in explaining the Ziffern that are to be the
objects of intuitive, finitist arithmetic.
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introduction clauses of an inductive definition. Now we could define, for
string-inscriptions, being “of the same type” in the same inductive way:
Any two stroke-inscriptions are of the same type; a stroke-inscription is
not of the same type as a string-inscription resulting from adding a stroke
to such an inscription; if a and b result from c and d each by adding a
stroke, then a is of the same type as b if and only if c is of the same type
as d. We might explain the notion of being of the same type in other
ways, for example, we might say that two strings are of the same type if
they can be placed side by side so that strokes correspond one-to-one to
strokes.46

For the moment we can put aside an obvious difficulty of this purely
nominalist way of describing this language, namely, that it is not evident
that for any string-inscription, there is a string-inscription that extends
it by an additional stroke. This is an instance of a general problem facing
nominalistic syntax, which has already been discussed in §12. For the
present discussion, the possibility that (in non-nominalist terms) our
language admits only finitely many types does not have to be ruled out.
Moreover, when it does, that is, when we need the claim that this language
is a model of arithmetic, a retreat to some form of modal nominalism
seems an obvious way of dealing with the difficulty.

A more immediate problem with the nominalist formulation is that
it does not accurately render our perceptual consciousness of strokes. It
would make what I want to call intuition of a string an instance of seeing a
certain inscription as of the type ‘ . . .’, where ‘ . . .’ is a certain string. But in
actual cases, the identification of the string will be firmer and more explicit
than the identification of any physical inscription that is an instance of the
type. That the inscriptions are real physical objects with definite physical
properties plays no role in the mathematical treatment of the language,
which is what concerns us. An illusory presentation of a string, provided
it is sufficiently clear, will do as well to illustrate a mathematical notion
as a real one.

We can indeed talk, after Husserl, of intuition of a type as founded on
perception of a token. It might under some circumstances be imagination
rather than perception. In ordinary cases, what we will have will be full-
blooded perception, involving the physical presence of an inscription
and its action on our senses. Such is normally implied by ordinary talk of
hearing words; although the token may be pushed into the background by

46 Cf. Mathematics in Philosophy, p. 44.
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the type or a meaning assigned to it, it does not follow that the token is not
an object of perception. However, even in normal cases, the background
and further experience that are necessary to the perception’s being of
something physically real are irrelevant to its being of the form given by
the type. In most cases, physical reality is important not for taking in the
type, but for further considerations: What is likely to be of interest about
the words is that they were spoken by a speaker at a certain time, or stand
written in a certain book or other piece of writing.

What is distinctive of intuitions of types is that the perceptions and
imaginings that found them play a paradigmatic role. It is through this
that intuition of a type can give rise to propositional knowledge about
the type, an instance of intuition that. I will in these cases use the term
‘intuitive knowledge’. A simple case is singular propositions about types,
such as that | | | is the successor of | | . We see this to be true on the basis
of a single intuition, but of course in its implications for tokens it is a
general proposition. Let b be the token of | | | two sentences back;47 let
a be the token of | | at the end of that sentence. Our statement implies
that if c and d are respectively of the same type as a and b, then d con-
sists of a part of the same type as a, and one additional stroke on the
right. We can of course buttress the statement that | | | is the successor
of | | by considering arbitrary tokens of the relevant types and verify-
ing the above consequence. But we have to verify it in the same way,
by instances that we take as paradigmatic. This situation is not pecu-
liar to our artificial framework. The same is true of calculations done on
paper and of formal proofs, such as the deductions done in elementary
logic courses. (I mean what the teacher might write on the blackboard or
a student on a homework paper.) This paradigmatic role of instances
also appears in Kant’s examples of construction of concepts in pure
intuition.

The nominalist or modal nominalist formulation makes this paradig-
matic role of instances difficult to understand by importing the notion of
physical object with its standards of individuation and actual existence
into the content of a mathematical theory. But what is fatal to it is that,
understood in this way, the notions of sameness of type and of successor
are vague. Although its mathematical use would require it to be an equiv-
alence relation, it is not clear that the notion of being of the same type, as
explained above, is transitive. For example, it might be vague with regard

47 The reader is to take it as the particular token in whatever copy of this work he is reading.
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to strings of strokes what the distance between them might be. Consider
the examples

| | | |
| | | |
| | | |
| | | |
| | | | .

At what point does the inscription cease to be of the same type as the
initial one? They all satisfy an obvious criterion in that they each consist of
four strokes. So one might say at no point. But that is not at all plausible; no
one would say, for example, that the first of the above strings continued by
‘| ’ one thousand miles to the right constitute a single string of five strokes.

We have explained the strings as generated inductively, beginning with
a simple stroke and successively attaching an additional stroke on the
right of a given string. The above example illustrates the potential vague-
ness of the relation ‘y results from x by attaching a stroke to the right of x’.
Vagueness could equally infect the notion of being a stroke (as a predicate
of inscriptions). This would be clear if one relies on the usual ostensive
explanation, given by writing or printing a sample.48 Regarding the transi-
tivity of the same-type relation, we can define it inductively parallel to the
proposed inductive definition of string. There is no reason to believe that
this explanation will remove the vagueness, given the vagueness of the
notions of stroke-inscription and succession that underlie it. Although
we can prove by induction according to the definition that sameness of
type is transitive, we should distrust this proof for the well-known reason
that it relies on application of induction to vague predicates.

The nominalist may not be troubled by these matters; he will point
out that one might characterize in an exact way, with the help of physics,
just what inscriptions count as strokes and what the operation of adding a
stroke on the right is. That reply would have force if what were at stake were
the ontological commitment of a high-level theory. But it is hard to see
how its use could square with the idea that consciousness of types (on this
construal, consciousness of tokens together with an equivalence relation

48 Concerning the official explanation of Hilbert and Bernays, the question arises whether
anything that we would recognize as a numeral ‘1’ counts as an initial Ziffer for them,
or only something whose size and shape are the same (or sufficiently close to) that of
‘1’ as actually printed in their text. Their remark on the subject (p. 21) does allow some
deviation but probably not so much that anything that would be a ‘1’ in any German
typeface would count.
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of “being the same type”) is essentially perceptual. Such an exact concept
of a stroke inscription will make a finer discrimination between strokes
and non-strokes than perception can make.49 For example, a stroke might
be required to be exactly 0.3 cm high, but one that is 0.30000000001 cm
high would not be distinguishable from it.50

Because it seems to me evident that there is perceptual conscious-
ness that one naturally describes in language ostensibly referring to
types, for this description we have to abandon the nominalist reduction
strategy. What I have already called attention to, the ubiquity in our
everyday experience of linguistic expressions and other “quasi-concrete”
abstract objects such as sense-qualities and shapes, should lead us to
question why a reduction should be necessary or desirable. Behind the
technical difficulties arising from vagueness is the rather basic considera-
tion that one may identify such a form, as it were in the flux of experience,
without identifying an object of which it is the form. A spoken expression
is a type of which the tokens are presumably events of some kind, but to
identify just what event a given token is presumably implies locating it in
space and time (and possibly in a causal nexus), although the expression
itself does not have a location. I hold that neither the identification of the
token nor that of the type is a necessary condition of the other.

If I read a sentence, and take in what sentence it is, of course I do
see a certain physical inscription. In that sense, my perception of the
sentence is founded on perception of the inscription. But I can identify
what sentence it is without identifying what inscription it is, and certain
kinds of illusion about the latter would not disturb the correctness of my
perception of the former. And it is not an evidently necessary condition
of such perception that there be a criterion, stated in terms of physical
characteristics of inscriptions, for an inscription to be an inscription of
a particular sentence; similarly, it is not evident that there need be a
criterion, stated somehow in terms of sensible appearances, for a given
perception to be of the sentence. We do not demand such criteria in the
case of everyday objects.

Thus, as a first answer to this difficulty, the phenomenological claim
that our identification and reidentification of expression types is percep-
tual is not undermined by the fact that we cannot give a sharp equivalence
relation of more “basic” objects that serves as a criterion of identity. There
is not such a relation for physical objects either.

49 Compare Dummett, “Wang’s Paradox.”
50 Of course, handwriting and even printing fail to make such fine discriminations.
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At this point, however, I can make clear why, in the case of our artificial
symbolism, I do not speak of perception of types, but rather of intuition. If I
see a written string from this language, then I see a certain inscription even
if for some reason I fail to identify it or misidentify it (say, as a string of four
strokes instead of three). This is an instance of a general feature of the use
of ‘see’, shared also by ‘hear’ and other perceptual verbs, that one can see
a certain object even if one does not identify it as such, and a description
of what is seen can use concepts that the subject does not possess. This
feature certainly extends to events: Suppose I have never heard of the
game of lacrosse and have no conception of it. If I come upon a field
where a game of lacrosse is being played, I see a game of lacrosse even
though I have no idea that that is what it is. I believe this extends also to
expressions of natural language. Suppose I say to someone who has never
before heard English, “Where is the American Embassy?”51 We would
say that that person has heard that sentence of English, even though he
certainly does not recognize it as such and would not be able to recognize
an utterance of the same sentence by someone with a different accent.

In this case, perception of a certain utterance counts as hearing a
sentence of a language of which the hearer knows nothing, presumably
because that is what the speaker produced, and the hearer has at least the
general linguistic capacity that humans are born with. I do not want to say,
however, that seeing a stroke-inscription necessarily counts as intuition
of the type it instantiates. One has to approach it with the concept of the
type; first of all to have the capacity to recognize other situations either as
presenting the same type, or a different one, or as not presenting a string
of this language at all. But for intuiting a type something more than mere
capacity is involved, which, at least in the case of a real inscription, could
be described as seeing something as the type. This is not an aspect that is
absent in normal perception, but, as I have said for seeing or hearing an
F, one does not have to identify it as an F although one at least recognizes
it under some description or other.

Something more is involved in speaking of intuition in the case at
hand. What makes intuition mathematical intuition is that it gives objects
that instantiate concepts that have a sharp, precise character. At least for
statements in the mathematical vocabulary, there is no vagueness in their
application to strings of strokes. There may indeed be vagueness as to
whether what is before us is, or is not, a token of a given string, but not

51 This example is from “Mathematical Intuition,” note 24, written in late 1979. Today one
might wonder whether a normal adult can be found who has never heard English.
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about the question whether one string, say, consists of two more strokes
than another. When I spoke above of perception or intuition of types, was
I in a position to rule out vagueness or puzzle cases about their identity,
such as there might be in the case of everyday objects? Pure intuition
as Kant understood it was evidently supposed somehow to get us across
the divide between the fuzzy Lebenswelt with its everyday objects and the
sharp, precise realm of the mathematical, in terms of which mathematical
conceptions of the physical world are developed.52 Does intuition of types
as I have described it present objects that are conceived in a sharp way?

Let us consider first a somewhat different case from that of types, where
we can see very clearly where a problem about vagueness will arise: the
idea, developed in some detail in early writings of Husserl, of intuition of
finite sets. According to this, a certain way of taking a surveyable plurality
of objects of perception, say the eggs in a carton,53 is intuition of a set
whose elements are the eggs in the carton. Eggs belong to what I have
called the Lebenswelt, but on the face of it sets of eggs are mathematical
objects. Given such a set a, one would expect that it would be quite deter-
minate, for a given x, whether or not x ∈ a. But suppose x is one of the eggs,
and let x′ be an egg that we encounter some time later. If x′ = x, then of
course x′ ∈ a. But suppose (as it seems that we cannot rule out) that x′ is an
egg such that our criteria of identity for eggs are not able to settle whether
or not it is x, although they determine that it is not one of the other eggs
in a (perhaps they were consumed before we encountered x′).54 Then it

52 One might call the former the “phenomenal world,” but that would not be exactly in a
Kantian sense.

53 The example is from Maddy, Realism in Mathematics, p. 58. Maddy defends the idea of
perception of sets. She holds, for reasons not relevant to the present discussion, that a
case like that in the text is one of perception, in a sense distinguishable from intuition.

The use here of the Husserlian idea of intuition of finite sets for purposes of illustration
and comparison is not meant to express commitment to it. It will be considered critically
in §34.

54 If we take the letters x and x′ to be true variables, then it appears we are admitting x and
x′ as “vague objects” such as were famously rejected by Gareth Evans (see Evans, “Can
there be Vague Objects?”). Clearly, however, we can admit vague identity statements
without admitting vague objects. To avoid the commitment to vague objects, we should
understand our letters as schematic letters for singular terms.

Since the question whether vague objects can be admitted is controversial, the for-
mulation that allows them is still of interest. The discussion in the text would then argue
that if x and x′ are vague objects, such that it is not determinately true or false that x =
x′, then sets containing them are also vague objects; in particular, it is not determinately
true or false that {x, y, z} = {x′, y, z}. The situation is analogous to the rigidity of mem-
bership when set theory is combined with modal logic. (On the latter, see for example
Mathematics in Philosophy, pp. 298–308.)
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seems that it is, after all, indeterminate whether x ∈ a. Cantor thought of
sets as consisting of “well-distinguished objects”; and the practice of set
theory ever since has been to assume that problems of individuation of
the basic elements will not arise. This is a case of “idealization”: The appli-
cation of a theory of sets of eggs, even small finite sets, might break down
if it is made to cases where the eggs are not “well-distinguished,” that is,
if there are questions of the identity of “two” potential elements of a set
that cannot be resolved.55 For example, there might be an unresolvable
question about the cardinality of the set. In the present case, however, it
seems clear that one can see that there are three eggs in the carton.56 Let
x and x′ be as before. Then if x = x′, x′ does not add another egg, and if
x′ �= x, then our hypotheses imply that x′ was not in the carton.57

It seems from these considerations that the idea of perception or intu-
ition of sets is ambiguous. If we perceive the set of eggs in the carton in
the above-described situation, then we do not get from that the knowl-
edge that it consists of well-distinguished objects. Thus, on this view, we
perceive the set a; perhaps when we have encountered x′ we can perceive
or intuit the set a′ = {x, x′, y, z}. But of a′ it seems to be undetermined
whether it has three or four elements; likewise, whether or not a = a′.
The conclusion to draw is that individual sets of concrete objects can
inherit from their elements any troubles about the individuation of the
latter.

It could be a matter of dispute whether the concept of set that allows
vagueness of this kind is really the mathematical one. Set theory would
not lose its applicability to everyday situations by ruling out such sets,
as they will in any case be rare, and one will often get correct results by
ignoring such vagueness; thus in the present case, one would get the right
cardinality for the set of eggs in the carton.

The idea that sets must consist of well-distinguished objects may be interpreted sim-
ply to exclude vague objects as elements of sets, or it may exclude from the language of
set theory singular terms that can enter into vague identity statements. In the text I am
taking it in the latter, stronger sense.

55 This does not mean that we would have to be able to know whether x = x′.
56 For the sake of argument, I am assuming, with the early Maddy, that seeing that there

are three eggs in the carton involves perceiving or intuiting the set of eggs in the carton.
This will be questioned in §32.

57 One might argue that we cannot see at a time t, before we encounter x′, that there are
three eggs in the carton, on the grounds that to know that there are three eggs in the
carton we have to know that x′ is in the carton at t only if x′ = x, and we can’t know that
at t because, by hypothesis, we are totally unaware of x′. But we don’t have to know it; it
is implied by ‘there are three eggs in the carton’ only together with certain facts about x′.
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What, now, is the impact, if any, of the vagueness we have called atten-
tion to on concepts of expression-types and a mathematics that deals with
such types? One can see that a similar vagueness will arise on an attrac-
tive conception of strings, namely, that they are sequences of symbols.
Some have wanted to think of strings in this way, conceiving the notion
of sequence in some abstract, possibly set-theoretic way, while thinking
of the individual symbols as sets of their tokens or in some other way
where the concrete tokens play a constitutive role.58 Such an approach
will leave the identity of strings no more precise than that of individual
symbol-types; for example, given the two-symbol strings st and uv, st =
uv if and only if s = u and t = v. But then any indeterminacy left by our
criteria of identity for individual symbol types will infect the identity of
strings.

If we are not antecedently committed to this construal, the case of
types is different from those of sets and sequences in that it is possible to
shunt off any threat of vagueness in their individuation onto the relation
to their tokens or possibly the individuation of the tokens. Thus it may
seem to be vague whether the type instantiated by

(a) | | | |

is the same as the type instantiated by

(b) | | | | .

But that conclusion is forced on us only by the unwarranted idea that
“the type” instantiated by each of these inscriptions must be uniquely
determined. If we allow ourselves to talk of the type instantiated by (a),
presumably because we can reidentify it and relate it to other types we
have admitted, and then find it vague whether (b) is of that type, then
our difficulty concerns a relation between a type, the type of (a), and
the token (b).59 That relation can be vague without the relations between
types becoming vague. The vagueness may generate ambiguity as to what
type ‘the type instantiated by (b)’ designates (if we do not take it to fail

58 This should be distinguished from a more purely structuralist way of construing strings
as sequences, in which the alphabet is just some arbitrary finite set of objects, about
which nothing is assumed except the number of its elements. Such an approach is
perfectly appropriate to the mathematical study of formal languages, but it simply does
not engage the question how the relations of symbol- and string-types are related to
those of concrete objects or are manifested in perception.

59 The reader is again asked to take that token to be the particular inscription marked (b)
in the particular copy of this work that he has at hand.
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of reference because of failure of uniqueness). But if we admit that it
does designate a type, then the identity statement the type instantiated
by (a) = the type instantiated by (b) cannot be vague, although it may be
ambiguous.60

Considering strings of strokes as types, does someone who has the
concept of such a string and (we will suppose) intuits a string when he
perceives (a) also intuit a string when he perceives (b)? The answer is
not altogether clear. Let us suppose that he approaches the situation
with the concept of a string of the language that concerns us, and not
with the concept of any other kind of string. Then, it seems, the only
string he could intuit would be (a); that is, he would intuit a string only
if (a) and (b) are of the same type. Let us assume he will read (b) as
consisting of four tokens of the unique symbol of our alphabet. So then the
question is whether he will recognize the attachment of the last symbol
as an instance of the concatenation relation. But obviously he may or
may not. We must then ask whether he would be right in making one or
the other choice. But this is just where the vagueness comes in: If (b) is
really a borderline case of being of the same type as (a), then our agent’s
situation must be a borderline case of intuition of the type that we are
assuming to be instantiated by (a). This is only true, however, if we assume
that his intuition must be founded on his actual perception. Perception
of (b) might prompt imagination that would found intuition of the type,
which our agent would then presumably recognize to be only imperfectly
instantiated by the perceived token (b).61

These considerations show that the fact that the notions of stroke-
inscription and sameness of type of stroke-inscription are vague does
not imply that the notions of stroke, string of strokes, or identity applied
to such strings are vague. But we have not shown that the notion of stroke,
say, is not vague. Vagueness of that notion would infect the notion of string
of strokes, however we proceed from one to the other. One might ask
whether the stroke of the present work and the stroke of my paper “Math-
ematical Intuition” are identical. Differences in printing make it natural

60 Even if we do not reject vague objects on general grounds (see note 52), types are not
vague objects, and singular terms designating them can be indeterminate as to their
reference only when they involve nonmathematical relations such as relations to tokens.

61 If we ask, in the above case of sets, whether someone intuits {x′, y, z}, we again have
a borderline case, but one that rests on a borderline case of an identity statement con-
cerning what is intuited. And there is no opening, in the case where he has x, y, and z
before him, for intuition of {x′, y, z} founded on imagination.
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to say that they are not of the same shape.62 This result is counterintuitive,
but it is a consequence of the constraint we imposed on the concept of
stroke. But let us suppose that we are unable to decide the question. Will
this show the concept of stroke presented here to be vague? No, what we
are unable to decide is whether it applies to what was printed in “Math-
ematical Intuition,” once again no longer a straightforward question
about the symbols themselves but about their relation to the empirical
world.

It is instructive to ask whether there is vagueness about the phonemes
of a natural language or about the letters of the alphabet. Consider first
the Roman alphabet. Once we have made certain decisions, such as that
letters with the diacritical marks that occur in some languages are not
distinct letters, and that capital and small letters are variants of the same
letters, then it is hard to see what room there is for vagueness in the
notion of letter-type: A letter is a letter of the Roman alphabet just in
case it is one of the twenty-six letters a, b, c, . . . z. (A “letter” such as the
German ü or the French ç counts either as a variant version of a letter or
a combination of a letter (u and c, respectively) with something else that
is not a letter.) Once something is identified as a letter-type of a written
language, it is hard to see how it could be vague whether or not it is,
say, a. If it is not a letter of the Roman alphabet, it is not.63 What makes
this work is that there is a definite finite number of alternatives, and the
identity of the types goes with a system (the Roman alphabet) to which
they belong. I believe that the same holds for the phonemes of a natural
language.

The same considerations apply to the present case. There is only one
stroke, and each string has only one successor. Where the relations of
tokens cannot be too vague is for their role in making the relations of the
types intuitive, not for the precision of the relations of the types them-
selves. A reader trying to determine whether a letter in difficult handwrit-
ing is an a, is trying to judge whether it was intended to be an a. Such a
judgment may well be necessary even in the case of high quality printing
in a single font and type size, although in that case a reader can make it
immediately and spontaneously, and it can probably be made once and

62 Compare the immediately preceding pages with pp. 153 and 155 of the 1979–1980
volume of the Proceedings of the Aristotelian Society.

63 It does follow, for example, that the Greek capital alpha, although printed A, is not the
same letter as the Roman A.
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for all for each letter, since subsequent occurrences will be pretty nearly
exactly similar in appearance to the first one. To sidestep the necessity of
such judgments of intention, I wish to describe a symbolism where vari-
ation in size, shape, and arrangement of the symbols is at a minimum.
That makes the determination of sameness of type for stroke-tokens and
short strings purely visual. Similarly, such a matter as the distance from
a stroke to the next is, although determined ostensively, not thought of
as varying. That means that the stroke and the strings in the present
work and in “Mathematical Intuition” are different and belong to differ-
ent symbolisms, although of course both illustrate the same conception.
We can of course in practice identify them, but once we do so we are
using a more complicated notion of type, closer to that of written natural
language.64

§29. Intuitive knowledge: A step toward infinity

We have already encountered simple examples of propositions about our
stroke-language that are known intuitively. At first approximation, what
this means is that they are known by intuiting the expressions that they are
about. This parallels perceptual knowledge of the objects we perceive. The
concept of perceptual knowledge does not have at all precise boundaries.
We should expect that the same would be true of intuitive knowledge.
However, our general discussion of intuition would suggest that what we
would call intuitive knowledge would be intuition that in the epistem-
ically loaded sense, which in §24 we said was a potentially misleading
way to use the term ‘intuition’ but would be appropriate enough for intu-
itive knowledge. Then an item of intuitive knowledge would be some-
thing that can be “seen” to be true on the basis of intuiting objects that it
is about.

The actual conception of intuitive knowledge to be deployed here will
generalize this conception in a respect that is forced on one if it is to have
any useful application to mathematics at all. Evidently, at least some sim-
ple, general propositions about strings can be seen to be true. I will argue
that in at least some important cases of this kind, the correct descrip-
tion involves imagining arbitrary strings. Thus, that will be included in
“intuiting objects that a proposition is about.” It is clear that Hilbert and
Bernays, whose guidance I am following here, meant to include this when,

64 We shall briefly consider generalized notions of type in Chapter 6.
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in their description of the intuitive, finitary method, they wrote:

What is characteristic of this methodological standpoint is that considerations
are put forth in the form of thought experiments on objects that are assumed
to be concretely present (konkret vorliegend).65

This matter will be explored shortly.
There is another, more essential, respect in which intuitive knowledge

as here conceived goes beyond what our general discussion of intuition
might lead us to expect. Any conception of intuitive knowledge applicable
to mathematics will have to embody a decision as to whether knowledge
acquired by a rather complex proof, and presumably not acquirable oth-
erwise, is to count as intuitive. This is just the question of the boundaries
of intuition that arose earlier in our remarks about Descartes. We shall
have to consider whether rules of inference, either logical or belonging to
a particular domain of mathematics, preserve intuitive knowledge. Now,
one might want to say that only the starting points of proofs, that is the
axioms, are properly described as intuitively known, if even they are. It is
they that one can “see” to be true. There may be other such propositions
that for reasons of simplicity or convenience are treated as conclusions
of proofs rather than as axioms, but most of what one establishes by
proof in a mathematical theory will not be knowable without a deductive
argument, possibly of quite a number of steps, building on intermedi-
ate conclusions. The suggestion is that no such proposition should be
regarded as intuitively known, even if the conceptual resources used in
its proof are very restricted, for example, if (in arithmetic) the proof is
finitist.

I do not wish to argue that the term ‘intuitive knowledge’ should not be
used in that way. Our sense, following that of the Hilbert school, is a more
extended one that allows that certain inferences preserve intuitive knowl-
edge, so that there can actually be a developed body of mathematics that
counts as intuitively known. This seems to me a more interesting concep-
tion, in addition to its historical significance.66 Once one has adopted this
conception, one has to consider case by case what inferences preserve
intuitive knowledge. This will be considered with respect to the theory

65 Grundlagen der Mathematik I, p. 20, emphases in the text.
66 That finitary mathematics in the sense intended by Hilbert is characterized as intuitively

evident mathematics is most explicitly stated by Gödel, “Über eine bisher noch nicht
benützte Erweiterung,” p. 240. See §40, where evidence that the Hilbert school accepted
this characterization is given.
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of the strings of strokes in Chapter 7. If we admit (as I will argue that
we should) that certain logical steps preserve intuitive knowledge, then
we will be confronted with degenerate cases of intuitive knowledge, in
which the role of intuition is limited to that of an element of understand-
ing, or securing reference for, components of the statements involved.
Self-identities such as | | = | | would be an example; a simple tautology
such as | | = | | | → | | = | | | would be another. We shall consider the role
of logic further in §42.

I now turn to the matter of intuitive knowledge of general proposi-
tions about types, which have in their scope indefinitely many different
types. This would be admitted also by the more restricted conception that
would not allow logical or other inferences to preserve intuitive knowl-
edge. It is this kind of case that prompts us to follow Husserl in say-
ing that sometimes imagination of the token can found intuition of the
type. Consider, for example, the assertion that each string of strokes can
be extended by one more. This is an essential element of the idea that
our “language” is potentially infinite. It is essential for using the strings
to interpret the language of arithmetic. Something similar is needed to
use strings from a larger alphabet to interpret elementary syntax more
directly.

However, we cannot convince ourselves of this by perception or by the
kind of mathematical intuition we have talked about so far, founded on
actual perception. But if we imagine any string of strokes, it is immedi-
ately apparent that a new stroke can be added. One might imagine the
string as a Gestalt, present all at once: Then, since it is a figure with a
surrounding ground, there is space for an additional stroke. However,
this leaves out an important aspect of the matter, since the imagination
of an arbitrary string in this way will have to leave inexplicit its artic-
ulation into single strokes. Alternatively, we can think of the string as
constructed step by step, so that the essential element is now succession
in time, and what is then evident is that at any stage one can take another
step.

Either way, one has to imagine an arbitrary string of strokes. We have a
problem akin to that of Locke’s general triangle. If one imagines a string in
a specific way, one will imagine a string with a specific number of strokes,
and therefore not a perfectly arbitrary string. The first way of imagining an
arbitrary string involves imagining a string of strokes without imagining
its internal structure clearly enough to imagine a string of n strokes for
some particular n. Such imagining is common enough. I might for exam-
ple imagine the crowd at a baseball game, without imagining a crowd
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consisting of 34,793 spectators.67 To return to the case of the string, that
there is no n such that I imagine it to have n strokes does not imply that I
imagine it as not having a definite number of strokes. We might speak of
the imagination as vague,68 but that can be misleading since it suggests
that what I imagine is indeterminate in some way.

We naturally think of perception as at least sometimes uncorrupted
by thinking, in that without conscious thinking one can take in some
aspect of the environment and respond to it, and one can take a stance
toward one’s perceptions that is largely noncommittal with respect to the
judgments we would ordinarily be prepared to make. However that may
be, it is clear that the kind of thought experiments I have been describing
can be taken as intuitive verifications of such statements as that any string
of strokes can be extended only if one carries them out on the basis of
specific concepts, such as that of a string of strokes. If that were not so,
they would not confer any generality.

Brouwer may have been trying to meet this difficulty, in a special case of
this sort, with his concept of two-one-ness, according to which the activity
of consciousness brings about “the falling apart of a life-moment into two
qualitatively distinct things,” of which the moment then present retains
the structure of the original, so that the resulting ‘‘temporal two-ity” can
be taken as a term of a new two-ity, giving rise to temporal three-ity.69 Thus
the process can always give rise to a new moment, which for Brouwer is
the foundation for the infinity of the natural numbers.70 What plays this
role in the description above is the figure-ground structure of perception,

67 Even if I am imagining the crowd at an actual game, where the attendance was in fact
34,793, it does not follow that it belongs to the content of my imagining that the crowd
consists of that number of spectators.

68 As I did in “Mathematical Intuition,” p. 156. There I offered another suggestion, that
one might imagine a single string and take it as a paradigm. I don’t think this option
differs substantively from what is proposed in the text. Otherwise Hale and Wright’s
criticism of this suggestion (“Benacerraf’s Dilemma Revisited,” p. 107) would be well
taken. They remark concerning this option and the one in the text that they differ from
that concerning a geometrical diagram in that in the latter case, “seeing the irrelevance
of the specific values of the other angles, and the specific lengths of the sides, consists in
the fact that none of the steps in our accompanying reasoning relies on any assumptions
about them” (ibid.). However, it is equally true that reasoning from an axiom saying or
presupposing that any string can be extended does not rely on its specific length, unless
that is introduced at some other point in the argument.

69 L. E. J. Brouwer, “Mathematik, Wissenschaft, und Sprache,” p. 153, my translation. The
same conception is expressed in many places in Brouwer’s writings, going back to Over
de grondslagen der wiskunde, p. 81 (of original).

70 It is of course natural also to view the generation of strings temporally. I believe that the
structure that results, and the issues concerning it, are the same as in Brouwer’s case.
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so that what is imagined after the addition of a stroke is still a bounded
geometric configuration, perceptually a figure that has its ground as we
had before. Thus, after the step of “adding one more” one has essentially
the same structure.

Both in our own case and in Brouwer’s, that is the reason why we think
of whatever step it is as one that can be iterated indefinitely. But a concept
such as that of a string of strokes involves the notion of such iteration. To
spell that out, we are led into the circle of ideas surrounding mathematical
induction. Although the view has been attributed to Brouwer that “iter-
ation” is the fundamental intuition of mathematics, my view is that the
particular concept of intuition I am explicating runs out at this point.71

There is no intuition of an object, or of objects, fitting this conception that
would yield induction. But there is much more to be said on the relation
of induction to intuition; a little will be said shortly, somewhat more in
Chapter 7.

Although the concept of a string of strokes involves iteration, the propo-
sition that every such string can be extended is not an inductive conclu-
sion. A proof of it by induction would be circular. Such a proof would
be called for only if we really needed the fact that every string of strokes
can be obtained by iterated application of the operation of adding one
more. Only a proto-conception of string is needed to see that every string
can be extended. I think the matter stands thus: We have a structure of
perception, a “form of intuition” if you will, which has the essential fea-
ture of Brouwer’s two-one-ness, that however the idea of “adding one
more” is interpreted, we still have an instance of the same structure. But
to see the possibility of adding one more, it is only the general struc-
ture that we use, and not the specific fact that what we have before us
was obtained by iterated additions of one more. This is shown by the
fact that, in the same sense in which a new stroke can be added to any
string of strokes, a new stroke can be added to any bounded geometric
configuration.

We do not acquire in this way any reason to believe it physically possible
to extend any string of strokes, embodied in a physical token. What is at
stake here is at most the structure of space and time. Physical possibility
requires something more, whatever makes the difference between the
space of pure geometry and the physical universe, consisting at least of
space containing matter. Actually, we require less than the space of pure

71 Brouwer is not as clear as he might be about the distinction between intuition of and
intuition that. Writers about Brouwer tend to be even less so.
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geometry, even if we hold to the spatiality of the strokes. Only very crude
properties of space are appealed to, in particular not its precise metric
properties.72

It is sufficient for the purpose to take the possibility in question as
an instance of mathematical possibility (see §15). This expresses the fact
that we are not thinking of the capabilities of the human organism, and it
may even be extraneous to think of this “construction” of adding another
stroke as an act of the mind. Brouwer would see situations of this kind
in that way, and it seems reasonable to attribute the same viewpoint to
Kant. It will be very tempting if we want to say that any string of strokes
can be intuited or that a token of it can be perceived or imagined. The
idea is that no matter how many times the operation of constructing
one more stroke in imagination has been repeated, “I” or “we” can still
construct one more. However, there is really a hidden assumption that
the only constraints on what “we” can perceive are the open temporality
of these experiences and some very gross aspects of spatial structure.
Kant and Brouwer thought these were contributions of our minds to the
way we experience the world. Kant of course thought that we could not
know these things a priori unless our minds had contributed them. I am
not persuaded by this, and in any case I do not want my argument to
rest on the notion of a priori knowledge. If we express the content of the
proposition as independently of the description of the insight as possible,
then it is just that for an arbitrary string of strokes, it is possible that there
should be one that extends it by one stroke.

Even if we have the stronger proposition that for every string given in
intuition, one can intuit one that extends it, the route to the conclusion
that every string can be intuited is not altogether clear. It seems that we
might reach the conclusion by induction. I am postponing discussion
of issues concerning induction, so that I will only in §§44–45 revisit this
issue.

Although intuition yields one essential element of the idea that there
are, at least potentially, infinitely many strings, we have already indicated
that more is involved in that idea, in particular that the operation of adding
an additional stroke can be indefinitely iterated. The sense, if any, in which
intuition tells us that is not obvious. Cashing in this idea again brings us
into the circle of concepts surrounding induction and recursion. It will be

72 Compare the remark of Gödel: “What Hilbert means by ‘Anschauung’ is substantially
Kant’s space-time intuition confined, however, to configurations of a finite number of
discrete objects” (“On an Extension of Finitary Mathematics,” note b).
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argued in §44 that one can make a beginning with induction and recursion
and stay within what is intuitively known. In a sense, that the operation
of adding an additional stroke can be iterated is intuitively known. But
it is part of our usual notion of natural number that any operation on
numbers can be iterated,73 and as it seems obvious that the strings are a
model of arithmetic, the same should hold of operations on strings. Such
a principle, because of its higher-order character, cannot be intuitively
known in the sense that concerns us now, where the underlying notion of
intuition is that of §28. The discussion of §§44–45 will raise doubts as to
how far one can go in obtaining intuitive knowledge of particular cases
of the principle, but will not close off the possibility that the operations
that can be seen intuitively to be well defined are closed under primitive
recursion.

Let us return to the proposition that any string can be extended. The
idea that this rests on a capability of the mind is a very natural one and
is in certain respects acceptable. I have proposed two different ways of
seeing this, one resting on the figure-ground structure of perception and
one (Brouwer’s) resting on temporal experience. The former is a mat-
ter, among other things, of the way space occurs in perception. To be
sure it involves the world: What one perceives is perceived as being in
a surrounding space. But it is a fact about perception that one can shift
one’s attention so that what was previously ground is now figure, and
the result still has the same figure-ground structure. In the other case,
we experience the world as temporal, and have the conviction that we
can continue into a proximate future, in which the immediate past is
retained.

In both situations, given the structure of our spatial and temporal expe-
rience as it now is, it is not unreasonable to say that it can be continued in
the way that the extension of a string requires, where the “can” in ques-
tion is quite practical. However, it is only a quite abstract aspect of these
situations that we actually use, that space extends beyond our present
figure, and that time continues beyond the present. It is for this reason
that I say that the actual capabilities of the human organism are not in
question, even though an actual capacity obtains in the kind of situation
that concerns me. Something, however, of the structure of the mind sur-
vives this abstraction, as we still have the figure-ground structure in the
first case and the present-retained past-anticipated-future structure in

73 This amounts to saying that such operations are closed under primitive recursion.
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the second. But it is still on a more abstract plane than what is usual in
talk about the mind.74

It is clear that the practical capacity need no longer obtain when we
consider the possibility of indefinite iteration of the addition of a stroke,
or of the transition from figure to ground-become-figure or from present
to future-become-present. I may be, without knowing it, at the point of
death. Maybe it is now possible for my experience to continue in time,
but that possibility will not become actual, and I think we have to deny
the practical possibility of even modest iteration. And starting from any
point during my life, if there is some minimum time required to add
another stroke, then my mortality places a limit on how many I can add,
so something of what is contained in saying that such addition can be
indefinitely iterated does not obtain. It is thus on this abstract structural
plane that the iterability does obtain, and it is for this reason that the
possibility of continuation that is relevant is a mathematical possibility; it
is not properly speaking the possibility of an action. By the same token, the
necessity that every string can be extended is mathematical necessity, dual
to mathematical possibility. Our insight into it is insight into experienced
space and time.

Once one has seen that every string can be extended, it is still another
question whether the string resulting by adding another symbol is a dif-
ferent string from the original one. For this it must be of different type,
and it is not obvious why this must be the case. For example, why can
there not be a one-one correspondence of the strokes in the new string
with those in the previous string? Thinking of the matter intuitively, it
seems that in order to see this we have to appeal to the step-by-step con-
struction of strings. The thought experiment to show that every string
can be extended does not rely on the fact that every string is constructed
from a one-symbol string in finitely many steps. Here again, although it
will follow from considerations advanced in Chapter 7 that it is intuitively
known that every string can be extended by one of a different type, ideas
connected with induction are needed to see it. This fits with the fact that
induction is needed to prove Sx �= x in elementary arithmetic.75

74 It is imaginable that it might be given a functionalist interpretation, although a tran-
scendental one comes more readily to hand.

75 That it is unprovable in Robinson arithmetic Q (arithmetic with addition and multiplica-
tion but without induction) is shown in Tarski, Mostowski, and Robinson, Undecidable
Theories, p. 55. (Thanks to George Boolos for this reference.) To see the independence
of Sx �= x, it is sufficient to add to a model a single nonstandard element a and stipulate
Sa = a. However, a model with two nonstandard elements will show all at once the
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§30. The objections revisited

The first of the objections raised in §26 was that if there is intuition of
mathematical objects, it should be obvious that this is so, and it is not.
My reply to this objection should be clear from §27. There I pointed to a
number of phenomena that surely are obvious and are naturally glossed
as something like perception where the object is abstract according to
the criterion I have used. That this gloss is correct is admittedly less obvi-
ous. To that extent I do not in the end agree with the premise of the
objection. The closeness between our awareness of shapes, colors, and
linguistic expressions and undisputed cases of perception is something
that has to be pointed out and about which there is room for argument.
One might compare my thesis with the thesis that there is perception of
physical objects. In principle, one might deny that even this thesis meets
the obviousness condition, since, although that appears to be the way
we ordinarily talk (and also talk in reporting scientific experiments), a
lot of room is still left for argument, in view of the old representation-
alist view that the only objects of our “direct” perceptual consciousness
are ideas or sense-impressions, and the possibility of a phenomenalist
reduction of talk about bodies.76 An analogue of the latter in the case
of types has been discussed, namely, a possible nominalist reduction.
There is no so direct analogue of the former, but the idea that types have
to be thought of as equivalence classes or properties of tokens might be
developed so as to have the analogous feature, that types are a theoretical
construction based on a prior concept of token. This view was disputed in
§§27–28.

Some arguments about these matters take the form of disputes about
how close a cognitive phenomenon is to perception. A disanalogy already
mentioned between ordinary perception and any intuition of objects
where the objects are abstract is that we can’t say in the latter case that
the object itself causes either the intuition or something underlying it (as
physiological processes underlie perception), because that would violate
the acausality of abstract objects. Although this is a genuine disanalogy, I
wish to say that it is not so great as might appear at first sight. One has to
recall two things. One is the point made in §28 that intuition of an abstract
object requires a certain conceptualization brought to the situation

unprovability in Q of a number of elementary arithmetic statements. See Boolos and
Jeffrey, Computability and Logic, exercise 14.2 (any edition).

76 Although the possibility of such a reduction is not taken very seriously today, it was so
taken not so long ago, at least up through the 1950s.
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by the subject. The other is that although it is in our usage a criterion
for being abstract that an object not stand in causal relations, this is in a
way a grammatical point. Abstract objects can be referred to in descrip-
tions of events that do stand in causal relations, and these descriptions
can figure in causal explanations. Intuition of a string of strokes is typi-
cally founded on perception of one of its tokens. That a token of that type
acted on the sense-organs of the perceiver could perfectly well be part of
a causal explanation of the perceiver’s perceiving a token of that type and
thus of his having intuition of the type. But we do not gloss this in such a
way that causal efficacy is attributed to the type. The underlying reason
is no doubt that the type does not emit light or otherwise transmit energy
to us.

Some locutions might seem to attribute causal efficacy to linguistic
expressions or shapes or colors. Suppose, for example, someone were
to say to me, “You have no right to call yourself a philosopher.” I might
comment on this by saying, “His words made me furious.” But if we are
thinking of the words as types, surely what made me furious was his
uttering them. That was what made them his, and his uttering them in
that context made them addressed to me. Once again we have a situation
where the cause is an event that we describe in a way involving reference
to an abstract object (the sentence type) that is instantiated in it.77

77 Although that isn’t exactly what the imagined comment intends, it might be more accu-
rate to say that what caused my anger was his saying that I had no right to call myself
a philosopher. Then the event is described using indirect discourse. Some accounts of
indirect discourse have it involving reference to a sentence, others to a proposition.
Although more nominalist accounts do exist, it is not clear that any can be success-
ful. The influential account of Davidson, “On Saying That,” appears to introduce only
reference to utterances, but carrying it through may require modifying it to introduce
reference to sentences and their structure; see Higginbotham, “Linguistic Theory and
Davidson’s Program in Semantics.”

In response to Paul Benacerraf’s problem of reconciling reference to mathematical
objects with a causal theory of knowledge, Mark Steiner pointed out that reference to such
objects is typical of many causal explanations (Mathematical Knowledge, Chapter 4).
The remarks in the text are clearly on the same general lines as Steiner’s. Jaegwon Kim
criticizes the whole idea that mathematical objects, at least the most elementary ones,
are causally inert. However, on his view of causality it is properties, relations, and states
of affairs that stand in causal relations. His point is much the same as Steiner’s, but in
the context of a rejection of the distinction between causal relations between events and
causal explanation that relies on descriptions of these events. See “The Role of Percep-
tion in A Priori Knowledge,” pp. 346–347.

Kim would evidently question the criterion of abstractness that we have relied on
since §1. (See note 1 of Chapter 1.) I am inclined to uphold the Davidsonian view about
the logical form of causal statements, and when the distinction between causal relations
and causal explanation is taken into account, the criterion does not have the drastic
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Compare now the case where someone, A, sees a token of ‘| | | ’ but does
not have the concept of strings of this language, and so does not think of it
as a string of our language, still less intuit such a string, with the case where
another person, B, intuits ‘| | | ’, perhaps on the basis of a perception of the
same token very similar in its other outward aspects such as orientation
and lighting. The fact that the token is of the type it is, will very likely enter
into the explanation of why B’s experience is as it is, but it is not clear that
its role will be causal, since the difference between B’s situation and A’s,
is that B is exercising a conceptual apparatus that includes the capacity
to recognize tokens as being of a certain type. Moreover, if a token of a
certain type is present to a perceiver, then it follows necessarily that the
type is instantiated there. Thus, one can’t distinguish the two cases by
saying that in the outer world the type is present in B’s case but not in
A’s.78 It is hard to say that the type is responsible for the difference.

The disanalogy between intuition and perception is reduced by these
considerations but does not disappear altogether. A further disanalogy
arises from the fact that intuition may be founded on imagination rather
than on actual perception; in that case, the causal role of objects in the
outer world is much more indirect. Furthermore, there is no phenomenon
in perception corresponding to that of imagining an arbitrary instance of
an intuitive concept, which we have seen in §29 to play a central role in
basic cases of intuitive knowledge.

Let us now turn to Kant’s puzzle. Are we, in order to accept the view
that single intuitions can have general implications, forced to accept the
conclusion Kant drew from this, particularly in the radical form that the
spatiotemporal form of our experience is contributed by our own minds?
A problem we face, already in interpreting Kant, is to see what it is specif-
ically about intuition that should drive us to this conclusion. We know
that if the earth still exists two thousand years from now, and the earth
is (then) a satellite of the sun, then at least one satellite of the sun will

consequences for the relation of abstract objects to the causal order and the possibility
of knowing about them that Kim fears.

78 As noted above (note 53), in Realism in Mathematics Penelope Maddy holds that there
is perception of sets whose elements are perceptually present, for example of the set
of three inscriptions of ‘| ’ in the text. (See ch. 2 §2.) She attributes a causal role in this
perception to the set. It is noteworthy that in order to perceive a set according to Maddy,
it is not necessary to perceive it as a set or even have an articulate concept of set (ibid., p.
63 n. 70). The kind of distinction we make between the cases of A and B would apparently
not be possible on her account of perception of sets, although it is not entirely clear to
me whether according to her any situation of, say, seeing three eggs together would be
one of perceiving the set of the eggs. Maddy’s views will be discussed further in §34.
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exist two thousand years from now. This is a truth of logic and presum-
ably not in any way a deliverance of intuition. Yet it talks of the world
two thousand years from now, and obtains its evidence without the use
of whatever procedures might be used in physics or astronomy to extrap-
olate so far and come to a reasonable hypothesis as to whether the earth
will exist two thousand years from now. We don’t, however, think of its
truth as contributed by our own minds in a way that other truths, such as
that the earth existed one thousand years ago, are not.79

With respect to Kant, a difficulty in understanding the Aesthetic, and
the parallel parts of the Prolegomena, is why it should be exactly a priori
intuition that requires that its content should be due to our own cognitive
faculties and not to how things are in themselves. Kant’s statements on
the matter are often dogmatic (e.g., B41), and he does not seem to me to
make a convincing case. Once we take account of the fact that the object
of the intuition that concerns us is abstract (as the formulation of the
puzzle in the Prolegomena does not), then the difference of intuition and
concepts is much less evident. On the Hilbertian interpretation (thinking
of numbers as strings) it is, I will argue in Chapter 7, intuitively evident
that 7 + 5 = 12. That statement will be equally true, whatever tokens
of the relevant strings are produced two thousand years from now. But
on the interpretation at issue it concerns strings as types. Is the relation
of type to token so different from that of concept to instance so that, in
the first case, our knowledge of a truth concerning types should have the
consequence that it is only possible if the ground of the truth is a factor
in knowledge contributed by ourselves, while this need not be true in the
latter case?80

79 The reader, thinking of conventionalist views of logical truth, will naturally object: Yes,
but we do consider that, though all truth depends both on the world (outside us) and
language (a human creation), some philosophers have thought that for some truths, in
particular logical truths, the contribution of the former is zero. But if they thus depend
only on language, then they are contributed only by us. Kant’s view should probably
be seen in a similar light. I am not concerned to show that no general view of this kind
can be right. They have the feature that there is some factor contributed by “us” that all
knowledge depends on. That seems to me to be the primary point, not whether there
is some knowledge that depends only on this factor. As indicated below in the text with
reference to Kant, I do have difficulty with the latter conclusion (for Quinean reasons).
But my main concern is to argue that the kind of intuition I am concerned with does not
force the particularly Kantian version of this dependence.

80 In the end, Kant holds that it is true in the latter case whenever the proposition involved
expresses genuine knowledge of objects. In view of the role of the forms of intuition in
the deduction of the categories, it is very doubtful that he intends an argument for this
conclusion that would be independent of the claims concerning intuition, although the
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Moreover, there is a difficulty of principle that Kant’s position suffers
from: Given our inability to know things as they are in themselves, how
can it be possible to identify a particular part of our knowledge that is due
entirely to ourselves, or, in general, to separate our own contribution to
our knowledge from that of the external world? Strictly, we may not have
to make such a separation, at least in the sense of making an independent
identification of the role other than that of ourselves in our knowledge.
Generally, our knowledge results from our own cognitive faculties and
from the world. What Kant’s position requires is that one be able to identify
some knowledge in which the role of the “world” factor is zero, even
though there is no knowledge in which the role of the other factor is zero.
Without being able to get at this other factor (“things in themselves”),
how are we to identify the cases where it plays no role?

The last objection put forth in §26 derived from the structuralist view
of mathematical objects. Although that view, as explained in Chapters 2
and 3, does not hold for quasi-concrete objects, the fact that they have
intrinsic concrete instantiations may not be enough to endow them with
the range of properties that a concrete object would have; moreover, it is
not clear that they do not suffer from the indeterminacy of identity. We
cannot rule out the possibility that they are incomplete in the sense that
not every predicate is determinately true or false of them.

Before we turn to our artificial symbolism and its strings, let us consider
sentences of a natural language. Ordinary thought seems to me to treat
them as of a different category from physical bodies or other ordinary
concrete objects, so if we ask whether a sentence has a property that
such objects might have, such as being red or round, the answer will be
“no” straight away; a slightly more sophisticated version of the answer
will be that it makes no sense to say of a sentence that it is red or round.
Linguistic expressions may be limited in their properties and relations
to linguistic ones (broadly construed) and certain relations having to do
with their instantiations, such as being uttered on certain occasions. If
that is so, then certainly the general tendency of ordinary thought about
them would be to hold other predicates false or nonsense in application
to them. Some ordinary properties such as being located at a particular
place and time are applied to them but not in quite the same way as to
bodies. To say that an expression is at a certain place means that a token

transcendental unity of apperception is given in some passages a legislative role that
parallels the “forming” role of the forms of intuition.
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of it is there, and that of course does not exclude its being elsewhere at
the same time. These facts about expressions don’t present any particular
obstacle to intuition or perception of them beyond those that arise from
their being abstract, and those have already been discussed.

I don’t think that is changed by the suggestion of Richard Wollheim
that types can have secondary qualities such as color.81 Wollheim offers
as an example the Union Jack, which would have as tokens individual
British flags and presumably also the many printings of it as a logo. It
is, indeed, natural to speak here of a type that is red, white, and blue;
it’s hard to see how we could speak of a type at all without identifying
it by its pattern of color. But even such a type would lack many of the
kinds of properties of physical objects, in particular those going with
location in space and time. But it doesn’t follow that sentences of a nat-
ural language have properties of this kind. Consider a printed sentence
that happens to be printed in red. One might identify a type that would
be instantiated only by red inscriptions of that sentence. But that type
wouldn’t be the sentence or even the written sentence, since there would
be tokens of the sentence that would fail to instantiate it. About spoken
language, however, the question arises whether types have properties
having to do with sound. Present views in phonology would imply that
the properties it has have to do with the manner in which the sound is pro-
duced and are not acoustic properties or secondary qualities in the usual
sense.

Similarly, the strings of our symbolism will initially have only the prop-
erties and relations that either come with their being instantiated in the
way they are or are mathematical properties and relations internal to
the system of strings. Strings will be, in effect, a logical type. As we have
explained the symbolism, types will have spatial properties but not sec-
ondary qualities such as color.82 Wollheim’s observation implies that we
might talk about strings of the sort we have been discussing that are, say,
red. If we made this stipulation, however, the claim that every string can
be extended would be much more doubtful.

81 Art and its Objects, pp. 75–78. I am indebted to Frode Kjosavik for pointing out the
relevance of Wollheim’s discussion to my own views on intuition of types.

82 Michael Resnik may be suggesting the contrary when he takes me to hold that “it is
part of our conception of the type that it ‘looks’ or ‘sounds’ a certain way – the way its
tokens look or sound” (“Parsons on Mathematical Intuition and Obviousness,” p. 224).
Although I find this interpretation misleading where secondary qualities are involved I
am grateful to him for raising the question.
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There is a difference with expressions of natural language:83 In the fur-
ther development of a mathematics whose objects include strings, we
may cease to treat strings of this language as a logical type. One way this
could happen is by generalization of the notion of string-type, so that
some tokens are admitted as being of the same type as the present string
tokens that were not previously admitted. But a more relevant one is that
strings might come to be talked about in a first-order theory that also
talks about mathematical objects of other kinds. It appears that stipu-
lations have to be made about the identity of the strings and the other
objects; the initial position, according to which no string is identical to
anything described in another way (except in the development of the the-
ory of strings, where for example terms introduced by recursions might
arise), is not legislative. Hilbert and Bernays, in their practice of finitist
arithmetic, identified natural numbers with strings. To consider another
more contrived case, if one began to talk of a language in which ‘| ’ was
just one of the symbols of the alphabet, it would be extremely natural
(indeed, almost forced by that description of the situation), to identify
our previous strings with the strings of the new language that contained
only ‘| ’.

One might see a difficulty in this for intuition of strings. To simplify
things, let L be our original language and let L’ be the language with three
symbols, ‘| ’, ‘ \ ’, and ‘/’. Consider now a person A to whom L has been
explained and who thus acquires the ability to intuit strings of L. It seems
perfectly conceivable that he might not have the ability to intuit strings of
L’ containing the additional symbols. But if our own conception makes L
a part of L’, then, according to it, A is intuiting strings of L’, even though he
may not be able to distinguish them, and might even, for example, take
‘| \ ’ to be just a badly written version of ‘| | ’.

What this example seems to me to show is that the requirement that one
have the concept of a string in order to intuit a string implies that ‘intuit’
generates an intensional context. Thus the more accurate description
of the situation is that A is intuiting strings that are in fact strings of L’.
How the behavior of ‘intuit’ resembles and differs from other referential
attitudes is a question that may be worth some investigation. I will not
pursue it here.

83 It is conceivable that the difference could disappear or be mitigated when expressions
of a natural language are considered in theoretical linguistics.
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§31. What are the natural numbers?

The discussion of intuition in the last chapter naturally leads to two fur-
ther inquiries. Perhaps the most obvious one is about natural numbers:
How are natural numbers given to us, and, in particular, are they objects
of an intuition of the kind described in §28 or something similar to it? The
second concerns intuitive knowledge: We gave, particularly in §29, some
examples of propositions about the strings of our little language that
are intuitively known. Since strings are evidently a model of arithmetic,
the question arises how far intuitive knowledge in arithmetic extends,
when we understand arithmetic by reference to this model. That for-
mulation of the question sidesteps the first question, whether numbers
properly speaking are objects of intuition.

Because our first question is probably the more urgent for most readers,
I will take it up first, in this chapter. The other question will be the subject
of Chapter 7. The question: “What are the natural numbers?” is moti-
vated independently of questions about intuition, and we will examine it
in general as well as answering the question about intuition of numbers.
But both chapters will explore the limits of intuition as understood in
Chapter 5, first by considering in this chapter whether intuition extends
beyond quasi-concrete objects to some pure abstract objects such as
numbers, and second by inquiring in Chapter 7 how far intuitive knowl-
edge extends, referring to a domain that we have taken to be intuitive.

The natural numbers are what one obtains by beginning with 0 and
iterating the successor operation. They can be crudely described as 0,
1, 2, 3, . . . . These simple descriptions conceal many problems. To begin
with, what is meant by iterating the successor operation (or, in the second
formulation, by ‘ . . . ’)? This question leads us into the circle of ideas

186
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surrounding the principle of mathematical induction. Issues concerning
induction will be largely put aside in this chapter but will be considered
in Chapter 7 and especially Chapter 8. An ostensibly more elementary
question is what we are referring to when we speak of 0 and successor, or
of 0, 1, 2 and other small numbers, reference to which we can apparently
understand without appealing to induction or any equivalent idea. But
any account we give of these particular cases should be generalizable to
arbitrary natural numbers.

One part of an answer to the question what the natural numbers are is
quite uncontroversial. They are a structure satisfying the Dedekind-Peano
axioms. Some of the content of these axioms can be stated (for future
reference) in the form of natural deduction rules. The first two axioms
in Peano’s formulation, that 0 is a number and that the successor of a
number is a number, are introduction rules for the predicate N meaning
“is a natural number”:

(R1) N0

(R2)
Nx

N(Sx)

These rules will be referred to simply as the introduction rules, or if neces-
sary to avoid ambiguity, the introduction rules for N. The rule of induction
then takes on the character of an elimination rule for N:

[A(a)]
.
.
.

A(0) A(Sa) Nt

(R5) ––––––––––––––––––––––––
A(t)

A theory in the context of natural deduction with just these rules would
be the theory of a domain consisting of an object and the results of iter-
ated application of a unary operation to it. The successor operation on
numbers, as we usually understand it, has the additional property that
for any n, Sn is always something new; it is never among 0 . . . n. This is
insured by the third and fourth of Peano’s axioms, that Sn is never 0 and
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that S is one-to-one. The fourth can also be put as a rule:1

(R3) Sx �= 0

(R4)
Sx = Sy

x = y

In the context of classical first-order logic, most conveniently a natural
deduction version, (R1)–(R5) together with the usual recursion equations
for addition and multiplication yield the usual first-order arithmetic PA.
With intuitionistic logic instead, we have first-order intuitionistic arith-
metic HA. Second-order arithmetics also can be straightforwardly formu-
lated in this way.

We have described the natural numbers as “a structure satisfying
the Dedekind-Peano axioms,” but the deductive way in which we have
presented the axioms suggests the interpretation that they are a structure
such that interpreting the axioms or rules with reference to that structure
yields a sound theory. For actual formal logics, even second-order
logic, that condition does not characterize a unique structure, since
formal theories of arithmetic have nonstandard models. The very idea
of a nonstandard model presupposes thinking semantically about the
relation of the axioms to the structure. The natural numbers are a
standard model, in the sense of second-order logic, of the axioms. That
is essentially what Dedekind called a simply infinite system (see §10);
terms used more recently for this type of structure are progression
(Russell, Benacerraf) and ω-sequence. The former of these terms goes
with taking the structure to be 〈N, 0, S 〉, as Dedekind implicitly did and as
is most usual in philosophical literature. I will use the term ‘progression’
with this specific meaning. The term ‘ω-sequence’ may suggest to some
taking the structure as an ordered set 〈N, <〉. For that, however, I will use
the term ‘ω-ordering’, thus avoiding the term ‘ω-sequence’ because of
its ambiguity. Dedekind’s isomorphism theorem implies that there is,
up to isomorphism, only one progression (see §10). The second-order
character of the characterization, and the existence of nonstandard
models of arithmetic, raises the question whether our conception of
the natural numbers really is a conception of a unique structure. This
question will be taken up in Chapter 8. Much of the discussion in the
present chapter is independent of that question, but where it is not,
we will assume that Dedekind’s theorem can be taken at face value and

1 If one has a constant ⊥ for an absurd proposition, then of course (R3) can be rendered
as: From Sx = 0, infer ⊥.
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that we are talking of a unique structure when we talk of the natural
numbers.

We naturally think of the natural numbers as having additional struc-
ture beyond that of a progression, and the reason why they are gener-
ally characterized in this more limited way is that in a progression addi-
tion, multiplication, and order are second-order definable, as Dedekind
already showed. But of course for a model of first-order arithmetic, an
interpretation of addition and multiplication must be given. In an ω-
ordering, ‘x = 0’ and ‘y = Sx’ are first-order definable,2 so that an ω-
ordering contains a progression. Order, however, is not first-order defin-
able in terms of 0 and S, although if we have addition we can define ‘x < y’
as ‘(∃z)(z �= 0 ∧ x + z = y)’.

Now a partial answer to our question “What are the natural numbers?”
is that they are a progression, or a progression with some additional
structure. We may find that this semantical way of putting things begs
too many questions, but then at least we can say that discourse about the
natural numbers will be a theory in which we have (R1)–(R5) and perhaps
some additional apparatus such as addition and multiplication, in a
suitable logical setting. Even so, the question will arise whether we can say
more: In the semantical way of speaking, whether we might distinguish
some one progression as being the natural numbers, or at least uncover
constraints such that some progressions are eligible and others are
not.

The structuralist view of numbers explored in Chapters 2 and 3 offers
an answer to our question. If we are prepared to help ourselves to second-
order logic, then the objection made in §17 to the eliminative version of
structuralism is not fatal in the particular case of natural numbers, and the
modal version has been worked out thoroughly in Hellman’s Mathematics
without Numbers. The noneliminative version proposed in §18, however,
has the advantage of not helping itself to second-order logic, and it seems
to me to do better justice to the actual role of second-order principles in
mathematics. Could we simply end our inquiry at this point and say that
we have said what reference to the natural numbers is?

In the earlier discussion, we did not say much about something cen-
tral to a full-blooded conception of the natural numbers: their role as
cardinals and ordinals. The structuralist view holds that this role does not

2 We can characterize an ω-ordering as a well-ordered set with an initial element in the
ordering, such that every other element y is a successor, that is, (∃z)[z < y ∧¬(∃w)(w <

z < y )]. Of course this characterization too is second-order.
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constrain what objects the natural numbers are, so long as they instan-
tiate the right type of structure. We defended this claim in §14. But our
discussion of the natural numbers will be incomplete so long as we have
not gone into the concepts of cardinal and ordinal. This will give rise to
some other approaches to the question what are the natural numbers, as
well as to the question whether they are objects of intuition in the sense
of §28. This will lead us to a more final view about the place of the version
of structuralism from §18. In §37, we will arrive at a negative answer to
the question about intuition.

§32. Cardinality and the genesis of numbers as objects

I want first to approach the concept of number in a somewhat phe-
nomenological way, beginning with the elements of its application. A
first point to observe is that the most elementary cardinal and ordinal
applications of numerical language do not obviously require numbers as
objects at all. I will take as a canonical form for a statement of cardinal
number ‘there are (exactly) n Fs’, where ‘F ’ replaces a predicate or general
term, and n is a numeral. I don’t think this needs be taken as making a
commitment one way or the other as to whether n is a singular term. I do
choose this in preference to a form making reference to a set. The most
basic statements of cardinality do not have to be interpreted as making
reference to sets. However, in §34, I will consider arguments for taking the
most basic statement of cardinality to be of the form ‘there are n elements
of a’, where a names a set.3

In determining by counting that there are n Fs, one sets up a one-
to-one correspondence between the Fs and a sequence of n “counters.”
Something like a canonical way of verifying that there are n Fs is achieved
if we have the Fs successively before our minds, by naming or perceiving
them, while marking them with the successive counters. This gives to
the mth counter the approximate sense ‘the mth’, that is, in the context,
the mth F.4 Of course, we must insure that no object is counted twice,

3 Of course, the form given in the text does subsume one obvious one involving sets,
since ‘F ’ might be ‘is an element of a’, where a is a name of a set. (m, n, . . . are used as
(metamathematical) variables for numerals.)

4 An alternative would be to attribute to the agent a use of a demonstrative such as ‘this’,
where, however, the uses on each occasion are different; a linguist might index them as
‘thisi’, i = 1 . . . n. Then the counters serve simply to keep track of the different uses. The
proposal in the text has the advantage that the “demonstrative” is something that in a
case of counting out loud is actually uttered.
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that is, that at each stage the object marked was not marked before, and
we must continue the process until every F has been marked. But these
two conditions amount to the condition that the marking should be a
one-to-one correspondence of the counters used onto the Fs.

The “counters” will typically be numerals of some standard system, per-
haps either the number-words of a natural language, or Arabic numerals.
I will suppose the system fixed for the present. Let us consider what is
required for it to be verified by perception that there are n Fs. It is not
sufficient that we be able to perceive each individual F; we must be able
to survey all the Fs one by one and identify them as Fs and as constituting
all of them. But this obtains in many everyday situations, where what is
counted are objects that either are before one’s eyes all at once or can
be brought so successively. Consider such cases as counting the plates,
glasses, and pieces of cutlery to be put on the table for dinner, or counting
the coins in one’s pocket.

I have not been very precise about the meaning of the statement ‘there
are n Fs’, but it should be observed that the claim that in such simple
cases it can be verified by perception would run into difficulties on certain
conceptions of what it means. Let us take one construal:

(1) There is a 1–1 correspondence between the Fs and the numerals
from 1 to n.

This is, on the face of it, a second-order statement, and it involves refer-
ence to numerals, which for constancy of meaning in different occasions
of use will have to be taken as types. Assumptions about the intuitability of
finite sets would plausibly imply that, in the kind of favorable case we are
considering, (1) might be intuitively known, but even on that assumption
it will involve mathematical intuition.

The issues about intuition of sets that these assumptions would raise
are of interest in their own right and will be discussed in §34.5 But I don’t
think that, in order to understand the most elementary applications of
the notion of cardinality, we need to give a statement of number so much

5 The strongest such assumption would be that any finite set of intuitable objects is intu-
itable. If we think of the correspondence as a set of ordered pairs, then it follows that the
correspondence is intuitable if we either understand the ordered pairs by the standard
Kuratowski definition or assume (independently and, in my opinion, with as much plau-
sibility) that ordered pairs of intuitable objects are intuitable. Grounds for questioning
these assumptions will be considered in §35.
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ontological baggage.6 Consider the following equivalences, which under-
lie the standard paraphrase of statements of number into first-order logic
with identity:

(2a) (∃0x)Fx ↔ ¬(∃x)Fx

(2b) (∃n+1x)Fx ↔ (∃y)[Fy ∧ (∃nx)(Fx ∧ x �= y)].

One way of looking at counting is to suppose that each numeral m used
in the count has the force of a demonstrative, designating in the context
the object with which it is correlated, so that it has the force of ‘the mth’.
To avoid confusion, I will write it in that way. I have been imagining a very
favorable case, where at each point the object can be observed to be F
and to be distinct from those counted previously, so that we would have:

(3a) F(the mth)

(3b) the kth �= the mth (for each k, 0 < k < m).

Moreover, at the nth stage the subject can observe that there are no further
Fs. That is, he is also able to observe

(3c) (∀x)(Fx → x = the 1st ∨ . . . ∨ x = the nth).

From (3a–c), the equivalences (2a–b) are all that is needed to infer
‘(∃nx)Fx’.

That the subject knows (2a–b), or principles from which they follow, is
a reasonable enough assumption. For a case of the sort we have in mind,
we do not even have to assume that the subject knows them with the
generality that someone who understands arithmetic as we do does; it is
sufficient that he should know the instances that actually come into play

6 I might remark that the second-order aspect of (1) would not have caused any concern
to Frege, because he would have taken it to be a logical consequence of a statement of
the form ‘H is a 1–1 correspondence of the Fs and the numerals from 1 to n′, for a specific
predicate ‘H’.

Of course, Frege would not have interpreted statements of number by way of refer-
ence to numerals. The statement ‘the number of F ’s is n’ would on the reading of the
Grundlagen be a second-order consequence of the usual translation of ‘there are n Fs’
into first-order logic and instances of the Fregean criterion of identity for numbers:

the number of Fs = the number of Gs iff there is a 1–1 correspondence of the Fs and the
Gs,

(which in turn is, as is well known, provable with the help of Frege’s axiom V from his
definition of ‘the number of Fs’ using extensions). In the kind of maximally favorable
case we are considering, by Frege’s lights ‘the number of Fs is n’ would thus be a logical
consequence of facts verifiable by perception.
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in the counting. But more will be demanded shortly, when we come to
numerical quantification.

How shall we view this knowledge? First of all, for the present we should
regard them as rules in which not only ‘F ’ but also ‘n’ is schematic, in the
latter case of course for a numeral. But if it is replaced by a numeral, (2a–
b) yield a procedure for eliminating the numerical quantifier in terms
of first-order logic with identity. This might suggest that ‘there are n Fs’
is simply an abbreviation for its expansion according to (2a–b), so that
it is simply a first-order consequence of (3a–c). Another view, perhaps
representing the next step in the development of the concept of cardi-
nality, reads ‘(∃nx)’ as a kind of generalized quantifier, with some of the
basic inferences involving it still treated like logical inference. This would
provide an entry for the idea that ‘n’ occurs in a generalizable place. It is
natural because the first-order expansion becomes very unperspicuous
even before n becomes very large. But it also should be possible to see
that there are n Fs in a more step-by-step way than the way just described.
One such way would be to verify at each stage ‘there are m Fs that are G’,
where ‘G’ is some predicate known to be coextensive with ‘counted so
far’. What ‘G’ is would depend on the circumstances, but presumably it
would contain an indexical whose reference changes with m. In the case
where the objects involved are before one’s eyes, one might demonstrate
a place, so that ‘G’ would mean ‘in this place’.7 In any case, a step-by-step
procedure would consist of verifying ‘(∃mx)(Fx ∧ Gmx)’ at the mth stage
(where ‘Gm’ fixes the above-mentioned indexical in the appropriate way).
To pass to the (m + 1)st stage, one would observe that for any x

(4) Fx → [Gm+1x ↔ (Gmx ∨ x = the (m + 1)st)].

and then apply (2b).
One will clearly pretty quickly come to the point of using numerical

quantifiers with variable n, and thus in ways that are no longer reducible
to first-order logic. This should remind us that it is only by confining
ourselves to a very simple kind of case that we avoid even the appearance
of introducing numbers as objects. Given our starting point, the obvious
way in which reference to numbers comes to seem forced on us is that we
allow the numeral place in the quantifier to be generalized, that is, that
we introduce quantifiers “over numbers.”

7 One could of course say that what is demonstrated is the set of so-far-counted Fs, so that
‘G’ means ‘in this set’. This is clearly of more general application and thus represents
one entry point for the set concept. But I shall argue in §34 that, in the elementary cases
that concern us now, this is not forced on us.
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We would also quickly enlarge the language so that different expres-
sions come to be used to “refer to the same number.” Here we might
distinguish three kinds of cases:

(i) Terms arising from the introduction of computable operations,
beginning with the most elementary ones such as addition. In these cases
there will be procedures for reducing terms composed from numerals
with these operators to numerals. This reduction must be understood
as applicable in contexts such as ‘there are n Fs’; otherwise it would not
follow, for example, that ‘there are 4 Fs’ is equivalent to ‘there are 2 +
2 Fs’.

(ii) Expressions such as ‘the number of Fs’ and other definite descrip-
tions designating numbers. These presuppose some form of generaliza-
tion of numeral places.

(iii) Alternative systems of numerals. These one might see as giving rise
to questions of translation (or paraphrase if they are in our own language).
There is, however, a constraint on a correct translation or paraphrase that
is independent of the idea that the numerals refer to numbers. If we
consider two systems, call them the N- and the M-numerals, then we will
render the (perhaps foreign) M-numeral n* by (our own) N-numeral n
just in case there are n M-numerals less than n* (assuming that the initial
numeral is 0; otherwise ‘less than’ is replaced by ‘up to and including’8).
Another way of looking at the matter that gives the same result and that
may be more appropriate if the M-numerals belong to our own language,
is to regard them as terms introduced by recursion.

Our remarks about (i) and (iii) suggest that, at least before we have con-
structions comparable to variables and quantifiers for numbers, we have
a conception of what it is for expressions to “designate the same num-
ber” that does not presuppose an antecedent conception of the numbers
as objects. And by an expression that “designates a number” we need at
present mean no more than simply a numeral of our initial system or an
expression that according to the conception just mentioned “designates
the same number” as such a numeral. This encourages us to think of
the introduction of variables and quantifiers “ranging over numbers” as
in the first instance substitutional. And, in fact, substitutional interpreta-
tions of arithmetic have been constructed and defended on philosophical
grounds.9

8 Note that these relations are decidable by a computational procedure, in some cases a
trivial one.

9 See especially Gottlieb, Ontological Economy.
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Suppose that we have introduced “numerical” quantifiers in some-
thing like this way. Let us consider whether this understanding would
have the consequence that numbers are objects of intuition. A substitu-
tional interpretation of quantifiers in the language of arithmetic might be
viewed either as an explanation of reference to numbers or as an elimi-
nation of it.10 The second of these views clearly does not make numbers
objects of intuition, as it amounts to a denial that numbers are objects at
all.

Consider then the first view. On this view, numbers would be consti-
tuted by the use of language, and in particular by the expressions that
refer to them. It is the understanding and use of certain linguistic con-
structions that counts as consciousness of numbers. This does involve
ordinary perception, for example of the objects counted, and intuition
of linguistic expressions, in particular numerals. Could we still describe
the understanding of a numeral as intuition of the number? If so, how
would this be related to perception? Not in the same way as in the con-
ception of intuition that has concerned us. Unlike an expression-type,
the number is not a form instantiated by the numeral; we don’t explain
what the number is by saying that its nature is to be instantiated in just
that way. The numeral is here playing the role of a linguistic expression;
one thing that shows this is that the number would be just as “present”
if it were represented by a corresponding numeral in a different system,
perhaps totally different perceptually. Thus if we were to describe this sit-
uation as intuition of a number, the analogy with perception will be less
close.

The understanding of reference to numbers that we are considering is a
special case of a general conception of object that has been applied in the
foundations of constructive mathematics, according to which an object
is given by a canonical expression for it, in the case at hand a numeral.
In general, a canonical expression shows how it is constructed from the
basic constructions for that domain of object. Other rules would give rise
to noncanonical expressions, which should reduce computationally to
canonical expressions. Such rules arise naturally from the constructions
manifested in the canonical expressions; for example, if canonical numer-
als are constructed from (say) 0 by means of successor, the predecessor

10 Gottlieb defends the latter view. The former view would be suggested by the general
view of Essay 2 of Mathematics in Philosophy. With more specific attention to arith-
metic, I examine the question further in my review article on Gottlieb, “Substitutional
Quantification and Mathematics.”
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function δ (introduced by the trivial recursion δ(0) = 0, δ(Sn) = n) simply
undoes the last step of the construction of a non-initial number.11

The conception of mathematical objects as given by canonical expres-
sions for them does in certain respects model not the conception of intu-
ition with which I have been concerned but rather that of Husserl. In gen-
eral, terms for mathematical objects would express intentions that are to
count as fulfilled by their reduction to canonical expressions. Having a
canonical expression then counts as the presence of the “object itself”; the
idea is that there is not more that can be demanded. In the constructive
setting in which this conception arose, one can understand a mathemat-
ical proposition as an intention that is fulfilled by the construction that
proves it.12

It is easy to see, however, that a purely substitutional theory of arith-
metic along the lines we have intimated cannot be adequate. There is no
difficulty in giving a substitutional interpretation of first-order arithmetic
as a stand-alone theory,13 and this can be extended to a ramified second-
order theory, at least within the limits of predicativity. Moreover, it can be
further developed, along the lines sketched above, to include a treatment
of numbers as cardinals.14 The most serious limitation of this treatment,
however, is that it presupposes that the objects numbered come from
an antecedent domain. But, of course, in mathematical practice we apply
the notion of cardinality to numbers and to mathematical objects of other
kinds that might depend on natural numbers. Moreover, we do not restrict
it to the finite.

This rather commonplace observation could be offered as an argument
in favor of the view that our explanation of quantification over numbers
really is an explanation of a domain of objects. The “cash value” of this
view in this context, however, is the same as that of what, on another

11 The conception of mathematical objects as given by canonical expressions for them
underlies Martin-Löf’s intuitionistic theory of types, a powerful constructive theory that
is susceptible of still further extensions. See especially Martin-Löf, Intuitionistic Type
Theory. I discuss this ontological conception (mostly with reference to quite simple
cases) in “Intuition in Constructive Mathematics.” The rather obvious considerations
given later to show the inadequacy of the straightforward substitutional interpretation
do not apply to a theory like Martin-Löf’s. In fact, the treatment of higher types in his
theory rules out taking the conception as an elimination of ontology.

12 Cf. Tieszen, Mathematical Intuition, esp. ch. 4 §5. Husserl exercised at least an indirect
influence on the origins of intuitionistic logic in the early work of Heyting.

13 See Mathematics in Philosophy, p. 63 n. 1, or for a fuller treatment Kripke, “Is There a
Problem about Substitutional Quantification?” §§8–9.

14 See Gottlieb, Ontological Economy, and my “Substitutional Quantification and Mathe-
matics.”
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view, would be the further conceptual leap of regarding the substitutional
quantification as objectual. The point is that in mathematical practice and
to some extent already in ordinary life numbers are treated as on a par with
other objects, so that they themselves can not only be numbered (which
implies that number variables mark an argument place of a predicate15)
but, further, also can be elements of sets and sequences and arguments
and values of functions.

But now in what would this further conceptual leap consist? It would
consist of steps taken after we have substitutional quantification of
numerals, perhaps segregated from other quantification. Perhaps after
noting the formal analogy between the behavior of these substitutional
quantifiers and that of object quantifiers, and the fact that the former
could be generalized to numerical quantifiers in the same way that the
latter were, we might then come to treat the number quantifiers as just
restricted quantifiers with an underlying predicate ‘is a number’. But the
equality predicate that underlies both computable operations and the
use of numerical definite descriptions would also have to be treated as
identity; talking of sets of and functions on natural numbers would involve
still further steps. We should note that it is only at a rather late point in this
development that the questions to which the structuralist view responds
can even arise. Without allowing numbers into a common domain of
quantification with other objects, the question whether any identities
hold between numbers and objects given in some quite other way can of
course not be formulated.

At this point, some comments are in order about the famous Fregean
criterion of identity of numbers, which in the Grundlagen played such
a central role in his argument for the thesis that numbers are objects
and thus in his explanation of what reference to numbers is.16 A Fregean
approach would interpret ‘there are n Fs’ as saying that there is a one-
to-one correspondence of the Fs and the Gs, where ‘G’ is some canonical
predicate such that there are n Gs; in Frege’s own analysis, ‘G’ would in
effect be ‘x is a natural number less than n’. We said that verifying by

15 Assuming the form of the basic statement of number we have assumed. But taking
number to attach to sets would have the same implication.

16 As Frege’s references show, the criterion itself was not original with him or even with Can-
tor (whom he cites, Grundlagen, p. 73 n.), although it was Cantor who saw and exploited
its applicability to the infinite. It is not easy to say who first stated it in a mathematically
usable form. I don’t think that could be claimed for Hume. But in this Frege was clearly
anticipated at least by Cantor. What is original with Frege is his expressing the criterion
in terms of second-order logic. (Cf. Mathematics in Philosophy, p. 164.)
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counting that there are n Fs involves setting up a one-to-one correspon-
dence of the Fs and, say, the numerals 1 . . . n. It does not follow that
‘there are n Fs’ has to be interpreted as asserting the existence of such a
correspondence. To give the right result, it is sufficient that the numeri-
cal quantifier obey the rules (2a–b). Therefore we do not have to give it
such an ontologically committal interpretation in order to understand the
kind of basic statements of cardinality that concern us. I think it could
be argued further that such an interpretation would not be needed for
a theory of the meaning of statements of number in natural language,
where the users do not have in view uses in sophisticated mathematics.

This remark is not really an objection to Frege. The project of describing
the genesis of discourse about numbers as a sequence of stages was quite
foreign to him, and that of an account of the meaning of a class of expres-
sions in unscientific natural language was not central. He would still argue
that in fully developed arithmetic, ‘there are n Fs’ at least has logically to
imply the existence of such a correspondence. Where one might object
to Frege’s own use of his criterion is on structuralist grounds, because
he treats natural numbers as first of all cardinals. But of course his cri-
terion of cardinal equivalence is undoubtedly extensionally correct, and
therefore cardinal numbers as objects have to satisfy it. Moreover, there
seems to be no escape from taking this criterion as the most basic one
in generalizing the notion of cardinal number to the infinite case. This
fits with the fact that the historical situation in which the criterion came
to be seen as the basic one was the creation by Cantor of the theory of
transfinite numbers. In that context, it is the unique criterion that yields
a coherent theory with anything that can reasonably be called an arith-
metic of infinite cardinals. But then in standard set theory it does not play
the role it played for Frege, as a criterion of identity that was part of an
explanation of reference to a certain kind of object.

The concept of ordinal number also describes a quite basic aspect of
the concept of number already in ordinary life, and, like the concept of
cardinal, it plays a central role in set theory. We might ask whether a sim-
ilar exercise to the one carried out above with the cardinal concept of
number could be carried out viewing numbers ordinally. In our discus-
sion of counting, it occurred naturally that a given counter came to have
the force of ‘the mth’, for some numeral m. But if the context is that of
determining how many Fs there are, no ordering has been specified, and
if one asks in what order a given object is the mth, the answer can only be
that it is the order in which the Fs are being counted. This will be the tem-
poral order, but one also can say that the correspondence of the counters
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and the Fs induces an ordering on the latter.17 We have a properly ordi-
nal concept of number when the counting is supposed to track a given
ordering, so that one begins with the initial object in the ordering, and
at a given stage the next counter is to be applied to the next object in the
ordering. These conditions impose a strong constraint on the ordering,
that it have an initial element and that each element (at least up to the
point where the counting ends) have an element immediately following
it in the ordering, that is, a successor. This is just to say that the ordering is
an initial segment of an ω-ordering. But what is required of the counters
is no more than in the description of the cardinal case, and the initial
steps can be taken without any supposition that they designate numbers
or any other objects. Furthermore, the further steps involved in passing
to a conception of numbers as objects do not differ in the two cases.

In fact, an informative answer to the question “How many Fs are there?”
places the number of Fs in the ordering of numbers.18 A version of this
condition has application even in the primitive situation where we do
not yet have a conception of numbers as objects, as we have the ability
to order the counters and learn systems of numerals in an order that is
shown by the order in which they are presented or constructed in time.
For these reasons, one can say that the cardinal concept of number is
inseparable from the ordinal.

§33. Finite sets and sequences

In mathematics, the concepts of finite set and sequence are certainly
intimately related to that of natural number. The reader may feel that
the exclusion of such objects from our discussion in the last section
is artificial or even phenomenologically false. In this section, we will
discuss a number of questions concerning these concepts. In particular,

17 Of course it is an important feature of cardinality that it is independent of this order.
This is a consequence of the fact that if there is a one-one correspondence of {1 . . . m}
and {1 . . . n}, then m = n. Intuitively, the results of counting are ordinals in the infinite
case too, but the fact just mentioned does not generalize to infinite ordinals.

18 In practice more is demanded than just an answer that uniquely determines the place
of the number of Fs in the order, as is shown by the fact that Arabic numerals are in
most cases more informative than 0-S numerals would be, even when the numbers are
small enough so that giving the latter is feasible, and for very large numbers even Arabic
numerals become unsurveyable and tend to be replaced by approximations involving
exponentiation. These matters have implications for when someone can be said to know
how many Fs there are. The issues involved were very interestingly explored by Saul
Kripke in his Whitehead Lectures at Harvard University in 1992.
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in the course of returning to the theme of intuition, we will consider the
claim that attributions of cardinal number to sets, or ordinal numbers to
sequences, are the most primitive form of attributions of number.

A theory of sets that provides only for finite sets is quite similar to
arithmetic. The natural numbers are what is obtained by beginning with 0
and iterating the successor operation an arbitrary finite number of times.
Similarly, for a given domain D of individuals, the hereditarily finite sets
based on D, abbreviated HF(D), are what is obtained by beginning with
the null set ∅ and iterating the operation of forming from any x1. . . xn,
individuals or previously formed sets, the set {x1. . . xn} whose elements
are just x1. . . xn. It is well known that for any D, HF(D) is a model of the usual
(Zermelo-Fraenkel) axioms of set theory without the axiom of infinity.19

The hereditarily finite sets may seem essentially more complex than
the numbers, even if D is empty. But the “anadic” operation of forming a
set from any finite number of given objects can clearly be replaced by the
dyadic one of forming, from a given set x and object y, the set x ⊕ y whose
elements are just those of x, together with y. x ⊕ y is of course just x ∪ {y},
but I am using a different notation because I will present a theory in which
this operation is primitive. HF(D) is obtained by beginning with ∅ and the
elements of D and iterating the operation of forming x ⊕ y from previously
given x and y, that is, of adding an element to a previously given set. This
formulation might dispel the impression that the theory of hereditarily
finite sets is intrinsically more complicated than arithmetic. In fact, each
can be modeled in the other in a straightforward way. Taking the integers
as von Neumann ordinals (i.e., 0 = ∅, Sn = n ⊕ n) yields a model of arith-
metic in the theory of HF sets; conversely (for D = ∅), we can set∅ = 0 and
x ⊕ y = x + 2y (if y /∈ x), so that if x1. . . xn are all different and are mapped
onto m1. . . mn respectively, then {x1. . . xn} is mapped onto 2m1 + · · · +
2mn. Using this mapping, Wilhelm Ackermann showed in 1937 that the
translations of the axioms of ZF, other than Infinity, are provable in PA.20

19 See for example Krivine, Introduction, pp. 44–45. I adopt the convention that HF(D)
includes D, even though the elements of D are in general not sets. Note that if D is
not empty, the axiom of extensionality has to be formulated so as to allow individuals
(urelements), as is done in (H1).

20 “Die Widerspruchsfreiheit der allgemeinen Mengenlehre.” It follows that PA and ZF
without Infinity are equiconsistent; that is, a finitist proof can be given of the consistency
of each relative to the other. A beauty of Ackermann’s mapping is that it is onto: every
number is the code of a hereditarily finite set; moreover, it does not impose an order on
the set.

We cannot expect Ackermann’s result to generalize to arbitrary D. It obviously fails if
D is uncountable.
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For future reference we will describe a theory of hereditarily finite sets
in “arithmetical” style. The theory will have the primitive constant ∅ and
functor ⊕, and the membership predicate ∈. The intention is that the
domain should consist of HF sets built up from ∅ and nonsets. We define
Mx, ‘x is a set’, as x = ∅ ∨ ∃y( y ∈ x). Then the axioms will be

(H1) [Mx ∧ My ∧ (∀z)(z ∈ x ↔ z ∈ y)] → x = y

(H2) z /∈ ∅

(H3) z ∈ x ⊕ y ↔ z ∈ x ∨ z = y.21

In addition, there will be a schema of induction:

(H4) {A(∅) ∧ (∀x)(∀y)[A(x) → A(x ⊕ y)]} → (∀x)[Mx → A(x)].

Thus, the induction principle says that whatever is true of the empty set
and remains true when an element is added to a set of which it is true is
true of all sets.22

It is not difficult to see that the usual axioms of set theory (other than
Infinity and Foundation) are provable in this theory. (See Appendix 1.) If
we take the natural numbers to be von Neumann ordinals, then primitive
recursion on natural numbers is a special case of the rule of primitive
recursion on sets given in Appendix 1. We obtain another perspective on
arithmetic, however, by first introducing a relation, ∼, of cardinal equiv-
alence. This can be done in the Cantorian manner, since a one-one cor-
respondence of finite sets is itself a finite set, if one construes a relation
as a set of ordered pairs. But it is instructive to observe that the relation
∼ can be defined directly by primitive recursion:

x ∼ ∅ ↔ x = ∅

x ∼ y ⊕ z ↔ {(z ∈ y ∧ x ∼ y) ∨ [z /∈ y ∧ (∃w ∈ x)(x – {w} ∼ y)]}.

We can describe a predicate or functor as “cardinal” if ∼ is substitutive in
all its argument places. It then seems natural to translate arithmetic into
set theory by translating = as ∼ and rendering arithmetic functors and
predicates by suitable cardinal ones. However, if a term t is translated as t′,

21 Note that (H3) has the consequence that if x is not a set, then x⊕ y = ∅⊕ y = {y}. It follows
that the antecedent of (H4) is equivalent to A(∅) ∧ (∀x )(∀y )[(Mx ∧ A(x )) → A(x ⊕ y )].

22 Induction principles of this type for the theory of finite sets go back to Zermelo, “Sur les
ensembles finis,” p. 188. The formulation here derives from Tarski, “Sur les ensembles
finis,” p. 54. See also Lévy, Basic Set Theory, p. 77. Zermelo’s concern, however, is to derive
it from set-theoretic premises and a definition of finite set.
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the idea is that St should be translated as t′ ⊕x, for any x such that x /∈ t′. But
then the translation contains the extra parameter x, and the idea is that
when S is iterated the value of this parameter might change at any stage.

We can, however, introduce predicates instead of 0, S, and further arith-
metic functors for, say, addition and multiplication. We would have

Zx ↔ x = ∅

Syx ↔ (∃z)(z /∈ x ∧ y ∼ x ⊕ z).

Addition might then be introduced as follows:

Azxy ↔ (∃w)(w ∼ x ∧ w ∩ y = ∅ ∧ z ∼ w ∪ y).

These relations can easily be seen to be cardinal.23 It has the difficulty that
since the successor of a set, and the sum of two sets, are unique only up to
cardinal equivalence, we cannot introduce the usual functors as definite
descriptions.

It is natural to implement our idea by thinking of numbers as types,
where the tokens are sets and the relation ∼ is that of being of the same
type. This would be implemented by introducing a functorC, understand-
ing Cx as the cardinal of x, by an abstraction axiom:

Cx = Cy ↔ x ∼ y.

The extension of the theory by this new functor and axiom is conservative,
since we could interpret Cx as the (unique) von Neumann ordinal y such
that x ∼ y. This axiom is of course just a set-theoretic formulation of
Frege’s criterion of identity of cardinal numbers.

From an ontological point of view, the theory of HF sets has the com-
plication that it is only by ascent in rank that we obtain larger and larger
sets, unless we make some assumption about the domain of individuals.
It is instructive to consider whether we can take the same approach to an
ordinal conception of number, where instead of an equivalence relation
on finite sets we now consider one on finite sequences. But now what is a
finite sequence? It is natural to think of a finite sequence as an object s that
has a length lh(s) and, for each natural number i < lh(s), an ith term (s)i.
Two sequences s and t are the same if lh(s) = lh(t) and for each i < lh(s),
(s)i = (t)i. Such objects might, for example, be functions whose domains
are initial segments of the natural numbers. But now if there is even one
individual, the finite sequences of individuals are already a model of

23 I am indebted to Warren Goldfarb for proposing this response to the difficulty of the
previous paragraph.
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arithmetic, since for any individual x the sequences 〈〉, 〈x〉〈x, x〉〈x, x, x〉,
. . . are all different.24

However, this explanation uses the notion of natural number. Is there
some way of explaining the notion of sequence so that we could derive the
notion of number from it in a noncircular way? Let us call the conception
of sequences just mentioned the sequences-as-functions conception. An
alternative would be what we might call the sequences-as-tuples con-
ception, where we assume a notion of ordered pair 〈x, y 〉 and an empty
sequence 〈〉. If s is a sequence, the result of adding a term x, which we
write s*x, is 〈s, x〉. Because of the binary character of pairing, this approach
imposes a particular association. A preferable way to think of sequences
as tuples is in an inductive-recursive way, as generated from an empty
sequence by adding terms successively. For simplicity, let us first con-
sider only sequences of objects from a given nonempty domain D. We
use a two-sorted language; I will use the letters p, q, r, s, t as variables for
sequences, and u, v, w, x, y, z as variables for individuals.25 We assume
an empty sequence 〈〉 and an operation of adding a term to a sequence,
which we write *. We have the elementary axioms:

(S1) s*x �= 〈〉
(S2) s*x = t*y → (s = t ∧ x = y)

and an induction principle:

(S3) {A(〈〉) ∧ (∀s)(∀x)[A(s) → A(s*x)]} → (∀s)A(s),

where the variable s ranges over sequences. We can again extend the
theory by a schema for introducing terms by primitive recursion on *.
(See Appendix 1.)

Now an equivalence relation ≈, which we can read as sameness of
length or “ordinal number,” can be introduced by inductive conditions,

24 If the domain D of individuals is empty, then there is only one sequence 〈〉 of individuals,
although if one goes on to allow sequences of sequences or sets, one obtains an infinite
domain just as in the case of the hereditarily finite sets, in fact already with one ascent,
since one can use 〈〉 instead of the x of the text.

25 In the two-sorted language, the nonemptiness of D is enforced by using standard quan-
tificational logic.

The same axioms in a one-sorted language yield a theory in which sequences can
be terms of sequences. Then we do not need the nonemptiness of D to yield infinitely
many sequences; we can take 〈〉 as the x of the text. This theory is in fact a conservative
extension of the theory of sequences of individuals.
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for example:

(L1) 〈〉 ≈ 〈〉
(L2) s ≈ t → s*x ≈ s*y

(L3) {A(〈〉, 〈〉) ∧ (∀s)(∀t)(∀x)(∀y)[A(s, t) → A(s*x, t*y)]}
→ (∀s)(∀t)[s ≈ t → A(s, t)].

It is proved in Appendix 1 that ≈ is an equivalence relation. Now one
would like to think of “numbers” as just the sequences of this theory, with
the equivalence relation ≈ as equality. Addition is just concatenation of
sequences, and it and a form of multiplication are introduced by primitive
recursions; see Appendix 1.

Nonetheless, there is an important respect in which the theory of
sequences remains impoverished so long as we do not use some resources
belonging to the concept of number. We would like to be able to talk of
the nth term of a sequence, and also of its length. We need to have at our
disposal a system of counters, though not yet numbers as full-fledged
objects. This fact diminishes the difference between the sequences-as-
functions and the sequences-as-tuples conception. Given counters, we
can introduce (s)n and lh(s) by primitive recursions:

lh(〈〉) = 0; lh(s*x) = S[lh(s)]
(〈〉)n is undefined for all n; (s*x)n = (s)n if n < lh(s), = x if

n = lh(s); is undefined otherwise.26

Our problem is not that the theory of sequences does not have the
resources to provide us with counters or even numbers as objects. If we
assume that our language has a name for at least one element of D, call
it 1, then there is an obvious translation of first-order arithmetic into
the language of sequences, with 0 rendered as 〈〉 and St rendered as t′*1,
where t′ translates t. We can set (s + t)′ = s′*t′, and (s · t)′ = s′ × t′. (× is
the multiplication introduced in Appendix 1.) However, this translation
in effect construes numbers as sequences of the form 〈1 . . . 1〉. It does
not capture what I had in mind by understanding numbers as sequences.
The problems of translating the language of arithmetic without such a
construal are the same as in the cardinal case. The solution I will pursue

26 We can avoid partial functions by setting the undefined cases equal to a throwaway
value (provided we have a name for at least one element of D), say the 1 of the following
paragraph. The case where 1 is the genuine nth term of s is distinguished from that in
which (s )n is undefined by the fact that the latter case obtains if and only if lh(s ) ≤ n.
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is to think of numbers as types of which sequences are tokens, so that
the original idea of thinking of numbers as sequences is compromised.
Then the relation ≈ is just that of being of the same type. Addition and
multiplication of sequences are the operations on tokens that correspond
to the usual arithmetic operations understood as applying to types. We
can introduce the ordinal number of a sequence by an abstraction axiom:

Os = Ot ↔ s ≈ t.

Note that the extension of our theory by O is again conservative, since
we could have defined Os as the sequence r consisting entirely of 1’s such
that r ≈ s. We can now define 0 as O〈〉 and the relation m = Sn as

(∃r)(∃s)(∃x)[s = r*x ∧ Or = n ∧ Os = m].

§34. Sets and sequences, intuition and number

The purpose of developing these theories is to trace another genetic route
to the concept of natural number. Of the two options offered, the ordi-
nal one appears simpler, since one obtains the structure of the natural
numbers without ascent in rank. However, perhaps because of a tendency
deriving from Frege and Russell to concentrate on the concept of cardinal,
writers on the subject have tended to start with sets, and I will concen-
trate on that case for the moment. Finite sets of individuals, thought of
as generated in a step-by-step way such as our formal theory tries to cap-
ture, are arguably more concrete than sets in general. One way in which
the concept of number might develop is by developing the concept of
finite set, in the first instance of individuals, then noting the equivalence
relation ∼, and introducing cardinals as a kind of types.

One source of the interest of this possible genesis is that some philoso-
phers have claimed that small finite sets of perceptible objects are per-
ceived or intuited. Let us suppose for the moment that that is true; I will
examine the question shortly. Then we might also argue that the cardinal
numbers of these sets are intuited. What would be involved would be to
take in a set, but to take it in as a type, where other sets with the same
cardinal are of the same type. Sameness of type would be intuitively ver-
ifiable in the step-by-step way by which statements of cardinal number
are verified according to §32. Although it would involve another step of
abstraction, it seems we might speak of intuition of the correspondence
that witnesses the sameness of number, since it is itself a finite set of pairs.
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Thus we would have a conception of number according to which some
numbers at least are objects of intuition.27

What would intuition of a finite set be? Following the Cantorian tradi-
tion, we should say that it is a representation of its elements as a unity.
It goes with the conception of sets as collections discussed in §20. Intu-
ition of a set would be a sort of capstone of intuitions of its elements. The
elements would have to be “held together” in a simple case of Kantian
synthesis. Thus intuition of a set would require a definite conceptualiza-
tion, for example to distinguish it from intuition of a mereological sum,
because it would supervene on intuitions of just the elements of the set,
and not, for example, some other objects that occupy the same region of
space and time and are perceived along with the elements of the set. But
as here conceived, intuition of a set is founded on intuition of its elements
in the Husserlian sense already deployed in §28.

It should not be required that the elements of the set should be per-
ceived or intuited all at once; one might intuit a set in a succession of
stages corresponding to its generation by adding new elements. Then,
of course, one aspect of the holding together is remembering what one
has perceived before.28 But memory is equally essential to perceiving an
event that unfolds in time; this is not a disanalogy with perception that
should disqualify us from speaking of intuition.29 It should be pointed
out that concepts are involved to the extent that they are needed for

27 In earlier writings I suggested a way in which numbers might be objects of intuition by
taking them as “generalized types”: numeral-tokens even in different numeral systems
are of the same type if they “represent the same number” in the sense explained in §32.
(See Mathematics in Philosophy, pp. 43–47, where, however, the conception is given
a modal nominalist interpretation, and “Mathematical Intuition,” pp. 163–164.) The
present suggestion would imply that such generalized types are objects of intuition.
However, the conception seems to me to lose much of its motivation once one sees the
relation of alternative numeral systems to our own as a matter of translation. The idea
of starting from finite sets or sequences now seems to me of more interest as a possible
genesis of the natural numbers. As a final account of the natural numbers, the earlier
generalized types conception is open to the structuralist objection that it is just one more
construal of the natural numbers. What is there about the concept of natural number
that makes it true that numbers are these objects rather than some other progression?

28 Cf. Kant’s description of the synthesis of reproduction in the Critique of Pure Reason,
A100–102.

29 Still, there are questions about the boundaries. Suppose I am at a family gathering and
perceive all at once all the living descendants of my paternal grandparents. Can I bring
to bear memories of perceiving the ones who have died and thus come to intuit the set
of all their descendants? This is strained if, as is true in actual fact, some of them died
many years ago. One would not talk of seeing or witnessing an event that was spread out
over a number of years, with long discontinuities.
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identifying the elements. But one need not pick out just these elements
by deploying a concept, although once one has done so a concept is
thereby “constituted.” It would be, roughly, the concept of being this1 or
this2 or . . . , where the indices distinguish the uses of the demonstrative
‘this’ to pick out the elements successively perceived.

One should not expect of such a conception that any finite set of in
some way intuitable objects can be intuited. The conception already
rules out intuition of sets that contain elements that are not intuitable.
But clearly, as a practical matter, we are not able to intuit a set of a very
large number of elements, even if they can be perceived individually.
The problem is the same as that concerning intuiting a string of 10100

strokes. But other obstacles can arise that do not come from the scale
of our cognitive faculties or the shortness of life. For it to be possible
to intuit {x, y} it must not just be possible to intuit x and to intuit y;
the intuitions must be jointly possible. This may run afoul of the gen-
eral fact that in order to perceive spatiotemporal objects and events one
must reach a certain proximity to them. Suppose, for example, that e
and e′ are two events such that neither is close to being in the past light
cone of the other, so that if an observer is close enough in space-time
to one of them to observe it, he cannot possibly observe the other. It
follows that he cannot intuit the set {e, e′}, even though it may be that
at some past time he could have moved in such a way as to observe e
or e′.30

It seems that we might reasonably speak of intuition of finite sets under
somewhat restricted circumstances, and this would allow that if numbers
are thought of as “types” of which such sets are tokens, then it seems
we can also speak of intuition of numbers. This conception still has its
difficulties, as we shall see, and it is doubtful that it carries us as far with
regard to arithmetic as intuition of strings. Before detailing this, I want
to discuss briefly the views of another writer who has approached the
concept of number from a standpoint of this general kind.

One thing that is attractive about the idea of intuition of sets is that it
makes sense of the obvious fact that sometimes facts about number can
be verified by perception, that for certain F and n one can see that there
are n Fs. Penelope Maddy uses this consideration to argue that suitable
finite sets are not only intuited but perceived. Maddy’s main argument
for this claim is based on just the premise I have stated: In her example,

30 More humdrum considerations of a similar kind show that tensed discourse about sets
runs into conflict with the principle that if a set exists, then all its elements exist; see
chapter 1, note 57.
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Steve can, on opening a carton of eggs, see that there are three eggs in it.31

In a simple case like that, one does not need to count. By contrast, the
number of Fs would not have to get very large before, given a step-by-step
verification of the kind described in §32, we would hesitate to say that one
sees that there are n Fs.

Maddy then raises the question what is the bearer of number and con-
siders various candidates (sets, properties, aggregates,32 Fregean con-
cepts). The ground on which she chooses sets is not phenomenological,
as her thesis might lead one to expect. Rather, “we need to look, not to
our perceptual experiences, but to our overall theory of the world, and
we must ask which of these is best suited to playing the role of the most
fundamental mathematical entity.”33 The decision in favor of sets rests
on the utility of the concept in setting up a general framework for mathe-
matics, and then on the indispensability of mathematics for science. The
conclusion that the perceptual belief that there are three eggs in the car-
ton is a belief about a set depends “on the idea that mathematical entities
are indispensable to physical science; if they weren’t, there would be no
reason to include sets in our overall theory.”34

One can see that the point of view of Maddy’s argument is quite dif-
ferent from that of §32. Roughly, she wants to describe in scientific terms
what is involved in seeing that there are three eggs in the carton. The
sense in which Steve sees a set is close to that in which he might be said to
see a collection of atoms. It is not required that he should identify it as a
set; in fact, Maddy finds that implausible, on the ground that perceptual
experience does not distinguish the different candidates for the bearer
of number. This is one reason why she speaks of perception rather than
intuition; she relies on the fact that one can see (or hear or smell) an F
without identifying it as an F.

Using neuropsychological theories about the development of the
object concept, Maddy engages in a speculation, according to which in

31 Realism in Mathematics, p. 58. The ideas go back to her “Perception and Mathematical
Intuition.”

32 What we have called mereological sums of objects.
33 Realism in Mathematics, p. 61.
34 Ibid., p. 62. In subsequent writings Maddy has criticized the “indispensability argument”

for mathematical objects; see “Indispensability and Practice” and Naturalism in Mathe-
matics. She would not now endorse the argument discussed in the text for the conclusion
that there is perception of sets; see Naturalism in Mathematics, p. 152 n. 30. An indi-
cation that she no longer holds the conclusion, is the remark, in the latter place, that
although she still holds that “we have perceptual access to simple numerical facts,” she
now rejects the conclusion that these facts are facts about sets. But it is not clear to me
exactly what she means to retract.
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the course of human development one acquires a neural structure, which
might be called a “set-detector,” which enables one to acquire perceptual
beliefs about sets.35 It is the activation of this on his encounter with a
carton of eggs that enables Steve to see the set of eggs in the carton and to
see that there are three eggs there. This is the more fundamental reason
for speaking of perception: It is supposed to be a natural faculty that does
not depend on any particular conceptualization.

An underlying premise of Maddy’s account of these matters is that a
statement such as ‘there are three eggs in the carton’ is a statement about
something to which a number is being attributed. It is that which leads
to the question whether that something is a set or something else. In our
analysis in §32, we did not need any such supposition: One can see that
there are three eggs there without seeing any objects except the eggs, the
carton, and perhaps other things in the immediate environment. Why
should one think otherwise, unless one thinks (contrary to the view of
§5) that predicates as such designate, and, moreover, that some cogni-
tive relation to what a predicate designates is necessary for knowing a
truth involving the predicate? I do not have a psychological story to rival
Maddy’s, but it seems to me that the primary elements of such a story
would be the capacity to classify what one sees, as expressed in the use
of predicates, and to recognize identities and differences.

On this view, seeing that there are three eggs in the carton would be a
consequence of seeing that

E(this1) ∧ E(this2) ∧ E(this3) ∧ (∀z)(Ez → z = this1 ∨ z = this2 ∨ z = this3),

where of course ‘Ex’ represents ‘x is an egg in the carton’. Maddy might
object that this would make one’s knowledge that there are three eggs in
the carton inferential, contrary to psychological evidence.36 But in avoid-
ing this, how does perception of the set help? On Maddy’s view, it seems
one has to see of the set that it has three elements, and that has the same
complexity as the fact that there are three eggs in the carton; indeed, one
must see, in addition, that the set one sees is the set of eggs in the carton.
Either view can maintain that “inferences” such as arise in a linguistic rep-
resentation of what is seen take place automatically, at the subpersonal
level.

Maddy’s view has at least a superficial resemblance to that of Husserl in
Philosophie der Arithmetik, although Husserl’s conception of conscious-
ness of sets is closer to my own description of a possible intuition of them.

35 Ibid., p. 65.
36 Ibid., p. 60; she cites Kaufman et al.
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It is instructive at this point to consider one criticism that Frege makes in
his review of Husserl. Husserl suggests that the kind of synthesis involved
in intuition of a set is expressed by ‘and’, so that if one asks what Steve
perceives, the reply could be (calling the eggs a, b, and c) ‘a and b and c’.
Frege objects that we do not ask ‘How many are a and b and c?’ but rather
‘How many eggs are there in the carton?’ and the answer is also in that
form: ‘There are three eggs in the carton.’ (Frege seems to prefer, ‘The
number of eggs in the carton is three.’)

Thus we see that both in the question and in the answer a concept word or
a composite concept expression occurs, instead of the ‘and’ required by the
author.37

Frege is certainly quite correct in claiming that the typical form of a ques-
tion about cardinal number, and of a statement of number, involves a
predicate. Still, I think that Husserl could reply that, in the case where the
answer is verified by perception, just the sort of synthesis is involved as
enters into the description of intuition of the set. That is, one identifies
these objects as the eggs in the carton and observes that there are three of
them. But this formulation, which uses the plural, illustrates a problem
Maddy herself calls attention to, namely, that one by considerations of
this kind still does not get to the concept of set rather than another (in this
case plurality). Husserl does not distinguish pluralities from what we have
called collections, and the observation that the sort of synthesis that the
idea of intuition of sets requires is to be found in perceptual verification
of numerical claims still does not imply that a set or other such object has
to be constituted as an object.38

Maddy’s answer to this problem, as we have seen, is that it is mathe-
matics and its role in science that leads to the conclusion that it is a set
that one perceives in the kind of situation described. Even if one does
not reject the indispensability argument in general, one can question
this particular application of it. The reason is that a conclusion is being
drawn about the organism’s basic relation to the environment from
the claim that set theory offers the best general framework for axiom-
atizing classical mathematics. But the mathematics actually applied
in the description of the physical environment in which such simple
verifications of numerical facts take place, and even the mathematics

37 Review of Husserl, p. 321, my translation. Obviously, I have expressed Frege’s point in
terms of Maddy’s example.

38 A related point is made against Maddy by Carson, “On Realism in Set Theory,” pp. 8–9.
Carson’s paper discusses Maddy’s views about perception of sets in the more general
setting of the set-theoretic realism defended in Realism in Mathematics.
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needed for psychological and neurological theories of how this might
be accomplished, can be formulated with other primitives. Therefore,
even if classical arithmetic and analysis and the abstract analysis used
in quantum mechanics are indispensable for the scientific account of
the situation, it does not follow that an axiomatization in terms of sets is
indispensable in the same way. It is just not plausible that the formulation
in terms of set theory reflects the nature of things to the degree that
Maddy’s view presupposes. Thus one can ask, concerning Maddy’s idea
of a neural set-detector, what reason she has for claiming that it detects
precisely a set rather than detecting one of the other possible bearers of
number that she and other writers consider, or simply numerical facts.

The upshot of this discussion is that although it is reasonable to hold
that some sort of collective consciousness of the objects falling under a
predicate ‘F ’ is involved in determining by perception what the number
of Fs is, it is not necessary to attribute to the agent perception or intuition
of a set as a single object.39 Maddy, possibly along with the psychologists
whom she cites, may be concerned with the question how to describe the
awareness of numerical facts by children who have not yet learned lan-
guage. Here, it seems to me that there is even less reason to suppose that
one particular logical regimentation of the situation reflects the nature of
the subject’s cognitive apparatus in preference to another that expresses
the same facts. To the extent that one makes distinctions, surely in this
case one should, other things being equal, prefer the least ontologically
committal formulation.

§35. Difficulties concerning intuition of finite sets

The objections made in the last section to Maddy’s argument for percep-
tion of sets also affect the claim that intuition of sets as we described
it is necessarily involved in verification of elementary numerical facts.

39 I think the same considerations would apply to the proposal that intuition of sequences
underlies the most elementary verifications of numerical facts, as W. W. Tait intimates
(“Finitism,” §2). Tait is, however, on somewhat stronger ground than Maddy, because he
is basing his claim on a view about the nature of the concept of number. If one believes
that the concept of number as we know it in mathematics is innate (a view that is not at
all absurd), one will naturally interpret in terms of it the most elementary knowledge of
facts involving number.

Tait’s view of Number as the form of finite sequences might be interpreted in terms
of the generalized-types conception of ordinal number sketched earlier, with arbitrary
sequences as tokens. I do not know how well this captures his intention. The conception
does not appear in Tait’s later papers.
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However, one may still be interested in such intuition as a way of giving
an intuitive foundation to theories of finite sets and sequences such as
those described in §33. The relevance of intuition of sets would surely be
increased if it were shown that there is significant intuitive knowledge of
them, and, furthermore, if intuition extended to finite sets and sequences
of higher rank.

Let us ask first whether it is intuitively evident that x ⊕ y is well defined,
that is, that a new element can always be added to a given set. In §28,
considering the case of strings of strokes, we relied on the fact that for
objects of this kind imagination can be a foundation for intuition. To
convince ourselves in the same way that x ⊕ y is defined, it seems we have
to imagine an arbitrary element of HF(D). That clearly constrains D; it
must be the sort of domain of which we can imagine an arbitrary element.
Then it seems that one can imagine an arbitrary element of HF(D) by
imagining a succession of elements of D bracketed in an arbitrary way
so that they form ground-level sets, sets of sets, and so on. Then it seems
evident that any new such object can be added to a set already obtained.

In the more restricted setting where we consider only sets of individu-
als, it is sufficient to imagine an arbitrary such set and an arbitrary element
of D. In this case, that x ⊕ y is always defined does not insure an infinite
domain of sets, because x ⊕ y differs from x only where y /∈ x. In particular,
if x is already all of D, then x ⊕ y = x no matter what y we choose. However,
the same picture seems applicable to the case of sequences, and there of
course s*x is always new, even if x already occurs as a term of s.

Nonetheless, our picture gives rise to doubts. First, even if it is accepted,
what of the null set? The idea behind our original description of intuition
of a set was that intuition of the elements would found intuition of the set.
But that leaves intuition of the null set with no foundation, but it cannot
be ordinary, direct perception. It is tempting to say that the null set is a
linguistic fiction, introduced to round out the system. So long as we are
concerned only with sets of individuals, this view is viable. But it will turn
out that the problem of the null set propagates up through the HF sets.

A second problem concerns the claim that it is possible to imagine
an arbitrary set or sequence of individuals, even assuming that one can
imagine an arbitrary element of D. This is something more complex than
imagining an arbitrary string in the setting of §§27–28. In particular, to
see that any string can be extended, we did not need to use the fact that an
arbitrary string arises by iterated concatenation of an additional stroke.
But it is hard to see what an arbitrary finite set or sequence of individuals
would be without some such conception. It follows that what is being
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imagined is subject to a restriction as to how it has been generated. We
need not see sets and sequences in that way; other ways of understanding
the basics of set theory are possible. But it is doubtful that any alternative
is more favorable to the idea of imagining an arbitrary set.

Another doubt, related to that concerning the null set, arises when one
brings in sets of sets. Suppose that I perceive the following array:

� � � � � �

Do I intuit (1) six squares, (2) a single set of six squares, (3) three sets of
two squares each, or (4) a set of three elements, each of which is a set
of two squares? If I simply perceive the array as a Gestalt, that is already
taking it in as a unity, but it must fall short of intuition of a definite set.
The latter would require something that chooses between the above four
possibilities (and other, less perceptually natural ones).

What the different intuitions would have to do, in effect, is to put mental
brackets on the array. The absence of any is case (1); in the others we would
have:

case (2) {� � � � � �}

case (3) {� �} {� �} {� �}

case (4) {{� �} {� �} {� �}}

The structure we represent by bracketing could be represented equiva-
lently by a tree. We give the tree in case (4):
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Now in order to “intuit” a set on the basis of perception of its ultimate
elements,40 the subject must impose a bracketing on these elements,
which determines the tree of membership relations leading up to the set
itself. The bracketing is optional: The subject could have chosen another
bracketing leading to an intuition of a different set with the same ultimate
elements. But, it will be objected, this makes too much depend on the
concept brought to the situation by the subject.

It seems to me that this does show that the analogy with perception
is strained in this case in a way that it is not in the case of expressions
as types. According to the account of §28, to intuit a type the subject has
to perceive or imagine something as of a certain type, where the concept
of the type is also optional in that the physical tokens can be grouped
into types in different ways. The concept of the type serves, however,
only as a rule of reidentification, and such a rule is presupposed by any
perceptual judgment of the presence of an object. In the case of a set, the
“mental bracketing” of course contributes to reidentification, since one
would have the same set again only if one had the same ultimate elements
bracketed in the same way. But there is a subtle difference. The difference
between a token and a type lies basically in the criterion of identity. If
a region of space contains an object that is a token of more than one
type, then this fact comes to light by comparison with other places and
times. But consider the location of the six squares that are the ultimate
elements of the sets (2), (3), and (4). Then, in the only sense in which a
location could be said to “contain” a set, any location that contains the
six squares would contain all three sets (and more). For a set to occur at
a location can only be for its ultimate elements to occur there.

The difficulty is reinforced by considering the null set again. It would
consist of a bracketing that encloses nothing or of a degenerate tree con-
sisting only of the top vertex, with no branching or labeling. Now we have
to ask whether, in the intuition of a set, the bracketing itself is intuited. If
it is not, then how can there be intuition of the null set, or, for that matter,
of pure sets generally? But if it is, then it seems the sensory foundation of
this intuition will have to be perception or imagination of some form of
representation such as actual brackets or trees. But then, so long as
other systems of representation are possible, we cannot say that the
configuration of objects and brackets is the set, since a configuration with

40 That is, the individuals in its transitive closure. Note that a pure set has no ultimate
elements.
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a different form of representation of the bracketing would have an equal
claim.

The way in which we have described a putative intuition of sets gives
the bracketing a conceptual role, and against the idea that intuition of it
is part of intuition of the set is the general consideration that in a per-
ceptual situation involving the application of certain concepts, we do not
expect that a linguistic or other embodiment of the concepts should be
perceptually present in that very situation. We can reinforce this way of
looking at the matter by observing that the theory of hereditarily finite
sets over D can be given a straightforward relative substitutional seman-
tics, relative of course to the domain D of individuals.41 The idea is that
given an interpreted first-order language L0 for which D is the domain,
we add terms “for hereditarily finite sets” and variables and quantifiers
for them, which, however, we interpret substitutionally relative to D. The
terms might be called bracket terms. {} is a bracket term, and if T1 . . .
Tm are terms of L0 or bracket terms, so is {T1 . . . Tm}. If X, Y, . . . are the
substitutional variables for bracket terms, then the clause for universal
quantification in the recursion for satisfaction is:

(5) s satisfies (∀X)A iff for every bracket term T, and for every s′ agree-
ing with s on variables free in A and assigning a value to every
variable free in A X/T, s′ satisfies A X/T.42

This semantics is equivalent to a special case of a natural generalization
of the relative substitutional semantics for predicative classes43 to higher
ranks.

It might be argued that this semantics dispenses with the idea of intu-
ition of sets because it offers an ontological reduction, in which sets
are eliminated. The discussion of substitutional quantification in gen-
eral encourages caution about such claims. In a setting like the one we
are considering, a pure (not relative) substitutional semantics would be
equivalent to an objectual one where the objects are expressions. Such
a pure substitutional semantics is clearly possible for the pure heredi-
tarily finite sets, that is, where D is empty. In that case, sequences and

41 In the sense of Mathematics in Philosophy, p. 214; cf. p. 67. For details of the present
semantics, see Appendix 2.

42 Bracket terms in this definition are allowed to contain individual variables, but of course
not “set” variables. But this clause enables us to interpret formulae containing bound
“set” variables, in particular occurring within bracket terms.

43 Mathematics in Philosophy, ibid.
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satisfaction drop out and one can simply define truth. We could just as
well construe the sets as the bracket terms that designate them.44

In the relative substitutional case, clearly the elements of D are left
unreduced, whatever one thinks about the controversial issues about
the ontology of substitutional theories already alluded to in §32 (p. 195).
Thus, in general, one cannot, as in the pure substitutional case, give an
equivalent objectual semantics where the objects are the expressions of
the substitution class. Rather, the objects must also code assignments to
the free individual variables. Thus one can give such a semantics where the
objects are ordered pairs of expressions and sequences of elements of D.

But the role of sequences in (5) differs in a relevant way from that
in the usual objectual clause for the universal quantifier, which in the
underlying language L0 we might suppose to be:

(6) s satisfies (∀x)A iff for every u in D, sx
u satisfies A,

where (sx
u)i = u if x is the ith variable, (sx

u) j = (s) j otherwise. Here
sequences play the role of parameters, and the only operations on them
that we require are explicitly defined. If we confine ourselves to formulae
with a fixed finite set of free variables and bounded quantifier depth, we
can eliminate the sequences. This technicality expresses the fact that we
interpret a formula with n free variables as an n-place predicate, and a sin-
gle formula of quantifier depth k involves at most (n+k)-place predicates.
For this sort of reason, we do not take the usual Tarskian truth definition
for a first-order language as imputing to the object language an ontology
of finite sequences. Where they are required is to obtain satisfaction and
truth predicates that cover formulae of unbounded complexity.

We can see the relevance of the difference in the following way. A truth
theory in the style of Davidson does not attribute to the object language
an ontology of finite sequences of individuals, unless the domain itself
is closed under formation of sequences. An individual sentence will be
translated into the metalanguage by a sentence containing only quanti-
fiers over whatever the theory interprets the quantifiers of the language to
range over. But this could not be done for a truth theory with a relative sub-
stitutional quantifier clause such as (5). In that case, the reason is that the
substitution class of bracket terms contains terms with any number of free

44 These are of course not unique. But if we fix an ordering < of all bracket terms, we
can call a bracket term normal if it is {} or {T1 · · · Tm} where T1 · · · Tm are normal and
T1 < · · · < Tm, clearly any pure HF set is designated by a unique normal bracket term.
(The ordering need not be of type ω or even a well-ordering.)
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individual variables, and so there is no limit to the number of objects that
have to be assigned to interpret an instance of the quantification on the
right side of (5), while in the case of (6) at most one more object is involved.

The upshot of this discussion is that if we take the relative substitu-
tional semantics as capturing a speaker’s understanding of the language
of hereditarily finite sets, or of finite sequences, then we largely remove
the motives for characterizing awareness of such sets and sequences as
intuition, except in the ground-level case, where it is sequences that are
left unreduced. In the semantics, it is clearly sequences as functions that
are appealed to, but the work can be done by sequences as tuples in the
context of a theory like that sketched in §33 and Appendix 1. This would
be a satisfying result if we could put aside our questions about the notion
of imagining an arbitrary set or sequence of individuals. If this could be
done, then for sequences we would have a situation for intuitive knowl-
edge very similar to what will emerge for strings in Chapter 7.

The manner in which ordinal numbers were introduced in §32 gives
them the character of generalized types. So long as their role is just that of
numbering sequences of individuals, they can be considered as objects
of intuition in the weak sense that individual numbers can be intuited. It
follows that there is one route into the concept of number that gives num-
bers this character. In our discussion of cardinality, however, we saw that
regarding number as attaching to a set was not essential to its elemen-
tary applications. The same holds for sequences and ordinals. It is not
evident that we should see the genesis of number as introducing bearers
of numbers as objects in such a way that such objects are the foundation
of numbers as objects. But it does tell us something about the notion of
number that a route into it is possible in which this is the case, although
its optional character makes it not serve as the basis for an argument like
Maddy’s for perception of sets. And in a fully developed theory of number
in theoretical mathematics of course there will be bearers of number.

We have up to now not taken account of a basic feature of the concepts
of set and sequence: We allow sets and sequences of objects generally,
independently of whether they are in any way intuitively given. In talking
of intuitive knowledge about sets and sequences, we have not considered
how great a restriction it is that it should be possible to imagine an arbi-
trary element of the underlying domain D. But it is clearly a restriction.

Note that for the relative substitutional semantics, no use is made of
any intuitive character the domain of individuals presupposed for the
interpretation ofL0 might have. In order to reinforce the question it raises
about intuition of sets, we pose a simple question concerning the axiom
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of pairing. Given x and y, there is a set whose elements are just x and y.
What now is gained if we suppose that x and y are intuitable or that they
belong to a domain of which we can imagine an arbitrary element? The
substitutional semantics suggests that what is gained concerns not the
step from x and y to {x, y} but x and y themselves, whose existence is a
presupposition of that of {x, y}. The treatment of the concept of object
in Chapter 1 indicates how, on a purely formal level, we might have a
conception of object not constrained by considerations of intuitability.
The relative substitutional semantics sketched here indicates how this
would extend to hereditarily finite sets. This might lead to the conclusion
that intuition of the elements of a set is quite irrelevant. However, we
confront again the fact that sequences of individuals are left unreduced
by our relative substitutional semantics.

We need to reflect once again on what we have called the synthe-
sis involved in representing several objects together. Our discussion has
brought out that this should be distinguished from taking the objects to
constitute a single object, a set as collection. But perhaps we should not
see either as particularly bound to intuition of the objects involved. The
cases we have considered are all special cases of the principle that any
objects can constitute a set. We might see the synthesis involved as a
purely intellectual affair that has nothing to do with intuition.45 On this
view, although it could not yield intuition of the set if the elements were
not intuited, there is no difference with respect to the transition between
the givenness of the elements and that of the set.

§36. Well, then, what are the numbers? Structuralism put in its place

We have considered in §§32–33 two kinds of possible geneses of discourse
about natural numbers. On the one, such discourse arises in a series of
steps beginning with a situation in which numerals do not function as
singular terms, by way of one in which quantification of numeral places
is substitutional, and then this quantification becomes objectual and is
unified with other quantification. Cardinality is provided for in the lan-
guage, without the introduction of any objects as bearers of number.
Such objects would arise only at a stage at which the schematic charac-
ter of generalizations about predicates needs to be replaced by regular

45 Compare Kant’s remark that “the science of number · · · is a pure intellectual synthesis
which we represent to ourselves in our thoughts.” (Letter to Johann Schultz, 25 November
1788, Ak. X 555.)
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quantification over a domain. This development is on this account inde-
pendent of the development of reference to numbers, although it is no
doubt essential to theorizing about cardinality.

On the other type of genesis, sets or sequences are the primary “arith-
metical” objects, and numbers arise by abstraction. This account makes
the notion of finite ordinal or cardinal the genetically first concept of
number. Although this was also true on the first account, that feature of it
was independent of the fact that on it quantification “over numbers” is at
first substitutional. Although on the second type of account one could at
first treat the quantification as substitutional relative to the quantification
over sets and sequences, there seems to be little gain in this.46

One could easily imagine the first account as part of a model for math-
ematicians’ talk about numbers before the nineteenth century, although
a realistic account would have to take in a lot that we have not considered,
such as how such mathematicians talked of what we call real numbers
and how they related the concept of number to geometry. The account
has the feature that numbers first arise as objects of a distinctive type.
That means that without being structuralist, the account is congenial to
structuralism because it introduces numbers in a way that at least leaves
entirely open the question what identities might hold between numbers
and other objects.

The question arises how this story fares with respect to a problem that
arises in my own treatment of structuralism, as well as in that of other
writers, namely, the need to give an instance of the structure, possibly
independently of the concept of number or at least cardinality. In §18, it
was argued that this is an unavoidable impurity in structuralism, since one
must rely at this point on some other domain of objects, in my preferred
treatment a domain of quasi-concrete objects and in any event not pure
mathematical objects.

If one begins as in §32 with numerical quantifiers, this problem arises
as the problem how we insure that it is never the case that (∃nx)Fx is equiv-
alent to (∃Snx)Fx. Given (2a) and (2b), it follows that this cannot happen
unless both are false. Whatever we mean by m = n, the substitutivity of
identity will imply that n = Sn can hold only if (∃nx)Fx and (∃Snx)Fx are
false for all ‘F ’, that is, if the domain of individuals contains fewer than n
elements.47 If the domain is finite, this will be true for sufficiently large n.

46 The abstraction at issue is first-order abstraction, as in Frege’s example of the direction
of a line. Second-order abstraction would raise additional problems.

47 Obviously, I have ruled out the interpretation of n as infinite.



P1: JZP
9780521452793c06 CUNY1138/Parsons 978 0 521 45279 3 October 30, 2007 16:13

220 Numbers as objects

Thus, so long as only the elements of an antecedently given domain are
numbered, we do not avoid this sort of collapse unless the domain is infi-
nite. Our reflection on the verification in everyday life of simple instances
of statements of number does not yield that.

It is hard to see how it could unless the infinity of the domain comes
from some other source. Otherwise, on this genetic account, the infinity of
the natural numbers does not seem forced on us until we apply numerical
quantification to predicates of numbers, that is, after quantification over
numbers is unified with other quantification. That appearance is mis-
leading, however, because it is assumed that the character of numbers
as cardinals is maintained throughout. But there is no bar to introducing
pure arithmetic at some stage, and, for example, assuming Sn �≡ 0 and the
inference from Sm ≡ Sn to m ≡ n. (I use ‘≡’ rather than ‘ = ’ here because
I do not want to assume that the relation being introduced is identity.)
But once we go objectual, the substitutivity of identity will force differ-
ent numerals to designate different objects, since if m and n are distinct
numerals, then the class of numerals k for which m ≡ k holds will differ
from the class for which n ≡ k holds.48

Does this give an easy route to the infinity of the natural numbers? No,
because it clearly presupposes the infinity of the numerals. It depends
on intuition just as the proposal of §18 did, but not quite in the same
way, since the numerals are not offered as an instance of the struc-
ture of numbers. The justification of the assumptions is presumably that
we can treat numerals as equivalent in the sense of ≡ only if they are the
same, but that can be carried through only if the sequence of numerals is
infinite.

In the route by sets or sequences, as it has been set forth in §§33–34, that
one can always add additional elements to a set or terms to a sequence is
an assumption of the theory of these objects, so that it can be prior to the
abstraction involved in the introduction of numbers. We might, however,
consider the case where we form only sets of individuals and yet do not
assume an infinity of individuals. In that case, of course, there can be
collapse of cardinals at a finite point, but it occurs in a slightly different
way. If the cardinals are themselves individuals, then the domain must
be infinite, just as in Frege’s own setting. Let us rather assume that they
are a separate sort of objects. If we define ‘m is the (cardinal) successor
of n’ essentially in Frege’s way, then, if the domain is finite, there will be a
set V of all individuals, which will have a certain cardinality n, but n will

48 It then follows that ‘≡’ is coextensive with ‘ = ’ on the natural numbers.
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have no successor. There will be no failure of the abstraction axiom, and
also no x for which Cx does not exist.

One might then ask whether treating cardinals as individuals itself
offers the “easy route” to the infinity of the natural numbers that we have
so far not found. Let us remind ourselves of the framework in which we are
working. We have a two-sorted theory, with individuals and sets, and the
axioms (H1)–(H4) and the abstraction axiom of §33, where the variables
are of the set sort but the terms Cx and Cy are of the individual sort. It is
in fact a weaker version of what has come to be called Frege Arithmetic,
a theory based on second-order logic in which we add to the language a
cardinal number operator NxFx, read ‘the number of Fs’, together with an
axiom embodying Frege’s criterion of identity for cardinals, called above,
following the literature, Hume’s Principle. The theory now under discus-
sion could be formulated as a subtheory of Frege Arithmetic by suitably
restricting the comprehension axiom and then adding a schema of induc-
tion. But it embodies the same fundamental move as Frege Arithmetic,
of passing from an equivalence of second-level entities to an identity of
ground-level objects. Because in both cases this constrains the domain of
individuals to be infinite, this has to be regarded as a substantial assump-
tion, although the resulting theory is still essentially weaker than Frege
Arithmetic; it is equiconsistent with first-order arithmetic.49 Moreover,
as we have already treated sets as a separate sort, regarding cardinals as
individuals seems inadequately motivated. Once again, we do not have
an easy route to the infinity of the natural numbers.

Apart from that, none of the stories we have considered offers an answer
to the question what objects the natural numbers are or which of the
different construals of the natural numbers with the help of higher-order
logic or set theory is correct. That is entirely in accord with the structuralist
view defended in §18. However, common to all the versions of both kinds
of account is the following: We have a choice as to whether to proceed so
that terms and variables for numbers are of the same type as others, and,
assuming that mature mathematics does involve regarding numbers as

49 Suppose first that the theory assumes nothing about the number of individuals. Then,
assuming consistency, it will clearly have a model with no individuals except the finite
cardinals, that is in which the individuals are the natural numbers, and in which all sets
are finite. The sets can then be coded as numbers using Ackermann’s method.

The result will still hold if we assume countably many individuals that are not cardinals.
For the theory will have a model with countably many noncardinals and countably many
cardinals. Code the cardinals as 0, 2, 4, 6, · · · and the noncardinals as 1, 3, 5, 7, . . . Again
code the sets by Ackermann’s method.
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objects among others, at what point to unify the type of numbers with oth-
ers. This implies that the questions giving rise to the structuralist view of
mathematical objects can be postponed until far along in the genesis
of discourse about numbers. This holds in particular for the question
whether the identity of numbers is bound up with their cardinal or ordi-
nal role: One might imagine their first arising as one or the other but then
as cutting loose from this and being understood as a structure that can
be applied in either way, or in others. The place of a structuralist view of
numbers is as an account of numbers in mature mathematics, and we
need not assume that such an understanding of the numbers is what the
child learns or what our distant ancestors acquired over a long period of
time.

§37. Intuition of numbers denied

There is a quite obvious conflict between the structuralist view of num-
bers and the claim that numbers are objects of intuition in the Hilbertian
sense developed in this work from §28 on. The conflict exists for struc-
turalist views in general as canvassed in Chapters 2 and 3, not just for
the specific one defended in §18. Being intuited by a certain agent S at
a specific time t would be a property additional to structural properties
of numbers, even if the numbers are embedded in a larger mathematical
structure. Thus, if it is a property of some number n, on the structuralist
view it would have to be an external relation such as is involved in apply-
ing numbers as cardinals. Such relations, however, have a certain kind of
isomorphism-invariance. If the number of Fs is n, then there is a one-one
map of the Fs onto the elements a, fa, ffa, . . . f (n)a of any progression; if
there is such a map for one progression, there will be one for any other. But
no comparable condition can obtain for being intuited by S at t, for the
simple reason that there are progressions whose terms are not objects of
the kind that intuition as we have explained it can capture. For example,
any structure that is instantiated in such a way that the domain is a set can
be instantiated so that the domain consists entirely of sets of very high
rank, but, since such sets have a structure too rich to be instantiated in
space and time, they cannot be objects of Hilbertian intuition. The same is
true of other conceptions of intuition modeled on Kant’s. Other examples
of nonintuitable objects suggest themselves: other kinds of pure abstract
objects, transcendent objects such as God and other objects considered
in theology, and theoretical objects in science. Although they are sug-
gestive, I don’t want to appeal to any of these: the pure abstract objects
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because their not being objects of intuition should be the conclusion
of an argument, perhaps close to that concerning the natural numbers;
transcendent objects because it will not be agreed that they exist; and
theoretical objects because, given that they are spatiotemporal, it is at
least not obvious that they should not be treated as objects of intuition
although it is not practically possible to perceive them.

It is true, as I argued in Chapters 2 and 3, that it is a presupposition of
talk about natural numbers that what we are talking about is in some way
a possible structure. Moreover, I argued that this possibility is made out by
an intuitive model. But the intuition in question need not be intuition of
numbers, and in the version of §18 it is not. What is asserted to be possible
is a structure that is physical, or mental, or intuitive-geometrical, in a way
in which, on this structuralist view, numbers are not.

It might be objected that this rejection of intuition of numbers depends
on very specific features of the conception of intuition involved, more
specific than its generally Kantian or spatiotemporal character. I agree
that it depends on the latter, but it does not depend on more specific
features of the conception of §28. Elsewhere I have discussed generalized-
types conceptions of numbers and indicated that at least a case could be
made that there is intuition of numbers as so conceived (see note 27).
But it would be incompatible with the structuralist view to accept such
a conception as the final conception of what the numbers are. And I
think the point can be generalized: So long as the intuition is spatio-
temporal, something of the generality of the concept of number will be
lost on any conception that admits intuition of numbers. We can, however,
leave open whether some essentially different conception of intuition,
modeled perhaps on Husserl’s or Gödel’s, admits intuition of numbers.
This question will arise again in Chapter 9.

We should give separate consideration to the question whether, on
a structuralist view, any propositions properly about numbers are intu-
itively evident. This is different from the question to be addressed in
Chapter 7, what the limits of intuitive evidence are when one refers to the
intuitive model of arithmetic by means of strings. Obviously, however,
anything that is not intuitively evident when interpreted with reference
to that model would also not be intuitively evident as a proposition about
numbers. In particular, that is the case for induction as a general princi-
ple. But if numbers are not objects of intuition, it is difficult to see how
any propositions about numbers could be intuitively evident in the sense
that concerns us. But we can best approach the question by way of a dif-
ferent question, whether the applicability of the concepts of cardinal and
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ordinal number to objects in general implies that statements about num-
bers such as ‘7 + 5 = 12’, which are intuitively evident when interpreted
with reference to an intuitive model, can still be taken as intuitively evi-
dent when this generality is taken into account.

‘7 + 5 = 12’ implies, by first-order logic with identity, any instance of
the schema

(7) [(∃7x)Fx ∧ (∃5x)Gx ∧ (∀x)¬(Fx ∧ Gx)] → (∃12x)(Fx ∨ Gx).

It should be clear that there will be instances of this schema that are not
intuitively evident, once the domain over which the quantifiers range no
longer consists of objects of intuition. Does this imply that, in drawing
such a consequence, we have come to understand ‘7 + 5 = 12’ so that
it is no longer intuitively evident? We have an argument for this conclu-
sion only if we assume that even in this setting logic preserves intuitive
evidence. But precisely because it is being applied where the domain of
quantification has a nonintuitive character, we can question this assump-
tion. Thus the conclusion that the lack of intuitive evidence of such an
instance of (7) reflects back, so that ‘7 + 5 = 12’ is itself not intuitively
evident, is not forced on us.

The ideas about the genesis of reference to numbers presented in this
chapter differ from the versions of structuralism considered in this work,
in that according to the genetic accounts some form of reference to num-
bers is present before the questions giving rise to the abstraction or gen-
eralization can even arise. The eventual integration of arithmetic with set
theory (and possible highly abstract empirical scientific theories) does
bring the numbers into a sort of holistic connection with highly non-
intuitive modes of reference and knowledge. It is not clear, however, that
statements that were intuitively evident before this expansion of our con-
ceptual resources need to lose that evidence. What is clear from examples
like that of ‘7 + 5 = 12’ given above is that their applications outside the
intuitive sphere will in general not have the same intuitive character. If we
model the often-claimed “transparency” of the numbers by our concepts
of intuition and intuitive evidence, then it follows that the generality of
their application, thus one aspect of what is involved in their status as
pure abstract objects, is something added to what is transparent about
them. I don’t find this an unwelcome result; in fact, some further questions
about the transparency of the natural numbers, to be sure not concern-
ing such elementary statements as ‘7 + 5 = 12’, will be considered in
Chapter 9.
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§38. Appendix 1: Theories of sets and sequences

The first-order theory PS− of hereditarily finite sets sketched in §33 is
a theory formalized in first-order logic with identity, with a nonlogical
predicate ∈ of membership and a constant ∅ for the null set, and a binary
functor ⊕. The axioms are (H1)–(H3) and the instances of the schema
(H4) of induction. We note that the formulation of extensionality (H1)
allows for individuals. As it stands the theory says nothing about the
individuals, even whether or not any exist. They could be given some
structure by adding predicates applying to individuals and, possibly,
axioms involving them.

A more restricted theory, of sets only of individuals, is obtained by using
a two-sorted language, with variables for individuals and sets. ∅ will be
of the set sort, and ⊕ will take a set and an individual as arguments. If we
use a, b, c, . . . for sets, then the axioms take the form:

(H1′) (∀z)(z ∈ a ↔ z ∈ b) → a = b

(H2) z /∈ ∅

(H3′) z ∈ a ⊕ y ↔ (z ∈ a ∨ z = y)

(H4′) {A(∅) ∧ (∀b)(∀y)[A(b) → A(b ⊕ y)]} → (∀b)A(b).

(These formulations are meaningful for the one-sorted theory if we take
a, b, c, . . . as variables restricted to M. Then they offer an axiomatization
essentially equivalent to (H1)–(H4).50) To allow the case of no individuals,
the logic for the individual sort should allow the empty domain. Clearly,
without assumptions as to how many individuals there are, the theory
will, for each n, have a model with n individuals and 2n sets.

Let us now consider the one-sorted theory PS–.51 One can straightfor-
wardly see that the axioms of ZF, other than Infinity and Foundation, are
derivable. Extensionality and the null set are axioms; the pair set {x, y} is
(∅ ⊕ x) ⊕ y. To prove the sum set axiom, one first shows by induction that
any pair a, b of sets has a unique union: If b = ∅ it is a. If

(∀x)[x ∈ z ↔ (x ∈ a ∨ x ∈ b)],

50 (H3′) thus interpreted leaves undetermined what x ⊕ y is when x is not a set, so that
a strictly equivalent axiomatization would consist of (H1′), (H2′), (H3), and (H4′). On
induction, see note 21 above.

51 For information and references to literature on theories of finite sets, I am greatly
indebted to Akihiro Kanamori and Laurence Kirby.
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then evidently by (H3)

(∀x)[x ∈ z ⊕ u ↔ (x ∈ a ∨ x ∈ b ⊕ u)].

∅ is evidently its own sum set. If (∀x)[x ∈ z ↔ (∃y)(x ∈ y ∧ y ∈ a)], then for
any x,

x ∈ z ∪ u ↔ (∃y)(x ∈ y ∧ y ∈ a) ∨ x ∈ u
↔ (∃y)(x ∈ y ∧ y ∈ a) ∨ (∃y)(x ∈ y ∧ y = u)
↔ (∃y)(x ∈ y ∧ y ∈ a ⊕ u),

so that if z satisfies the condition to be the sum set of a, z ∪ u satisfies
the condition to be the sum set of a ⊕ u. Again, the condition implies
uniqueness.

Zermelo’s separation schema

(AS) (∃b)(∀x)[x ∈ b ↔ (x ∈ a ∧ A(x))]

is also derivable by induction. For if a = ∅, one can clearly take b = ∅.52

And if (AS) holds for a given a, then if ¬A(z) the same b does for a ⊕ z; if
A(z), then (AS) implies

(∀x)[x ∈ b ⊕ z ↔ (x ∈ a ⊕ z ∧ A(x))],

so that in either case (AS) holds for a ⊕ z. A similar inductive argument
shows that Replacement holds as well.53 To prove the power set axiom,
one first shows by induction that for any x and y, {w ⊕ y: w ∈ x} exists.
{∅} satisfies the condition to be the power set of ∅. If z satisfies it for a,
then z ∪ {w ⊕ y: w ∈ z} satisfies it for a ⊕ y. Again by induction, every set
has a power set.

Thus, every theorem of ZF (with urelements) without Infinity or Foun-
dation is provable in PS–.54

These arguments suggest extending PS– by a schema of primitive recur-
sion, for example:

(PR) ϕ(x1 . . . xn, ∅) = ψ(x1 . . . xn)
ϕ(x1 . . . xn, a ⊕ z) = χ [x1 . . . xn, a, z, ϕ(x1 . . . xn, a)] if z /∈ a,

= ϕ(x1 . . xn, a) if z ∈ a.

52 The restriction of a to M is again nonessential; if a is not a set, one can again take b = ∅.
53 Cf. Lévy, Basic Set Theory, p. 77.
54 This is stated by Givant and Tarski, “Peano Arithmetic,” for the theories without urele-

ments. Some details can be found in Tarski and Givant, pp. 223–226.
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However, such a schema is subject to an additional condition to insure
that the value of ϕ( . . . , a) does not depend on the order in which the
elements of a have been adjoined.55 It seems clear that if the functors
in the recursion are cardinal in the sense of §33, the condition will be
satisfied, but that is a rather special case.

The axiom of Infinity is clearly false in the intended model of hered-
itarily finite sets based on a domain of individuals (possibly empty, but
also possibly infinite). In fact, it fails in a stronger way: It is possible to
prove in PS– that every set is finite, for any one of several definitions of
finiteness.56 This is easy to see by induction for the most familiar one: a
is finite if a is equinumerous with a finite von Neumann ordinal, where
an ordinal is finite if it and each of its elements is either 0 or a successor.

Foundation clearly holds in the intended model of the theory, not only
for the pure hereditarily finite sets but also for the hereditarily finite sets
built up from some domain of nonsets. But it is not derivable from (H1)–
(H4). Suppose we have a “set” w such that w = {w}. Treating it as if it
were an individual, build up the hereditarily finite sets on it. That yields a
model of the theory in which Foundation fails.57 For future reference, call
this model M1. Let M2 be the model obtained in the same way beginning
with a sequence a0, a1, a2, . . . such that ai = {ai+1}. In M2, for each i, ai

lacks a transitive closure, so that the sentence TC asserting that every set
has a transitive closure fails in M2. However, M2 satisfies Foundation. We
can assign finite ranks to the sets in the model: rk(z) = 0 if z is ∅ or ai for
some i, = max(rk(wi)+1) if z = {w1 . . . wm}, unless m = 1 and wm = {an}
for n �= 0, in which case z = an–1 and rk(z) = 0. For consider a set z �= ∅

in the model. If the minimal rank of its elements is not 0, or if ∅ ∈ z, then
either a minimal rank element or ∅ has an empty intersection with z.
Otherwise, since z is finite, there must be a greatest n such that an ∈ z.
Since an+1 is the sole element of an, an ∩ z = ∅. Let M3 be the model

55 For a discussion of this problem and a necessary and sufficient condition for a more
powerful version of primitive recursion, see §4 of Kirby, “Finitary Set Theory.”

56 For several such definitions that arose in early twentieth century work, see my “Devel-
oping Arithmetic in Set Theory,” §3.

57 I am indebted to Vann McGee for questioning me about the status of Foundation and
suggesting that (H1)–(H4) do not rule out a set that is its own unit set. (Some earlier circu-
lated versions of this work claimed falsely that Foundation is derivable from (H1)–(H4).)
Paul Bernays constructs essentially the same models of his own set theory without Infin-
ity, in which Foundation and transitive closure thus fail in just the same way. However,
his construction works by modifying Ackermann’s arithmetical model. See “A System,
Part VII,” p. 104 of reprint. I am also indebted to McGee for pointing out that M2 satisfies
Foundation; the proof in the text is based on his sketch. Bernays seems to state the con-
trary, but the appearance is due to the fact that he states the axiom in terms of classes,
so that it is equivalent to ∈-induction (“A System, part II,” p. 19 of reprint).
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obtained in the same way again, starting with both w and the sequence
of ai. In M3, both TC and Foundation fail.58

However, this weakness of (H1)–(H4) is overcome if we replace the
Zermelian induction (H4) by the stronger

(H4*) [(∀x)(¬Mx → A(x)) ∧ A(∅) ∧ (∀x)(∀y){[A(x) ∧ A(y)]
→ A(x ⊕ y)}] → (∀x)A(x).59

PS– with (H4) replaced by (H4*) is essentially the theory PS discussed by
Flavio Previale.60 Conversely, (H4*) is derivable if ∈-induction, or equiv-
alently Foundation and TC, are added to PS-.61

58 The standard proof of TC requires the axiom of Infinity; see for example Drake, Set
Theory, pp. 28–29. But it is provable in set theory without Infinity if we have ∈-induction;
see Barwise, Admissible Sets, p. 24. Likewise, if ∈-induction is added to (H1)–(H4), both
Foundation and TC are provable.

59 (H4*) is an adaptation to the situation with urelements of a schema proposed by Givant
and Tarski, op. cit. I myself arrived at it by reformulating an equivalent schema proposed
in correspondence by McGee. Previale, “Induction and Foundation,” and Kirby, “Finitary
Set Theory,” call (H4) weak induction and (H4*) strong induction.

60 Op. cit., pp. 216–217. Previale’s PS is a conservative extension of what is formulated
above, but he also treats ∈ as defined and derives (H1) from other axioms. (H4*) suggests
stronger principles of primitive recursion on hereditarily finite sets, which have indeed
been discussed in Rödding, “Primitiv-rekursive Funktionen,” and Kirby, “Finitary Set
Theory.”

To prove TC, apply (H4*) to ‘¬Mx ∨ x has a transitive closure’. It is trivial if ¬Mx, and
evidently TC(∅) = ∅. If x has a transitive closure TC(x ), and y has one TC(y ), then TC(x )∪
TC(y ) is the transitive closure of x ⊕ y; if y is not a set, TC(x ⊕ y ) = TC(x ) ∪ {y}. By (H4*),
every set has a transitive closure.

Now we can derive ∈-induction. Suppose (1): (∀x )[(∀y ∈ x)A(y ) → A(x )]. Following
Previale, we write x ≤ y for x ∈ TC(y ) ∨ x = y. (1) clearly implies A(x ) if ¬Mx or x = ∅, so
that for these x, (∀z)(z ≤ x → A(z)) holds. Writing this as A*(x ), suppose now A*(x ) and
A*(y ). If z ≤ x ⊕ y, then z ∈ TC(x ); or z ∈ TC(y ); or ¬Mz and z = x or z = y; or z = x ⊕ y. In
the first three cases, A(z) follows by A*(x ) and A*(y ). In the fourth, if z′ ∈ x ⊕ y, z′ ∈ x or z′ =
y by (H3), and in either case A(z′) by A*(x ) and A*(y ). But then we have (∀z ∈ x ⊕ y )A(z),
and so A(x ⊕ y ) by (1). Combining the cases, we have A*(x ⊕ y ). By (H4*), (∀x )A*(x ), from
which (∀x )A(x ) follows.

61 This could be concluded from what is stated in Givant and Tarski. To prove (H4*), we
rely on the fact that PS− proves the axioms of ZF other than Infinity and Foundation.
But with ∈-induction and the statement that every set is finite, we can prove that every
set has a finite rank. Assign rank 0 to nonsets. Now assume the antecedent of (H4*); call
its three conjuncts (i), (ii), and (iii). We can then prove by ordinary induction on n: (iv)
(∀x )[rk(x ) ≤ n → A(x )]. (i) and (ii) imply that this holds for n = 0. Assuming it holds
for n, let z be a set of rank n + 1. Since z is finite, there is a function f mapping some
natural number m one-one onto z, and then there is a function g such that g(0) = ∅ and
g(k + 1) = g(k) ⊕ f (k) if k < m. A(g(0)) holds by (ii). Assume A(g(k)) and k < m. Since
f (k) ∈ z, rk( f (k)) ≤ n, and so by induction hypothesis A( f (k)) holds. Then by
(iii) A(g(k) ⊕ f (k)), i.e. A(g(k + 1)), follows. Thus for all k ≤ m, A(g(k)) holds, and since
g(m) = z, we can conclude A(z), i.e. (iv) holds for n + 1.
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It might therefore be desirable to replace (H4) by (H4*). However, the
system PS– based on (H1)–(H4) has a certain historical pedigree and
expresses most directly the intuitions about finite sets developed in §33,
as is indicated by the fact that (H4′) is adequate in the case where we
consider only sets of individuals.62

The theory of sequences of individuals is formulated in §33. Again, we
obtain a theory allowing sequences of sequences by using a one-sorted
language and a predicate Seq. The sequence variables p · · · t are now
understood as restricted to Seq.63 The schema of primitive recursion takes
the form:

(PR′) ϕ(x1. . . xn, 〈〉) = ψ(x1. . . xn)
ϕ(x1. . . xn, s*z) = χ [x1. . . xn, s, z, ϕ(x1. . . xn, s)].

In this case, the extension is conservative already in the one-sorted the-
ory.64 Because a sequence is built up in a unique order, the problem for
primitive recursion mentioned above does not arise.

The predicate ≈ of §33 can be defined by primitive recursion with
substitution in parameters. We set pd(〈〉) = 〈〉 and pd(s*x) = s; then:

(9) s ≈ 〈〉 ↔ s = 〈〉
(10) s ≈ t*x ↔ s �= 〈〉 ∧ pd(s) ≈ t.

The models M1–M3 establish Givant and Tarski’s assertion that no two of the theories
PS−, PS− + Foundation, PS− + TC, and PS are equivalent.

62 Independently of this issue, it should be pointed out that theories of this kind without
induction have been studied and shown to be mutually interpretable with Robinson
arithmetic Q. That Q is interpretable in the theory with (H1)–(H3) is announced in
Szmielew and Tarski, “Mutual Interpretability”; see also Tarski, Mostowski, and Robin-
son, Undecidable Theories, p. 34. A proof of the interpretability of Q in the set theory
is given by Collins and Halpern, “Interpretability of Arithmetic.” Another proof of the
interpretability of Q in the set theory is given in Montagna and Mancini, “Minimal Pred-
icative Set Theory”; in fact they do without the axiom of extensionality.

Neither Szmielew and Tarski nor Tarski, Mostowski and Robinson assert that the set
theory is interpretable in Q (contrary to the statement of Montagna and Mancini, p. 187).
A proof can be extracted from Nelson, Predicative Arithmetic, Chapters 10–12. It relies
on the local interpretability of arithmetic with bounded induction (I�0) in Q (cf. §50).

I am indebted to Allen Hazen for this observation and for most of the references in
this note. Whether the last mentioned interpretability result was known earlier I do not
know.

63 The axioms stated do not settle what x*y is when x is not a sequence. A natural convention
would be to have x*y = 〈〉*y in that case. Then (S1) holds without restriction, but (S2)
requires the restriction of s and t to sequences. An alternative would be x*y = x.

64 In the one-sorted theory, the restriction to sequences is necessary for these equations to
work as intended. However, we can accommodate nonsequence arguments by adding
an additional clause, say ϕ(x1. . . xn, z) = ζ (x1. . . xn) if ¬Seq(z).
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(L1) and (L2) are then obvious. We can then derive (L3). Note first that by
sequence induction we have

(11) s �= 〈〉 → (∃t)(∃y)(s = t*y).

In fact, t and y are unique. Suppose now A(〈〉, 〈〉) and

(12) (∀s)(∀t)(∀x)(∀y)[A(s, t) → A(s*x, t*y)].

Then we clearly have (∀s)[s ≈ 〈〉 → A(s, 〈〉]. Suppose now (∀s)[s ≈ t →
A(s, t)]. If s ≈ t*y, then by (10), s �= 〈〉 and pd(s) ≈ t. Let s′ and x be the t
and y given by (11). Then by (S2), s′ = pd(s), and hence s = [pd(s)]*x. By
(12), A(s, t*y). Hence (∀s)[s ≈ t → A(s, t*y)], and by (S3), (∀s)(∀t)[s ≈ t →
A(s, t)] follows.

It is then immediate, by taking A in (L3) as t ≈ s, that≈ is symmetric, and
it is also immediate that it is reflexive. We can also derive by ≈-induction
(L3):

(L4) s ≈ t → [s = t = 〈〉 ∨ (∃p)(∃x)(∃q)(∃y)(s = p*x ∧ t = q*y ∧ p ≈ q)]

and then prove by sequence induction (S3) that ≈ is transitive.65 Clearly
we also have from (9), (10), and (11) (or from (L4)):

(L5) ¬(s*x ≈ 〈〉)

(L6) s*x ≈ s*y → s ≈ t.

Concatenation of sequences is introduced by the following recursion.
Abusing notation, I write it again as *.

s* 〈〉 = 〈〉
s*(t*x) = (s*t)*x.

The standard inductive proof that addition is associative can be used in
this setting to show that concatenation is associative.

65 We also have an induction principle for the cardinal equivalence relation ∼ similar to
(L3):

{A(∅, ∅)∧ (∀ a)(∀b)(∀x )(∀y )[(A(a, b) ∧ x /∈ a ∧ y /∈ b) → A(a ⊕ x, b ⊕ y )]}
→ (∀a)(∀b)[a ∼ b → A(a, b)],

which is similarly derived from the recursion for ∼ in §32. It can then be used to prove
that ∼ is an equivalence relation, as in the text for ≈.
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We also have by sequence induction on t

r ≈ s → r*t ≈ s*t

and by ≈-induction

s ≈ t → r*s ≈ r*t

We cannot prove that s*t = t*s; that is in general false if the domain D
has more than one element. We can, however, prove s*t ≈ t*s, again by
much the same proof as proves the commutativity of addition, using as a
lemma

s*(t*x) ≈ (s*y)*t.

Multiplication is defined by the obvious primitive recursion:

s ×〈〉 = 〈〉
s ×(t*x) = (s × t)*s.

Note that s×t depends only on the length of t, as it is s concatenated with
itself lh(t) times. Multiplication can be proved distributive over addition
(concatenation), associative, and commutative in the same manner as
this is done in the usual development of arithmetic. Distributivity and
associativity are strict identities; commutativity holds only in the sense
s × t ≈ t × s.

§39. Appendix 2: Relative substitutional semantics for the language
of hereditarily finite sets

Let L0 be a first-order language, which is interpreted by means of a cer-
tain structure with domain of individuals D. Let x, y, z, . . . be the individ-
ual variables, and let s, t, . . . be individual terms (including variables). I
assume a fixed enumeration of the individual variables.

We will add to L0 some apparatus for talking about hereditarily finite
sets and give it a substitutional interpretation relative to D. A language
L1 is described as follows: First we define bracket terms inductively as
follows:

(a) {} is a bracket term of rank 0.

(b) If t is an individual term, then {t} is a bracket term of rank 1.

(c) If T is a bracket term of rank n, then {T} is a bracket term of rank
n + 1.
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(d) If {Z} is a bracket term of rank n + 1,66 and T is an individual term
or a bracket term of rank ≤ n, then {Z, T } is a bracket term of
rank n + 1. Likewise if {Z} is a bracket term of rank ≤ n + 1 and
T a bracket term of rank n (or an individual term if n = 0).

(b)-(d) are equivalent to

(d′) if T1. . . Tm are individual terms or bracket terms, and the bracket
terms are of maximum rank n, then {T1. . . Tm} is a bracket term
of rank n + 1 (1 if the sequence contains only individual terms).

Note that bracket terms may contain free individual variables, but
no provision has been made for them to contain “set” variables.

We introduce substitutional variables X, Y, Z, whose intended sub-
stitution class is the bracket terms. An open bracket term is defined by
(a)–(d), ignoring rank, with the additional clause:

(e) X, Y, Z, . . . are open bracket terms.

Atomic formulae of L1 are atomic formulae of L0, t ∈ T where t is an
individual term and T an open bracket term, and S ∈ T and S = T where
S and T are open bracket terms. Formulae are composed in the obvious
way by sentential connectives and quantifiers of both types.

Now we define satisfaction of a formula ofL1 by a sequence of elements
of D, where we consider only formulae of L1 without free substitutional
variables. We will say that a sequence covers a formula A iff it assigns a
value to every individual variable occurring free in A. We assume that for
a formula of L0, s satisfies A only if s covers A.

(f ) If A is an atomic formula of L0, then s satisfies A iff s satisfies A in
the sense of L0.

(g) If A is t ∈ T, then s satisfies A iff s covers A, T is {t1 . . . tm} for
t1 . . . tm individual terms, and s satisfies t = ti for some i ≤ m.

(h) If A is S ∈ T, where S and T are bracket terms of rank n and m
respectively, then there are three cases:

(h1) n > m. Then s does not satisfy A.

(h2) T is {T ′}, where T ′ is of rank n. Then s satisfies A iff s satisfies S =
T ′.

(h3) T is {Z, T ′}, where {Z} is of rank ≤ n + 1, and T ′ is of rank ≤ n.
Then s satisfies A iff either s satisfies S ∈ {Z} or T ′ is a bracket

66 Clearly that will hold only if Z is a nonempty sequence.
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term and s satisfies S = T ′. (The definition is the same for the
two subcases of (d) above.)

(i) If A is S = T, where S and T are bracket terms of rank n and m
respectively, then there are again three cases:

(i1) n �= m. Then s does not satisfy A.

(i2) n = m = 0. s satisfies A iff S and T are both {}.

(i3) n = m �= 0. Then S is {U1 . . . Uk} and T is {V1 . . . Vl}. Then s
satisfies S = T iff for every i ≤ k there is a j ≤ l such that s satisfies
Ui = V j , and for every j ≤ l there is an i ≤ k such that s satisfies
Ui = V j .67

(j) If A is ¬B, s satisfies A iff s covers B and s does not satisfy B

(k) If A is B ∧ C, then s satisfies A iff s satisfies B and s satisfies C.

(l) If A is (∀x)B, then s satisfies A iff s covers A and for every u ∈ D, sx
u

satisfies B. (If x is the jth variable and j > lh s, we can assume that
(sx

u)i = u for all i, lh s ≤ i ≤ j.)

(m) If A is (∀X)B, then s satisfies A iff for all bracket terms T, and all
s′ that cover A X/T and agree with s on all variables free in A, s′

satisfies B X/T.

Suppose now that we are adding only the language of pure hereditarily
finite sets. Then individual terms play no role in the set-theoretic clauses
of the definition. In the definition of bracket term, clause (b) is dropped,
and clause (d) is replaced by

(d′′) If {Z} is a bracket term of rank ≤ n + 1, and T is a bracket term of
rank ≤ n (and one of these inequalities is an equality), then {Z, T }
is a bracket term of rank n + 1.

In the satisfaction definition, since bracket terms no longer contain
individual variables or other individual terms, clause (g) is dropped and
clause (m) is replaced by

(m′) If A is (∀X )B, then s satisfies A iff for all bracket terms T, s satisfies
A X/T.

67 These identities may be identities of individual terms. Note that identities of the form
t = T, where t is an individual term and T is a bracket term, are not well formed.
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In §35 we noted that in a relative substitutional theory of predicative
classes, or in the relative substitutional theory of hereditarily finite
sets, the truth theory could legitimately be regarded as attributing an
ontology of sequences to the object language, as is not the case for a
truth theory of the usual sort for a first-order language. In the above
definition only clause (m) differs from the usual first-order case in such
a way as to encourage that interpretation. But in the simplified situation
just considered, where only pure sets are admitted, the replacement of
(m) by (m′) means that the definition gives us no reason to suppose that
an ontology of sequences is being attributed to the object language.

It should be noted that if the language of hereditarily finite pure sets
is interpreted on its own, not as added to a first-order language, then
satisfaction plays no role, and we have a substitutional theory of truth of
the usual sort.
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§40. Arithmetic as about strings: Finitism

Although in the last chapter we concluded that natural numbers are not
objects of intuition in the sense that was developed in Chapter 5, the sys-
tem of strings discussed in §28 is still, in some sense, an intuitive model of
arithmetic. First, it is a structure of the same similarity type as the natural
numbers or the positive integers, consisting of an initial element and a
unary operation. Second, it consists of objects of intuition in the sense that
there is actual intuition of strings sufficiently early in the sequence and it
is possible to draw some conclusions about an arbitrary string intuitively.
Third, we can easily satisfy ourselves that it satisfies the Dedekind-Peano
axioms. These observations raise the second of the two questions posed
at the beginning of Chapter 6: How far does intuitive knowledge in arith-
metic extend, when arithmetic is understood with reference to this model
of strings? This question was effectively already discussed in the Hilbert
school.

In Hilbert’s papers on foundations in the 1920s and more fully in Hilbert
and Bernays’s Grundlagen der Mathematik I of 19341 the method appro-
priate for metamathematics, what Hilbert called the finitary method, is
developed in terms of an interpretation of arithmetic where the objects
are strings of just the sort we have been discussing. It is clear from HB I,
p. 21, that the authors understand strings (Ziffern) to be the objects of the
theory. But it is not essential that the interpretation be exactly this one;

1 The reader is reminded that Grundlagen is cited as HB. Page references are to the second
edition, although the passages cited occur in the first edition.

235
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indeed, Hilbert and Bernays write

In number theory we have an initial object and a process of continuation. Both
must be fixed intuitively in a definite way. The particular manner of fixing is
nonessential, but the choice once made must be held to for the whole theory.
We choose the numeral 1 as initial thing, and appending a 1 as process of
continuation. (ibid., pp. 20–21)2

We will assume this fixing is done in the manner described in §27. We will
not address the question how much generality beyond that our discus-
sion of intuitive knowledge will have. It seems clear that it will have some;
on the other hand, a general notion of intuitive model, which would spec-
ify that generality, is not likely to be intuitive in the sense that concerns
us.3 The explanation of the finitary method in §2 of HB I contains argu-
ments toward the conclusion that primitive recursive arithmetic, inter-
preted with respect to the model of strings, is intuitively known.

Of the three claims made at the beginning of this chapter, the first is
obvious and the second was argued for in §28 and §29. It seems almost
as obvious that the strings satisfy the Dedekind-Peano axioms. But the
nature of this conviction is not very easy to analyze. If we accept the
conclusion of §29 that the successor operation can be seen intuitively to
be well-defined, then it is plausible that the elementary axioms (i.e., the
(R1)–(R4) of §31) are intuitively known; this will be argued in the next
section. If we understand the strings as what is obtained from | by iter-
ated application of the operation of adjoining one more, then it should
be as evident that induction holds for them as that it holds for any struc-
ture characterized in this particular way. That is all I wish to claim at
this point; that this evidence is intuitive is not part of the claim, and,
indeed, the second-order character of the principle of induction should
lead us to think it is not intuitive. It is most relevant to our concerns to

2 Translations from this work are my own. One might read this passage as saying that the
sequence of strings of 1’s is an intuitive model of arithmetic, clearly one among many
possible such. The question would then arise what meaning the notion of model has
in the conceptual framework of their metamathematics. It is an indication that in the
course of explaining finitary mathematics Hilbert and Bernays engage in reflections that
can be formulated mathematically but that are not finitary; cf. note 3.

3 Concerning the related notion of finitism, about which more later, recent analysts have
stressed that they were analyzing finitism from a nonfinitist point of view. It is very
doubtful that one could give a real characterization from a finitist point of view, as
opposed simply to pointing out that certain modes of reasoning are finitist and others
are not. Similarly, one would expect that a characterization of the limits of intuitive
knowledge would use mathematical knowledge that is not intuitive.
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consider a weaker arithmetic than the usual first-order arithmetic: prim-
itive recursive arithmetic (PRA). This theory is quantifier-free, although
its formulae have free variables with a generality interpretation. The for-
mulae are equations of terms and combinations by the usual operators of
propositional logic. Terms are composed from variables, 0, S, and func-
tors introduced by what we might call the rule of primitive recursion.
This allows us, given functors ψ , χ of n and n + 2 arguments respectively
(n ≥ 0),4 to introduce a new functor ϕ of n + 1 arguments and to assume
the equations

(PR) ϕ(0‚ a1 . . . an) = ψ(a1 . . . an)‚

ϕ(Sb‚ a1 . . . an) = χ [b‚ ϕ(b‚ a1 . . . an)‚ a1 . . . an].5

Logic consists of the obvious rules concerning identity, classical proposi-
tional logic (but see §42), and a rule for substituting terms for variables.

The aim of this chapter is to determine how far intuitive knowledge in
arithmetic extends, when it is understood with reference to an intuitive
model like that of strings. However, it is helpful for this inquiry, and also of
interest in itself, to keep in mind issues about Hilbert’s conception of the
finitary method. Gödel remarked that “finitary mathematics is defined as
that of intuitive evidence,”6 and some such conception of the epistemo-
logical character of the finitary method did belong to the outlook of the

4 This formulation presupposes that functors can be introduced by explicit definition,
which can be reduced to particular schemata as in Kleene, Introduction to Metamath-
ematics, pp. 219–221. Otherwise arbitrary terms composed from already introduced
functors need to be allowed in (PR). I use the term ‘functor’ simply for singular terms
with empty argument places; I do not wish to assume that they designate functions; com-
pare the use of the word ‘predicate’, in particular in chapter 1, where it is not assumed
that predicates designate properties or relations.

5 The term “rule of primitive recursion” has its point, because in a formalism with function
variables, we could formulate a single pair of axioms

R(0‚ a‚ f ) = a

R(Sb‚ a‚ f ) = f [b‚ R(b‚ a‚ f )]‚

which will do the work of the rule and might be called the axiom of primitive recursion.
Proof-theoretic work shows that the relation of the rule and axiom of primitive recursion
is closely connected with that of the rule and axiom of induction.

6 “Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes,” p. 240,
my translation. (I use ‘evidence’ to translate the German Evidenz, although a neologism
like ‘evidentness’ might better avoid the misleading connotations of the English word.)
In Gödel’s 1972 English version of the paper, “On an Extension of Finitary Mathematics
which has not yet been Used,” what corresponds to the quotation in the text is the remark
that “finitary mathematics is defined as the mathematics of concrete intuition” (p. 272,
emphasis Gödel’s).
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Hilbert school, although it is not stated quite so directly in their writings.
A certain kind of avoidance of reference to the infinite is also part of the
method, and this might be motivated and considered independently of
conceptions of intuition, as it is in some more recent writings on finitism
(see later).

Gödel’s remark can be unpacked as two theses:

(F1) If a proposition has been proved by the finitary method, then it
is intuitively evident.

(F2) If a proposition is intuitively evident, it can be given a finitary
proof.

It is useful to consider these theses in connection with two theses that
together constitute a mathematical characterization of finitism:

(F3) Proofs in PRA are finitist; hence any theorem of PRA is finitistically
provable.

(F4) If a proposition in the language of primitive recursive arithmetic
is finitistically provable, then it is a theorem of PRA.

(F3) is clearly expressed in writings of Hilbert and Bernays; an analysis
of finitism that did not yield it would be hard put to it to show that it
was faithful to Hilbert’s intentions. In discussions of the subject it has
been noncontroversial. This is, however, partly a terminological matter,
since arguments have been given against accepting primitive recursion
in general, in some cases on grounds akin to those underlying the finitary
method. Views that set the limits of mathematics (or of mathematics
with a specific kind of methodological superiority) more narrowly than
finitism are usually called “strict finitist,” and I will follow that usage.

(F4), by contrast, is controversial as a claim about the finitary method
as intended by Hilbert. It is favored by many of Hilbert’s general
remarks about the method. However, Richard Zach has pointed out that
Ackermann’s first consistency proof of 1924 uses a function enumerat-
ing the primitive recursive functions, which cannot be available in PRA.7

Under the impact of Gödel’s incompleteness theorem, Bernays fairly
quickly became convinced that an extension of the finitary method was
needed to prove the consistency of classical first-order arithmetic (PA).8 It

7 “The Practice of Finitism.” Such a function can be proved total in PA, but the proof
requires induction on a predicate with two nested quantifiers.

8 I use this now usual designation for classical first-order arithmetic although it is not
entirely happy.
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was not claimed that the proofs obtained in the 1930s by Gentzen and then
Ackermann were finitist, and there has been general agreement that they
are not. That still leaves a substantial intermediate area, where analyses
of finitism have differed. Kreisel in 1958 proposed an analysis according
to which finitism goes substantially beyond PRA and claimed that it is
possible to codify the totality of finitist methods in a system such that
one can give (in PRA) a proof of the consistency of PA relative to it.9 By
contrast, two different analyses offered by W. W. Tait in 1967 and 1981
yielded defenses of (F4).10 Because Tait has offered the most developed
defense of it and it has come to be identified with him, I will refer to (F4)
as Tait’s Thesis.

A mark of finitist argument is that it should not involve what Gödel calls
“abstract concepts.” It may not be entirely clear what makes a concept
abstract. But higher order and intensional notions are evidently excluded.
Thus Tait does not allow the finitist to use the general notion of func-
tion,11 and Gödel mentions among abstract objects those of meaningful

I have not been able to determine exactly when Bernays came to this view. It is
not expressed in HB, although that could well have been in deference to Hilbert,
who says in his brief preface that Gödel’s theorem only shows that for further con-
sistency proofs “one must exploit the finitary method in a sharper way than is
necessary in considering the more elementary formalisms” (p. vii).

The view that finitary methods are insufficient to prove the consistency of PA is
expressed, with a very slight hesitation, in Bernays’s well-known “Sur le platonisme dans
les mathématiques,” p. 68 (trans. pp. 270–271). (This paper was presented as a lecture
in 1934.)

Bernays’s slight hesitation in 1934 arises from the fact that he claims only empirical
certainty for the claim that “elementary combinatorial” proofs can be formalized in a
theory like PA. But he is somewhat more emphatic on this point in the immediately
following lecture “Quelques points essentiels de la métamathématique,” p. 88. Bernays,
however goes on to discuss the characterization of the “finitary point of view.” He men-
tions the fact that some had not distinguished this point of view from intuitionism, and
evidently does not think the explanations given by Hilbert precise enough to exclude this.
However,

Nonetheless, in metamathematical proofs one has always confined oneself to a narrower
framework, in view of the tendency natural to elementary evidence. One remained in the
domain of reasonings that can be formalized without using bound variables. It is by this
limitation that we fell into the difficulties mentioned. In fact, our thesis that one can for-
malize in N [i.e., PA] every proof of an arithmetical theorem that conforms to the finitary
point of view is only valid if this point of view is interpreted in the restricted sense. (p. 90,
my translation)

Nothing he says is clearly incompatible with the view that the “restricted sense” still
allows some recursions going beyond PRA, such as that whose use by Ackermann was
noted by Zach.

9 “Ordinal Logics and the Characterization of Informal Concepts of Proof.”
10 “Constructive Reasoning” and “Finitism.”
11 “Finitism,” pp. 23–24.
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statement and proof, where he has particularly in mind proofs as under-
stood in the foundations of intuitionistic logic.12 I will take for granted
that some such idea is needed for a constructive understanding of the lan-
guage of first-order logic. Hilbert’s description of finitism allows only for
a very limited use of quantification, so that quantified statements effec-
tively cannot enter into logical combinations.13 Because the analysis of
finitism is not my concern, I will take for granted that the notions Gödel
and Tait exclude from finitary mathematics are rightly excluded from it.

Gödel proceeds to argue that abstract notions are necessary in order
to prove the consistency of PA and that propositions involving them can-
not be made intuitively evident in the required sense. Then from (F1) it
follows that this consistency cannot be proved finitistically. Gödel does
not mention Tait’s thesis, although he seemed to adhere to it in two lec-
tures of the 1930s.14 I will not comment on Gödel’s argument in a more
systematic way, although it is worth noting that, in its surface structure,
it avoids appeal to a thesis like (F4) at the cost of using the presumably
controversial epistemic notion of intuitive knowledge. Tait’s analysis of
finitism leads to the same conclusion without using this notion.

Focusing, as is my intent, on intuitive knowledge, the relation of
(F1) and (F3) is an issue independent of those concerning Tait’s thesis.
Together they imply that proofs in PRA convey intuitive knowledge. This
is rather explicitly argued in the writings of Hilbert and Bernays. One can
combine them to obtain the following thesis:

Hilbert’s Thesis. A proof of a proposition according to the finitary
method yields intuitive knowledge of that proposition. In partic-
ular, this is true of proofs in primitive recursive arithmetic.

12 “Über eine bisher noch nicht benützte Erweiterung,”pp. 240, 244.
13 “Über das Unendliche,” p. 173, trans. p. 378.
14 “The Present Situation in the Foundations of Mathematics,” pp. 51–52; “Vortrag bei

Zilsel,” p. 92. However, that this is so for the first of these passages has been chal-
lenged, with strong arguments, in Wilfried Sieg’s introductory note to the correspon-
dence between Gödel and Jacques Herbrand in the former’s Collected Works, vol. V.
In footnote 4 of “Über eine bisher noch nicht benützte Erweiterung” commenting on
Kreisel’s analysis, Gödel treats it as capturing an extended sense of finitism. That might
indicate that he still held Tait’s thesis for the proper sense of finitism. The footnote is
modified substantially in “On an Extension of Finitary Mathematics” (see p. 274). Gödel
there seems to prefer a later discussion of the matter by Kreisel in “Mathematical Logic,”
pp. 168–173, 177–178. To determine Gödel’s views about finitism in the post-war period
would require closer analysis of these writings as well as correspondence with Bernays
in the period from 1965 to 1972 than we can undertake here. See Solomon Feferman’s
introductory note to that correspondence, Gödel, Collected Works, volume IV.
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Our discussion of intuitive knowledge in arithmetic will simultaneously
be a consideration of arguments for Hilbert’s Thesis. Some of the argu-
ments will come directly from the writings of Hilbert and Bernays.

First, however, I wish to document the attribution to Hilbert of this
thesis as well as (F1) and (F2), attributed to the Hilbert school by Gödel.
The latter was, after all, not a member of the Hilbert school, and Tait and
Kreisel, to whom I have also referred, are of a later generation than any of
Hilbert’s collaborators. But although Hilbert was no systematic philoso-
pher, I don’t think there can be much doubt that finitary mathematics,
as he understood it, was to be based on intuition in such a way that it
would be reasonable to characterize a finitist proof as yielding intuitive
knowledge in some sense. Hilbert, however, stressed the role of intuition
as providing the objects of finitary mathematics. Thus consider the fol-
lowing famous passage:

As a condition for the use of logical inferences and the performance of logical
operations, something must be already given to our faculty of representation,
certain extralogical concrete objects that are intuitively present as immediate
experience prior to all thought. If logical inference is to be reliable, it must
be possible to survey these objects completely in all their parts, and the fact
that they occur, that they differ from one another, and that they follow one
another, or are concatenated, is immediately given intuitively, together with
the objects, as something that neither can be reduced to anything else nor
requires reduction.15

Hilbert’s term ‘concrete’ (konkret) gives rise to confusion. Because he
makes clear that he is primarily thinking of symbols of a formalized lan-
guage and goes on to talk of them as types, his objects are abstract rather
than concrete in the sense of §1, and as this distinction is made in Anglo-
American discussions of nominalism, unless perhaps he intends the talk
of types as a façon de parler to be reduced to talk of tokens.16 Otherwise,

15 “Über das Unendliche,” p. 171, trans. van Heijenoort, p. 376. These remarks are repeated
almost verbatim in several papers of Hilbert, going back to “Neubegründung der Math-
ematik (Erste Mitteilung),” p. 163. (This observation is made in Majer, “Geometrie und
Erfahrung.”)

16 This is suggested in one place, “Neubegründung der Mathematik,” p. 163 n. 1, where
Hilbert says that he calls “signs of the same shape (Gestalt ) ‘the same sign’ for short,”
thus intimating that being the same sign is thought of as an equivalence relation of tokens
rather than strict identity. There is a question whether Hilbert could still maintain this
in “Über das Unendliche,” where he insists that nothing infinite is to be found in the
physical world, in particular not a potentially infinite sequence of tokens. He could,
however, hold some form of modal nominalism. Neither he nor the often more explicit
Bernays addresses this issue.
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the objects he calls concrete are quasi-concrete in the sense of §7, that
is, it is intrinsic to them to have instantiations in the concrete in the nar-
rower sense.17 They might similarly be called quasi-spatiotemporal, but
it would not be misleading to call them simply spatiotemporal, as one
understands geometric figures to be spatial. In any case, Hilbert’s term
evidently has an additional meaning of something like “perceptual,” as
is shown by its association with intuitive givenness, for example, in the
following brief characterization of the finitary method:

What is characteristic of this methodological standpoint is that considerations
are put forth in the form of thought experiments on objects that are assumed
to be concretely present (konkret vorliegend ).18

In finitary arithmetic, Hilbert understands the objects to be numer-
als, strings of occurrences of ‘1’. Thus, according to him, the objects of
finitary arithmetic are objects of intuition. Exactly how Hilbert under-
stood the term Anschauung is a large question, since he often uses it
with a quite broad meaning, in keeping with the unphilosophical use of
mathematicians.19 Nonetheless, the concept of intuition underlying his
account of finitism can be described more precisely, in particular so as
to give a reasonably clear sense to the claim that finitary proofs yield
intuitive knowledge. I will assume in the subsequent discussion that the
latter notion is based on the conception of intuition laid out in §28. That
seems to me reasonably faithful to Hilbert. The conception certainly has
certain essentials in common with his: Its objects are quasi-concrete and
spatiotemporal; its scope is a minimal generalization of that of ordinary
perception so as to take in abstract objects such as sign configurations
and geometric figures.

17 In the corresponding place in “Neubgründung der Mathematik,” Hilbert uses diskret
instead of konkret. Clearly the objects he has in mind are discrete. But nothing obviously
follows about what he means by konkret. Hilbert certainly had a conception of geometric
intuition, of which the objects would presumably be continuous. Cf. Majer, “Geometrie
und Erfahrung” and its revised English version “Geometry, Intuition, and Experience:
From Kant to Husserl.”

18 HB I, p. 20, emphases in the text. Bernays, in a paper roughly contemporaneous with
“Neubegründung,” speaks of the domain of the “concrete-intuitive,” within which foun-
dational considerations are to be developed. See “Über Hilberts Gedanken zur Grundle-
gung der Arithmetik,” p. 18. It may be significant that in the 1972 English version of
Gödel’s “Über eine bisher noch nicht benützte Erweiterung,” Anschauung is rendered
as “concrete intuition”; see, for example, the passage quoted in note 6.

19 Consider, for example, Hilbert and S. Cohn-Vossen, Anschauliche Geometrie. Here intu-
ition, being geometrical, is still not too far removed from Kant’s conception, but the
authors are not attempting to base an epistemological account of geometry on it.
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Likewise, we of course understand intuitive knowledge as in §29. In
the case of singular propositional knowledge, it will typically be based on
intuition of the objects the proposition is about. This is clearly in accord
with the usage of the Hilbert school. Although I have not found the terms
anschauliche Erkenntnis and anschauliche Evidenz in Hilbert’s papers,
they do occur in Bernays’s writings of the time of his close collaboration
with Hilbert.20 The appeal to thought-experiments in the account of the
finitary method in Hilbert and Bernays can be seen as an attempt to
convey intuitive knowledge. In particular, in actual application it serves
to convey intuitive knowledge that is general with respect to strings. The
intuitive knowledge or evidence referred to by Bernays (see note 20) was
clearly intended to comprehend general propositions about such objects
as strings.

Our description of PRA implies that Hilbert’s Thesis follows from the
following subtheses (interpreted with respect to the intuitive model of
strings):

(I1) Successor can be seen intuitively to be well defined.

(I2) The elementary successor axioms can be known intuitively.

(I3) In each case of introduction of a function symbol by primitive
recursion, if the assumed functions have been intuitively seen to
be well defined, then this is so of the new function introduced, in
such a way that the recursion equations are known intuitively.

(I4) Logical inference preserves intuitive evidence.

(I5) Inference by induction preserves intuitive evidence.

(I1) has effectively been argued for in §29. (I2) will be taken up in §41.
(I4) will be the subject of §42. (I5) and (I3) will be addressed in §43 and
§44 respectively. §45 will consider what conclusion we can draw about
Hilbert’s Thesis and the limits of intuitive knowledge in arithmetic, dis-
cussing along the way both the truth and the relevance of the claim that
every string can be intuited.

20 In “Über Hilberts Gedanken,” p. 15, Bernays describes his inquiry as whether it is possi-
ble to give a foundation for the “transcendent assumptions” of mathematics by means
of “primitive anschauliche Erkenntnisse.” Bernays’ most important philosophical state-
ment before the impact of the incompleteness theorem is “Die Philosophie der Math-
ematik und die Hilbertsche Beweistheorie.” Certainly an idea of intuitive knowledge
underlies the discussion there of the finitary standpoint, which at one point is described
as the “Standpunkt der anschaulichen Evidenz” (p. 40).
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§41. The elementary axioms

In the usual formalizations of arithmetic, PRA included, it is not explicitly
stated that 0 designates something or that Sn is defined for each value of
n. Moreover, the variables are understood to range over numbers, so that
the predicate ‘x is a number’ is not expressed in the formalism; if need be,
it could be rendered as ‘x = x’. For our purposes, however, we do need an
understanding of these terms that is not incompatible with the intuitive
character of the simple propositions concerning them that the language
of PRA does express.

Given that the initial string is an object of intuition there should be
no difficulty in using a term designating it in a theory purporting to
be intuitive knowledge. On the present interpretation ‘0’ designates the
initial string. If, as in some formalisms for talking about partial func-
tions, we have a “predicate” that would be read “is defined,” ‘0 is defined’
surely expresses intuitive knowledge. Following a standard usage, we will
write ‘t is defined’ as t↓.21 However, this consideration applies not to PRA
but to a possible object language that allows nondesignating singular
terms.

In §29 I argued that we can see intuitively that any string can be
extended by an additional stroke. If we accept that conclusion, it fol-
lows that given our intended interpretation of S, the terms that can be
used in a theory consisting of intuitively known propositions are closed
under S. We could express this by saying that if t is defined, then so is
St. One might discern an existential quantifier in “can be extended” (as
well as in the definedness predicate). I do not need to quarrel with this.
My use of it is compatible with Hilbert’s understanding of it: It can be
cashed in by an explicit expression such as s| for the immediate exten-
sion of a string s, and this in turn can be cashed in by intuition, and
moreover I have not used it in logical combinations. In formalisms with a
definedness predicate, it is envisaged that it will be so used, for example

21 See for example Beeson, Foundations of Constructive Mathematics, pp. 97 ff. Such a pred-
icate is analogous to the existence predicate in systems of free logic. (Cf. the discussion
of E-logic and E+−-logic in Troelstra and van Dalen, I, 50–52, and Feferman, “Defined-
ness.”) It is not our intention, however, to interpret statements involving a term t where
t↓ is false with reference to an outer domain of nonexistent objects. In fact, Beeson’s
logic of partial terms and developments of it assume that even equations of undefined
terms are false. Such legislation is quite right for the intended application, but my own
preference in free logic more generally, and its application to modal logic, is not to leg-
islate in this way but rather to leave options open: Whether a predicate can be true of a
“nonexistent object” is not something that logic should decide.
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in the statement that if t↓ then St↓; questions about this will arise later, in
§44.

Our entitlement to use the expressions ‘0’ and ‘St’ for given t presup-
poses not just existence but uniqueness. That this is intuitively known is
part of what is being claimed when it is said that the intuition in question
is intuition of types. ‘0’ can designate a string on our intended interpre-
tation only if it is of the same type as | . What we require is that this type
be intuitively recognizable. As we saw in §28, this does not mean that
there cannot be obstacles to determining of a given token that it is of that
type. However, if we have before us a type of the same formal language,
it should be recognizable whether or not it is | or some other type, and
it seems clear from the explanation given there that it is; for example, in
the latter case it will contain an additional occurrence of | .

Concerning the functionality of successor, there is the complication
that it does depend on the fact that our language contains only a single
symbol. If we consider a symbolism with just two symbols, say ‘—’ in
addition to ‘| ’, and again the successor of a string is the result of adding
one more symbol on the right, then successor is no longer unique; for
example the string ‘| | — | ’ will have the two successors ‘| | — | | ’ and
‘| | — | —’. But evidently in the one-symbol case there is just one possibility
of adding another symbol (type) to a string.

Peano’s first two axioms, and the introduction rules (R1) and (R2) of
§31, have the additional content that 0 is a number and that the successor
of a number is a number. In the present context, these simply express the
way we are interpreting the language of arithmetic. As items of intuitive
knowledge they do have a degenerate character: The role of intuition is
simply to supply a denotation to the singular terms involved.22 We shall
encounter similar degeneracy in other cases. This is hardly a problem for
Hilbert’s Thesis.

We have at least this minimal role of intuition in the case of the other
two elementary axioms codified in (R3) and (R4) in §31, that the successor
of a number is never 0 and that successor is one-to-one. The first one
says that the result of adding | to a string is never simply | . This is evident
if one represents to oneself the process of adjoining another | . It could
not be of the type of | because it would contain more than one occurrence
of | .

22 This seems to be one of the things that troubles James Page in “Parsons on Mathematical
Intuition.” See “On Some Difficulties,” Section II.
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In the present context the third axiom can be formulated as:

(A3) If strings x and y have the same successor, then x = y.

This is slightly more complex than it seems because it is a statement
about types: It implies about tokens that if tokens a and b have successors
of the same type, then a and b are themselves of the same type. Now, what
is the “successor” of a string x but something obtained by attaching one
more stroke to x? This “attaching” takes place in the space outside that
occupied by x, so that if x differs from y, then there is no way in which
one could, by adding a stroke to each of x and y, obtain identical results.
If we think of sameness of type in terms of one-one correspondence,
then clearly a correspondence between s and t can be extended if a | is
added to each, by making these |s correspond to each other.23 Unlike the
uniqueness of successors, the uniqueness of predecessors is a general
feature of strings and does not depend on the fact that our alphabet
consists of a single symbol.

In all these cases, it might be questioned that the statements involved
are intuitively known on the ground that they are really analytic and obtain
by virtue of the concepts involved or by virtue of the meaning of such
terms as ‘stroke’, ‘string’, and ‘attach’. I have no investment in conceptions
of analyticity, and I do not insist that this cannot be so in any of these
cases. The most that would follow, however, is that the intuitive knowledge
involved is degenerate in the sense mentioned earlier. Any sense in which
it is analytic that | exists and that the operation of attaching an additional
| is defined would be dependent either on intuitive givenness of the sort
I have attempted to describe, if one understands them along the lines
proposed in §28.

It is still clear that the successor operation is exhibited clearly enough
in intuition so that we cannot deny that these elementary axioms are
intuitive on the sort of grounds on which we would deny it for the general
principle of induction and presumably for those applications of induction
or recursion that involve abstract concepts, however we draw the limits
of the intuitive.

The reader may legitimately feel that more should be said about equal-
ity of strings. The idea seems natural that in our simple case equality is

23 One might see a difficulty in a case where with one of the strings, the additional | is
already there but has not been counted as part of the string, and it happens to belong
to the other string. But note that for a one-one mapping of A onto B to be extendible to
one of A ∪ {a} onto B ∪ {b} by mapping a onto b, it is sufficient that a /∈ A and b /∈ B. This
clearly obtains in the present case; the worry arose because a ∈ B.
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“generated” by the two principles that two strings each consisting of a
single symbol are equal, and equal strings have equal successors. Applied
directly to types, however, these principles are trivial and by themselves
give rise only to self-identities. This ceases to be so, however, when they
are combined with recursion equations for additional operations.

In spite of the general inadequacy of the nominalist view, two cor-
responding principles about the notion of being of the same type are
informative and describe a canonical procedure for determining same-
ness of type, modulo the problem of vagueness discussed in §28. They
can be stated as follows:

(1) If a and b are each single stroke-tokens, then a and b are of the
same type.

(2) If a and b are of the same type, and c results from a by attaching
a stroke token on the right, and d results from b by attaching a
stroke token on the right, then c and d are of the same type.

§42. Logic and intuition

We now turn to subthesis (I4), that logical inference preserves intuitive
knowledge. But note that the logic allowed in PRA is limited to elementary
reasoning about identity and classical propositional logic.

As we indicated in §24 and §29, one could stipulate that intuitive evi-
dence should not depend on reasoning or inference at all. In fact, we do
not use the word ‘intuition’ in a way that would violate this stipulation, but
in talking of intuitive knowledge or intuitive evidence we do. Clearly, that
was the intent of Hilbert and other theorists of mathematics, and such
a stipulation would make the notion of intuitive evidence inapplicable
to any whole mathematical theory that includes the results of proof. But
then some basic forms of reasoning are going to have to be allowed as
preserving intuitive evidence, and some will count as logical. The general
principle should be that what is allowed is to be absolutely basic to rea-
soning in general, or to reasoning about objects or about the particular
kind of objects with which we are concerned.

A principle that should be considered is that if an inference from, say,
premisses A and B to a conclusion C is to preserve intuitive evidence,
then the inference should itself be a matter of intuitive insight or be built
up from a sequence of inferences each of which is. We might call this
principle “Descartes’ principle,” as in the Rules for the Direction of the
Mind he demands of deduction that the elementary inferences should be
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intuitions. One might put this by saying that ‘if A and B, then C ’ must
be intuitively known. However, that is not right, because if one has
that knowledge, and the knowledge that A and that B, the step to C is
still an inference, which one would naturally describe as a conjunction-
introduction to attain ‘A and B’ and then modus ponens to attain C. So,
in order to avoid the famous Lewis Carroll regress, one cannot escape the
problem of the status of inferences, distinguished from that of proposi-
tions, with respect to intuitive knowledge. Descartes’ principle is probably
counterintuitive in general, but it is particularly so when interpreted in
terms of the present conception of intuition and applied to logical infer-
ence. One reason is surely the generality of logic, which extends to propo-
sitions that involve reference to objects that are not objects of intuition
and concepts that are not in any reasonable sense intuitive.24

Logical inference has the character that, generally, no new intuition of
objects is needed to attain the conclusion that was not already needed
to attain the premises. There may be exceptions, such as disjunction-
introductions where the new disjunct contains reference to objects not
referred to in the premiss. But in these cases, the intuitions would be
at most presuppositions of the use of certain parts of the conclusion. It
would be reasonable to say that intuitive knowledge is not preserved if a
new disjunct is introduced that is in some way not intuitive in its content.

No formulation of PRA can do without simple rules concerning
identity: instances of a = a and the substitutivity of identity. These would
be reasonably understood as minimal inferences for reasoning about
objects, at least mathematical objects. In particular, the most elementary
computations proceed by these rules. Given that the intuitive knowledge
in question rests on intuition of objects, if we allow any extension at all of
intuitive knowledge by reasoning, such basic reasoning concerning iden-
tity would have to be allowed. In fact, however, their consequences are
quite trivial until they are combined with induction and recursion.

Already this admission has the consequence that there will be degener-
ate cases of intuitive knowledge, for example, statements of the form t = t,
where t designates an intuited object, and the general statement a = a.

24 We have not tried to introduce or explain a notion of intuitive concept, but if one is
clear about what is an abstract concept in the context of Gödel’s discussion of finitism,
then an intuitive concept could simply be one that is not abstract. It is still not clear
what would be the place of logical notions in such a distinction. We would not want to
say that identity, the conditional, conjunction, and disjunction are abstract, so long as
they are applied to atomic sentences that do not contain abstract concepts. By contrast,
quantification does appear to take us outside the realm of the intuitive.
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Logic does not rest on intuition in the way that perceptual judgments rest
on perception. In both these cases, intuition plays a certain role in seeing
them to be true: in the former because it is intuition that gives the object
that is said to be self-identical,25 in the latter because intuition is involved
in understanding the range of the variable and thus in its coming to have
a definite sense. (As a pure law of logic, it is schematic.) Still, it would not
be right to say that it is by intuition that we know these statements, since
they are applications of more general rules that are not restricted in their
application to objects of intuition.

Why should the use of propositional logic be held to preserve intuitive
knowledge? The question now arises how we understand the connec-
tives. Hilbert and Bernays thought of them as truth-functional. The facts
they relied on are the following: Any atomic formula of PRA has the prop-
erty that for any assignment of numerals to its free variables, it can be
decided by computation. (This clearly depends on the computability of
primitive recursive terms.) But then for a compound formula, a truth-
value can, again, be computed for any assignment of numerals to the
variables. Hence they described true generalizations in this language as
“verifiable.”26

This computability of the logical connectives when used with the lan-
guage of PRA is certainly hepful in convincing oneself that PRA accords
with general demands of constructivism. In fact, there is a stronger result
than this brief exposition suggests: PRA can be formulated as an equation
calculus, in which the only logic is reasoning about identity of the sort dis-
cussed earlier.27 (Such formalisms often are called “logic-free,” but for our
present purposes identity counts as a logical notion.). Then propositional
connectives obeying the classical rules can be introduced by contextual
definition. The use of primitive recursion to this end is minimal: The only
recursions that are not essentially definitions by cases are those for addi-
tion and subtraction. In §44, I argue that one can see intuitively that these
are well defined. Thus the reduction of classical propositional logic to the

25 I leave aside the question whether t = t is to be allowed as true in cases where t does
not designate anything. No such case arises in the language of PRA, and in the logic of
partial terms with the definedness predicate, only t↓ → t = t is assumed.

26 The concept is introduced in HB I 237. Note that in the case of formulae with free
variables but without quantifiers, which is the case that concerns us, a formula is said to
be verifiable if “it can be shown” that every result of replacing the variables with numerals
is a true formula. It seems likely that the authors had in mind that this could be shown
by a finitistic proof.

27 See, for example, Goodstein, Recursive Number Theory.
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equation calculus is not affected by the doubts expressed there about the
intuitive character of primitive recursion in general.

Nonetheless, one has a more natural formulation of PRA if one takes the
connectives, or at least some of them, as primitive. Then the reliance of
Hilbert and Bernays on their computability introduces the mathematical
“can” at a point where we wish to avoid it. It may seem that it is unavoid-
able, for how can we justify the use of classical logic other than by the
observation that the truth-functions are computable? We can, however,
formulate PRA with positive propositional logic (i.e., the negation-free
fragment of intuitionistic propositional logic), derive intuitionistic logic
using the definition of ¬A as A → 0 = 1, and then prove any instance
of the law of the excluded middle. (See Appendix.) The use of primi-
tive recursion in this derivation is again minimal, essentially the same
as is used in reducing propositional logic to the equation calculus. One
might still not be entirely satisfied with it because of the use of the def-
inition of ¬A; for example, it leaves the statement that 0 is not equal
to 1 trivial. We can, however, think of ¬A ↔ (A → 0 = 1) as an axiom
schema.28

There would still be questions about the understanding of the connec-
tives in this logic; the usual intuitionistic explanation fits neither with
finitism nor with our own concern with intuitive knowledge.29 But it
should be clear that what is assumed, the basic logic of identity and mini-
mal propositional logic, is minimal for reasoning about objects. It doesn’t
have the implications that quantificational logic, particularly classical,
was found to have in application to an infinite domain of objects. The
reduction of this application of logic to an equation calculus will show
that it does not go beyond the intuitive if we accept the conclusion that
this is true of the use of identity, 0, S, and the minimal amount of recursion
involved. Possibly some other understanding of the connectives, perhaps
starting from the intuitionistic explanation and reducing the notion of
proof involved to consider only “intuitive” proofs, would also be satis-
factory. At all events, the case that this weak logic takes us beyond the
intuitive has not, so far as I know, been made.

28 Note, however, that if instead ¬(0 = 1) is an axiom, the left-right direction of this bicon-
ditional is an instance of the characteristically intuitionistic schema ¬A → (A → B),
although the right-left direction is a simple modus tollens.

29 It is worth noting, as Grigori Mints pointed out to me, that several writers of finitist incli-
nations preferred the formulation of PRA as an equation calculus. See Goodstein, Recur-
sive Number Theory, Skolem, “Begründung der elementaren Arithmetik,” and Lambek
and Scott.
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One might then ask about bounded quantification. Bounded quantifi-
cation can be defined in PRA; for example, as for any formula A there is a
term tA such that A ↔ tA = 0 is provable, evidently ∀x < a A(x) is equiv-
alent to �x < a tA(x) = 0. Given the bounded least number operator, also
definable in PRA, one could also define ∀x < a A(x) as µx < a ¬A(x) = a.30

Whether either iterated summation or the bounded least number oper-
ator is intuitive is a somewhat more delicate question, which I will defer
to §44.

By contrast, Hilbert’s remarks about quantification in finitist mathe-
matics would suggest that already reasoning in which unbounded quan-
tifications enter into logical combinations, even within the limits of intu-
itionistic logic, does not preserve intuitive knowledge. Classically, in using
quantifiers over a domain, we assume we have a definite enough concep-
tion of the domain so that quantification applied to predicates that have
a definite truth-value for each element of the domain will yield predicates
or sentences that themselves have a definite truth value (possibly for given
values of free variables). In the case of the natural numbers, Hilbert and
most of his contemporaries understood that to amount to presuppos-
ing the natural numbers as an infinite totality, something that would be
incompatible with finitism. Apart from that, there is no reason to think
that any insight we might have to that effect is intuitive in the sense that
concerns us now. The usual constructive understanding assumes for the
truth of ∀x ∈ N A(x) a construction or proof that, for each particular num-
ber n, yields a proof of A(n), but as the constructivist tradition has made
clear, there is no reason to assume that either there is such a construction
or there is a counterexample.

This point affects only classical logic, and Hilbert’s claim has been
understood to imply that even the intuitionistic use of unbounded quan-
tifiers would take us beyond the intuitive.31 We have no reason to believe
that proofs in the sense of the standard interpretation of intuitionistic
logic (what is called the BHK interpretation32) are objects of intuition.

30 I assume, with Kleene, Introduction to Metamathematics, p. 225, that µx < a A(x ) = a if
there is no x < a such that A(x ).

31 In point of fact it was so understood with a certain wisdom of hindsight, since, as is
well known, the distinction between intuitionistic and finitist methods was not clear to
researchers in foundations before the early 1930s, in particular before Gödel’s incom-
pleteness theorems and his relative consistency proof of classical to intuitionistic first-
order arithmetic in “Zur intuitionistischen Arithmetik und Zahlentheorie.” Gödel was
perfectly clear about the distinction by 1933 (“The present situation”), Bernays by 1934
(“Sur le platonisme”).

32 After Brouwer, Heyting, and Kolmogorov. See Troelstra and van Dalen, I, 9–10.
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Some will have to contain higher-type operations. Consider, for example,
a statement of the form

∀x∃yAxy → ∀u∃vBuv.

A proof of the antecedent will yield a function giving y in terms of x; a
proof of the statement will therefore have to yield, given such a func-
tion, a function giving v in terms of u. Nothing that has been said in our
earlier discussions, or in writings in the tradition of the Hilbert school,
gives any reason to think that a proposition of that form is intuitive
enough in its content so that reasoning concerning it can yield intuitive
knowledge.

It does not follow, however, that no alternative understanding of the
language of first-order arithmetic will yield such a result. Indeed, there
are mathematical theories with full classical logic that have been shown
by proof-theoretic arguments to be conservative extensions of PRA; it
was in effect already shown by the work of the Hilbert school that this is
true for the result of adding classical logic to PRA, preserving the restric-
tion that induction is to be applied only to quantifier-free formulae.33

More recently, this has been shown for a second-order theory WKL0 that
is capable of proving a significant part of the elements of analysis.34 If
Hilbert’s Thesis could be shown to be true, such proofs could be used
to obtain interpretations of theorems of these systems that would show
them to be intuitively known if so interpreted. Although there is no rea-
son to believe that such interpretations cannot in principle be obtained,
their concrete shape remains to be delineated. They would not, how-
ever, be the straightforward naive interpretation of the statements of the
theory.

§43. Induction

Induction and recursion will naturally be seen as the crux of the issue sur-
rounding Hilbert’s thesis, since it is they that cash in our conception of
generalization about the natural numbers, and we do not have nontrivial

33 One can allow it for formulae containing bounded quantifiers or even �0
1 formulae,

i.e., those obtained by beginning with quantifier-free formulae and applying bounded
quantifiers and possibly unbounded existential quantifiers.

34 See Simpson, “Reverse Mathematics” and Subsystems, ch. IV. Ch. VIII §3 of the latter
gives a model-theoretic proof of the conservativeness result, originally proved by Harvey
Friedman. A proof-theoretic proof is given in Sieg, “Fragments of Arithmetic.”
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arithmetic without that. Earlier,35 I made the suggestion that induction
should be regarded as conservative of intuitive evidence because of its
analogy with a logical principle. One can see this analogy from the way
formal arithmetic was characterized in §31, with (R1) and (R2) as intro-
duction rules for the number predicate and the rule of induction (R5) as
elimination rule. The formal analogy of induction to a logical principle
is very strong, and it is exploited in proof-theoretic studies of systems
containing arithmetic. Is it clear, however, that it is more than a formal
analogy?

We cannot make for induction the claim we made for logical reason-
ing in the previous section, that it is basic for reasoning in general, or for
reasoning about objects. It has rather the character of being basic to rea-
soning about objects in a particular domain, the objects obtained from
an initial element by arbitrary finite iteration of a given operation. In the
case whose intuitive character is at issue, Hilbert’s model of strings, the
initial element is an object of intuition, and it is intuitively known that
the operation (adding a stroke to a string) is well defined. If we admit
some conception of the domain of strings as intuitive, it seems we ought
to admit induction as preserving intuitive knowledge.

I say “some conception,” because we can certainly characterize the
domain in a way that would have no claim to be intuitive, for example
by a Fregean definition using full second-order logic. Even the idea that
induction should hold for any predicate that we can precisely understand
introduces what the participants in the discussion of finitism and intuitive
evidence would have regarded as abstract concepts. What is claimed by
the finitist is that instances of induction, provided that their content does
not involve any nonfinitist notions, become evident one at a time. This is
a natural way to reconstruct Hilbert’s position, and it is at least implicit
in the discussion of Tait.36 This is in keeping with (I5): applications of
induction preserve intuitive evidence; there is no claim to the effect that
a principle of induction is intuitively evident.

It follows that it would not be right to say that we understand clearly
what it is to iterate a successor operation a finite number of times and
then see that induction is true of the objects resulting from such iteration
beginning with 0.

35 “Intuition in Constructive Mathematics.”
36 “Finitism,” esp. section IV. The reader should not deduce from this convergence that

Tait would approve of my own use of the notion of intuitive knowledge.
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§44. Primitive recursion

The discussion so far has made the case for Hilbert’s thesis rest to a large
extent on recursion, that is, on subthesis (I3). For even if we grant that
inference by induction preserves intuitive evidence, this will not lead us
very far in arithmetic unless we have some of the function symbols that
in PRA are introduced by primitive recursion. What we have called the
rule of primitive recursion allows us, given functors ψ , χ of n and n + 2
arguments respectively (n ≥ 0), to introduce a new functor ϕ of n + 1
arguments and to assume the equations

ϕ(0‚ a1 . . . an) = ψ(a1 . . . an)‚

ϕ(Sb‚ a1 . . . an) = χ [b‚ ϕ(b‚ a1 . . . an)‚ a1 . . . an].37

Let us consider first a degenerate case, where χ does not depend on its
second argument, and the second equation thus takes the form

ϕ(Sb‚ a1 . . . an) = χ [b‚ a1 . . . an].38

To convince ourselves that ϕ is well defined, we only need to convince
ourselves that every number is either 0 or of the form Sb. In the case of
the intuitive model that concerns us, this is immediate from the way in
which it has been explained. Every “number” is either ‘1’ or has been
obtained from it by a succession of adding a ‘1’ on the right, and that is
the successor operation. We don’t have to understand “a succession of”
such operations to see that every number is either the initial one or a
successor.

This trivial case, however, leaves out precisely the feature of primitive
recursion that gives it its power, that it enables us to iterate a given function
and cashes in the idea that the numbers are obtained by arbitrary iteration
of the successor operation. The first nontrivial case is that of addition,
which is equivalent to iteration of the successor operation beginning with
an arbitrary a.

At this point, let us return to Hilbert and Bernays. They do give what
would be intuitive arguments for the well-defined character of primitive
recursive functions, both in general and in particular cases such as addi-
tion. Let us first consider what they say about addition and multiplication.

37
ψ and χ may of course be explicitly defined from functors introduced earlier; cf. note 4.
On the term ‘rule of primitive recursion’, see note 5.

38 This “degenerate” recursion schema is reducible to a single case: If we set ξ (0, a, b) = a
andξ (Sc, a, b) = b, then we can define the functorϕ of the text explicitly asξ [b,ψ(a1 . . . an),
χ(b, a1 . . . an)].
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I will shift ground in one respect, and, following them, treat the sequence
of positive integers beginning with 1 rather than the non-negative inte-
gers beginning with 0; that is more natural for an interpretation in their
intuitive model, since then ‘1’ designates itself.

Then addition reduces simply to concatenation of strings, and one can
hardly doubt that it is intuitive in the required sense. The basis recursion
equation is replaced by the identity a + 1 = a + 1, so that the only
recursion axiom that is needed is

a + (b + 1) = (a + b ) + 1‚

and that is certainly intuitively obvious if we think of addition as concate-
nation of strings considered as spatial configurations.

Concatenation does not take place by adding on to the string a one
term of b at a time; rather, one can see that a + b is defined without
relying on the buildup of b by a sequence of steps. I think it is for this
reason that Hilbert and Bernays claim that the general associative law is
“immediate from the definition of addition” (p. 23); in particular, we do
not need induction to see its truth.39 That reinforces the interpretation of
them as thinking of addition in the way I am proposing, although their
own explanation (p. 22) is a little obscure. It will be less clear that addition
is intuitive if we explain a + b as what is got by iterating the successor
operation beginning with a instead of 1. That we understand an operation
that effectively does that is a conclusion.

On this view, addition is a special case, in that iteration is not directly
involved in understanding it. Therefore, its intuitive character does not
show that the same will obtain for primitive recursion in general. But let
us go one step further and consider the case of multiplication. Hilbert
and Bernays again give a special explanation, which appeals to a kind of
replacement:

Multiplication can be defined in the following way: a · b designates the
numeral that one obtains from the numeral b by, in its construction, always
replacing 1 by the numeral a. (p. 24)

This is a persuasive picture, but it amounts to saying that the same proce-
dure of generating strings can be carried out with the role of ‘1’ replaced
by that of a. It may be most persuasive, however, if we suppose that every
string can be intuited, an assumption that I have wanted to avoid.

39 In this respect, they contrast the associative with the commutative law.
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This assumption does not seem to me essential. What is really involved
is that we imagine an arbitrary string replacing ‘1’ in the construc-
tion of b; because it is a bounded spatial configuration, the case is
just a more complex version of what is involved in seeing the truth of
(I1).

Even if you are not persuaded by this, I ask you to grant for the sake of
argument that multiplication is intuitively well defined. Unlike the expla-
nation we gave of addition, this is an entering wedge for the idea that iter-
ating an intuitively well-defined operation will yield an intuitively well-
defined one. But the situation is rather special, because what happens at
each stage is the same, namely, the insertion (in effect construction) of
a. In particular, there is a bound, given in advance, on the complexity of
what is added to the construction at each stage.

These considerations don’t easily generalize, and it is particularly with
respect to exponentiation that questions have been raised. Already in
1934 Bernays questioned whether the evidence that 67257729

exists is intu-
itive.40 Subsequent writers have expressed doubts about exponentiation
on strict finitist or other grounds.41 These doubts are reinforced by the
acceptance of polynomial-time computability as a criterion for feasible
computability, so that, in general, computation of the exponential func-
tion is not feasible.

Although I will return to the case of exponentiation, it is not clear
that we can deal with it by considerations specific to the case at hand,
as we did with addition and multiplication. Let us return to the general
case. To make Hilbert’s thesis plausible, we need to convince ourselves
that primitive recursion introducing a new functor yields intuitively evi-
dent equations, provided that the defining equations associated with the
functors on the right-hand side of the equations are intuitively evident.
That is to say that the thesis of the conservativeness of intuitive evidence
extends from induction to recursion. But this is a larger step than one
might at first think, just because primitive recursion introduces a new
function symbol, one might say: a new concept. The analogy between
induction and a logical principle does not seem to be of any help at this
point.

40 “Sur le platonisme,” p. 61, trans. p. 265.
41 Bernays was doubting not exponentiation but the intuitive character of the evidence

that it is well-defined. But cf. van Dantzig, “Is 101010
a Finite Number?” For more recent

instances, see Nelson, Predicative Arithmetic, and Isles, “What Evidence is there that
265536 is a Natural Number?”
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Hilbert and Bernays do claim that primitive recursion is finitistically
acceptable and offer an argument to this effect (pp. 25–27). The core of it
goes as follows: Suppose (taking the case without parameters) a functor
ϕ has been introduced by the equations

ϕ(1) = a

ϕ(n + 1) = ψ(ϕ(n)‚ n).

Then, for a given string m, one can by a sequence of m steps obtain an
outcome which is either a or a term of the form

ψ[ψ(. . . ψ(a‚ 1)‚ . . . ‚ m − 2)‚ m − 1]

which no longer contains ϕ.

With this we have reached a computable expression, for ψ is to be an already
known function. One has to carry out this computation from inside out,
and the numeral obtained as its output is to be assigned to the numeral m.
(p. 26)

But this seems to be an argument by �1-induction: A computing proce-
dure is described, and it is shown that it terminates. The key step is to
show that in computing ϕ(m) for a given numeral m, one can by a succes-
sion of steps replace it by a term that does not contain ϕ. As a proof, it can
be structured in different ways; the one that seems closest to the surface
of the text would argue that if m = 1, this replacement is trivial, and if it
can be carried out for m, then it can be carried out for m + 1. Once one
has the ϕ-free term, moreover, there is still the task of computing it, and
the depth of nesting of ψ in it is precisely m: Another induction seems
involved in seeing that its computation terminates.

One also might see the matter the following way: The recursion equa-
tions describe a procedure for computing ϕ. For m = 1, the procedure
simply outputs a. For m + 1, the procedure is to compute ϕ(m), with result
say k, and then compute ψ(k). We can easily prove that the computation
terminates, by induction using the predicate ‘the computation ofϕ(m) ter-
minates’, which is essentially ‘ϕ(m) is defined’, (‘ϕ(m)↓’) or ‘∃k[ϕ(m) = k]’.
To avoid making these statements trivially true, the language has to allow
nondesignating singular terms.42 One can see the considerations as a
description of how, parallel to the construction of a string or other numeral
m, one constructs the value of ϕ(m). But we haven’t been given a non-
circular way of showing that the construction must work, unless we give

42 Cf. §41, in particular note 21.
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ourselves something equivalent to�1-induction. Only the argument itself
shows that the use of definedness or the existential quantifier satisfies
Hilbert’s condition that existential quantification be cashable by explic-
itly giving the instance making the statement true. So our problem has
not been advanced.43

It is worth pointing out, however, that in “Die Philosophie der Mathe-
matik und die Hilbertsche Beweistheorie” (see note 13), Bernays gives the
same “replacement” account of multiplication and attempts to generalize
it to exponentiation, in a context in which he points out that exponenti-
ation quickly gives rise to numbers whose representation by numerals of
the Hilbertian canonical form is not practically possible:

Here also there are bounds for the executability of repetitions both in the sense
of actual representability and in the sense of physical realization. Consider the
example of the number 101010

. We can reach this number in a finitary way as
follows: We start from the number 10, which, in accordance with one of the
normalizations given earlier we represent by the expression

1111111111.

Now let z be any number which is represented by a corresponding expression.
If we replace in the above expression each 1 by the expression z, then again a
number expression arises, as we can make clear intuitively, which for commu-
nication we designate with “10 × z”. Thus we obtain the process of multiplying
a number by 10. From this we obtain the process of passing from a number a
to the number 10a, in that we let the number 10 correspond to the first 1 in a
and, to each attached 1, the process of multiplying by 10, and continue until we
are at the end of the expression a. The number obtained by the final process
of multiplying by 10 is designated by 10a.

This procedure offers no difficulty from the intuitive point of view.44

In the case of exponentiation, each 1 in the construction of a is replaced
by a “process.” It is hard to see how this description can do what Bernays
apparently wants, since processes are not clearly objects of intuition.
Possibly, he means that what the 1 is to be replaced by is the result of
multiplying by 10 what one obtained at the previous stage. But then the
argument is again either just a description of a computing procedure or an

43 These formulations were suggested to me by Tait, “Finitism,” §4. It’s not clear to me
whether Tait would disagree with my comments on it, apart from his skepticism about
the notion of intuitive evidence.

44 “Die Philosophie der Mathematik und die Hilbertsche Beweistheorie,” pp. 38–39, my
translation, emphasis added.
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argument involving �1-induction, since without an inductive hypothesis
one does not have such a “result.”

There is really nothing specific to exponentiation in Bernays’s
argument; one could replace multiplication by any function that has been
seen to be well defined and argue that this will obtain for its iteration. It
seems likely that Bernays came to think his 1930 argument unclear; pos-
sibly, he saw the general argument for primitive recursion in Hilbert and
Bernays as replacing it.

I conclude that neither Hilbert nor Bernays offers a noncircular argu-
ment for (I3) and therefore that they do not offer a convincing argument
for Hilbert’s thesis. It seems to me very doubtful that this obstacle can
be overcome. If it could, by an argument of the kind given by Hilbert
and Bernays, one would expect the argument to be convertible into a
proof that, say, exponentiation is well defined, using hypotheses essen-
tially weaker: unproblematic primitive recursive functions and induction.
Unless one allows unbounded �1-induction, one will not get the result:
If the functions that one allows are all polynomially bounded, and only
�0 induction is allowed, then one will not be able to prove that exponen-
tiation is everywhere defined.

Before we assess where we stand, we must consider a loose end from
§42. There we pointed out that one might argue for the claim that, in the
language of PRA, classical propositional logic preserves intuitive knowl-
edge by formulating PRA as an equation calculus and introducing the con-
nectives by contextual definition. However, this definition uses addition
and subtraction to reduce equations s = t to the formφ(s, t) = 0. The same
device is needed if we begin with minimal logic and undertake to prove
instances of the law of excluded middle; see the Appendix. That addition
can be seen intuitively to be well defined was argued earlier. The case of
subtraction is more like that of multiplication, in that, in order to obtain
a – b, it seems we cannot avoid proceeding step by step, for example,
dropping strokes from the end of a as we add them in the course of gener-
ating b. However, the two procedures are so closely parallel that one can
hardly deny that if a is given and b has been generated then so has a − b.45

Certainly, if we accept multiplication as intuitively well defined, then we
must accept subtraction. But the case of subtraction is easier, involving

45 If all the strokes of a have been removed before the generation of b is complete (i.e., if
a < b), then we set a ·− b = the initial element. So we obtain what is sometimes called
“truncated subtraction” a ·− b. If we set pr(0) = 0, pr(Sn) = n, then x ·− 0 = x and x ·− Sn
= pr(x – n). The notation is from Kleene, Introduction to Metamathematics, p. 223.
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as it does the dismantling of a string in parallel to the construction of
another.46

§45. The limits of intuitive knowledge

The discussion of primitive recursion produces a sort of stand-off, famil-
iar to those of us who try to understand the justification of mathematical
induction. If one accepts the rule of primitive recursion as preserving intu-
itive knowledge, it is not clear that this commits us to accepting as intu-
itively known anything that can be seen not to be such on other grounds,
unless one demands that the objects involved be practically intuitable.
The iterability of procedures that we can see to lead to a result is, plausi-
bly, part of our notion of numbers as the result of iterating the successor
operation beginning with 0, or of Hilbert’s strings as the result of iterating
the putting on of an additional ‘1’ beginning with ‘1’.

By contrast, the conclusion that even exponentiation must be regarded
as everywhere defined in a genuinely intuitive arithmetic does not seem to
be forced on us. It seems open to us to hold that what is intuitively known
in arithmetic is limited to a fragment of primitive recursive arithmetic
that does not include recursions for any function that grows as fast as
exponentiation. The arguments to the contrary canvassed in the previous
section turned out to be circular.

On balance, I am inclined to the negative conclusion, that the arith-
metic that is intuitively known does not include exponentiation. This
conclusion is encouraged by the fact that exponentiation is not feasibly
computable, as that notion is understood by most writers on the subject;
in particular, it is not polynomial-time computable. Exponentiation is
also not predicative according to the criterion of Nelson’s Predicative
Arithmetic, which will be discussed in Chapter 8. Another more plau-
sible characterization of what is there called “strict predicativity” does
allow exponentiation as strictly predicative, but then it is a serious ques-
tion whether iterated exponentiation is such and whether what is strictly
predicative allows more than Kalmár elementary functions. Thus it seems
that in any case acceptance of Hilbert’s Thesis would imply that intuitive
knowledge in arithmetic goes beyond the strictly predicative.

Rejection of Hilbert’s Thesis would still leave open the question
whether the functions that can be seen intuitively to be well defined have

46 Cf. the remark about comparison of length (and thus order) in HB I, p. 22. a ≤ b can be
defined as a – b = 0, if subtraction is defined as in the previous note.
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weaker closure properties, such as being closed under bounded primi-
tive recursion. The latter would imply that bounded quantification can
be introduced into intuitive arithmetic, a plausible result. I am far from
sure about questions of this kind. It is possible that the notion of intuitive
knowledge is not precise enough to decide them. They also could depend
on the answers to difficult mathematical questions. There are quite
straightforward questions about restricted recursions whose answers are
not known; for example, it is not known whether the polynomial-time
computable functions are closed under bounded recursion.

So far, we have discussed these issues without attending to questions
about the possibility of intuition. In particular, we have not made any
assumption to the effect that every string can be intuited. If the possibility
in question is practical, in particular, if what is at issue is actual human
ability, then this assumption is false, unless we revise our mathematics
to conform to strict finitism, so that the answer to the objection that a
string of length 265536 cannot be intuited would be that we have no reason
to believe that there is any such string. It is also not likely that we can
construct a real, physical machine that would have analogous capacities,
such as computing exponentiation by 2 for the argument 65536.

Now let us suppose that we do allow ourselves to understand the ‘can’
in terms of abstract mathematical possibility.47 The considerations that
show successor to be intuitively well-defined show that if a string can
be intuited, so can its successor. (This is plausibly true also for practical
possibility.) One can then argue by induction that every string can be
intuited. This might be questioned on the ground that similar reasoning
leads to sorites paradoxes.48 Given that the context is supposed to be
mathematical possibility, I don’t think that is a convincing objection. But
it does suggest that there is something trivial about the conclusion. It is
the concept of number, by way of an application of induction, that tells us
that every number can be intuited, rather than some independent insight
into what is intuitable yielding a domain of intuitable objects. But just for

47 I don’t use here the term “in principle” because it is ambiguous. Possibility in principle
may be abstract mathematical possibility in the sense in which I am understanding it, or it
may be constrained by other considerations, for example basic physical considerations.
It is with the latter understanding that R. O. Gandy argues that there are finite bounds to
what inscriptions can in principle exist and limits to what can in principle be known. If
his concern had been with intuition, he would very probably have said the same about
what can in principle be intuited. See “Limitations to Mathematical Knowledge.”

48 There are, of course, different views about what part of the reasoning leading to sorites
paradoxes should be rejected. I am claiming that in the present situation the appropriate
response is to embrace the conclusion that every string can be intuited.
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this reason, I don’t think it likely that a convincing argument for the falsity
of the thesis will be forthcoming. Objections in the literature to the claim
that every string can be intuited seem either to understand the modality
in terms of human ability or to amount to a rejection of the application
of mathematical modality in combination with epistemic notions. The
former objection is based on a misunderstanding.

The second objection, that combination of mathematical modality
with epistemic notions (or perhaps other non-mathematical notions) is
questionable, is one that I think should be regarded seriously. I have given
a fuller consideration of some issues surrounding it elsewhere.49 But if we
do allow ourselves to reason mathematically about the possibility of intu-
ition, then it is easy to prove ‘A string of length t + 1 can be intuited’ for
every term t of PRA and possibly for more.50

Does this give rise to an argument for Hilbert’s thesis? Suppose s and
t are such that I can intuit a string of length s, and I can intuit a string of
length t. Then, surely, if I can calculate out the terms, then by comparing
them I can determine whether s = t is true. It would follow that any closed
formula of PRA can be decided in an intuitive way. But what follows about
intuitive knowledge of generalizations? The most this argument could
show is that if a formula of PRA is true for all values of its variables, then,
in each particular case, this can be known intuitively. But this does not
yield intuitive knowledge of the generalization. Even if this obstacle can
be circumvented, I see no way to get around the fact that what these
considerations yield is the possibility of intuitive knowledge, according
to a rather liberal kind of possibility. But Hilbert’s thesis concerns actual
intuitive knowledge, at least given a proof in PRA. Even if the questions
about the ideas involved can be resolved, the case for Hilbert’s thesis
does not seem to be materially advanced. More generally, the relevance
to questions about what we know intuitively of questions about what
intuitions are possible “in principle” is not clear.

§46. Appendix

For the conventional formulation of PRA, we can assume that the logic
allowed is minimal propositional logic, with ¬A defined as A → 0 = 1. To
obtain intuitionistic logic, it then suffices to derive 0 = 1 → A for any A.

49 “What Can We Do ‘In Principle’?”
50 “Finitism and intuitive knowledge,” §7. The conclusion is quite trivial unless we recog-

nize the context in which t occurs as intensional; see ibid., pp. 267–268.
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If A is atomic it is an equation s = t. We introduce by primitive recursion
a function symbol ϕ satisfying ϕ(0) = s and ϕ(Sn) = t. Clearly 0 = 1
implies ϕ(0) = ϕ(1), whence s = t.51 The other cases are shown in
the usual way by induction on the construction of A. Furthermore,
since 0 = 0, 0 = 0 ∨ ¬(0 = 0). From the axiom ¬(Sx = 0), we have
Sx = 0 ∨ ¬(Sx = 0). So by induction,

(13) x = 0 ∨ ¬(x = 0).

Now using the lemma

(14) x = y ↔ (x – y) + (y – x) = 0,52

we can infer x = y ∨ ¬(x = y) by substituting (x – y) + (y – x) for x in (13),
so that we have A ∨ ¬A for atomic A. By induction on the construction
of A, we can derive excluded middle for any A.53 And because we have
intuitionistic logic, we can also derive ¬¬A → A.

51 I owe this device to A. S. Troelstra. ϕ has as parameters the free variables of s and t.
52 Regarding subtraction see the end of §44.
53 Suppose A ∨ ¬A and B ∨ ¬B. To see (A → B ) ∨ ¬(A → B ), assume first A. If we assume

B, A → B and hence (A → B ) ∨ ¬(A → B ) follow. If we assume ¬B, assume A → B. Then
B follows, which is a contradiction, whence ¬(A → B ), whence (A → B ) ∨ ¬(A → B ). By
∨ E we discharge the assumptions of B and ¬B. Assume now ¬A. By intuitionistic logic
A → B follows, whence again (A → B ) ∨ ¬(A → B ). By ∨-elimination, we can discharge
the assumptions of A and ¬A. The case of disjunction is similar, and the others are
simpler.
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§47. Induction and the concept of natural number

Writers on the foundations of arithmetic have found it difficult to state in
a convincing way why the principle of mathematical induction is evident.
We have presented in earlier chapters different formulations of the princi-
ple, as a second-order statement with different interpretations in §§10–11
and as a rule in §31. What we have in view continues to be induction on
natural numbers; however, the discussion applies to any structure whose
domain consists of the objects obtained from an initial one by iterating a
unary operation.1

A classic view on the question, first developed by Frege and Dedekind
and adopted by Whitehead and Russell in Principia Mathematica, is that
induction is a consequence of a definition of ‘natural number’. The com-
prehension principle of second-order logic implies that, if we define a
simply infinite system or progression as in §11, then induction holds in
every simply infinite system. The matter can be presented a little more
simply. Suppose we have 0 and S, in the context of classical logic so that
the existence of 0 and the defined character of S are presupposed. Then
we can define

(1) Na ↔ (∀F ){[F 0 ∧ (∀x) (Fx → F (Sx))] → Fa},

and induction in the form

(2) {A(0) ∧ (∀x)[Nx → (A(x) → A(Sx))]} → (∀x)(Nx → A(x))

follows easily.

1 For much of the discussion it is not essential that the operation be one-one and exclude
the initial element from its range; of course, if one of these fails, the structure involved
will be isomorphic to a finite initial segment of the natural numbers with the “last”
number having as successor either itself or some earlier number.

264
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According to this proposal, induction falls out of an explanation of the
meaning of the term ‘natural number’. But this way of viewing induction
is independent of the particular proposal and even of the use of second-
order logic, which one might object to at the beginning of a theory of
natural numbers, for example, on the ground of its impredicative char-
acter. (Impredicativity will be a theme later in this chapter, in particular
in §50.)

An alternative is to undertake to capture by rules the idea that the nat-
ural numbers are what is obtained by beginning with 0 and iterating the
successor operation, again taking these as given in the sense of presup-
posing some interpretation of them.2 Clearly, this yields what were called
in §31 the introduction rules for N. In spite of their overfamiliar character,
I repeat them here:

(R1) N 0

(R2)
Nx

N(Sx)

To cash in the idea that the numbers are what is obtained by iterating
the successor operation, we understand (R1) and (R2) as the canonical
way of arriving at statements to the effect that something is a natural
number; it is only by virtue of them that something is a natural number.
Their role is like that of an inductive definition. To (R1) and (R2) might be
added a gloss such as, “Nothing is a number except by these rules,” often
called an extremal clause. That implies that N is minimal so that the intro-
duction rules hold. Suppose for example that N and N ′ are both closed
under the rules but N ′ properly includes N. Then it won’t be true that N ′

has only elements that are there by virtue of the rules, since everything
the rules require to be there is already in N.3

2 According to George and Velleman, “Two Conceptions,” this is a “bottom-up” charac-
terization and is to be contrasted with the “pare-down” characterization embodied in
the explicit definition in the style of Frege.

3 I have tried to avoid introducing at this point the idea of finite iteration of the successor
operation. But suppose that N is the result of iterating S an arbitrary finite number of
times, while N ′ is obtained by some transfinite iteration of S, in both cases beginning
with 0. Then my claim is that N ′ does not satisfy the extremal clause. This is shown by
the fact that transfinite iterations require some additional provision for limit stages of
the iteration.

It seems to me that, contrary to the suggestion of George and Velleman (“Two Con-
ceptions,” p. 313) the question whether transfinite iteration of S is admissible (as a
constructivist might deny) is irrelevant. Ordinary induction and primitive recursion
articulate what finite iteration is; if one is going to consider transfinite iteration, to
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But now suppose A(a) is a predicate for which the introduction rules
hold:

A(0)
A(x) → A(Sx).

Then A(a) must be true of any natural number. But that is just the
induction principle, which, as in §31, takes the form of an elimination
rule:

[A(a)]
.
.
.

A(0) A(Sa) Nt

(R5) ––––––––––––––––––––––––
A(t)

There is a very natural picture that arises here: If x is a number, then,
by the introduction rules, we reach x by beginning with 0 and taking a
succession of steps from y to Sy. Then, by a parallel succession of steps,
we can show that A(y) holds for each y figuring in the construction, and
therefore that A(x) holds. In fact, for each x, we can construct a formal
proof of A(x) by beginning with A(0) and building up by modus ponens,
using A(x) → A(Sx). As a proof of induction, this is circular: the “construc-
tion” of x by a succession of steps is itself inductively defined, and it is
by a corresponding induction that it is established that A holds at each
point in the construction. Nonetheless, it is still useful for metamathe-
matical arguments concerning induction in formalized theories, and it is
no worse than arguments for the validity of elementary logical rules.

It might be better to view this idea as relating induction and recursion:
A recursion is given for a function p(n) that, for any n, gives a formal
proof of A(n) given proofs of A(0) and of A(m) → A(Sm) for arbitrary m.
The same idea is expressed in a more abstract way in the treatment of
induction in constructive type theories, where conditions are laid down
for an object to be a proof of a proposition of a given form. Consider the
case of a formula A(a, n) with a single parameter a, which we assume to

articulate it one needs additional apparatus. This also might be presented by an induc-
tive definition, which will have its own extremal clause. This theme will be pursued in
§51.
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be of the type N of numbers. Then a proof of A(a, 0), for arbitrary a, will
be a function g that, for any m ε N, yields a proof of A(m, 0); given the
treatment of the conditional in such theories, a proof of A(a, x) → A(a, Sx)
for arbitrary a and x will be a function h that, for any m, x ε N, and proof
p of A(m, x), yields a proof of A(m, Sx). Then if we set

f (m, 0) = gm
f (m, Sn) = h[m, n, f (m, n)],

then for any m and n in N f (m, n) will be a proof of A(m, n).4

Clearly, what we have given here is not a complete explanation of the
concept of natural number. One omission is corrected by referring to §31:
the remaining two Peano axioms, presented there as the rules (R3)–(R4).
Even accepting the open-endedness of the notion of a well-defined pred-
icate, it will be protested that we have said too little about what counts as
such. No general rule, such as that a predicate is to be true or false of every
number, is likely to be helpful until a body of mathematics is built up. 0,
S, identity, and basic propositional logic give us something but too little.
What is decisive is admitting some primitive recursions. The procedure
of constructive type theories, of treating primitive recursion as primitive,
where the values of the function introduced may be of an arbitrary type,
is powerful but requires a specific logical framework. Another possible
route is that addition and multiplication may be assumed (possibly on
the basis of the intuitive ideas of §44) and further recursions obtained
by the use of quantificational reasoning, in the way familiar from PA.
These two routes do not exhaust the possibilities. But in the end the con-
cept of natural number cannot determine what counts as a well-defined
predicate, because in one way or another, either through application or
through the further development of mathematics, relations of numbers
to objects of other domains will enter in.

There are a number of questions about how to understand these rules
and the justification of induction offered here. One that arises both for
our procedure and the Fregean one is: What is the range of the first-
order variables? In typical instances of inductive definitions, all the defi-
nition aspires to do is to define a predicate of objects of a previously given
domain, and so we can take first-order quantifiers to be understood in
some independent way. Frege himself seems to have assimilated his own

4 Cf. Tait, “Finitism,” p. 32. In the situation of note 3, it seems that if x is reached from 0 by
a transfinite succession of steps, then, similarly, a proof of A(m, n) can be obtained by a
transfinite recursion. But again, some provision will have to be made for limit stages.
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case to this one in assuming that first-order quantification is quantifica-
tion over all objects, in an absolute sense independent of the particular
context of inquiry. I don’t want to assume that; indeed, I would argue,
and have argued elsewhere, that there is no such domain.5 Should we
still interpret our explanation of the notion of natural number as pick-
ing out the natural numbers from a previously given domain? One might
reply that our conception of the natural numbers is that of a structure
and therefore does not give individual identities to the objects playing
the role of 0, 1, 2, and so on; therefore, there should be no unique answer
to the question from what domain the natural numbers are picked out or
even whether there is one. The generality with which we have proceeded
is in keeping with this structuralist view and, therefore, cannot exclude
the case where there is a previously given domain: Some instances of
the structure of natural numbers are substructures of other structures,
and we might describe such substructures by inductive definitions. In
the interesting cases, the other structures will be of other types, such as
structures of sets.

However, to assume that this is always the case is to assume that some
infinite structure is given to us independently of our knowledge of the
kind of structure the natural numbers instantiate. What could that struc-
ture be? In §12, it was questioned whether, without already having some
mathematics presupposing an infinity of objects, we could regard the
physical world or the human mind as offering such an infinity. In some
constructions of mathematics, set theory is assumed, and the problem is
to single out an instance of the natural number structure in the universe
of sets. That fits the objective of developing arithmetic in axiomatic set
theory. Whether it gives the most fundamental understanding of math-
ematical induction and its validity can be and has been questioned, but
I shall not pursue the matter here because the procedure of set theory
is to use an explicit definition of more or less Fregean type. However, a
question of a similar nature will be pursued in §50 in connection with
Feferman and Hellman’s work.

If there is no such previously given infinite structure, then it is as if
we had arrived at the concept of natural number by pulling ourselves up
by our conceptual bootstraps, so as to understand the notion of some

5 Essays 8 and 9 of Mathematics in Philosophy. The matter is still controversial; see
Cartwright, “Speaking of Everything” and more recent literature such as Williamson,
“Everything.” Different points of view, including my own, are expressed in the essays in
Rayo and Uzquiano, Absolute Generality.
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such structure and convince ourselves of its possibility without having in
advance the conception of a domain of objects from which the objects of
the structure are picked out. But that this is possible was in effect argued
in presenting the Hilbertian intuitive model of arithmetic in §§28–29.
So let us assume for a moment that the above explanations refer to the
model of strings, so that ‘0’ designates ‘| ’ and ‘S’ expresses the operation
of adding a ‘| ’ on the right. The intuitive verification that every string can
be extended tells us that ‘S’ is defined for the arguments that concern us.
But it does not depend on insight into the specific totality of such strings;
this is shown by the fact that in the sense in which a new ‘| ’ can be added
to any string, it can be added to any bounded geometric configuration.
On this reading, then, the variable in (R2) is more inclusive than a variable
over strings, but I do not want to say that it ranges over a more inclusive
totality of objects. There would not be a convincing answer to the question
what that totality is. We could specify the range as something like “object
given in space or time.” But this very general rubric might go with quite
different ways of individuating such objects. The generality is akin to the
kind of generality Husserl called “formal,” characteristic of formal logic.6

In a sense, we used free variables with a generality interpretation without
yet knowing what they ranged over. Then the considerations beginning
with the idea that the strings are what is obtained by beginning with ‘| ’
and iterating the operation of adding another ‘| ’ are what explains the
domain of our first-order variables, what gives us a definite domain of
quantification. This view would be an instance of the idea, found in other
approaches to constructive mathematics, that numbers are a type. That
should lend some pedigree to the idea that the natural numbers, or some
instance of the structure that is basic, do not need to be understood by
picking them out from a more comprehensive domain of objects.

A second question concerns the schematic character of the induction
rule. Here we have formal generality in almost exactly in Husserl’s sense.
Induction holds for any well-defined predicate. In thus referring to arbi-
trary predicates, the statement of the rule makes no assumptions about
what counts as a predicate. It has the same purely formal character as
the principles of predicate logic itself. As such a generalization about
predicates, the rule is not a generalization over a given domain of enti-
ties and could not be, because it is not determined what predicates will
or can be constructed and understood. Of course, this does not depend
just on arithmetic. Predicates will be admitted that essentially involve

6 Ideen, §13.
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other notions, certainly notions arising in the further development of
mathematics but even nonmathematical notions, at least provided that
they are precise.7 The inescapable vagueness of the principle of induction
understood in this way was already remarked on in §5. There, we men-
tioned a way of shunting this vagueness elsewhere: replacing the rule by
an axiom, that is, a single statement expressed by quantification over sets,
properties, or Fregean concepts. Such a procedure, though it is appropri-
ate for many purposes, is not suitable for the explanation of the number
concept by rules that we have been engaged in, precisely because it pre-
supposes a domain of objects from which the natural numbers are picked
out.

This understanding of induction implies that the applicability of the
rule is not limited to predicates defined in some particular first-order
language such as that of first-order arithmetic. But we must not take
it as implying the unavoidability or even the legitimacy of full second-
order logic, even given the claim of the impredicativity of induction to be
discussed in §50. Given a domain D for individual variables, full second-
order logic is naturally understood by taking second-order variables to
range over all subsets of D. In any case, it requires that the “predicates” of
objects in D should be closed under second-order quantification. Noth-
ing we have said implies this; indeed, our picture should suggest rather
the opposite, that the “predicates” talked of in the induction rule are a
quite open-ended and indefinite totality, depending on linguistic and
conceptual resources of whose limits we have no real conception. That
would raise a question whether second-order quantifiers, in particular
their use to define new predicates as in second-order logic, can have a
definite sense. The implication of our earlier discussions of second-order
logic is that any such sense that would license impredicative logic must
derive from the concept of set.8 That such second-order logic is not forced
on us at this point is shown by the fact that a mathematics that assumes
the concept of natural number but from there on is entirely predicative
is perfectly coherent.

A third question is whether and in what sense induction is an analytic
or conceptual rule or truth. The Fregean treatment makes this so in a
definite sense, expressed by Frege’s own definition of an analytic truth as

7 I do not take a stand on whether that is required for a predicate to be well-defined for
this purpose. It has been argued that induction is not applicable to vague predicates,
and indeed such an application is part of the reasoning leading to the sorites paradox.

8 In addition to §§11–12, see Mathematics in Philosophy, pp. 216–217.
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one whose proof requires only logic and definitions. But this conclusion
requires accepting second-order logic as logic, and one could still have
the reservation that the existence of 0 and the defined character of S are
presupposed; in Frege’s own development the proof of these required
his criterion of identity for numbers (“Hume’s Principle”), which he in
turn derived from the disastrous axiom V. But even if that is not brought
in, a more schematic version of induction turns out to be analytic if the
Fregean definition is applied to second-order logic without any further
principle giving the existence of any numbers.9

The explanation of the number concept by rules makes induction fol-
low from an explanation of that concept; it is certainly in some sense
“conceptual.” It is so in a negative sense, in that it is not intuitive in the
sense of §29. But beyond this negative point, what more is said than that if
we understand the concept of natural number, instances of induction will
be evident to us? (The general rule may not be, without introducing the
additional notion of predicate and some semantic reflection.) We don’t
see what else this evident character could rest on than our understand-
ing of the concept of number. But that does not imply that we have said
anything very positive about what it does rest on.

In §43, I argued that in the context of finitist arithmetic induction pre-
serves intuitive knowledge, making use of its analogies with logical rules,
in particular its serving as an elimination rule for N. The limitations of
that argument should be clear from §44, where difficulties arose about
the intuitive character of primitive recursions beginning with exponenti-
ation. If we give ourselves the logical apparatus needed to reduce recur-
sion to induction, then induction comes to have the marks of a synthetic
principle. Primitive recursion gives us the ability to represent larger and
larger numbers, so that it quickly becomes not feasible to represent them
as canonical numerals built up from 0 and S or even as Arabic numerals.
Any argument to the effect that terms built up from functors introduced
by primitive recursion are reducible to canonical numerals will require
equivalent recursion or induction.

This point is reflected in the reasons that have been offered for rejecting
primitive recursion in its full generality, usually that it admits functions
that are not feasibly computable, but also that it admits impredicativ-
ity. Is such a rejection compatible with our own claim that induction
holds for any well-defined predicate? If one allows, for primitive recursive
terms, the predicate ‘f (n, a) is defined’, then one can prove by induction

9 This was effectively proved by Frege himself in Begriffsschrift.
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that primitive recursive functions are defined for all arguments. But the
struct finitist who rejects primitive recursion may well deny that such a
predicate is well-defined. Admitting it is admitting at least a restricted
form of induction on existentially quantified formulae, and the latter
seems to have been excluded from finitary reasoning already by Hilbert.
It’s also possible that a strict finitist might reject it on grounds of vague-
ness. There seems to be no contradiction or patent absurdity in the posi-
tion of someone who refuses to accept enough recursion and induction
to obtain even primitive recursive arithmetic. But the most plausible line
of objection is not to induction in the schematic form in which we have
preferred to state it but rather to the admission of predicates or functors
that give greater expressive power, in particular more powerful instances
of induction.10

§48. The problem of the uniqueness of the number structure:
Nonstandard models

Independently of the issues about reference to natural numbers and
the issues about structuralism discussed earlier in this work, we have
to acknowledge that it is a strongly held intuition that the natural num-
bers are a unique structure. This is evidenced by the fact that we typically
speak of the natural numbers. What I have in mind is the view that the
natural numbers are at least determinate up to isomorphism: If two struc-
tures answer equally well to our conception of the sequence of natural
numbers, they are isomorphic. I will call this latter thesis the Uniqueness
Thesis. Is this something one can sensibly doubt? In this section I shall
consider some grounds that might be offered for such doubts, in partic-
ular one that would occur to anyone familiar with basic mathematical
logic: the existence of nonstandard models of arithmetic.

An initial, intuitive ground for questioning the Uniqueness Thesis
is that the explanations of the notion of natural number contain ele-
ments of vagueness. The explanation favored in §47 has this character,
because it relied on induction as an inference that could be made with

10 The reliance on induction in explaining the concept of natural number is a character-
istically modern stance. One might well ask what explanations of the number concept
were available in the many centuries during which arithmetic was part of mathematics
but the principle of mathematical induction had not yet been formulated. (Thanks to
Hilary Putnam for reminding me of this.) This is obviously a large historical question
that I cannot deal with here. One might ask how clearly such explanations would have
differentiated the natural numbers from other number systems.
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any well-defined predicate, without the prospect of specifying exactly
what the range of such predicates is. The same is true of the cruder
characterizations that are often given, that the natural numbers are what
is obtained by beginning with 0 and iterating the successor operation
forever, or an arbitrary (finite) number of times.

It would be hasty to conclude from this that the notion of natural num-
ber is itself vague, in the sense that it is not objectively determined what
is a natural number. That would amount to saying that there are “border-
line cases” of natural numbers, objects of which it is not definitely true
that they are natural numbers but it is not definitely false either. Such
an admission would be at first sight fatal to the Uniqueness Thesis, as it
allows that one might make the notion of natural number more precise
in different ways; for a given borderline case, one including it as a natural
number and one excluding it, with the two possible more precise versions
having an equal claim to be the natural numbers. It seems unlikely that
the different ways of making the notion more precise would all lead to
isomorphic structures.

If one has some experience with the foundations of mathematics, one
will find something unreal in the idea that ‘natural number’ might be a
vague predicate like ‘heap’ for which we might have given objects such
that the meaning of the word does not guide us to a decision as to whether
the word applies to the object or not. But we do have to consider whether
non-standard models present us with just such a situation. Moreover, the
idea that the notion of natural number might be vague in some more
subtle way was advanced some years ago by Michael Dummett, in two
articles that are perhaps the most instructive in the literature on the ques-
tions raised about the Uniqueness Thesis, although they are not the main
theme of either.11 Dummett’s views will occupy us later.

It might seem that doubts about the Uniqueness Thesis can be dis-
missed at the outset on the basis of a theorem of Dedekind already men-
tioned in §10: Any two simply infinite systems (or progressions in the
terminology of §31, going back to Russell) are isomorphic.12 It will surely
be agreed that the natural numbers are a progression. Dedekind’s theo-
rem will occupy us in §49, and it does indeed buttress the Uniqueness
Thesis. Still, one should be wary of any claim that a mathematical result
settles a philosophical question. In particular, we have to remember that
no demonstration is better than the assumptions on which it rests. In §10,
with reasonable faithfulness to Dedekind, we assumed the set-theoretic

11 “The Philosophical Significance of Gödel’s Theorem” and “Platonism.”
12 Was sind und was sollen die Zahlen, para. 132.
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conception of structure, and that is the setting in which Dedekind’s
theorem is typically proved. It is a commonplace in the foundations of
mathematics that the idea of natural number is more elementary than
that of set, at least if the concept of set is to give rise to full-blown set
theory, as embodied in ZF and related theories. Although perhaps in the
end we should not be bothered by the use of less elementary means to
prove the uniqueness of the natural numbers, we cannot just accept them
without any examination.13

A technical development that might give us pause about the unique-
ness of the natural numbers is the already mentioned existence of non-
standard models of arithmetic. (In fact, it reflects the vagueness men-
tioned above of the notion of predicate in explanations appealing to
induction.) For, it might be said, our concept of natural number can-
not do more than determine what is true about the natural numbers. But
even if we suppose given the set of all these truths, there will still be non-
standard models, in which the truths all hold (and the falsehoods all fail
to hold), but which are not isomorphic to the natural numbers. Perhaps
it is better to put the matter more neutrally: There will be models, not
isomorphic to each other, which are still models of all true sentences of
arithmetic.

This observation leads to a reason for questioning whether the unique-
ness of the structure of natural numbers is really assured by Dedekind’s
theorem. For the logical considerations behind the existence of nonstan-
dard models are quite general, and apply also to set theory. Thus, of what-
ever set theory in which we have proved Dedekind’s theorem, there will
also be nonisomorphic models. And nonisomorphic models of set theory
can give rise to nonisomorphic models of arithmetic. Consider now two
models M1 and M2 of set theory, and let ω1 and ω2 be their sets of natural
numbers. Dedekind’s theorem is a theorem of set theory; hence it is true
in each of M1 and M2. But what that tells us is that within M1 any structure
satisfying the conditions for being a progression is isomorphic to ω1, and
within M2 any structure satisfying the conditions for being a progression
is isomorphic to ω2. But it does not tell us that ω1 is isomorphic to ω2;
indeed, as non–well-founded models of set theory can be constructed
(shortly, we will indicate how), they need not be isomorphic.

I have not said what a “sentence of arithmetic” is, and of course those
familiar with the technical background will remind me that the existence

13 The reader may be inclined to observe that Dedekind’s theorem can be proved in a very
weak theory of sets and classes, such as the EFSC of Feferman and Hellman, “Predicative
Foundations.” We will take account of this fact in §49 and §50.
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of nonstandard models rests on fundamental properties of first-order
logic. But the difficulty still arises if we take the language of arithmetic to
be higher order. For then we can still have nonisomorphic “general mod-
els,” and the question will arise on what grounds we can exclude those
that are nonstandard (perhaps now in the sense usual for higher-order
logic).14 General models arise when the language of higher-order logic is
interpreted in the natural way in the language of first-order set theory, and
one looks at arbitrary models of the latter; thus, the existence of noniso-
morphic general models will follow from the fact that in different models
of set theory, the structures of the natural numbers can be different.

A first answer could be that the distinction between standard and non-
standard already offers the basis for the “exclusion” of the nonstandard
models. One characterization of a standard model of arithmetic would
simply be as one that is isomorphic to the natural numbers. That is
unhelpful, because if the Uniqueness Thesis should be false, we would
be unjustified in speaking of “the natural numbers.” A second charac-
terization (closer to the logical one) would be as one in which induction
holds for all subsets of the domain. But then we have returned to the
use of set theory, which was just what made us uncomfortable about
simply appealing to Dedekind’s categoricity theorem. The observation
about models of set theory would suggest a kind of relativism, akin to the
relativism about cardinality that Skolem argued for on the basis of simi-
lar logical considerations: What we have in mind by “natural number” is
relative to the underlying set theory. The language of set theory admits
different interpretations, which give rise to different sets of natural num-
bers that are not even isomorphic structures. A model with more sets may
allow the exclusion as nonstandard of certain objects that are integers in
a smaller model, just as it may “collapse cardinals” by introducing one-
to-one correspondences that were not to be found in the smaller model.

It might be helpful at this point to consider an example. If we made the
assumption, much stronger than the one we are considering, that there is
a unique universe of pure sets, then that should determine uniquely what
sentences of the usual first-order language of set theory are true. Then

14 A model of arithmetic is said to be standard if it is isomorphic to the natural numbers.
For any set of sentences in a second-order language, a model is said to be standard if the
domain of the second-order variables is the set of all subsets of (and relations on) the
domain of the individual variables. (The same idea applies to logics of third and higher
order, which, however, we do not need to consider.) If the Dedekind-Peano axioms are
expressed in second-order form, then if a model of them is standard in this second
sense it is standard in the first sense (by Dedekind’s theorem). The Submodel form of
the Skolem-Löwenheim theorem (see below) implies that the converse does not hold.
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these sentences will constitute a set, since there are only denumerably
many of them. Now let� be this set of sentences. (We do not really need the
strong assumption: All we need to know about � is that it is a complete
theory and that it contains those sentences that we accept as axioms
of set theory, say, those of ZFC plus whatever large cardinal axioms we
find acceptable.) Now consider how we might construct a model that is
nonstandard with respect to arithmetic. Let N(x) be whatever we have
chosen as the natural number predicate of the language; of course � will
contain a sentence saying that N(x) has a set Z as its extension. Let us
now add to the language a countable sequence of new constants c0, c1,
c2, . . . , and add to Σ the sentences N(cn) and cn+1<cn. (in the order
of the natural numbers, easily definable in arithmetic) for each integer
n. It is easy to see that the augmented set (call it �′) is also deductively
consistent, since only finitely many of the new sentences could be used
in deriving a contradiction. Thus by the completeness theorem, �′ has a
model M, which will clearly be nonstandard, since it contains an infinite
descending chain of natural numbers, which implies the existence of an
infinite descending ∈-chain.15 We could have added to �′ all instances
of replacement in the extended language, so that the model M will not
exhibit failures of any of the usual second-order principles (including
induction) in the augmented language.

However, it is still the case that this construction witnesses the fact that
the model is nonstandard. Of course we are able to say of it that it contains
an infinite descending sequence of natural numbers. But we would like
to say that it fails to satisfy one of the basic facts about natural numbers
that we cited, that induction fails to hold for any well-defined predicate.
Counterexamples can easily be given, though some tempting ones are
only apparent: ‘There are finitely many x ∈ Z such that x < c0’ is of course
true in the model. What we need to generate genuine failures is a name of
the set S consisting of the “numbers” denoted by all the ci. S is a non-empty
set of numbers; a simple application of induction yields that S has a least
element. But that is clearly false in M, so that the instance of induction
that implies it must be false as well. S is definable if we add to the language
the predicate “x is the Gödel number of a sentence belonging to �′ ”.16

15 If the numbers are represented by finite von Neumann ordinals, so that < is ∈, evidently
this will be an infinite descending ∈-chain. But however the numbers are represented,
it is easy to see by Dedekind’s theorem that M will contain such a chain and so is not
well-founded.

16 For example, if the nonstandard model is constructed in the Henkin way, the set of
sentences true in the model, in a language with a new list of constants d0, d1, d2, . . .
denoting all the elements of the domain of the model, is defined in the language of set
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Thus, for any complete extension of ZF in the usual language of set
theory, we have a (non–well-founded) model in which the natural num-
bers are nonstandard. It is by having the truth predicate for the model
with which we start that we recognize the new model N as nonstandard;
after all, we are able to say of N that there is, in it, an infinite descend-
ing ∈-sequence. Because the sentence ‘There is no infinite descending
∈-sequence’ is true in N (being a theorem of ZF ), we are able to recog-
nize a discrepancy between the interpretation of such statements with
reference to the model N and what they mean as we use them in the
construction of N (which we are here representing as a set-theoretic con-
struction). (We don’t need semantic reflection on that use; we simply are
in a position to make statements of the form ‘p and “p” is not true in
N’.) There are instances of mathematical induction in the language of set
theory augmented by the above predicate that fail in N.17

In talking about the Löwenheim-Skolem theorem and the philosophi-
cal claims that have been made on the basis of it, we have to keep in mind
the two versions of the theorem. I will call them the Constructive and the
Submodel versions. The Constructive version is the one that is a corollary
of the strong completeness of first-order logic. One begins with a set of
sentences that is deductively consistent (such as the set �′ mentioned
earlier) and constructs a countable model of it. It is only the Construc-
tive version that directly gives rise to a model that is nonstandard with
respect to the integers (in other words, not an ω-model). The Submodel
version begins with a given model and concludes the existence of a count-
able elementary submodel, but if the original model is an ω-model, then
the submodel is as well. It also should be remarked that the manner in
which the axiom of choice is used in the proof of the Submodel version
means that the submodel is not constructed; rather, we obtain a proof
that a countable elementary submodel exists. We are not, however, able
to define the domain and the ∈-relation of the submodel even relative to
the domain and ∈-relation of the given model, only relative to those and
a choice function on the nonempty subsets of the domain of the original
model. This fact, however, may serve to reinforce rather than to call in

theory augmented by the above predicate, say by a predicate �(x ) of the augmented
language. The domain of the model consists of equivalence classes of constants of the
expanded language, where s ∼ t holds if and only if �(s = t). Then the set {c0, c1, c2, . . .}
is just the set of equivalence classes [s] such that ∃n ∈ ω �(s = cn). (I write formulae as
arguments of � where strictly the arguments should be codes of them such as Gödel
numbers.)

17 Strictly, N expanded by a relation corresponding to the added predicate.
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question the skepticism about the idea of “absolute” uncountability that,
from Skolem onward, has been inferred from the Löwenheim-Skolem
theorem. Once one has shown the existence of the countable model, the
question will arise: How do you know that it was not that model that you
were talking about in the first place? That formulation of the question,
however, is too crude: What we prove, after all, is the existence of a count-
able submodel, and from this fact it follows, at least, that its domain is
not the universe. Rather the question has to be something like this: How
do you know that in your use of the language of set theory, in particular
in the proof of the Submodel version of the Löwenheim-Skolem theorem
with which we have been concerned, the “universe” of sets is not, from a
“higher” perspective, countable? In other words, how do you know that
there is not a more generous reading of the language of set theory, in
which our present universe is simply a countable Skolem hull?18

I will not attempt here to answer that skeptical question directly. What
I have said about the difference between the Constructive and Submodel
versions of the Löwenheim-Skolem theorem already implies that the
Submodel version is not enough to encourage skepticism about the
uniqueness of the natural numbers. By contrast, although the Construc-
tive version makes it easy to construct models of set theory in which
the integers are nonstandard,19 the above remarks show that from the
construction one can already see that the model is nonstandard, either
from a set-theoretic or an arithmetical point of view. Hence it seems to
lend no support to the view that all models of arithmetic are on the same
footing.

Still, one might be worried because of a certain asymmetry between
being standard and being nonstandard. We can identify a model as non-
standard because we find, in a more comprehensive language than that
of the theory with which we began, an instance of induction that fails
in the “natural numbers” of the model. But to say that a model is stan-
dard is to say that all instances of induction hold. It may be questioned
whether that statement has a definite meaning. One can say instead that
induction holds for all sets; that is, any set a containing 0 and contain-
ing Sn whenever it contains n, contains all natural numbers. But whether
such quantification over all sets has a definite meaning is precisely what is
being questioned by the relativistic point of view about set theory. It thus

18 These skeptical questions might be a reply to the argument on pp. 107–108 of Hart,
“Skolem’s Promises and Paradoxes.”

19 Or, of course, to construct non-standard models of arithmetic directly.
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seems that to convince ourselves that the notion of “the standard model
of arithmetic” is unambiguous, we would have to answer set-theoretic
relativism.

It seems, then, that we have a rather unsatisfactory situation: The
positive reason we might have to believe that the natural numbers are
not unique is quite unconvincing, because when we produce a model of
number theory not isomorphic to the “natural numbers” with which we
begin, it counts as a model only because of a limitation on the means
of expression of the language of the theory for which a model has been
constructed. By contrast, the Löwenheim-Skolem theorem seems still to
cast doubt on whether we have really “captured” the “standard” model of
arithmetic.

§49. Uniqueness and communication

Let us now try to make a new start with our problem. A first, and very
helpful, suggestion was made some years ago by Michael Dummett.
In essence, Dummett’s observation is that in order to formulate the
idea of models of arithmetic, standard or not, one must use the expres-
sion “natural number” or some other (such as “finite”) interdefinable
with it:

It is, however, circular to think that since what we mean when we speak of
the natural numbers cannot be fully explained by reference to the incomplete
formal characterisation, it must therefore be explained instead by reference to
the conception of the standard model. For this conception must be given to us
by means of some description, and this description will itself make use either
of the notion of “natural number” or of some closely related notion such as
“finite.”

Within any framework which makes it possible to speak coherently about mod-
els for a system of number theory, it will indeed be correct to say that there is
just one standard model, and many nonstandard ones; but since such a frame-
work within which a model for the natural numbers can be described will itself
involve either the notion of “natural number” or some equivalent or stronger
notion such as “set,” the notion of a model, when legitimately used, cannot
serve to explain what it is to know the meaning of the expression “natural
number.”20

20 “The Philosophical Significance of Gödel’s Theorem,” pp. 191–192, 193.
Although the context is a discussion of Gödel’s incompleteness theorem, Dummett’s

argument is aimed at the idea that it is “by reference to the standard model” that the
notion of natural number is understood. Skolem would perhaps have thought it an
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The second of these quotations appears to say that the apparently
unhelpful answer to our question, which we considered early on, that a
nonstandard model can be seen to be such because it is not isomorphic
to the natural numbers is in fact the best answer that can be given, and
therefore, presumably, a sufficient one. We must then, it seems, look to the
use of the term ‘natural number’, as well as those for particular numbers,
to distinguish it from other mathematical terms that designate kinds of
structures rather than unique structures and thus to convince ourselves
of the Uniqueness Thesis. The fact that the numerals are singular terms
is of less relevance than appears at first sight. For on any “structuralist”
view of arithmetic, whether or not it supposes the numbers to be unique
as a structure, terms like ‘0’, ‘1’, and other more complex ones will be
relative in the sense that they do not have a reference that is fixed by more
than the relations of the structure. On the “eliminative structuralist” views
considered in chapter 2, such terms will have an implicit parameter for a
realization of the structure of the natural numbers, either presupposed or
quantified over. It has to be a further question whether all such realizations
are isomorphic.

One might take to be embodied in our usage simply the assumption
that there is one sequence of natural numbers.21 This seems to me pretty
clearly not a satisfactory position. For suppose we describe some other
system of objects that answers reasonably well to the idea of natural
number; let us call them ‘pseudo natural numbers’. Then there should
be some reason, connected with the use of the term ‘natural number’,

entertainable view that it was by reference to a “standard model” of axiomatic set theory
that the notion of set is understood, and have seen his considerations based on the
Löwenheim-Skolem theorem as arguments against that view. It would be a question
worth discussing to what extent Dummett’s observation could be carried over to this
case.

One might compare Dummett’s observations with the following earlier remark of
Bernays:

That the unreality (Uneigentlichkeit) of certain structures of the uncountable is so much
more noticeable to us than the unreality that already lies in the conception of the number
series as a structure, surely rests on the fact that our concept of a formal theory already
intends the same sort of unreality as that of the number series. (“Bemerkungen zum Para-
doxon von Thoralf Skolem,” p. 118, my translation)

21 Dummett sometimes gives the impression that that is his intention. I am inclined to
think this impression false, as Dummett also engages in reflections on the principles
of arithmetic, but it is not clear how he would use them to answer doubts about the
Uniqueness Thesis.
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why these objects are not the genuine article, or indeed why they are not
what we were talking of all along when we talked of natural numbers.

At this point one would naturally go further into the use of the language
of natural number. Given the specific problem, it is the principles of arith-
metic, beginning with the elementary Peano axioms and induction, that
are immediately relevant. At this point we can consider again Dedekind‘s
categoricity theorem. Two considerations seem to suggest that it will not
be helpful: the fact that, in spite of Dedekind’s theorem, first-order arith-
metic is not categorical (i.e., the existence of nonstandard models already
discussed in §48), and the fact that we obtain categoricity by consider-
ing the induction principle in the context of standard second-order logic.
Although Dummett suggests that we have to understand the induction
principle in this way in order to appeal to it in communicating our under-
standing of the notion of natural number,22 I shall argue the contrary. But
I shall follow Dummett in focusing on the problem of communication
concerning the natural numbers.

If we look a little more closely at Dedekind’s theorem and its proof,
we see that it is essentially first-order. Although it can be proved in a
weak theory of sets and classes,23 I shall present it as a schematic theo-
rem about a pair of number predicates. Suppose our language contains
a singular term ‘0’, a one-place functor ‘S’ and a predicate ‘N ’, and also
another such triplet ‘0′’, ‘S ′’, ‘N ′’. Suppose that the elementary Peano
axioms hold for each. In keeping with Skolem’s recursive arithmetic, we
can introduce by primitive recursion a functor f , with arguments n such
that Nn, and values x such that N ′x, such that f (0) = 0′ and f (Sn) =
S ′( f (n)). To see that f defines a one-one mapping of the Ns onto the N ′s,
we need only first-order instances of induction.24 By (trivial) N-induction
we have Nn ∧ n 	= 0 → (∃p)(n = Sp), so that if n 	= 0, f n = f (Sp) for some
p, and so fn 	= 0′ = f 0. Thus if f n = f 0, then n = 0. Suppose now
Nn and (*): (∀m)[Nm → ( f m = f n → m = n)]. If f m = f (Sn), then
f m = S ′( f n). Then f m 	= 0′ and so by the above m 	= 0. Thus, for some

22 Dummett, “Platonism,” esp. p. 210; cf. the discussion in my “The Uniqueness of the
Natural Numbers,” pp. 33–34. The suggestion, however, may arise from the specific
context of his paper, which argues against a platonistic theory of mathematical intuition.

23 Feferman and Hellman, “Predicative Foundations,” theorem 5, p. 8. I prefer not to intro-
duce the complication of classes into the present discussion. Feferman and Hellman’s
formulation will be discussed in §50.

24 By N-induction we mean the formulation (R5) of the rule of induction given in §31 and
§47. N ′-induction is the same rule with 0, S, N replaced by 0′, S ′, and N ′. Note that trivial
N-induction proves Nn → N ′( f n).
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p, m = Sp, and f m = S ′( f p). But then f n = f p, and by (*) n = p,
and so m = Sn. Thus we have proved

Nn → {(∀m)[Nm → ( f m = f n → m = n)]

→ (∀m)[Nm → ( f m = f (Sn) → m = Sn)]}‚

and by N-induction, f maps the Ns one-one into the N ′s.
Note that this first part of the argument uses only N-induction and

primitive recursion introducing a functor defined on the Ns. To see that
f is onto the N ′s, however, we use N ′-induction on the predicate

(3) (∃m)[Nm ∧ f m = n].

Clearly, for n = 0′ we can take 0 as m; if m witnesses it for a given n, then
Sm will witness it for S ′n.

How is it possible that the proof of Dedekind’s theorem can be first-
order, although first-order arithmetic is not categorical? What is essential
to the proof that the two structures are isomorphic is not any rich system
of subsets of the one or the other, but rather that it is possible to apply
induction and recursion within one of them in a way that involves refer-
ence to the other.25 The usual language of first-order arithmetic only talks
about the natural numbers; the functors and predicates operate within
the natural numbers. Thus it does not contain the predicates induction
on which would show that some independently described structure is
isomorphic to it.

Although this formulation of Dedekind’s theorem shows that it does
not require a strong second-order or set-theoretic apparatus, it is not
clear that it gets us over the difficulty for the Uniqueness Thesis posed
by nonstandard models. We have assumed a first-order logical setting. So
long as the language remains first-order, even if it is augmented by further
predicates and functors, a consistent set of sentences in it will have models

25 Our discussion has been carried out in a classical framework. However, a categorial
characterization of the natural numbers due to F. W. Lawvere gives rise, as Tait has
observed (“Against Intuitionism,” n. 12), to a natural formulation of Dedekind’s theorem
in an intuitionistic typed theory of constructions. The manner in which the natural
numbers are introduced in this logical setting makes particularly clear what is involved:
with the type N of natural numbers goes primitive recursion with values of an arbitrary
(and therefore possibly other) type A. For a full treatment see Martin-Löf, Intuitionistic
Type Theory, pp. 71–76.

Either in this setting or in the classical one of the text, however, the role of primitive
recursion makes the argument incompatible with strict finitism. And, indeed, it has been
observed that from a strict finitist point of view the Uniqueness Thesis should not be
expected to hold. See Gandy, “Limitations to Mathematical Knowledge,” p. 140.



P1: JZP
9780521452793c08 CUNY1138/Parsons 978 0 521 45279 3 October 30, 2007 11:24

§49. Uniqueness and communication 283

in which the two number series will have nonstandard (albeit isomorphic)
models. What has been accomplished for our purpose by formulating
Dedekind’s theorem in this way?

Before I undertake to answer that question, I will first pose a new dif-
ficulty for the Uniqueness Thesis. Suppose that we imagine two speak-
ers who both use the first-order language of natural numbers. The first,
Michael, uses 0, S, and N, whereas the second, Kurt, uses 0′, S ′, and N ′,
both, presumably, building up from these by primitive recursion and
other devices. We might ask how one could come to know that his “num-
bers” are isomorphic to the other’s. Let’s imagine that Michael attacks
this problem by a method approximating to that of Donald Davidson’s
“Radical Interpretation.” He is able to identify 0′, S ′, and N ′ as a singular
term, a one-place functor, and a one-place predicate respectively. He will
observe that Kurt “holds true” the elementary Peano axioms, and in keep-
ing with the method, he will attribute to Kurt classical first-order logic.
Let us assume that there is no reason why Michael should not apply the
principle of charity and conclude that the elementary Peano axioms, as
affirmed by Kurt, are true. Kurt also accepts N ′-induction on any “well-
defined predicate.” We will extend our supposition and allow Michael the
conclusion that any such induction affirmed by Kurt is true.

There might be reasons of a different kind from those mentioned so
far, for example, about the reference of individual numerals, why Michael
should not interpret ‘N ′’ as used by Kurt as simply meaning ‘N ’. Sup-
pose he is at least reserved about that question and incorporates Kurt’s
numerical vocabulary into his own rather than interpreting it by expres-
sions he already has. Will he be able to convince himself that the two
number systems are at least isomorphic? He will be able to introduce the
functor f by primitive recursion and see that it maps the Ns into the N ′s;
those steps are simply applications of primitive recursion and induction
that he already accepts, to be sure open-ended as to vocabulary. For the
same reason, he will be able to carry out the first part of the argument for
Dedekind’s theorem and show that f is a one-one mapping of the Ns into
the N ′s. His application of charity will be enough to yield the conclusion
that 0′, S′, N ′ is a model of arithmetic as he understands it.

Carrying out the second part, however, meets an obstacle. Michael will
have observed that Kurt accepts induction on any well-defined predicate;
he may even interpret some expression by Kurt of the intention to accept
any such induction, even for predicates not yet formulated in his lan-
guage. But it seems that in order to conclude that N ′-induction on the
predicate (3) above falls under some such general intention, he would
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have to regard (3) as a well-defined predicate according to Kurt. This
would follow if N is such and f a well-defined functor. But what in the
procedure of radical interpretation would allow Michael to treat them in
that way? Couldn’t Michael regard Kurt’s vocabulary as too restricted to
take in N (and therefore as not giving even the occasion for introducing a
functor by primitive recursion on N)? That would allow him to take Kurt’s
N ′s as the numbers of a nonstandard model. At all events, it appears that
he does not have grounds for ruling this out.

Let us suppose further that Kurt also undertakes to interpret Michael
and goes through steps corresponding to those we have just described in
Michael’s interpretation of Kurt. Thus, Kurt will take 0, S, N into his own
language and admit that the elementary Peano axioms and instances
of induction affirmed by Michael are true. He will be able to define by
primitive recursion a functor g: N ′ → N that he will be able to prove maps
the N ′s one-one into the Ns. It might seem that the fact that he will find
Michael holding true sentences embodying his interpretation of himself
will enable him to see that g is onto. That is, Michael has admitted N ′ into
his own vocabulary, so that it seems that Kurt can conclude that it is a
well-defined predicate according to him and apply the induction needed
to see that g is onto. However, the question arises whether Kurt is entitled
to identify the N ′ that he takes over in his interpretation of Michael with
N ′ as he himself previously used it. If he can’t just assume this, he should
distinguish them, as, let’s say, N ′ and N ′

M. He has, from his interpretation
of Michael, an f : N → N ′

M, which he can compose with g to see that the
N ′s are included in the N ′

Ms. But to see that the composition of g and f is
onto, he will have to apply induction on N ′

M to a predicate involving his
own N ′, and then the same question will arise: What entitles him to treat
that as a well-defined predicate according to Michael?26

It seems that so long as we follow the paradigm of radical inter-
pretation, the interpretation of someone’s discourse about the natural
numbers will not be constrained to make the agent’s numbers isomor-
phic to the interpreter’s, because the interpreter has a more expres-
sive language in general, and we haven’t found a reason why he must
assume that his own number predicate falls in the scope of the agent’s

26 Hartry Field considers a somewhat similar situation involving two speakers’ languages
for set theory. Although the issue he poses explicitly is whether the terms for ‘set’ are coex-
tensive, he states that his considerations “undermine recent attempts to get categoricity
. . . results by ‘essentially first-order’ means”; among these he counts the argument
of “The Uniqueness of the Natural Numbers.” See “Are our Logical and Mathematical
Concepts Highly Indeterminate?” pp. 421–422.
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induction.27 But the manner in which we have deployed the idea of inter-
pretation will strike the reader as unrealistic as a picture of how Kurt
and Michael might understand each other in actual conversation. The
procedure of radical interpretation is described as a procedure for con-
structing a theory of what the language used by another, in the typical
case a member of another linguistic community, expresses by its sen-
tences. It would be beyond the scope of this work to examine whether a
speaker’s understanding in normal conversation is best represented as the
construction of a theory, particularly a global theory of the sort we have
envisaged. At all events, a plausible alternative would be that speakers
take each other’s words at face value and respond to them without theo-
rizing about what they mean unless difficulties arise that such reflection
could help to resolve. This would be in line with the view, which I have
defended elsewhere, that language as used is prior to semantic reflection
on it.

Does this alternative point of view lead us anywhere on the Uniqueness
Thesis? It might seem that it leads either to a begging of the question or to
the conclusion that there is no question there to be considered. The attri-
bution to Kurt and Michael of different number predicates was obviously
somewhat artificial. Two English speakers would both use the expression
‘natural number’ or, if no confusion with other number systems threat-
ened, simply ‘number’. It’s reasonable to assume that it has the form of
a one-place predicate. (We assumed that the interpreter in the situation
discussed above could conclude that.) Let’s assume that about Kurt and
Michael. Then they will treat each other’s predicate ‘number’ as “meaning
the same thing,” at least so long as they do not come to disagree about
the principles of arithmetic. Because it has the form of a one-place pred-
icate, without an additional argument place that might possibly be filled
by different “number sequences,”28 it seems that they are just talking of
the objects that are natural numbers.

Within this stance of taking each other’s words at face value, however,
they may still be able to inquire as to the justification of their use of such
a one-place predicate, and even minimize the effect of disagreements

27 Field offers a similar argument to much the same conclusion in the Postscript to “Which
Undecidable Mathematical Sentences have Determinate Truth values?” Where we seem
to disagree is whether that is the end of the matter. The remarks about communication
in “The Uniqueness” were meant to respond to objections like Field’s; I trust what is
offered below will be found more convincing than Field found my earlier treatment.

28 As would be the case with general types of structure where no one thinks there is (up to
isomorphism) a unique instance, such as groups or fields.
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of a certain restricted kind. Suppose that each of them teaches the devel-
opment of arithmetic in set theory, but that Kurt prefers the natural num-
bers as finite von Neumann ordinals, whereas Michael prefers the Zer-
melo numbers.29 Let’s suppose they are rather literal-minded about this,
so that each one takes the number n to be identical to the corresponding
set. Then they can’t be using ‘natural number’ as predicates with the same
extension.30 In what sense can they continue to take each other’s words
at face value?

Let’s suppose that they have often conversed about number theory
independently of its construction in set theory. They agree in accepting
the elementary Peano axioms and induction. Let’s assume that each can
convey to the other his intention to accept induction for any well-defined
predicate and to allow the introduction of functors by primitive recur-
sion.31 If they discover their disagreement about the identity of individ-
ual numbers with sets, they will have to distinguish their number pred-
icates, perhaps regarding them as in some way indexical. But nothing
else will be disturbed; they can continue their conversation about pure
number theory and about higher mathematical constructions built on
it. But if they abandon this restriction, they will be in a situation some-
thing like that of our original version of the example, in which they have
two different number predicates. But if we allow each simply to under-
stand that of the other, then each will be able to take the other’s into his
own language; for example, Michael might, to avoid confusion, use the
expression ‘numberK’, and Kurt might use the expression ‘numberM’.32

Each might raise the question whether the numbers are isomorphic to
the “subscripted” numbers and use the Dedekindian argument to answer
the question in the affirmative. This will put a limit on the disagree-
ment they have got into by too literally identifying numbers with sets,
since they will not only agree in what sentences of pure number the-
ory they accept but will see that their number structures are isomor-
phic.

29 We might imagine them to be the teachers of Paul Benacerraf’s Johnny and Ernie; see
“What Numbers Could not Be,” p. 278.

30 Presumably, however, they could just observe how little they have to go on to fix the
identity of individual numbers and conclude that they should not assume that their
number predicates have the same extension.

31 One might show that one accepts a term as a well-defined predicate by accepting induc-
tion on it or on something constructed from it.

32 Each will, as in the earlier discussion, also have to distinguish his own terms for individual
numbers from the other’s.
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We now have the situation that was lacking when we viewed Michael’s
understanding of Kurt as a case of radical interpretation; namely, he will
take his own number predicate as a well-defined predicate according to
Kurt, and so he will allow himself to use it in induction on Kurt’s numbers.
That will enable him to complete the proof that his own numbers are
isomorphic to Kurt’s; clearly, the situation is symmetrical between them.
It is important to observe that the conclusion that their number sequences
are isomorphic does not depend on any global agreement between them
as to what counts as a well-defined predicate. We should not expect such
agreement, as it is not necessarily determined what will count for either
as a well-defined predicate. Also, the question of a background set theory
(or some functional equivalent) within which the argument is conducted
does not arise. Their conversation proceeds with given predicates, and
although induction and primitive recursion are assumed, nothing from
which they might be derived plays any role.

We can imagine the dialogue between Kurt and Michael extended to a
larger community. With the means brought to bear so far, any pair will be
able to see that their numbers are isomorphic. Some means of generaliz-
ing predicate places will of course come into play as soon as the demand is
made to see this in general. If it takes the form of an appeal to classes, first-
order comprehension is sufficient, as the version of Dedekind’s theorem
given by Feferman and Hellman illustrates (see note 23).

Where does this leave us with respect to the Uniqueness Thesis? No
proof has been given that the “intended model” of either Kurt or Michael
is the standard one. Although if they can take each other’s words at face
value in the way described, they will be able to convince themselves that
their number sequences are isomorphic, it does not follow that they are
standard. The discussion of the question from the point of view of radical
interpretation seems to show that an interpreter coming from outside
can interpret them so that the arithmetical truths of each, including those
relating the “numbers” of each to those of the other, are all true from the
interpreter’s point of view, and yet their number series are nonstandard,
albeit essentially the same nonstandard model. This interpreter, however,
will use his own notion of natural number, or some equivalent, to describe
his model. It seems that his interpretation can survive only as long as he
does not enter into the sort of dialogue with Kurt or Michael that they
have had with each other.

I think the lesson we can draw from these considerations is that the
point of Dummett’s observation that the notion of natural number must
be used in the construction of models of arithmetic is that, in the end, we
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have to come down to mathematical language as used, and this cannot be
made to depend on semantic reflection on that same language. We can
see that two purported number sequences are isomorphic without strong
set-theoretic premisses, but we cannot in the end get away from the fact
that the result obtained is one “within mathematics” (in Wittgenstein’s
phrase). We can avoid the dogmatic view about the uniqueness of the
natural numbers by showing that the principles of arithmetic lead to the
Uniqueness Thesis, but this does not protect the language of arithmetic
from an interpretation completely from outside, that takes quantifiers
over numbers as ranging over a non-standard model. One might imagine
a God who constructs such an interpretation, and with whom dialogue
is impossible.33 But so far the interpretation is, in the Kantian phrase,
“nothing to us.” If we came to understand it (which would be an essen-
tial extension of our own linguistic resources) we would recognize it as
unintended, as we would have formulated a predicate for which, on the
interpretation, induction fails.

This way of looking at the situation will remind the reader of Putnam’s
approach to “Löwenheim-Skolem” predicaments in “Models and reality.”
He calls his standpoint “non-realist semantics”:

From that standpoint, it is trivial to say that a model in which . . . the set of cats
and the set of dogs are permuted . . . is “unintended.” . . . Such a model would
be unintended because we don’t intend the word ‘cat’ to refer to dogs. (p. 24)

Putnam’s nonrealist semantics amounts at this point (not necessarily
everywhere in his recent writings) to what Quine in his earlier discussion
of ontological relativity called “acquiescence in our mother tongue.”34

It is a long way from this modest nonrealism to anything the tradition
would recognize as idealism, and even to the thesis of Dummett’s that
truth-conditions cannot be the basic terms by which the meaning of the
expressions of a language is explained.

Apart from the question whether it is persuasive in its own terms,
this argument leaves a number of questions, some of which have been
addressed in recent literature. Many will find the conclusion weak, indeed,

33 Such a God might formulate a definite idea of our “total science” or “total belief” and
therefore an idea of what could be a well-defined predicate for us; he could then reason in
the manner of Putnam’s “Models and Reality.” A point at which I may differ with Putnam
is that I don’t think we have such an idea.

34 “Ontological Relativity,” p. 49. Such a stance appears to allow some semantic reflection,
such as Putnam allows himself in the quotation in the text. The nature of this reflection,
and how far it can go, is a large question which I do not pursue here.
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that seems to be the view of those who have discussed the matter most
extensively: Field, Vann McGee, and Shaughan Lavine.35

Field makes clear that he is not satisfied with the conclusion argued
for above, and he offers a proposal for reaching a stronger one.36 The
idea is roughly that the physical universe singles out a standard model for
arithmetic, or, in the context of Field’s discussion, makes definite what
sets are “genuinely” finite. He proposes a “cosmological hypothesis,” that
time is infinite and Archimedean, and argues that, if it is true, the notion
of finiteness can be defined in such a way that in allowable models of
the resulting theory, what sets are finite will be invariant. He is at pains
to point out that the particular hypothesis he lays out is not essential; a
number of other such hypotheses would accomplish the same end.

One’s first reaction is to protest that any indeterminacy infecting the
mathematical conception of finiteness could be expected to infect the
physical conception as well. Field himself supposes his cosmological
hypothesis embedded in a certain physical theory S, which will have non-
standard models. Field’s Archimedean hypothesis, more precisely stated,
is that any set of events that has an earliest and a latest member, and such
that any two of its members occur at least one second apart, is finite.
Now, of course, in a nonstandard model the finiteness of such a set can
be witnessed by a mapping onto the integers less than some nonstandard
integer, and Field’s infinity condition will insure that this happens in some
cases. So if in general the existence of nonstandard models threatens the
idea that ‘finite’ is a determinate concept, why does it not do so in this
case?

Field takes this possibility to be excluded by an assumption of the
determinateness of the physical vocabulary:

More precisely, I will take an interpretation or model of our own language to
be “unallowable” or “objectively unintended” unless the extension of ‘cow’ in
the model includes precisely those members of the domain of the model that
are cows; and similarly for every other physical predicate in the language.37

35 For Field see notes 27 and 28 above. Vann McGee, “How We Learn Mathematical Lan-
guage,” and “Truth by Default”; Shaughan Lavine, Understanding the Infinite, ch. VII §4,
and Skolem was Wrong (unpublished). McGee concentrates on set theory, and that is
the principal concern of Lavine as well. I am not certain that McGee’s publications are
addressed to our question, and I do not discuss them here.

36 “Are our Logical and Mathematical Conceptions Highly Indeterminate?” pp. 416–
418; “Which Undecidable Mathematical Sentences have Determinate Truth-values?”
pp. 340–342 of reprint.

37 “Which Undecidable Mathematical Sentences,” p. 340.
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Concerning a nonstandard model of S, Field claims that a set of events
whose “finiteness” is witnessed by a nonstandard integer will either have
to contain objects satisfying ‘events’ that are not events, or pairs e, e ′ of
events satisfying ‘earlier than’ or ‘at least one second apart’ such that e
is not earlier than e ′, or e and e ′ are not one second apart. Consider an
‘event’ in the sense of the model that unfolds at a stretch of time in the
nonstandard part. Field’s assumption is that that is not an event.

I find it hard to see how someone could accept that assumption who
does not already accept some hypothesis that rules out nonstandard mod-
els as unintended on mathematical grounds. If our powers of mathemat-
ical concept formation are not sufficient to do the latter, then why should
our powers of physical concept formation do any better? We are not talk-
ing about events in a commonsense context, but, rather, in the context of
a physical theory developed in tandem with sophisticated mathematics.
Field may wish to insist on this interaction and to claim that our mathe-
matical conceptions themselves get their sense and justification in part
from their application in the sciences. But the manner in which he places
the weight of securing determinacy on the physical vocabulary, so that
the mathematical vocabulary gets its determinacy at second hand, does
not entirely square with this. It is more likely that he privileges the phys-
ical and believes that it can give determinacy to our concepts through
causal relations or some other “externalist” means, whereas mathemati-
cal structure does not do this. The issues such a view would raise have to
be beyond the scope of this work.38

An approach toward a stronger conclusion that promises not to lead
into issues of this kind is that taken by Shaughan Lavine in his manuscript
Skolem was Wrong.39 The idea on which we have proceeded, that the prin-
ciple of mathematical induction is entirely open-ended, so that induction
should hold for any predicate that we might come to understand and is
not restricted to a fixed language, has been modeled in mathematical
logic by the device of schematic theories. Reviving an older approach to
axiom schemata, the schematic letter in the induction schema (and other
principles such as separation and replacement in set theory) is taken into
the object language along with a substitution rule. In logical work, such
as Solomon Feferman’s on reflective closure and unfolding, it has been

38 I will only comment that Hilary Putnam has argued in many places that the notion of
causality will not do the kind of work Field seems to be requiring of it.

39 In the context of relativism about set theory, the idea is sketched in Understanding the
Infinite, pp. 228–240. I thank Lavine for permission to cite his unpublished work.
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investigated what will result when, beginning with a theory formulated
in this schematic form, we follow out to some natural closure the process
of expanding the formal language, together possibly with such principles
as go with the expansion.40

Lavine states as a theorem the categoricity of what he calls the “full
schematic theory” of first-order arithmetic. One begins with PA, formu-
lated in the above schematic way with the induction schema in the object
language. PA(+), full schematic arithmetic, is then PA with instances of
induction allowed for any expansion of the language. Lavine states as a
theorem the categoricity of PA(+). The first proof that he gives is model-
theoretic and, he states very clearly, not satisfactory for the philosophical
purpose. It proceeds in effect by supposing that PA(+) has a nonstandard
model and showing that, if one introduces a predicate I true of its
standard part, then induction will fail in the model for some predicate
containing I.

Already at this stage, however, the question arises how we are to
understand PA(+). Lavine offers mathematical results, such as the above
categoricity theorem, that contain generalization over languages. Such
generalization is familiar from mathematical logic and does not differ
essentially from other forms of mathematical generalization. But in its
familiar form it is accompanied by some mathematical definition of lan-
guage, so that “language” is a predicate of some mathematical theory,
usually straightforwardly formalizable in some manner or other. How-
ever, Lavine makes a distinction between talk of any expansion and talk
of every expansion, and says of a statement about the former that it is a full
schematic statement that lets us infer, given an expansion, that it has the
property stated. The idea apparently is that there is something schematic
about such a statement. For the present, I will leave the matter at that, but
it seems that PA(+) is not as precisely defined as mathematical theories
generally are.

For a more satisfactory approach to our problem concerning the natu-
ral numbers and related problems concerning set theory, Lavine uses the
theory of inductive definitions. He considers the theory with two natural
number predicates. A predicate defining the isomorphism of the Ns and
the N ′s can be introduced by a positive inductive definition. Given the
full schematic character, induction involving it, on either the Ns or the
N ′s, is permitted by the theory. Formulae witnessing the isomorphism are

40 See for example Feferman, “Reflecting on Incompleteness.” Lavine gives his own expla-
nation of what he calls a full scheme in “Something about Everything.”
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provable. Except for using a binary predicate rather than a unary functor,
this is essentially the same version of Dedekind’s theorem that we have
deployed.

There is a difference that Lavine apparently thinks makes his result
stronger in a way relevant to the philosophical issue. Lavine describes it
by saying that my version41 only applies to two particular arithmetical
languages, whereas his are stated for arbitrary pairs of languages. It is
not easy to see what this difference amounts to. Considered as a purely
syntactic theorem, it is hard to see any difference at all: After all, I have
considered a purely hypothetical case. Lavine indeed suggests that it is
this purely syntactic understanding that he himself relies on. Then he
would be quite right that there is no background set theory presupposed.
The theorem could be formalized in a theory of pure syntax that can
describe the predicate calculus and theories formalized in it. Such a theory
would not be identical to primitive recursive arithmetic but would be
reducible to it.

By itself that does not promise to lead to a stronger result than we have
claimed, or even as strong a result: After all, our own argument used,
besides the mathematical statement, considerations concerning com-
munication and understanding. What prevents the syntactic theorem
from being interpreted with reference to a nonstandard model? What
seems to do the work is the kind of generality involved in Lavine’s under-
standing of PA(+). Lavine raises precisely the problem that bedevils the
application of all such theorems: If we interpret the result with respect to
some model, it shows that the structures for the natural numbers in that
model are isomorphic, but it does not prevent interpretation with respect
to different models that give rise to nonisomorphic structures of natural
numbers.

I think the reply he has in mind is something like this: Suppose you
present me with an interpretation of my talk of natural numbers (and
different domains of “natural numbers”), in which precisely the feared
pathology occurs. My idea was, however, that induction holds for any
predicate, no matter how the language is expanded. But in order to inter-
pret me as talking of a nonstandard model, you have to produce an expan-
sion of the language that gives your game away, because you will have to
describe your interpretation and thus introduce a predicate, to be sure
not one I formulated or necessarily could have formulated, for which

41 I.e., that of “The Uniqueness,” pp. 34–35, which does not differ in any relevant way from
the version of the theorem above.
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induction fails for my numbers. But PA(+) allows induction on this pred-
icate, so that what you have produced is not a model of PA(+). I won’t
expand this reply further because I don’t really disagree with it. I do think,
however, that it requires that you enter into the sort of dialogue with me
that we considered above. If instead of “you” we have the sort of God I
invoked before, then my means of defeating the proposed interpretation
do not get off the ground.42

§50. Induction and impredicativity

The derivation of induction from an explicit definition of the natural
number predicate yields induction for all predicates in the language with
which one is working only if one has the equivalent of full second-order
logic.43 I shall consider later in this section what one might accomplish
with less. But unless one accepts some substantial restrictions, if one
proceeds in this way the impredicative character of second-order logic
already infects the natural number concept.

In 1963 Michael Dummett made the following remark:

. . . the notion of ‘natural number’, even as characterised by the formal system,
is impredicative. The totality of natural numbers is characterised as one for
which induction is valid with respect to any well-defined property, where by
a ‘well-defined property’ is understood one which is well-defined relative to
the totality of natural numbers. In the formal system, this characterisation is
of course weakened to ‘any property definable within the formal language’;

42 As my references to other writers indicate, the issues about uniqueness discussed
here have also been discussed with reference to set theory. A prerequisite for the
kind of approach taken here would be an essentially first-order version of the “quasi-
categoricity” theorem of Zermelo, “Über Grenzzahlen und Mengenbereiche,” which
states that of any two standard models of second-order ZF, either they are isomorphic
or one is isomorphic to the sets of rank < κ for some strongly inaccessible κ in the other.
Such a version exists and is elegantly formulated in Lavine, Skolem was Wrong. It would
take us too far afield to go into the question whether an argument of the type offered
here can be extended to set theory.

43 A theorem of John Myhill shows that if in a ramified second- or higher-order logic one
defines the natural numbers in Frege’s way with the second-order quantifier having a
definite level or order, then there will be instances of induction of higher level that will
not be provable. See Myhill, “The Undefinability of the Set of Natural Numbers,” p. 21.
Essentially Myhill’s result was stated in 1959 by Wang, with only the briefest indication
of a proof, in “Ordinal Numbers and Predicative Set Theory,” p. 642. Kurt Gödel had
observed that Russell’s attempt to prove the contrary in Appendix B of the second edition
of volume I of Principia Mathematica is fallacious. See “Russell’s Mathematical Logic,”
pp. 135.
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but the impredicativity remains, since the definitions of the properties may
contain quantifiers whose variables range over the totality characterised.44

Dummett, discussing Gödel’s incompeteness theorem, was thinking of
the natural numbers as characterized by a formal system such as PA.
But his point is surely that a characterization of the natural numbers
that included induction as part of it will be impredicative; this does not
hold just of the characterization by an explicit definition in the context of
second-order logic or set theory.45

What might be meant by a property that is “well-defined relative to the
totality of natural numbers”? I’m not sure that Dummett has in mind more
than a well-defined property of natural numbers, that is, what is expressed
by a predicate that is significant for natural number arguments. But it
seems that what creates the worry about impredicativity is those predi-
cates containing quantifiers over numbers. Because the number concept
is characterized as one for which induction holds for any well-defined
predicate or property, there is impredicativity if those involving quantifi-
cation over numbers are included, as they evidently are.

It might seem that on this view impredicativity would arise very early
in the development of number theory, as soon as induction is applied
to predicates containing predicates or functors introduced by recursion,

44 “The Philosophical Significance of Gödel’s Theorem,” p. 199. In 1983 I noticed this remark
when “The Impredicativity of Induction” was largely complete. Edward Nelson’s state-
ment of a very similar point in Predicative Arithmetic, pp. 1–2, seems entirely indepen-
dent both of Dummett’s remark and my paper, though possibly not of the paper of Myhill
cited in note 43.

Commenting on the result of that paper, Myhill remarks that if one’s “mathematical
philosophy” is classical,

one would reason that the result shows that impredicativity is present in mathematics from
the very beginning, i.e., the natural numbers, and that consequently any philosophy of
mathematics which repudiates impredicative definitions ipso facto repudiates mathematics
itself. (op. cit., p. 27)

Taken strictly, this claim is very questionable, since a classical view of mathematics hardly
requires that the notion of natural number be understood by an explicit definition. If
one replaces ‘impredicative definitions’ by the vaguer term ‘impredicative notions’, then
an argument for Myhill’s claim would require something like the (earlier) observation of
Dummett’s elaborated in the text.

By contrast, Myhill seems to think the constructivist could avoid this conclusion. The
view defended here is that he could do so only at the price of a dogmatic view of the
clarity of the notion of natural number and the evidence of mathematical induction.
However, such a dogmatic view could plausibly be attributed to Poincaré and possibly
also Brouwer.

45 So many different characterizations by set theory are possible that we should not take
for granted that any such characterization will share the evident impredicativity of the
Fregean one. We will consider some examples later.
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because the presupposition that they are defined already involves the
general concept of natural number. At all events it would arise as soon as
induction on predicates involving quantifiers over numbers is used. If we
allow a rule for introducing functors by primitive recursion, that will not
be as soon as one might think, given how much arithmetic can be done in
PRA. These remarks leave somewhat unclear when arithmetic becomes
impredicative according to this view, but we can leave this question to
return to it later.

A more urgent question is whether the explanation of the number
concept by rules gives rise to the same impredicativity. To address this
question, let us first go back to something very basic. Why is it that
impredicative specifications of sets are said to be so? Consider, for exam-
ple, the set-theoretic version of the Fregean definition of ‘natural number’.
According to it x is a natural number if it belongs to every set that contains
0 and is closed under successor. Consider now the set N0 of x such that x
is a natural number, defined as we have just done. Clearly N0 falls in the
range of the quantifier; it even contains 0 and is closed under successor.
Our specification of the set N0 defines it in relation to a totality to which
it belongs. Now clearly impredicativity is a property of the specification
or definition of the set N0. In particular, we don’t need to suppose that
the definition of ‘natural number’ gives the meaning of that phrase in any
strong sense; ‘natural number’ doesn’t figure essentially in the matter at
all. We also don’t have to suppose that the specification gives the mean-
ing of the designation ‘N0’ of a certain set, since the impredicativity is a
property of the specification.

Above, we have effectively extended the designation ‘impredicative’
from the specification of the set N0 to the definition of the predicate ‘nat-
ural number’. It’s hard to see how anyone could quarrel with this, as in
order to apply the definition one will need to pass from predicates to sets
that are their extensions. However, impredicativity is still a property of
the definition and not, for example, of the set.

In Dummett’s remark quoted earlier, it is said that the notion of natural
number is impredicative. He may be attributing impredicativity to the
concept of natural number as such, or to the meaning of the predicate
‘natural number’. I am more interested in a weaker thesis that follows
from this, that certain explanations of the predicate ‘natural number’, in
general not explicit definitions, are impredicative. That moves less far
from the original character of impredicativity as a property of definitions.
It might be claimed in addition that the explanations in question are the
philosophically most attractive ones, or even that no explanation is in
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sight that is not impredicative. That was my own view in earlier writing.46

The standard for an informal explanation to be impredicative or not are
not so clear as they are for an explicit definition, so that we can’t expect the
issue to be quite so clear-cut as it is for explicit definitions or specification
of sets by abstracts.

Let us first consider Dummett’s case. He assumes that induction –
either in the general form we have considered in §47 as holding for any
well-defined predicate, or in the more restricted form referring to any
predicate definable in the language of a formalism for arithmetic such as
PA – is directly part of the explanation of ‘natural number’; that is, the pred-
icate is explained as one for which every relevant instance of induction
holds. Then, because induction is to be applied to predicates containing
quantifiers over natural numbers, the sense in which this explanation
is impredicative is pretty clear. In §47, induction, with its generalization
over “predicates,” was used in an informal explanation of the predicate
‘natural number’; this is the first of the two cases of Dummett’s remark
just identified.

Dummett’s stronger thesis that the “notion” or “concept” of natural
number is impredicative poses to someone who doubts it the challenge
to give an explanation of the concept that passes muster as predicative.
One might reject the demand for an explanation at all. I don’t see how
one can be satisfied with that; in particular, it seems to involve rejecting
the demand for an account of the evident character of induction. A more
interesting program would be to try to give such an explanation that would
be predicative. Some recent work in logic can be viewed in that light.

Before going into that, we should dispel a potential confusion about
predicativity. Both in the early discussions of impredicative definitions
and in much later logical work on predicativity, a predicative conception
has been allowed to assume the natural numbers. Poincaré, who was the
first to use the notion of impredicativity for critical purposes, certainly
allowed himself that; indeed, what he was most concerned to criticize was
reductive accounts of natural number by means of logic. Hermann Weyl,
who in Das Kontinuum argued that some standard reasoning in analysis
should be rejected on grounds of impredicativity, distinguished what he
considered the “extensionally definite” character of the concept of natu-
ral number from the lack of such definiteness of the concept “property of
natural numbers,” from which he inferred the lack of definiteness of the

46 In both the 1983 and 1992 versions of “The Impredicativity of Induction.”
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notion “set of natural numbers.”47 The work on the analysis of predica-
tivity in the late 1950s and early 1960s assumed the natural numbers;
for example, formalisms characterized as predicative were allowed to
have induction for any predicate expressible in the formalism. At the
beginning of his classic paper on the analysis of predicativity, Solomon
Feferman characterizes “the predicative conception” as holding that “only
the natural numbers can be regarded as ‘given’ to us. . . . In contrast, sets
are created by man to act as convenient abstractions (façons de parler)
from particular constructions or definitions.”48 If the predicative concep-
tion is understood in that way, of course there is no room for the idea that
the concept of natural number, or some particular characterization of the
natural numbers, might be impredicative.

This suggests that we should make a distinction in the concept of pred-
icativity between predicativity given the natural numbers, and predicativ-
ity understood more narrowly, without allowing at the outset full induc-
tion or instances of it that might be claimed to be impredicative. It is the
former notion that was at issue in the work on the analysis of predicativ-
ity of the 1950s and 1960s. The earlier history may have left an ambiguity
on just this point, as Poincaré insisted on the irreducible character of the
concept of natural number, whereas Russell followed Frege and Dedekind
in offering a reduction of induction to a definition. Weyl effectively fol-
lowed Poincaré on this point. It is obviously in the context of the narrower
notion that the thesis of the impredicativity of ordinary induction, or of
the notion of natural number, arises. I will call predicativity in this nar-
rower sense strict predicativity. That there is such a distinction should be
uncontroversial. It should be understood as not taking as given not just
the natural numbers but also any other notion for which a similar ques-
tion of predicativity arises, unless, of course, it can be dispelled. But we

47 On this view of Weyl, see my “Realism and the Debate on Impredicativity, 1917–1944.” For
a fuller account of the approach of Das Kontinuum and its significance, see Feferman,
“Weyl Vindicated.”

48 “Systems of Predicative Analysis,” pp. 1–2. Feferman appears to echo the famous apho-
rism of Kronecker, that God created the natural numbers and everything else in math-
ematics is the work of man. Bernays remarks that the point of view of Das Kontinuum
fits better with this aphorism than did Kronecker’s own view, which is closer to finitism
(“Die Philosophie der Mathematik und die Hilbertsche Beweistheorie,” p. 41 n.).

It should be remarked that in later proof-theoretic studies, systems with restricted
induction have played a considerable role, and in particular the question whether full
induction is admitted may be relevant to the question whether a formal theory is predica-
tively reducible. See Simpson, “Predicativity: The Outer Limits.” Systems with restricted
induction play an important role in the work on “reverse mathematics”; see Simpson,
Subsystems of Second-Order Arithmetic. It is still true that the systems that characterize
predicative provability have unrestricted induction.
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have not ruled out the possibility that methods in mathematics that are
predicative in the traditional sense might still be justified from a strictly
predicative point of view.

The thesis of the impredicativity of ordinary induction has been chal-
lenged in two papers by Feferman and Geoffrey Hellman.49 I don’t take
them to reject the conceptual distinction between predicativity given
the natural numbers and strict predicativity. They do, however, seem to
undertake to show that first-order arithmetic can be developed in a strictly
predicative way. That would be so if the formal theories of finite sets that
they work with are strictly predicative. I’m not certain that they claim this;
the difficulty is that they state that “predicativism must presuppose the
concept of ‘finite’ in some form or other,” and what they insist on is that
one can do this “in a natural way without taking the natural numbers
as given.”50 Whatever their view actually is, the question whether their
theories are strictly predicative is of interest in its own right.

What Feferman and Hellman do is to give a formal theory of finite sets
and first-order definable classes in which they can interpret arithmetic,
effectively by defining Dedekind’s notion of a simply infinite system, what
they call an N-structure.51 In their theory EFSC it is possible to prove the
existence of an N-structure and its uniqueness up to isomorphism, that
is, Dedekind’s categoricity theorem.52

EFSC is an extension by class variables of a theory EFS of individuals
and finite sets of them, whose language could be taken to be that of the
two-sorted version of the theories of finite sets of §33. There are axioms
for the empty set and for adding an element to a finite set, corresponding
to our (H2) and (H3). However, instead of Zermelo’s principle of induction
on finite sets, EFS has the schema of separation

(AS) (∃b)(∀x)[x ε b ↔ x ε a ∧ A].

In the system so far, even with the addition of classes, it would not be
possible to prove that there are infinitely many individuals. The case is

49 “Predicative Foundations of Arithmetic” and “Challenges to Predicative Foundations of
Arithmetic.”

50 “Predicative Foundations,” p. 15.
51 The domain of such a system is obviously not a finite set; the theories with which they

work contain variables for classes, and an N-structure is a class. The extension by class
variables is conservative.

52 Originally, in “Predicative Foundations,” the existence of an N-structure was proved only
in the system EFSC* with the additional axiom (Card) that every finite set is Dedekind
finite (p. 11). Peter Aczel showed how to modify the example so that the existence of an
N-structure could be proved in EFSC; see “Challenges” p. 320.
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like that of the two-sorted theory of §33. However, EFS also has a pairing
function (x, y) with the axioms

(P1) (x1, x2) = (y1, y2) ↔ x1 = y1 ∧ x2 = y2

(P2) (∃u)(∀x)(∀y)[(x, y) 	= u].

The elementary Peano axioms are satisfied by taking as 0 a u given by (P2)
and Sx = (x, 0). This fact is used to describe an N-structure.

One’s first thought about the idea of showing arithmetic to be strictly
predicative by basing it in one way or another on the notion of finite set is
that the most it could show is that the arithmetic that is derived or inter-
preted is predicative relative to the notion of finite set. Then the question
will arise how we explain the notion of finite set itself. One obvious expla-
nation, that a finite set is a set whose cardinality is a natural number (say,
such that there is an n such that the set can be mapped 1–1 onto the
numbers from 1 to n), will simply throw the question of impredicativity
back to the corresponding question concerning the natural numbers. As
Feferman and Hellman are well aware, a basis of arithmetic in a theory of
finite sets has to understand the latter notion in some way that does not
presuppose the notion of natural number.

Our own procedure in Chapter 6 was to rely on an explanation of the
notion of finite set using induction that would be closely analogous to the
explanation of the notion of natural number by rules that was presented
in §31 and whose relevance to questions concerning induction was dis-
cussed in §47 and the present section. Given a domain of individuals, the
“introduction rules” for sets of individuals would state that the empty set
is a (finite) set and, if a is a set and y an individual, then a ⊕ y is a set whose
elements are those of a and also y. The “elimination rule” would just be
Zermelo’s induction principle ((H4) in §33): If a predicate A holds of the
empty set and, for any finite set a and individual y such that A holds of a, A
also holds of a ⊕ y, then a holds of all finite sets. This could be motivated
in much the same way that induction on natural numbers is motivated,
as we discussed in §47.

But then there is no more reason to believe that this explanation is
strictly predicative than there is to believe that the explanation of the
notion of natural number by rules is strictly predicative. So far, however,
this observation is no criticism of Feferman and Hellman, because they
do not offer an explanation of this form; in particular, neither of the theo-
ries EFS and EFSC has an axiom of induction on finite sets. If we compare
EFS with the theory of §33, apart from the presence of pairing in the



P1: JZP
9780521452793c08 CUNY1138/Parsons 978 0 521 45279 3 October 30, 2007 11:24

300 Mathematical induction

former, the important difference between them is that instead of induc-
tion EFS has the axiom schema of separation. It is even obvious that
Zermelo’s induction principle in its bald form will not be provable in EFS:
We cannot prove that if a predicate holds for ∅ and, for any set a, when-
ever it holds for a it holds for a ⊕ y for any y, then it will hold for all sets.
The reason is, however, that although the axioms of EFS contain princi-
ples only for generating finite sets (or adding finitely many elements to
a given set), there is nothing more in them that expresses the intention
that the variables range only over finite sets.53

Given, however, that it is possible to define an N-structure in EFSC, it is
possible to define an inner model in which Zermelo’s induction principle
holds. Given an N-structure, one can define a set a to be really finite
(RF(a)) if there is a one-one mapping of a onto {y : y ≤ n} for some n ε N.
The mapping can be assumed to be a set, finite on Feferman and Hellman’s
reading, but not necessarily really finite. One can then prove in EFSC that
the really finite sets satisfy Zermelo’s induction principle.54

The conclusion we should draw is that if Feferman and Hellman’s con-
struction really offers a strictly predicative development of PA, it also
offers a strictly predicative development of the theory of finite sets based
on Zermelo’s induction principle. But perhaps this result should make us
doubtful about the claim of the development to be strictly predicative.
Apart from that, I think it might avoid potential misunderstanding if we
refer to the objects in the range of the set variables of EFS and EFSC sim-
ply as sets, rather than as finite sets as Feferman and Hellman do, since
although the axioms do not force the existence of any infinite sets, they

53 Feferman and Hellman point out that EFSC is essentially a subtheory of von Neumann-
Bernays-Gödel set theory NBG (“Predicative foundations,” p. 4) and thus is consistent
with the axiom of infinity. It follows immediately that the characteristic axiom (Card) of
EFSC* (see note 52) is not provable in EFSC, since it is refutable in NBG that every set is
Dedekind finite. It is surprising that Feferman and Hellman do not state this, since they
can hardly have failed to be aware of it.

54 This is carried out in detail in Ferreira, “A Note on Finiteness.” It should be possible also
to use one of the definitions of finiteness proposed in the first quarter of the twentieth
century that do not involve reference to the natural numbers or a structure isomorphic
to them. Ferreira effectively carries this out for the definition of a set as finite if it has a
linear ordering and every linear ordering of it has a first and last element (provided it is
nonempty). This definition was proposed by Heinrich Weber in 1906. (See my “Devel-
oping Arithmetic in Set Theory,” p. 205.)

Evidently, the really finite sets satisfy the principle of boundedness alluded to in “Pred-
icative Foundations,” p. 5. As Ferreira notes, the usual inductive proof of the pigeonhole
principle shows that they satisfy (Card) (see note 52). Obviously, however, EFSC will have
nonstandard models in which some sets satisfy RF(a ) and yet are infinite.



P1: JZP
9780521452793c08 CUNY1138/Parsons 978 0 521 45279 3 October 30, 2007 11:24

§50. Induction and impredicativity 301

are true in the standard set theory that allows infinite sets.55 Then the
term ‘finite set’ could be reserved for the really finite sets.

Then we can view Feferman and Hellman’s strategy as being to develop
arithmetic in a predicative theory of sets, without the presupposition that
the sets involved are finite, even though it is intuitions concerning finite
sets that motivate the axioms. The axioms have the character that, if we
think of the notion of set involved as explained by the formal system, they
do not give rise to the specific problem posed by those who have found
explanations involving induction to be impredicative.

However, there is a more traditional problem raised by the theories
EFS and EFSC, which Feferman and Hellman do not explicitly address.56

The axiom of separation has the same apparently impredicative feature
that it has in the setting of standard set theories: Given a set a, we have
a set {x ε a : A} for a formula A containing quantifiers over all sets in
the domain.57 In EFSC, induction for an arbitrary N-structure is given by
the definition; its application to a formula A is obtained by the axiom of
class comprehension, provided that A contains no bound class variables.
This step does not raise an issue of impredicativity. However, Aczel’s proof
that the specific structure he defines is an N-structure indicates that we
cannot rest so easily. We need to look at this proof in a little detail.

We define:

Clos−(a) ↔ (∀x)(Sx ε a → x ε a)

y ≤ x ↔ (∀a)[x ε a ∧ Clos−(a) → y ε a].

The point is now somewhat clearer if we confine ourselves to EFS. We
define

N(x) ↔ (∃a)[(∀y)(y ε a ↔ y ≤ x) ∧ x ε a].

55 Apart from the fact that on their intended interpretation the set variables of EFS and
EFSC range over finite sets, it is likely that Feferman and Hellman choose their termi-
nology because thought of as general set theories, these theories have some awkward
weaknesses; for example, it does not seem possible to prove the existence of a ∪ b for
arbitrary sets a, b. (It is provable if b is restricted to be really finite.) In fact, this is awk-
ward already if the theories are thought of as theories of finite sets. However, it seems
that adding it as an axiom would not compromise the claim of the theories to be strictly
predicative.

56 This is somewhat surprising in view of the fact that the relevance of this issue to that
of the impredicativity of induction was already noted in George, “The Imprecision of
Impredicativity.”

57 In EFSC, A is not allowed to contain bound class variables. But that does not affect the
point in the text.
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We can now prove N(0) and N(x) → N(Sx). To prove that induction holds
for A(x), assume A(0) and (∀x)[A(x) → A(Sx)]. Suppose also N(x) and
¬A(x). Then {y: y ≤ x ∧ ¬A(y)} is a set b, since it is contained in the a
that witnesses N(x). Evidently x ε b, and b is closed under predecessor.
Therefore 0 ε b, which contradicts the assumption A(0).

In particular, if A contains quantifiers over N, then the set b is specified
in a way that involves quantification over all sets in the domain. The
matter may look different in EFSC, since in that case one proves induction
for a class variable and then instantiates for it, as noted above. But the
difference is only apparent unless one contents oneself with reasoning
about arbitrary N-structures without troubling oneself with the question
of existence.58 Clearly, EFSC admits the existence of sets that are specified
by quantification over all sets, and this assumption is used in proving the
existence of an N-structure.

For this reason, I don’t think that EFS and EFSC can pass muster as
strictly predicative. The question arises why Feferman and Hellman seem
not to be troubled by the above point. My conjecture is that because the
intended domain is that of finite sets of individuals, there is no conflict
with what they call “definitionism,” the view that sets are the extensions
of predicates that can be understood independently.59 A finite set of indi-
viduals is of course {x : x = a1∨ · · · ∨ x = an}, where a1, · · ·, an are its
elements. Feferman and Hellman remark, “[t]he finite sets correspond to
finite lists of designators [i.e., names of the elements], and it is reason-
able for the definitionist to take this notion – ‘finite list of quasi-concrete
objects’ – as understood.”60 We should point out, however, that any proof
that the sets definable in this way are closed under separation is non-
constructive. Suppose a is {x : x = a1 ∨ · · · ∨ x = an}. Then, for a for-
mula A(x), one could only actually give such a list for {x ε a: A(x)} by
deciding of each ai whether A(ai) holds. This is in fact a reason for prefer-
ring Zermelo’s induction principle over separation as an axiom schema
for a theory of finite sets. Then it is quite evident that every finite set is
given by such a definition. It can be proved by induction that the separa-
tion schema holds, but the nonconstructivity comes out clearly in that at
the induction step one must divide cases according to whether the new

58 That would suggest that Dedekind’s categoricity theorem is strictly predicative. Nothing
argued in the text implies the contrary. However, further reflection is needed on this
point.

59 Feferman used this term in “Weyl Vindicated” and possibly earlier.
60 “Challenges,” p. 323. Evidently they mean quasi-concrete in the sense of §7; such a list

is close to a string of the kind that plays a central role in chapter 5.
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element satisfies A or not.61 Thus, what requires a nonconstructive proof
is the existence of the set given by separation, rather than the principle
that finite sets are definable by a list.

Another possible objection to the claim of EFS and EFSC to be strictly
predicative arises by asking how we understand the domains of the indi-
vidual and set variables. One might raise the question what reason there
is to accept a domain of individuals closed under pairing, or a domain of
sets even satisfying the axioms (H2) and (H3) and unquestionably pred-
icative instances of separation, and then going on to use classical logic.
Hermann Weyl in Das Kontinuum was willing to apply classical logic in a
language involving quantifiers over a domain and then to introduce first-
order definable classes, if the domain was what he called “extensionally
definite.” He argued that that is the case for the natural numbers but
not for the sets of natural numbers or the real numbers. But wouldn’t the
claim of the extensional definiteness of the individuals or sets of EFS raise
questions of impredicativity again?

I don’t want to press this objection, because the setting in which ques-
tions of strict predicativity have been pursued allows one to apply classical
logic in a setting where one has certain generating operations but doesn’t
suppose one has the equivalent of Weyl’s extensional definiteness for the
domain. We should grant Feferman and Hellman this assumption, just
as Edward Nelson, in the first serious logical work on strict predicativity,
allows himself arithmetic Q without induction. It may be that Feferman
and Hellman don’t quite know what the domain of their variables is. But
I don’t think they are in this respect worse off than other researchers on
predicative foundations of arithmetic, in particular those to be discussed
presently. The problem of a predicative foundation of arithmetic is to
arrive at subclasses of the domain that can serve as numbers or “really
finite” sets and thus suffice for arithmetic.

Although I don’t think Feferman and Hellman’s argument succeeds in
showing that, say, PA is strictly predicative, their work has advanced the
discussion of such issues, first of all by clarifying what assumptions about
finite sets are needed in order to interpret arithmetic, and thus by making
clearer what is involved in different versions of the view, which in general
terms was not in dispute between us, that arithmetic is predicative relative
to the notion of finite set.

61 See Appendix 1 to Chapter 6. A similar nonconstructivity will arise in showing in EFS or
EFSC that the really finite sets satisfy separation.
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I now turn to the logical work that in my view does show that certain
fragments of arithmetic are strictly predicative. Although there is relevant
work from earlier, probably the first work pursuing the program of devel-
oping arithmetic in a strictly predicative way is Edward Nelson’s Pred-
icative Arithmetic. This work undertakes to develop as much arithmetic
as possible in formal theories that are interpretable in Q, that is, first-
order arithmetic without induction but with an axiom stating that every
non-zero number has a predecessor. Q thus has no induction at all; its
ability to prove even very elementary generalizations about numbers is
very weak.62 It is strong in another way, however: It is the simplest nat-
ural theory for which Gödel’s first incompleteness theorem holds, and
it is essentially undecidable; that is, no consistent axiomatizable exten-
sion of it is decidable.63 We might then offer as a criterion for an arith-
metical theory to be predicative that it should be interpretable in Q.
Nelson then showed that what is called I�0, the subsystem of classi-
cal first-order arithmetic PA in which induction is restricted to formu-
lae containing only bounded quantifiers, is locally interpretable in Q,
and subsequently it was shown that even an extension of I�0 is globally
interpretable in Q. That amounts to saying that we could write down in
the language of PA a predicate Np (to be read: x is a pseudo-number)
so that all theorems of I�0 are provable in Q when the quantifiers are
restricted to Np.64 (The extension consists of adding a new function with
its recursion equations, a function, however, that grows more slowly than
exponentiation.)

It follows that by Nelson’s criterion an arithmetic whose recursive func-
tions are by a reasonable standard feasibly computable is strictly predica-
tive. Nelson’s method did not show that exponentiation could be added
so as to preserve interpretability in Q, and he expressed strong doubts as
to whether that could be done. Being concerned independently with fea-
sibility, he probably would regard it as a welcome result if considerations
of strict predicativity led to a limitation of arithmetic to feasibly com-
putable functions, so that strictly predicative arithmetic and one possible
conception of strictly finitist arithmetic would be very close and maybe

62 See note 75 of Chapter 5.
63 It is for this reason that Q was first formulated and applied; see Tarski, Mostowski, and

Robinson.
64 Local interpretability amounts to the claim that one can do this for any finite subset of

the axioms of I�0.
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coincide. Subsequently it was shown that I�0 + exp is not interpretable
in Q, confirming Nelson’s expectation.65

A competing apparently more direct analysis, however, leads to the
conclusion that the total character of exponentiation can be proved in a
strictly predicative way. This analysis pursues the natural idea that one
should see how much arithmetic one can do by starting with something
like Russell’s ramified type theory without the axiom of reducibility.66

Admitting 0 and S with the elementary Peano axioms amounts to assum-
ing a version of the type-theoretic axiom of infinity. We can then use the
Frege-Dedekind definition of the natural numbers, with the second-order
quantifier assigned a specific order. If we write N k+l when the quantifier
is of order k, then the defining formula of N k is of order k. Then the project
would be to show that for some k, if we define the numbers by N k, then
we will be able to develop some arithmetic in our ramified higher-order
theory. In fact, for the work reported later, ramified second-order logic is
sufficient.

It was already shown by Skolem, in Abstract Set Theory, that we can
develop the arithmetic of addition, multiplication, and order in this way.
This result was extended to bounded induction by Allen Hazen, and recent
work of John Burgess and Hazen has shown that exponentiation can be
added; for this method the obstacles found by Nelson can be overcome.
Thus the system I�0 + exp, which already allows as total a function that
is not feasibly computable, is predicative by the Russellian criterion.67

It follows that the Russellian criterion is more generous than Nelson’s. I
am inclined to conclude that Nelson’s criterion is too narrow. In fact it
seems to have been motivated as much by considerations of feasibility as
of predicativity.

On might seek to extend the Russellian criterion so as to allow trans-
finite levels, using the procedure of autonomous iteration central to the
Feferman-Schütte analysis of predicativity given the natural numbers.

65 Hájek and Pudlák, Metamathematics of First-Order Arithmetic, p. 391, prove that I�0 +
exp is not interpretable in I�0, from which the statement in the text obviously follows.

I�0 + exp would most readily be formulated by adding to I�0 the recursion equations
for exponentiation and allowing exponentiation in induction axioms. However, since
the predicate z = xy is definable in I�0 by a �0 formula (ibid., p. 299), the theory
just mentioned is a conservative extension of the result of adding to I�0 the axiom
(∀x)(∀y)(∃z)(z = xy ). (The uniqueness of z is provable in I�0.)

66 A modern formulation of this theory can readily be extracted from Church, “Compari-
son.”

67 Burgess and Hazen, “Predicative Logic and Formal Arithmetic.”
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A further result of Burgess (in the paper cited in note 67) is that if one
uses predicative logic with all finite levels, one can interpret a theory
with iterated exponentiation; however, bounded induction is weakened
to quantifier-free induction, in a language that does not have enough
recursion to derive I�0. This result does, however, suggest the conjecture
that the addition of iterated exponentiation to I�0 + exp would prove to
be predicative by this extended Russellian criterion. This theory is capable
of proving the consistency of Q.68

It is not known at this point what the limits of predicativity in arithmetic
will be on a transfinite version of the Russellian criterion. It seems to me a
virtual certainty that no more than first-order arithmetic will turn out to
be strictly predicative and probable that strict predicativity will not extend
beyond primitive recursive arithmetic.69 Moreover, more reflection will
be needed before we can conclude that an extension of Russell’s hierarchy
into the transfinite still answers to the intuitive idea of strict predicativity.

Already concerning the procedure by which the weaker results are
obtained, one may ask how we understand the ascent of levels. This ascent
is not very high; to obtain the result concerning exponentiation the num-
ber predicate used is N3, so that in the proof the bound second-order
variables used are all of level 1 or 2. Still, we should assure ourselves that
there is not some hidden impredicativity in our presumed understanding
of this fragment of the ramified language. Although I do not know of any,
this is a point on which further reflection is needed.

Whatever the outcome of the work on strict predicativity, how-
ever, there is certainly a point at which arithmetic reasoning becomes

68 This was observed by Kripke some years ago.
69 The first would, I think, follow from a claim of Kreisel concerning finitism, that if one

begins with primitive recursive arithmetic and introduces new ordinals by the procedure
of autonomous iteration familiar from Feferman’s work on predicativity, the limit of what
one can obtain is a system of the same proof-theoretic strength as first-order arithmetic;
in particular, ε0 is the limit of the ordinals that are obtained.

We might also mention another type of theory that might be relevant to questions
about strict predicativity, subsystems of the inconsistent system of Frege’s Grundgesetze.
A Fregean logic based on ramified instead of impredicative second-order logic has been
shown consistent by Richard G. Heck Jr., in “The consistency of Predicative Fragments
of Frege’s Grundgesetze.” Predicative theories of a Fregean character are discussed by
Burgess in Fixing Frege, Chapter 2. Burgess carries out the construction of “Predicative
Logic and Formal Arithmetic” in a Fregean theory with just two levels of “concepts.” That
system certainly has as much claim to be strictly predicative as its Russellian counterpart.
Heck’s system is more complex, and there may be nonobvious reasons for doubting that
it is strictly predicative.
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impredicative. An understanding of schematic generalization of predi-
cates is part of our understanding of arithmetical reasoning, and therefore
of our understanding of the number predicate itself.

§51. Predicativity and inductive definitions

The main argument of the previous section consisted essentially in apply-
ing to the case of the natural numbers a well-known argument for the
impredicativity of inductive definitions. This was applied in particular
to so-called “generalized inductive definitions” in which the introduc-
tion rules for an inductively defined predicate P may contain general
statements involving P. A general form of such definitions consists, for a
formula A(P, x) containing the predicate P to be introduced but otherwise
only previously understood vocabulary, of the introduction rule:

From A(P‚ a) infer Pa.

and the induction principle (elimination rule):

From [A({x : B(x)}‚ a) → B(a)] and Pt infer B(t)‚

which expresses the idea that P is minimal so as to satisfy the condition
given by the introduction rule. Such a means of introducing a new pred-
icate is not always coherent; a sufficient condition is that A should be
monotonic, that is that

(∀x)[A(P‚ x) ∧ (∀y)(Py → Qy) → A(Q‚ x)]

should hold for all P, Q. I will assume this in what follows. Monotonicity
is assured if P occurs only positively in A, that is, if A is constructed using
only ¬, ∧, ∨, and quantifiers, and P occurs only within an even number
of negation signs.

If P is introduced in this way, we can think of its extension as built up
in stages, indexed by ordinals: At stage 0 the extension P0 is empty; Pα+1a
holds if and only if A(Pα, a); for a limit ordinal λ, Pλa holds if and only
if for some β < λ, Pβa holds. Monotonicity implies that if α < β, then Pαa
implies Pβa. If an α is reached such that Pα+1x ↔ Pαx for all x, then Pβ

remains unchanged for all further β, and we can take Pα as P. Moreover,
assuming the underlying domain to be a set, there will be such a “closure
ordinal,” for if the closure ordinal has not been reached by stage α, then
α must be of cardinality no greater than that of the domain. Thus in set
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theory, we can prove that monotonic inductive definitions yield well-
defined predicates.70

A simple example of such a “definition,” relevant to our argument, is
that of the notion of accessibility for a relation R of natural numbers,
which we will assume to be a linear ordering. Intuitively, ‘Acc(a)’ means
that transfinite induction holds for the relation {〈 x, y 〉 : xRa ∧ xRy}; it
can therefore be given an obvious second-order explicit definition. In the
inductive definition, the introduction rule takes the form

From (∀x)[xRa → Acc(x)] infer Acc(a).

whereas the elimination rule or induction principle says that if A(x) satis-
fies the above closure condition, then it holds for all accessible numbers,
that is,

From (∀x)[xRa → A(x)] → A(a) and Acc(t) infer A(t).

In proof theory, beginning with Gerhard Genzten’s 1936 proof of the
consistency of first-order arithmetic, transfinite inductions up to cer-
tain countable ordinal numbers have been regularly used. These ordinals
can be represented arithmetically by primitive recursive orderings of the
natural numbers. If R is such an ordering, in many cases the notion of
accessibility can be used for formal derivations of transfinite induction;
standard derivations in texts on proof theory can be recast in this form.71

However, one comes rather quickly to need to use instances of the
induction schema where the formula A(a) contains ‘Acc’, so that, again,
impredicativity enters. For this kind of reason it has been argued that this
and other important generalized inductive definitions are impredicative.
For example, in the course of presenting his own analysis of predicativity,
Solomon Feferman offers such an argument for the impredicativity of the

70 For information concerning generalized inductive definitions and their importance for
proof theory see the Introduction (by Feferman and Sieg) to Buchholz, Feferman, Pohlers,
and Sieg. Cf. also Aczel, “An Introduction to Inductive Definitions.” This informative
article is not as introductory as its title would suggest.

71 For example, this is true of the derivations in §21 of Kurt Schütte, Proof Theory, which
are predicative by the Feferman-Schütte criterion discussed below, and of those in
§22 of Schütte’s earlier Beweistheorie, which are not. On the latter, cf. his “Logische
Abgrenzungen des Transfiniten,” p. 110. To handle the ordering dealt with in §29 of
Proof Theory, one needs arbitrary finite iteration of inductive definitions.

All these orderings are primitive recursive, and their elementary properties can be
proved in primitive recursive arithmetic. It is in the problem of deriving transfinite
induction that the constraint of Gödel’s second incompleteness theorem shows itself.
Gentzen’s proof, for example, can be carried out with a single instance of induction on an
ordering of order type ε0. Thus this instance cannot be derived in first-order arithmetic.
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usual definitions of Kleene’s set O of recursive ordinal notations.72 In the
case of Acc, applications of it to prove transfinite induction for shorter
well-orderings (such as one of type ε0 that might be used for Gentzen’s or
another proof of the consistency of arithmetic) can be replaced by other
methods that will be recognized as predicative. But this will no longer be
true for longer orderings.73

The sense of “predicative” in which these last remarks hold is cap-
tured by the beautiful and persuasive analysis of predicative provability
of Feferman and Schütte, already alluded to in the last section.74 Accord-
ing to this analysis, generalized inductive definitions like that of ‘Acc’
and O are impredicative principles of proof. I shall not enter here into the
details of the analysis, which are complex. It turns on looking at transfinite
iterations of different methods of enlarging the means of expression and
proof of formal systems. The key condition is that if some such method
of enlargement is iterated through a transfinite sequence of stages, the
stages can be antecedently recognized to be well-ordered. But at no point
is any restriction placed on ordinary induction on natural numbers. That
was appropriate for what it intended to capture, predicativity given the
natural numbers, where the problem of predicativity is raised in the first
instance about reasoning about sets of natural numbers, and then per-
haps extended to further reasoning about sets and functions. I repeat the
quotation from Feferman given in §50:

72 “Systems of Predicative Analysis,” p. 5. Cited hereafter as “Systems.”
73 If the inductive definition of accessibility is our only means of proof beyond arithmetic,

we need to use the elimination rule with predicates containing ‘Acc’ even in some cases
that are clearly predicative given the natural numbers. Does this cast doubt on our
argument for the impredicativity of ordinary induction? In the present situation, such
prima facie impredicativities can be replaced by other methods of proof. For example,
one can use ramified second-order logic (i.e., second-order logic with the second-order
variables assigned levels, so that the variables of a given level can be interpreted to range
only over second-order entities defined by means of quantifiers of lower levels), where
if transfinite levels are needed, they can be antecedently shown to be well founded. No
such alternatives are in sight in the case of ordinary induction. Nonetheless, one might
hope for greater clarity on this point from continuation of the logical work on strict
predicativity described in §50.

74 Feferman, “Systems.” This is still the best source for his motivating ideas and for the state-
ment of the most basic technical results, although his analysis is refined and extended
in later papers.

Schütte offered an analysis based on the same basic ideas and obtained independently
some of the relevant technical results but did not carry the matter as far as Feferman,
mainly because the only form of predicative analysis that he considered was based on
the ramified hierarchy. In “Logische Abgrenzungen” he presents his ideas very clearly
and describes his results informally.
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According to this [the predicative conception], only the natural numbers can
be regarded as “given” to us. . . . In contrast, sets are created by man to act as
convenient abstractions . . . from particular conditions or definitions.75

Feferman and others have suggested that an analysis of predicativity
should describe the concepts and principles that are in some way implicit
in the conception of natural number. The manner in which reasoning
about classes, sets, or functions is allowed is based on the conception of
classes as extensions of predicates, and so a generalization about classes
(or sets) must be cashable as a generalization about the predicates of
which the classes are the extensions. Such generalizations about pred-
icates will be semantical in character, involving satisfaction or truth.
Thus semantic reflection, or what Lorenzen some years ago called ‘logical
reflection’, is the manner in which second-order entities are understood.76

By semantic reflection I mean passing from statements using a certain
vocabulary to statements applying semantic notions (reference, truth,
satisfaction) to that vocabulary, thus applying what in Chapter 1 is called
the method of semantic ascent. From Tarski’s indefinability theorem, it
follows that for classical theories semantic reflection is an enlargement
of one’s means of expression.77

One can obtain considerable strength by iterating such reflection into
the transfinite, as in the construction of the ramified hierarchy. But on the
Feferman-Schütte conception, the iteration is constrained by the require-
ment that its stages (ordinals) be given in advance as well-founded. In
contrast, a generalized inductive definition like that of O or ‘Acc’ allows
objects to fall into the extension of the introduced predicate by iteration
of the introduction rule (according to the above-described iterative pro-
cess), but the stages needed, if one does not take them as given from set
theory, are described only by the definition itself or another comparable
one. This is exactly parallel to the situation with the natural numbers.

The Feferman-Schütte conception of predicative mathematics is con-
structed from elements that are very basic and deeply entrenched parts
of our conceptual apparatus: either first-order logic or a second-order

75 “Systems,” pp. 1–2. Schütte is not so explicit on the point.
76 Lorenzen, “Logical Reflection and Formalism,” p. 244. In more recent work Feferman

has explored the idea of “reflective closure” of theories, to capture the idea of “closing” a
theory under semantic reflection. Predicative analysis as he has previously described it
turns out to be what he calls the “strong reflective closure” of first-order arithmetic. See
his “Reflecting on Incompleteness.”

77 Semantic reflection and its role in mathematics are discussed in considerable detail in
Mathematics in Philosophy, particularly Essays 1, 3, 8, and 9.
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logic with quite minimal comprehension assumptions, the notion of nat-
ural number, and semantic reflection. Describing the limits of what can
be accomplished by these means not only was a technical achievement
but served to delineate a natural conceptual boundary. Some of the dis-
cussion of constructivity and predicativity in the immediately preceding
period shows the lack of a clear distinction between this apparatus and a
more generous conception that would extend it at least by certain gener-
alized inductive definitions. Feferman’s criticism of Lorenzen and Wang
on this point is justified.78 However, I shall argue that the distinction can
be seen as one between two senses of predicativity.

If one grants a certain impredicative character to ordinary induction,
the issue between Feferman and the earlier writers appears in a some-
what different light. It is hard to see how a mode of concept formation
which involves a “vicious circle” in the case of generalized inductive def-
initions does not involve such a circle in the case of the natural numbers
themselves. Granted, then, that Feferman has correctly characterized the
limits of predicativity relative to the natural numbers, the case that the
traditional arguments deriving from Poincaré show that this is the limit
of acceptable mathematics is weakened.

Lorenzen usually characterized his position as “constructivist” or “crit-
ical”79 and to that extent did not depend on a particular interpretation of
predicativity. However, he did specifically claim that generalized induc-
tive definitions are predicative, though to be sure in a joint paper.80 Clearly,
my view is that this claim is mistaken. However, at this point one should
make another distinction. The primary sense of impredicativity applies
to sets or classes, and they are said to be impredicatively defined if they
are given by abstracts involving quantification over some totality of sets
to which they themselves belong. This extends readily to other cases;
for example, Russell’s diagnosis of the semantical paradoxes involves
pointing out that sentences such as ‘The proposition expressed by my
present utterance is false’ or ‘Every proposition asserted by a Cretan is
false’, asserted by Epimenides the Cretan, when taken naively, purport to
express propositions that are in the range of their own quantifiers. In the

78 “Systems,” p. 5.
79 In various of his writings, including those cited in notes 76 and 80 as well as his book

Einführung in die operative Logik und Mathematik.
80 Lorenzen and John Myhill, “Constructive Definition of Certain Analytic Sets of Numbers,”

pp. 47–8. Hao Wang also proposed that generalized inductive definitions be included in
predicative theories, for example, in §5 of “Ordinal Numbers and Predicative Set Theory.”
On p. 644, there is intimation of a ceteris paribus argument like that offered here.
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present case, inductive definitions are said to be impredicative because
they involve introducing a predicate by rules or axiom schemata such that
expressions containing the predicate itself have to be admitted as within
their scope. All these cases are of the type where the question of a vicious
circle was raised by Poincaré, Russell, and Weyl.

However, if we reflect on the motives of the original critique of impred-
icativity, an underlying conception was that classes or sets are extensions
of predicates and, therefore, that the circle lay in speaking of sets that
could not be extensions of predicates antecedently understood. This con-
ception is quite clear in the writings of Poincaré and Weyl.81 In the case
of Russell, it is perhaps not so clear because of his unclear conception of
the relation of propositional functions to language. However, his original
adoption of a vicious-circle principle was as a guiding principle in the
construction of a “no-class” theory, in which classes were to be elim-
inable by contextual definition, and propositional functions were treated
in a completely predicative way.

Historically, what has served to defuse the critique of impredicativity is
set-theoretic realism, more particularly, the abandonment of the idea that
sets are extensions of predicates in a given language, so that the domain of
sets one can quantify over has to be seen as potential, expanding as one’s
linguistic resources expand, in particular by quantifying over totalities of
sets previously arrived at. Russell took the realistic attitude in a somewhat
half-hearted way in introducing his axiom of reducibility, of which he said
that it accomplishes “what common sense effects by the admission of
classes.”82

To return to Lorenzen, it is quite clear that he is especially concerned
to avoid this set-theoretic realism, what he calls “naive” concepts of set,
relation, and function.83 His concept of set is just the one that underlies
the critique of Poincaré and Weyl, even though the issue of a “vicious
circle” does not occupy the center of his attention.

81 Although I find it clear enough, in Poincaré it is not quite so explicit, or so clearly disen-
gaged from other considerations such as rejection of the actual infinite, perhaps because
of his negative attitude toward symbolic logic. But he makes it quite clear that he expects
sets to be definable, most explicitly in the first essay of Dernières Pensées; see especially
the criticism of Cantor’s diagonal argument in §6.

For Weyl, see the analysis of the concept of set in Das Kontinuum, §5, and its polemical
use in “Der circulus vitiosus in der heutigen Begründung der Analysis.”

82 “Mathematical Logic as Based on the Theory of Types,” Logic and Knowledge, p. 81.
However, that realism was central to the defense of impredicativity in the interwar period
is questioned in my “Realism and the Debate on Impredicativity.”

83 “Logical Reflection and Formalism,” pp. 246–247.
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Because it is generally agreed that there is a coherent conception of
“constructive” mathematics which goes beyond the predicative as char-
acterized by Feferman and incorporates theories of generalized inductive
definitions but which still does not presuppose set-theoretic realism, it
might seem that our discussion can just end with the observation that
Lorenzen held such a constructive conception. However, in my view there
is still a remark worth making, which justifies to some extent the use of
the word ‘predicative’ by Lorenzen and Myhill. Constructivists have not
always been very explicit about the relation of higher-order entities to
language; indeed, Brouwer’s own radical view that mathematics is essen-
tially independent of language works against such clarity, particularly in
his notion of species (i.e., class). The term ‘impredicative’ was used by
Poincaré because of his view of sets or classes as essentially extensions
of predicates;84 in a terminology I have used elsewhere, the language of
classes serves as a means of generalizing predicate places in a language.
But then it is entirely natural that the classes in the range of a general-
ization should be the extensions of predicates antecedently understood.
Now if we call “predicative” such a view of classes, the question arises
whether it is violated by inductive definitions. If it is not, it will give a
sense in which Lorenzen’s view is predicative, and a divergence of two
possible meanings of predicativity.

Now it is characteristic of the inductive definitions we have been con-
sidering that they are introductions of predicates and not in the first
instance definitions or characterizations of sets. Because semantic reflec-
tion comes so readily to us, once we have understood such a predicate as
the natural-number predicate or an accessibility predicate we will almost
immediately talk of its extension. However, there is an essential concep-
tual order here, which places the understanding of the predicate before
the apprehension of its extension as an object. There is, to be sure, a sub-
tle difference between the situation we are envisaging, where we eschew
set-theoretic realism and treat the inductive rules themselves as giving
us understanding of the predicate, and a situation where one assumes
set theory and where, moreover, what is being introduced is a predi-
cate of objects in a domain that has been recognized to be a set. In the
latter case, the axiom of separation implies that there is a set that is its
extension; there is therefore a proof of its existence which does not use any

84 However, in “Réflexions sur les deux notes précédentes,” p. 200, he credits the introduc-
tion of the term to Russell. Alexander George pointed this out (“Imprecision,” p. 514),
correcting an earlier assertion of mine.
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semantic concepts (as indicated earlier). At least if one is prepared to hold
that particular instances of a schema like the axiom of separation can be
seen to be true independently of the general principle, it follows that
semantic reflection does not enter into one’s insight that there is such a
set as {x : Nx ∧ Acc(x)}. However, this does not change the essential point:
that one’s understanding of the predicate is prior to the insight that the
set exists.

Thus, in my opinion, Lorenzen does not violate the limitations of
his own concept in admitting generalized inductive definitions, and the
divergence of two senses of predicativity does indeed exist. Although this
observation is a partial defense of Lorenzen against Feferman, clearly
the meaning of the term ‘impredicative’ underlying Feferman’s analysis
is so firmly entrenched that it is now the more appropriate way to use
the term. Feferman’s own term “definitionist” could serve to describe
Lorenzen’s position.

In these remarks, I have bypassed an issue about the status of higher-
order entities in constructive mathematics. According to many construc-
tivists, the notion of function enters essentially into the interpretations
of quantifiers, even over such objects as numbers. The context in which
the issue arises is explanation of the meaning of statements in intuition-
istic theories in terms of what would count as a proof of them, worked
out formally in theories of constructions.85 In intuitionistic mathemat-
ics, we no longer have the mutual reducibility of the notions of set and
function which obtains in classical mathematics. A theory may be com-
patible with the idea of sets and classes as arising by semantic reflection
and still depend on a notion of function of a different nature. In my view,
this issue primarily affects the claim of the sort of conception I have been
discussing to be constructive, which has not been our primary concern
in this section. At all events, the conception of function that on this view
would be required is weaker than the set-theoretic conception in that
the functions that would have to be assumed are intuitively effectively
calculable.

The thesis of the present section is that, as regards some fundamen-
tal issues about predicativity, the predicates introduced by generalized
inductive definitions are no worse off than the natural number predicate

85 One sees this clearly in W. W. Tait’s characterization in “Finitism” of the mathematics
that can be obtained without presupposing a general concept of function. The most
elaborate theory of the kind I am alluding to is Per Martin-Löf’s intuitionistic theory of
types; see, for example, his Intuitionistic Type Theory.
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itself. The reader may well ask whether this thesis is affected by the doubts
that might be raised about the claim of §50 that ordinary induction is
impredicative on the ground that there is no fact of the matter as to
whether it belongs to the meaning of ‘natural number’. The claim of §50
was put in such way that, we trust, it is insulated against that objection.
But even if not, a purely dialectical reply to the objection is possible in
the present context: If there is no such fact of the matter in the case of the
concept of natural number itself, then, on the same grounds, there should
be no such fact of the matter in the case of notions introduced by gener-
alized inductive definitions. Thus, the thesis that as far as impredicativity
goes ordinary induction is in the same boat as these higher inductions,
still stands.
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§52. Reason and “rational intuition”

It will be painfully obvious to the reader that what has been said so far
about the epistemology of mathematics, even arithmetic, is very incom-
plete. In §45, it was argued that very likely intuitive knowledge has rather
narrow limits. Many would hold that that is due to the very restricted char-
acter of the conception of intuition developed in Chapter 5. Occasional
reference has been made to conceptions of intuition of a quite different
nature, which might promise to lead further than the one we have devel-
oped. I propose in this section and the next to approach the problem of
mathematical knowledge from a different direction, not beginning with
intuition at all, but leading very quickly to a place where some other con-
ceptions of intuition, in particular that of Kurt Gödel, can be situated. I
will begin with some very general considerations about Reason, not at all
specific to mathematics.

The relevance of Reason to our inquiry is indicated by a long tradition
of regarding mathematics as rational knowledge, echoed specifically by
Kant in a remark at the beginning of one of the discussions of mathemat-
ics in the Critique of Pure Reason. He describes mathematics as “rational
cognition from the construction of concepts” (A713/B741). Construction
of concepts is construction in intuition, and it is here that intuition takes
its place in Kant’s account of mathematics. The notion of construction
of concepts in intuition is what is most distinctive of Kant’s philosophy
of mathematics and has been the focus of much of the discussion of its
interpretation. What interests me now, however, is Kant’s calling mathe-
matics “rational cognition,” so that mathematical knowledge is rational
knowledge. I don’t propose to explore the question how Kant would have
thought of the role of reason in mathematics, although some aspects

316
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of Kant’s specific conception of Reason will play a role in what follows.
Rather, I will take up the suggestion of exploring from my own point of
view how general considerations about reason, not specific to mathemat-
ics, work out in the mathematical domain.1

I will say that Reason is in play when actions, including assertions and
related speech acts, are supported or defended by reasons. But the same
characterization clearly generalizes further to beliefs and other thoughts
that have something like assertive force. However, the giving of a reason
might count as an exercise of reason only if it is a good reason or at least
has some degree of support by further reasons. Several features of Reason
should be mentioned:

a. Reasons are themselves supported by reasons. This arises naturally
from the fact that in giving reasons one seeks the agreement or support of
others, since reasons for one’s reasons can be given in response to their
being questioned. The fact that reasons are themselves supported by rea-
sons links reason with argument, since iteration of such support gives
rise to chains of reasoning. The natural way in which such chains arise is
furthermore an entering wedge for logic, although logic is not mentioned
in the characterization, and the discussion of reasons in the theory of
action and in moral philosophy does not put logic at center stage. The
questioning of steps in an argument and the giving of further reasons for
them has the result that some premisses and inferences become explicit
that were not before. The buck has to stop somewhere (for the immediate
argumentative purpose, if not in any final way), and one place where it
characteristically stops is with simple, elementary logical inferences. In
modern mathematics, the axiomatic method makes it possible to give
an idealized but quite workable and highly illuminating model of proof,
in which proofs are represented as deductions from well-defined axioms
with the help of some definite logic, in central cases first-order quantifi-
cational logic with identity.2 Then one has identified a central factor in
mathematical knowledge that would on almost any account be attributed
to reason, namely, logic.

1 One of Kant’s thoughts in characterizing mathematics as rational cognition is undoubt-
edly that it is a priori. That is not at center stage in the discussion in this chapter. Some
brief remarks on the subject are made in the Preface.

2 Of course, the distinction between the logic and the assumptions of the particular theory
in question does not always coincide with the distinction between axioms and rules, as
for example the rule-based formulation of the theory of natural numbers given in §31
illustrates. In the discussion that follows, we ignore this fact for the sake of simplicity and
talk as if in axiomatic mathematics all nonlogical assumptions take the form of axioms,
and the only primitive rules are logical.
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If we ask why the buck should stop with elementary logical inferences,
one part of the answer is that they are obvious. Though this is not uncon-
tested even for all of first-order logic, as the debates surrounding con-
structivism showed, I shall put obviousness aside for the moment. It is
noteworthy that logic combines a high degree of obviousness with a max-
imal degree of generality. A characteristic way of justifying a statement or
action by reasons is to put it under general rules or principles.3 This leads
us to search for general reasons, and to regard generality as a virtue in
reasons. Thus, their generality is another reason for treating elementary
logical inferences as basic. The same logic will be common to reason-
ing about a wide variety of subject matters, or reasoning from different
assumptions about the same subject matter. This is, of course, impor-
tant because it makes possible very general results about mathematical
theories and about reasoning in other domains of knowledge. Because
of their high degree of obviousness and apparently maximal generality,
we do not seem to be able to give a justification of the most elementary
logical principles that is not to some degree circular, in that inferences
codified by logic will be used in the justification.4

If one considers logic more broadly, one cannot but be struck by the
great variety of logics that modern logicians have developed and studied.
The degree to which a logic possesses the features that give logic the role
sketched above will vary and will in many cases be contested. I have not
undertaken in this work to delineate the boundaries of a central sense
of the word ‘logic’. The plurality of logics has made it possible to reason
about many matters while putting aside disputes about principles. For
example, a constructivist will not disagree with a classical mathematician
about what is provable in a given intuitionistic or classical system. It also

3 One reason why this is so is that appeal to general principles is one way of attaining
objectivity. In spite of its undoubted importance, I am not emphasizing objectivity in
this discussion. This contrasts with that of Thomas Nagel in The Last Word, although the
description of reason in his introductory chapter has points in common with my own. I
have not undertaken a general defense of the objectivity of mathematics, in part because
it would be generally agreed upon and in part because it would take my treatment too far
afield from my main themes, for example into differences such as that between classical
and constructive mathematics. But, in addition, I am not quite convinced that objectivity
in quite as strong a sense as Nagel claims is a feature of Reason as such, although for the
most part I am in sympathy with his defense of objectivity.

It also might be remarked, as I was reminded by Ernesto Napoli, that generality is not
in every context a virtue in reasons, because sometimes one needs to get at the very
specific features of the case at hand.

4 Of course this does not mean that nothing useful can be said in justification of logical
principles.
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can mask such disputes and make it difficult to tell whether two parties
using different systems of logic are disagreeing or simply talking about
something different.

However, it is only in a few cases that the plurality of logics affects
views about the validity of elementary logical inferences, which are what
is described earlier as having a buck-stopping character. And cases where
there is real or apparent disagreement in this domain are not as common
as the existence of a plurality of logics might suggest. In the mathematical
case, which most concerns us, the law of the excluded middle is the best
known case where a very elementary logical principle has been contro-
versial. In this work, we have not dealt with issues about constructivism
more than in passing. In many contexts, the law can be treated simply as
an assumption of classical mathematics. Another source of elementary
inferences would be modal logic. Because that is typically an extension of
classical nonmodal logic, the controversy it might give rise to is different
from that surrounding the law of excluded middle. It is less likely to con-
cern the correctness of elementary inferences but would rather concern
the admissibility of modal concepts and the interpretation of the modal
operator, as the discussion of §15 illustrates.

b. This brings me to what I take to be one of the central features of
Reason, another reflection of the fact that in the giving of reasons the
buck has to stop somewhere. A wide variety of statements and inferences,
not just simple logical ones, are accepted without carrying the argument
further. They strike those who make them as true or as evident, prior to
any sense of how to construct an argument for them, at least not one that
proceeds from premises that are more evident by inferences that are also
more evident. This is not to say that there is no argument for the statement
possible at all, but the possible arguments are of a more indirect character
or have premisses that are no more evident.5 They might be perceptual
judgments, where a relation to an external event, namely, a perception,
is what prompts their acceptance. But if there is no such relation to an
external event, we will say that the statement is treated as “intrinsically
plausible.”6 It is a feature of Reason that some statements, even those that
have the character of principles, are treated in this way, and there is no
alternative to so treating some statements or inferences. In mathematics,
in addition to logical inferences, these are typically axioms.

5 For some statements that we might accept as having a high degree of intrinsic plausibility,
we don’t rely on it because they can just as well be derived from others, which are
preferred as premisses for various reasons.

6 I believe I derived this phrase from John Rawls, but I have not located it in his writings.
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I want to emphasize that the fact that we do rely on the intrinsic plau-
sibility of principles, even where it is unexplained and not something all
would agree on, is a fact about Reason, in the sense of being a fact about
what counts as a reason for what. This is certainly true in practice, and I
would argue that there is no way around it. There may be vanishingly few
principles that we cannot avoid assuming, but if we are not to be skeptics
(in the ancient sense, suspending judgment about everything), we have
to accept some. This fact comes to be a fact about Reason, of course, only
because inquiries (and probably also practical decisions) where princi-
ples are involved exhibit this feature when they satisfy other criteria of
rationality or reasonableness.

I do not use the term ‘obviousness’ or ‘self-evidence’ to describe what
I have in mind here. Both imply a higher degree of evidence than I am in
general aiming at; the conception itself is intended to be neutral as to how
high a degree of evidence intrinsic plausibility entails.7 What is indispens-
able is enough credibility to allow inquiry to proceed and to give the more
holistic considerations mentioned under the following headings (c)–(e)
something to work with.8 ‘Obvious’ also covers too wide a range of cases:
A statement may be obvious more or less intrinsically, or perceptually, or
because of the ready availability of a convincing argument for it. I prefer to
use the term ‘self-evident’ in a rather specific sense. Roughly, a statement
is self-evident if it is seen to be true by anyone who has sufficiently clearly
in mind what it means or who exercises a sufficiently clear understanding
of it. If one does have such an understanding, it is then only by exercising
a kind of detachment that one can doubt it, if at all.9 The notion of self-
evidence is often regarded as not a very useful notion, perhaps as having
no application. And one can see why: As I have formulated it, it raises the
question when an understanding is sufficiently clear, and, moreover, in
actual cases, such as that of the law of excluded middle, there are disputes
about what meaning of the statement is available. But it is useful to keep
the notion of self-evidence in view at least for purposes of comparison.

None of this is meant to deny that there are cases where one has
more than intrinsic plausibility, just the cases where other writers use

7 I use the term ‘evidence’ in the sense of the German Evidenz or the French évidence,
that is, for the property of being evident. These terms as they occur in writers such as
Brentano and Husserl are often translated as ‘self-evidence’, in my view misleadingly,
independently of the particular meaning I want to give to the latter term.

8 In this respect the conception is akin to the conception of initial credibility in Goodman,
“Sense and Certainty.” I owe this observation to Sidney Morgenbesser.

9 One can presumably apply the same criterion to inferences and their validity.
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such terms as ‘rational insight’ or ‘rational intuition’. One such writer,
Laurence BonJour, illustrates the idea by three examples, “Nothing can
be both red and green all over,” the transitivity of tallness, and the nonex-
istence of round squares.10 The cases that are proposed in general discus-
sions are usually rather simple. One might speak in these cases of intrinsic
evidence rather than intrinsic plausibility. Cases where it amounts to cer-
tainty might be relatively rare. Probably we do have certain knowledge
in some cases, such as the most elementary and simplest statements in
arithmetic. But it is another matter whether this certainty rests entirely
on intrinsic evidence. A problem arises because there is long experience,
both historically and in the life of the individual, with the development
and application of arithmetic. This theme will be elaborated in §54, where
some issues it gives rise to will be discussed.

The question arises whether intrinsic plausibility is a property of
propositions or of judgments.11 In a particular case, treating it as intrin-
sically plausible that p is undoubtedly a judgment, with the caveat that
it is likely to be tentative and thus to fall short of what would underlie
full-blown assertion. Although I am reluctant to put much weight on a
notion of proposition, even if one grants that the judgment notion is the
more fundamental, there is surely a derivative notion of contents that are
intrinsically plausible because a judgment to that effect would be war-
ranted. It should be obvious that intrinsic plausibility in that sense can
be lost. In the eighteenth century, it would have been reasonable to treat
the Euclidean parallel axiom as such (and perhaps even as evident) in
application to actual space, whereas it is surely not reasonable now. More
humdrum examples can probably be cited.

A natural question to ask is what limits there are on the statements
that can be treated as intrinsically plausible. As I have explained mat-
ters, in mathematics they will be in the first instance axioms, because if a
part of mathematics is formulated axiomatically other statements will be
derived. We need to consider inferences as well as statements, and basic
logical inferences will also be treated in this way; indeed, such inferences
are very frequently regarded as self-evident, and in some cases that is
reasonable, for example with conjunction introduction and elimination.
I will not, however, be concerned with the question to what extent simple

10 In Defense of Pure Reason, §4.2. What BonJour calls rational insight is insight into necessity
(p. 101). That does, I believe, fit the mathematical case. But it does raise the question
how he would deal with cases of what is called the “contingent a priori.”

11 This question was pressed by Elijah Chudnoff.
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logical inferences are self-evident. But it does seem unavoidable to treat
some logic as intrinsically plausible, as at least a minimum of logic will
be presupposed in any other form of verification of knowledge with sig-
nificant systematic structure.

As I have said, perceptual judgments should not be regarded as intrin-
sically plausible, although they share the character of being accepted
in the absence of argument. The reason is that their plausible or evi-
dent character depends on their being made in the context of an event
outside the judgment, namely the perception, and so is dubiously called
intrinsic. The question might then arise whether statements that are intu-
itively known on the basis of the Hilbertian intuition of Chapters 5 and 7
might be intrinsically plausible or evident. That seems to me a borderline
case. They differ from perceptual judgments in the degree of freedom to
which the external event of perception of imagination could be replaced
by another, but they differ from purer cases of “rational intuition” in that
one could not eliminate altogether the role of an external event. The same
is doubtless true in other cases where imaginative thought experiments
are involved.

c. We have set out two features of Reason that seem to me fundamental:
the importance of argument, which gives rise to the central role of logic,
and the fact that some statements that play the role of principles are
regarded as plausible (and possibly even evident) without themselves
being the conclusions of arguments (or, at least, their plausibility or evi-
dence does not rest on the availability of such arguments). A feature of the
structure of knowledge that can be viewed as a third feature of Reason is
the search for systematization. Logic organizes arguments so that they are
application of general rules or principles, and then these principles serve
to unify the case at hand with others. In mathematics, systematization is
manifested in a very particular way, through the axiomatic method. That
is clearly the reason why it is axioms or potential axioms whose intrin-
sic plausibility is primarily of interest to us. But other factors influence
the selection of axioms, more or less having to do with their systematic
role. And in some areas, such as elementary arithmetic, there are state-
ments that are universally treated as derived that are probably initially at
least as evident as the axioms. Examples would be simple identities like
‘2 + 2 = 4’ and the commutativity and associativity of addition. So it
appears that they could be described as intrinsically evident, but in the
axiomatic development of arithmetic we do not rely on this.

d. Systematization makes possible a fourth feature, what I will call
the dialectical relation of principles – that is, high-level generalizations,
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generally of a theoretical character – and lower-level statements or judg-
ments that we accept, possibly on the basis of perception but not neces-
sarily, as the case of moral judgments illustrates.12 Statements of either
level may be plausible more or less intrinsically apart from their con-
nections with statements of the other. A suitable systematization may
derive the lower-level judgments from the principles, and this can serve
to reinforce both. It may derive them with some correction, so that the
original lower-level judgments come to be seen as not exactly true, but
then what is wrong with them should be explained. It may be that some
sets of principles lead to systematizations that square much better with
the lower-level judgments than others, and this is a ground for choosing
those that square better.

In 1955 Nelson Goodman suggested that one should view the evident
character of logic in this dialectical way.13 There are particular inferences
and arguments that we accept. Rules of deductive inference are invalid if
they conflict with these judgments about the validity of particular infer-
ences. Particular inferences are valid if they conform to the rules, and not
if they do not. Goodman says that the circularity involved is “virtuous.” He
indicates clearly that there can be a process of mutual correction, which
then has a back-and-forth character, so that harmony of accepted princi-
ples and accepted particular inferences is a kind of equilibrium. Although
the picture is attractive, it is not so easy to identify the process at work
in the actual history of logic, although one possible reason for this could
be that with respect to elementary inferences, the decisive steps took
place too far back to be documentable.14

Goodman’s picture of the justification of logic is at least incomplete, as
one can see from the fact that harmony between principles and accepted
inferences could obtain for both the classical mathematician and the
intuitionist and so could not yield a criterion for choosing between them.
In fact, further argument was brought into play from the beginning, gen-
erally either directly philosophical or methodological or turning on ques-
tions of mathematical fruitfulness and application. That harmony obtains

12 These levels need not be the highest and the lowest. But, for simplicity, I consider only
two levels at a time.

13 Fact, Fiction, and Forecast, ch. III, §2 (substantially the same in all editions).
14 Michael Resnik suggests the issues surrounding the truth-functional conditional as an

example (Mathematics as a Science of Patterns, p. 159), although this may be a case
where, at least for the purposes of formalizing mathematics, we accept less than com-
plete harmony between principles and individual judgments. A purer case might be the
question of “existential import” in the theory of the syllogism.



P1: JZP
9780521452793c09 CUNY1138/Parsons 978 0 521 45279 3 October 20, 2007 11:49

324 Reason

for either intuitionistic or classical logic when all these considerations are
brought in would be disputed; it has certainly not brought about complete
agreement.

John Rawls’s view of the justification of moral and political theories also
gives a place to dialectical interplay between particular judgments and
general principles. In fact, it is his discussion of his methodology in A The-
ory of Justice that brought wide attention to this phenomenon. However,
to enter into a discussion of Rawls’s conception of “reflective equilib-
rium” would take us too far afield.15 To avoid possible misunderstanding,
however, we should recall that in later writings Rawls emphasizes that
reflective equilibrium involves not just particular judgments and highly
general principles but also judgments and principles of all levels of gener-
ality.16 The mature conception of reflective equilibrium is more complex
than what Goodman described.

A specific incompleteness in Goodman’s discussion is that it is not suf-
ficient to regard the relation of principles and lower level judgments that
we aim at as simply a matter of the former implying and only implying
judgments or inferences that we are disposed to accept. Even in domains
other than natural science, in mathematics in particular, principles can
possess something like explanatory power, and that can be a reason for
accepting them. In one of his tantalizingly brief discussions of justifi-
cation of mathematical axioms by their consequences, Gödel mentions
“shedding so much light on a whole field” as one of some properties of
axioms such that an axiom having all of them “would have to be accepted
in at least the same sense as any well-established physical theory.”17

e. A fifth and final feature is that Reason, as embodied in what we
accept as a reason for what, is an ultimate court of appeal. The reason why
“self-evidence” is never the whole story about the evident character of a

15 Rawls acknowledges Goodman’s discussion as a model (A Theory, p. 20 n.). The difficulty
I have found with Goodman’s discussion might be addressed by the distinction between
narrow and wide reflective equilibrium; see “The Independence of Moral Theory,”
p. 289. I am doubtful about attributing the idea of wide reflective equilibrium already to
Goodman, as Resnik does (ibid.).

16 Ibid., also Political Liberalism, pp. 8, 28.
17 “What is Cantor’s Continuum Problem?” (1964 version), p. 261. My attention was called to

this remark by Martin, “Mathematical Evidence,” p. 227. Martin argues that determinacy
hypotheses in descriptive set theory satisfy the criteria that Gödel gives. His paper is an
exemplary discussion of the issues about evidence in mathematics that arise from the
fact that some problems in set theory are settled by axioms that are very far from self-
evident or even adequately motivated by the iterative conception of set. See also §22
above.
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principle is the same as the reason why judgments based on perception
are in principle fallible. In the end we have to decide, on the basis of
the whole of our knowledge and the mutual connections of its parts,
whether to credit a given instance of apparent self-evidence or a given
case of what appears to be perception. There is no perfectly general reason
why judgments of either kind cannot be overridden. When Descartes,
after entertaining some serious skeptical doubts, was confronted with
his inability to doubt ‘2 + 3 = 5’ when he had its content clearly in mind,
he then arrived at the idea of a malicious demon who might deceive him
even about the matters that he perceived most clearly. We might in the
end say that this is not a serious possibility, but when we do come to that
conclusion it will be a case of our buttressing the evidence of ‘2 + 3 = 5’
by argument, not in the sense of producing a stronger proof with that
conclusion but in the sense of removing a reason not to credit the reason
we already have for accepting it. Something that we ask of arguments of a
nice premisses-conclusion structure is that they should be robust under
certain kinds of reflection. The same is true of perceptual judgments or
purportedly self-evident ones.

Thomas Nagel also regards reason as the ultimate court of appeal but
emphasizes that in this role the judgments involved will make a claim
to be objective.18 Although I think that this is at least largely correct, in
some cases one has to be quite careful about this. An example would be
an appeal to perception. If I claim on the basis of perception that p, and
that is supposed to settle some question in dispute, it will, of course, not
necessarily be the case that others share my perception. I may be the only
one in a position to have the relevant perception, or my senses might
be sharper than those of the relevant others. And some translation to
account for differences of perspective will often be needed for others, or
even for myself at a later time, even to express what my perception yields.
For example suppose that on the basis of perception I say, “There is blood
on the floor now.” To convey the information to someone at a distance, I
will have to specify the location of the floor, and at a later time I will have
to specify the time, which will no longer be correctly called ‘now’.

§53. Rational intuition and perception

Statements that are taken to be intrinsically plausible are often called
intuitions; in fact, something like this is nowadays the most widespread

18 The Last Word, e.g. p. 5.
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use of the term in philosophy and is by no means confined to philosophy.
Intuition in this sense would be a species of intuition that in the usage of
§24. But so far, although the conception of intuition yielded can in princi-
ple apply to a very wide range of propositions, it is in other respects a very
weak one. First, it leaves largely open the question, already broached in
§24, what epistemic weight is to be given to intuitions. Already that would
suggest that some tightening of the conception is necessary. Philosophers
who have given great epistemic weight to intuition, such as Descartes,
Husserl, and Gödel, have held that one only has intuition if one exercises
considerable care to eliminate sources of illusion and error. Connected
with this is a second consideration: If we think of intuition as a funda-
mental source of knowledge, then in theoretical matters intuitions should
be stable and intersubjective, but in many inquiries what is regarded as
intrinsically plausible may depend on that particular context of inquiry,
and moreover disagreements in “intuitions” are very common in most
fields. Third, no connection has been made between this notion of intu-
ition and that of intuition of objects, so prominent in the philosophy of
Kant and in writings influenced by him.19 Such a connection was found
in Chapter 5 to be a natural requirement for a propositional attitude to be
sufficiently analogous to perception to be appropriately called ‘intuition’.
In general, intrinsic plausibility is not strongly analogous to perception,
but perhaps it comes closer to being so where greater epistemic weight
is accorded to it. Nonetheless, I will sometimes in what follows defer to
contemporary usage and speak of intuitions, sometimes using the term
‘rational intuition’.

To pursue the first two questions in a general way would carry us well
beyond the limits of this work and would in my view not be very fruitful.
As we go along it will become clear what I have to say about them in
relation to some basic mathematical cases: arithmetic and set theory. It
is also with respect to these cases that we will say something about the
third question.

The most obvious disanalogy between perception and a proposition’s
being taken as intrinsically plausible, even to a very high degree, is that the
latter occurs in the absence of an external event. But there is an analogy,
stressed in the writings of Gödel on this subject, in that a proposition
accepted in this way is not the conclusion of an argument. Because in
interesting cases such propositions are general, one also has to make

19 Among such writings should be included much that has been written on the philosophy
of mathematics in the nineteenth and twentieth centuries; even writers hostile to Kant
have used the term ‘intuition’ in a way that owes at least distant inspiration from him.
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special assumptions to discern a perception-like relation to objects. Gödel
took rational intuition to involve perception of concepts. Someone to
whom it is evident that every number has a successor but is skeptical of the
whole idea of concepts is, on Gödel’s view, misconstruing what is before
his rational faculty. The view of predication underlying the discussion
of Chapter 1 and earlier writings of mine is incompatible with that.20

An interesting analogy was proposed by George Bealer: That reason is
subject to illusions that, like perceptual illusions, persist even after they
have been exposed and one no longer accepts the propositions that the
illusion would lead one to.21 In fact Kant made the same analogy with
perceptual illusions in explaining his own conception of “transcendental
illusion.”22 In my view the convincing examples of illusions of reason
are of the general type that Kant attempted to characterize, in that they
have to do with some kind or other of “absolute” or “unconditioned.”
An example might be the intuitions about truth and related notions that
generate semantic paradoxes, where the illusion would concern either an
absolute totality of all propositions or a total semantics for the language
one is using or might come to use.23

Before we pursue these cases it is appropriate to remark on a gen-
eral feature of principles in mathematics, which I will call their epistemic
stratification. It bears on the question whether much significant mathe-
matics can be done on the basis of principles that are indisputably self-
evident. Principles in mathematics ascend in a rough order of abstract-
ness and logical power, with the effect that as one ascends there is a
decrease of clarity and evidence, although there will not necessarily be
agreement about how much of a decrease there is with any particular
step. Some traditional distinctions such as finitist/nonfinitist, construc-
tive/nonconstructive, and predicative/impredicative distinguish dimen-
sions on which it has been argued that there is such a decrease. Proof
theory has developed a very refined analysis that enables one to answer
questions as to whether a theory embodying certain principles is or is
not reducible to another, and precise senses can be defined in which
one theory is “stronger” than another. That enables one to place par-
ticular mathematical theories more precisely in an order significant for

20 I discuss Gödel’s views further in “Platonism and Mathematical Intuition” and in “Reason
and Intuition,” pp. 309, 312–313.

21 Bealer, “Intuition,” p. 732 of reprint, and “On the Possibility of Philosophical Knowledge,”
pp. 5–6.

22 Critique of Pure Reason, A 297/B 353–354.
23 See further “Reason and Intuition,” pp. 310–311.
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questions of clarity and evidence, although the more precise and refined
it becomes the more possibility there is for dispute and uncertainty about
its epistemological significance.

The epistemological significance of this stratification was first urged
by Paul Bernays in “Sur le platonisme.” But it has come to impose itself
through the development of mathematical logic since 1930. It constitutes
a major qualification on any holistic epistemology for mathematics. In
many standard cases of stronger and weaker theories, the stronger the-
ory incorporates the weaker theory, in the sense that the weaker theory
can be translated directly into the stronger, and a model of the stronger
theory that meets some standardness condition will contain a model of
the weaker theory that also meets standardness conditions. For example,
first-order arithmetic, PA, is translated directly into ZF by interpreting
numbers as finite von Neumann ordinals, and the model of arithmetic
that thus arises within any model of ZF is standard if the model of ZF is
well founded.24 That rules out the possibility that ZF or some stronger
set theory would lead to results that contradict arithmetic without being
itself inconsistent, or at least ω-inconsistent.

§54. Arithmetic

The special case that it is most natural to consider first in the light of the
discussion in §§52–53 is that of arithmetic. In Chapter 5, we developed
a Kantian conception of intuition whose relevance is primarily to arith-
metic, but the reader may well feel that much remains to be said about
what this concept accomplishes for the epistemology of arithmetic. We
will attempt to fill that gap in this section. However, the best place to begin
is by looking at arithmetic in the light of the discussion of Reason in §52.

The natural numbers are often claimed to be especially transparent.
One version of such a claim would be the claim that the axioms of arith-
metic or other elementary arithmetic statements are self-evident. Let us
consider first the elementary Peano axioms: Every natural number has a
successor; the successor is never 0; and if Sx = Sy, then x = y. We might
agree that if one doesn’t accept these statements, then one doesn’t
understand the concept of natural number, at least not as we do. But

24 Some cases can arise in which a stronger theory seems to “refute” a weaker theory. A
well-known case is that of set theory with a measurable cardinal, which implies V �= L.
Here, holistic considerations do have a purchase. But it should already be clear that we
have not intended to deny their relevance altogether. More will be said in the section on
set theory.



P1: JZP
9780521452793c09 CUNY1138/Parsons 978 0 521 45279 3 October 20, 2007 11:49

§54. Arithmetic 329

consider someone skeptical about arithmetic, for example someone who
holds an extreme version of strict finitism that rejects the infinity of the
natural numbers. To the claim of self-evidence, such a person will reply
that the understanding of the notion of natural number that we presume
is illusory, that, in the sense in which we mean it, natural numbers do not
exist; we do not have the concept of natural number we claim to have. So,
at least in relation to such skeptical views, the claim that these axioms are
self-evident is not very helpful.

Another observation about them is that although the elementary
axioms are accepted as axioms of arithmetic, there are some contexts
in which one defines the arithmetic terms and proves the axioms. This is
true of the standard development of arithmetic in axiomatic set theory,
and it is also true of logicist constructions of arithmetic. Frege is credited
with proving them in second-order logic from his criterion of identity
for cardinal numbers, now popularly known as “Hume’s Principle.” Par-
ticularly given the power of second-order logic, it would be difficult to
maintain that this derivation obtains the elementary Peano axioms from
something more evident. In §47 it was argued that this is not true even
if one adds induction to what is derived. Both of these cases are cases of
putting the arithmetic axioms into a more general setting, in the one case
of course set theory and in the other a theory of cardinality applying to
whatever the variables in second-order logic range over.

These somewhat banal observations illustrate a general fact (which
applies also to further arithmetic axioms): In mathematical thought and
practice, the axioms of arithmetic are embedded in a rather dense net-
work, in which their primitives may mostly play the role of primitives
but do not always do so, and, likewise, the arithmetical axioms do not
always play the role of premisses. Moreover, the process by which they
have come to be as evident as they are includes also the deduction of
consequences from them, consequences, which, in some cases, were at
the time when the axioms were formulated quite as evident as the axioms
themselves. I have in mind such propositions as the earliest theorems
proved in a development of formalized arithmetic, such as the associa-
tivity and commutativity of addition, and basic identities such as 7 + 5 =
12 and 7 × 8 = 56. We might add some other kinds of considerations, such
as the fact that the Dedekind-Peano axioms in the second-order setting
characterize a unique structure.

A whole network of relations thus serves to buttress the evident char-
acter of the axioms of arithmetic. Some of these relations lead us into
applications, and it has been argued that this exposes arithmetic to the
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possibility of empirical refutation. This is a complex and contested mat-
ter, which I have not gone into thus far in this work and will not pursue
here. No one has offered a scenario that is at all plausible in which that
would come about.25

This fact raises the question to what extent the evidence of the axioms
of arithmetic should be described as intrinsic, that is, as obtaining with-
out appeal to arguments in their favor. Can the intrinsic plausibility of a
principle be increased by the development and application of a theory
of which it is a part? It is not altogether easy to answer this question. In
some of his later essays, Paul Bernays uses the term ‘acquired evidence’
to describe the evident character a proposition can have in the context of
a developed conceptual scheme.26 He maintains that evidence in mathe-
matics is nearly all acquired in this sense. The example he develops most
fully is that of Euclidean geometry.27 There he maintains that there is
something like intuitive evidence, but it is dependent on having acquired,
and presumably worked with, a certain conceptual apparatus. Bernays’s
own view about whether such evidence can be intrinsic in our sense is
not very clear. One remark hints at the negative; he writes that “evidence,
originating in an intellectual situation, is relative to the implicit suppo-
sitions that such a situation includes.”28 However, the very fact that the
suppositions are implicit makes the implication not so clear. The matter
may turn on what is involved in a statement’s being evident. In what we
might call the strong sense, a proposition’s being evident implies that it
is known, and that implies that it is true. 29 Then it seems that the remark
just quoted implies that acquired evidence is not intrinsic. But I think
it more likely that Bernays’ conception of evidence is weaker, and that
evidence could be lost if the “implicit suppositions” are brought to light

25 For some further, still brief remarks, see the Preface. Richard Tieszen has raised in cor-
respondence the question whether the dialectical relation of principles and lower-level
judgments exists only within mathematics, or whether the lower-level judgments can
be empirical ones arising in application. That is a large question, which I do not attempt
to answer here. I don’t think it is necessarily equivalent to the question whether empir-
ical falsification of a mathematical theory is possible, although the issues are certainly
closely related.

26 See “Quelques points de vue” and the remark about the obviousness of arithmetic in
“Die Mathematik als ein zugleich Vertrautes und Unbekanntes,” p. 111.

27 “Quelques points de vue,” pp. 322–323.
28 Ibid., p. 321.
29 These implications would hold for what I consider canonical uses of Evidenz, by Brentano

and Husserl. Otherwise, for example, Brentano would not be able to define truth in terms
of evidence in the way he does in late fragments. See for example Wahrheit und Evidenz,
p. 139.
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and turn out to be doubtful. One way in which it would be intrinsic is
where the evidence of an axiom is connected with the understanding of
the concept of a kind of mathematical object or of a structure such as
that of the natural numbers. It can hardly be doubted that such under-
standing as we now have is the product of a long history of reasoning
about numbers. But that it is increased by that history, so that the basic
principles come close to evidence that is still intrinsic, is suggested by
the phenomenology of arithmetical reasoning. But what we have may fall
short of evidence in the strong sense, as it is still possible to doubt the
coherence of the conception of number, or the consistency of theories of
number.

However that may be, it may be questioned how well the dialectical pic-
ture sketched by Goodman for logic and developed by Rawls and others
for moral and political theories fits the case of arithmetic. Axiom systems
for arithmetic before the work of Dedekind were fragmentary and incom-
plete, but they did not contain axioms that had to be revised in the light
of their consequences. The Dedekind-Peano axioms may not have been
recognized in their role as axioms in much earlier times, but surely infer-
ences corresponding to them were made, in particular inferences that
would now be rendered as applications of induction or equivalent prin-
ciples. Some trial and error was no doubt involved in arriving at the right
formulations of the induction axiom, but it consisted mostly in coming to
recognize induction as a central principle and giving the formulation that
characterized the natural numbers. Where there might be uncertainty or
controversy about induction is about whether it really needs to be a prim-
itive principle (as in the Poincaré-Russell controversy at the beginning of
the twentieth century) or what to regard as a well defined predicate and
thus as falling within the scope of the principle. In the latter case, how-
ever, we do not find a modification of principles because consequences
of them have been found unacceptable but, rather, questions of a more
or less philosophical character, so that where there is some such dialectic
is between attitudes toward mathematical axioms and rules and method-
ological or philosophical principles having to do with constructivity,
predicativity, feasibility, and the like.30

30 One might also find a dialectical relation of principles and lower-level mathematical
judgments in the earlier history of the analysis of the concept of number, before the time
of Dedekind and Frege. I have not gone into this matter and don’t feel qualified to have
a view of it. In the case of Kant, which I have investigated, much of his philosophy is
certainly made dated by later developments in the foundations of arithmetic, although
some basic ideas have value today. But there are not properly arithmetical claims in his
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Arithmetic does already illustrate the epistemic stratification men-
tioned at the end of the last section. Most of us find it quite evident that
exponentiation is a total function, but is it fully as evident as it is that
addition and multiplication are total? As we saw in Chapter 8, philosoph-
ical reasons have been given for casting doubt on exponentiation, and
a consistent position that rejects it is possible. If someone maintained
that, say, arithmetic with bounded induction but with exponentiation is
inconsistent, it is not clear that we could give a definite refutation that
would be in no way question-begging.

Undoubtedly the axioms of arithmetic are intrinsically plausible. But
the received idea that they are evident by themselves, as the application
to them of the idea of rational intuition would suggest, is in an important
way misleading. The evident character of the axioms is buttressed by
the network of connections in which they stand, so that in that respect
their evident character does not come just from their intrinsic plausibil-
ity. Moreover, such a network already existed at the time the axioms were
formulated clearly in the second half of the nineteenth century. Still, the
received idea has an element of truth because once formulated clearly,
the axioms have not had to be revised because of consequences that
mathematicians were not prepared to accept, although when philosoph-
ical considerations are brought in we can discern degrees in the evident
character of arithmetical principles.

These remarks raise two questions: How does the view sketched here
differ from the holistic epistemology of Quine, which has been developed
in the case of mathematics in a number of writings of Michael Resnik?31

And what is the epistemological role that this picture gives to Hilbertian
intuition as described in Chapter 5? In §27, we objected to the Quinean
view that it leaves unaccounted for the obviousness of elementary mathe-
matics and logic. Resnik has challenged me to explain how my conception
of intuition yields a better result on this question.32 With regard to logic,
we should not expect it to do so at all directly, because logical truth and
inference do not (pace Frege) involve cognition of distinctively logical
objects. But the question about arithmetic calls for an answer.

The formulation of the problem needs refinement; for reasons noted
in §52, the term ‘obvious’ is not quite the right one to characterize what

writings that have had to be revised, unless one so considers the “metamathematical”
claim that arithmetic has no axioms (Critique of Pure Reason, A164/B205).

31 In particular in Mathematics as a Science of Patterns and “Quine and the Web of Belief.”
32 “Parsons on Mathematical Intuition and Obviousness.”
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is to be accounted for.33 One could put the matter better by saying that
the most elementary parts of arithmetic are evident to an exceptionally
high degree. In the stratification of mathematical conceptions in terms
of abstractness and logical power discussed in §53, the most elementary
arithmetic is at the bottom.34 We might single out the part of arithmetic
that, on the Hilbertian interpretation where the domain of objects con-
sists of strings, is intuitively evident on the view of Chapter 7. Thus it
would include the elementary Peano axioms, addition and multiplica-
tion and probably some other recursive operations (but none as powerful
as exponentiation), and quantifier-free induction. I leave aside whether
�0-induction can be added. For this domain of arithmetic, a prelimi-
nary answer to Resnik’s question is offered by the argument of Chapter 7
that this much arithmetic is intuitively evident on the interpretation
considered there.

Already within the Hilbertian interpretation, one takes a step that also
arises in the different genetic routes to the concept of number consid-
ered in Chapter 6. That is to regard the numbers, however construed,
as a domain of objects. I do not mean that we take the objects to con-
stitute a set, only that we understand a predicate applying to them and
can reason with it. In intuitively evident arithmetic, the extent is limited
because one does not introduce full quantificational logic, even first-
order, for reasons already spelled out in Hilbert’s writings and indicated
in §42. It follows from the view about induction advanced in §47 that the
piecemeal introduction of instances of these schemata as the finitist con-
ception of arithmetic suggests already represents gradual specification of
the domain. Although I argued that, applied to the model of strings and
rather sharply restricted, induction preserves intuitive knowledge, there
is clearly something more than intuition involved. This is the more true
when one affirms induction as a general principle, even if one has a very
restrictive idea of what predicates are to be allowed.35 In the usage of §52,
we would describe individual instances as intrinsically plausible to a very
high degree. We can describe this evidence as conceptual, but as we said
earlier that is only informative to a limited degree.

33 The formulation derives from “Mathematical Intuition,” p. 151. Resnik himself expresses
cautions concerning the notion of obviousness, in many respects parallel to our own,
op. cit., pp. 227–228.

34 It might be argued that some basic geometry is as well. I do not address this question.
35 Such an idea is of course absent in §47, and the unrestricted character of induction is

exploited in the discussion of uniqueness in §§48–49. But we were not concerned there
with intuitive evidence or with finitism.
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Applied to the model of strings, what most distinguishes the view advo-
cated here from the holistic empiricist view is that the smaller, accessible
objects of the domain are given in intuition, there is intuitive knowl-
edge of certain ground-level propositions, and the conceptual or rational
element is limited by the very low place the mathematics involved occu-
pies on the hierarchy of levels of mathematical theories. This would con-
tinue to hold even if we admit primitive recursion in one of the ways
canvassed in §44, so that we obtain a theory equivalent to primitive
recursive arithmetic PRA.

It might seem that allowing free use of quantificational logic in induc-
tion, so as to have an arithmetic at least as strong as PA, has little point so
long as one sticks with the model of strings, since we would have gone well
beyond any plausible limit of intuitive knowledge. However, it is relevant
to the structuralist view of §18, which in my view is the most plausible
final view of numbers. Strings offer a domain that witnesses the possibility
of the structure of numbers. But we will have taken the step of regard-
ing the domain as definite in the sense that quantification over it yields
statements that are true or false.36 The clarity we have about what this
domain is derives from the principle of induction. It might seem that this
is a very weak basis on which to rely, particularly if one holds the open-
ended interpretation advocated in §47. It is an explanation of a concept,
where we rely on the formal notion of predicate but don’t treat predicates
themselves as a definite domain of objects. But it provides an elimina-
tion rule for the number predicate and so allows the derivation of general
statements about numbers. And we do have quite firm ideas to the effect
that certain predicates are well defined, which enable us to build up a
body of arithmetical proofs.

It might still seem that the step that allows classical logic is question-
able. Michael Dummett suggests that we should regard the concept of
natural number as “indefinitely extensible” and for that reason prefer
intuitionistic logic.37 Although it was he who pointed out many years
ago the vagueness introduced by characterizing the numbers in the way

36 I am of course leaving intuitionism out of account and proceeding directly from a very
limited use of quantification to classical logic. An intuitionistic view would proceed
differently, presumably relying on the idea of construction or proof. At the level we are
considering now, roughly that of first-order arithmetic, it is hard to argue that it yields
greater evidence. But it would take us too far afield to argue this here.

37 “What is Mathematics About?” pp. 442–443. However, Dummett does not here offer an
argument based on the open-ended character of induction. The reference to Frege’s
proof that every finite cardinal has a successor suggests that he thinks that the infin-
ity of the natural numbers itself encourages regarding the concept as indefinitely
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we have adopted, that vagueness does not encourage the idea that the
concept of natural number is the sort of concept Dummett has in mind
in talking of indefinite extensibility. The difficulty is that if we come to
recognize more predicates as well defined, that does not lead to the
recognition of more natural numbers. If one adopts a model-theoretic
perspective, the effect is the opposite, as has already been suggested in
§48, as the availability of more instances of induction leads to the elim-
ination of more nonstandard models. Of course, that perspective pre-
supposes a lot of mathematics, but I don’t think that is an objection to
using it to argue for the inappropriateness of applying the conception
of indefinite extensibility to the natural numbers themselves, although
it enters into the conception via the idea of well-defined predicate. But
an intuitionistic conception of arithmetic has to stand on its own feet,
presumably relying on the conception of construction embodied in the
BHK interpretation of the logical connectives, and on arguments such
as Dummett’s in “The Philosophical Basis of Intuitionistic Logic” and
elsewhere.

Of course, we need to cut loose from the model of strings. Underly-
ing the substitutional approach taken in §32 was a rather simple idea:
We learn rules for computing and reasoning with numerical expressions,
among them rules of construction of numerals. The ability to make gen-
eralizations, first, perhaps, in a language in which the possibilities of
quantification are limited roughly as Hilbert proposed for finitism, is
one of the things that is learned. In using these expressions in counting,
establishing cardinalities and places in an order, and in making stand-
alone statements “about numbers,” we do not do anything to connect the
expressions that are syntactically like singular terms with objects given
otherwise. Why should one think that making any such connection is
necessary? Both the substitutional interpretation of such quantification
(on one way of taking it) and the related constructive idea of objects
as given by canonical expressions for them are ways of making out a
negative answer to this question, while still saying that natural numbers
are in every essential respect objects. In this setting what the model of
strings does is to make out the fact that the expressions involved exist, or
can be constructed. Actually, what typically does this is a more complex
syntactic construction. The objects involved are still the sort of object
that the account of intuition in Chapter 5 has in view, although where

extensible. Perhaps it does, but once one has classical mathematics what reason is there
for embracing the conclusion?
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recursion and quantifiers are involved, knowledge of them may go beyond
the limits of intuitive knowledge.

We have said that on such a view natural numbers are “in every essential
respect objects.” However, one of the steps described in Chapter 6 is
ceasing to describe them as a syntactically segregated type but as objects
that belong to a larger domain, which may contain further mathematical
objects or may contain other objects, such as objects counted or ordered.
There seems to be a new conceptual element in the use of the formal
notion of object. However, that is not as substantial an addition as it
might seem, since the notion of object is correlative to that of predicate,
which was already appealed to in the general formulation of the induction
principle.38

But one can see that what can broadly be called logic is central to
the more abstract talk of numbers, as it was already to the introduction of
quantifiers with reference to the model of strings. Arithmetic does not say
what objects there are beyond numbers. Even if it presupposes objects
to be numbered, it has no particular presupposition as to what kind of
objects they are and how many of them there are. But logic plays the role,
first, of providing a framework for speaking of numbers as objects among
others, and, second, for speaking of the relations between numbers and
whatever other objects stand in relevant relations to them.

I can now summarize the reply our work offers to the question posed
by Resnik. Intuition does play a role in making arithmetic evident to the
degree that it is, in that there is a ground level of arithmetic, not extending
very far, that is intuitively evident. Furthermore, the objects that play the
role of numbers in this low-level arithmetic can continue to do so in
a more full-blooded arithmetic theory. Logical ideas, both the general
idea of predicate in the formulation of the induction rule, and taking
the strings to be a domain of objects that can be quantified over and
reasoned about classically, are essential to this further development. Thus
the conceptual or rational element in arithmetical knowledge becomes
much more prominent at this point. But the role of intuition does not
disappear, because it is central to our conception of a domain of objects
satisfying the principles of arithmetic. When we turn to abstract talk of
numbers, the new element involved is again broadly speaking logical. But
an intuitive domain witnesses the possibility of the structure of numbers.

38 Logic plays a similar role in the alternative, structuralist route presented in §18, where
the natural numbers can be arrived at by “Dedekind abstraction” beginning with an
instance of the structure such as the model of strings.
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Apart from the role of intuition just described, and such intrinsic evi-
dence as the more conceptual appeals possess, there is another respect
in which the point of view advocated here differs from holism, namely,
the fact that arithmetic as so far described is low in the hierarchy of math-
ematical theories.

Still, what we have said above makes clear that our view does not differ
toto coelo from holism, because the evident character of the principles
is reinforced by mathematical experience and application. The empiri-
cist will ask whether it is possible that mathematical conclusions in this
domain should be falsified by experience, presumably in application. As
remarked earlier, it seems to me that no one has presented a convincing
scenario according to which that occurs. But more would be involved in
arguing that such falsification is impossible, and I am not attempting to
offer such an argument.

It will be argued that the role we attribute to intuition can itself be
replaced by purely rational evidence. Thus, in a brief discussion of the
obviousness of arithmetic, Paul Bernays writes: “First, we are conscious
of the freedom we have to advance from one position arrived at in the
process of counting to the next one.”39 It would take some argument to
show that there is no appeal here to the temporal character of experience,
such as we find in Brouwer. Another apparently purely rational procedure
would be to appeal to the axiom of pairing in set theory, which together
with extensionality is enough to generate an infinite domain (in a slightly
simpler way than in the theories of finite sets presented in §33). Just
the fact that the axiom says that given any two objects, there is a set of
which they are the elements, makes it, as we noted earlier, not presuppose
intuitability of the objects. It is natural to find this axiom more evident
than such axioms as Replacement and Power Set. One’s first thought as to
why is that, even with other axioms, it will yield only finite sets. A purely
rational evidence of the axiom would be approximately as plausible as the
intuition about successor appealed to in the remark of Bernays quoted
above.

However, the work of §§33–34 implies that a version of the axiom suf-
ficient for the arithmetical application has a kind of evidence that pre-
supposes less, which can be described as linguistic. This emerges from
the discussion of a relative substitutional interpretation of the theory
of hereditarily finite sets. If these sets have objects of an arbitrary given
domain as urelements, then such an interpretation still presupposes finite

39 “Die Mathematik als ein zugleich Vertrautes und Unbekanntes,” p. 111.
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sequences of these objects, as noted in §35 and at the end of §38. But for
the construction of numbers, only pure sets are needed. We can see these
sets as objects given by canonical expressions for them, which might be
constructed either in the language of the set theory of §33 or as “bracket
terms” in the sense of §35 and §39.40 Or we can interpret the theory by a
term model, which is only moderately more complex than the model of
strings.

§55. Set theory

The question of the justification of set-theoretic axioms, even those of ZFC
before one considers large cardinals or other additions to the axioms, is a
complicated one to which I cannot even attempt to do justice here. Some
of the issues have already been discussed in Chapter 4. The present sec-
tion will largely confine itself to the question of how the picture of rational
justification developed in §52 applies to them. For someone experienced
with set theory, all the axioms of ZFC have what I have called intrinsic
plausibility.41 The axiom of extensionality seems just to mark the theory
as being about sets as opposed to attributes or other intensional objects; it
is as deserving as any of the honorific title “analytic.” The axiom of pairing
and the existence of a null set (which in some formulations is an axiom)
seem as evident as the axioms of arithmetic, and in much the same way.
They were taken up at the end of the last section. It would be nice if the
axiom of union could be viewed in the same light, but I do not know of
an argument. It does have a natural and relatively unproblematic justi-
fication from the iterative conception of set: Given a set a, suppose it is
“formed” at a stage S. All its elements were formed at stages earlier than
S, and the elements of its elements also at earlier stages. Hence they are
available at stage S, and ∪ a can be formed at S.42 However, the union
axiom is not quite so innocent as it seems because of the way it com-
bines with the axiom of replacement to yield large sets.43 But the cases

40 Compare the discussion of pairing in constructive logic in my “Intuition in Constructive
Mathematics,” pp. 219–222.

41 This is generally thought to extend naturally to “small” large cardinals, inaccessible and
Mahlo cardinals, and probably beyond. However, how far it extends is uncertain. The
matter surely depends on how great a degree of intrinsic plausibility is asked for.

42 Shoenfield, “Axioms of Set Theory,” p. 325.
43 The availability of a simple argument like Shoenfield’s is a reason why someone skeptical

of the large sets yielded already in ZF is more likely to question the axiom of replacement
than the axiom of union; an example is Boolos, “Must we Believe in Set Theory?” In his
discussion of the axioms of set theory, Hao Wang formulates the axiom of replacement
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that are really distinctive of set theory are Infinity, Replacement, Power
Set, and Choice. There is a considerable literature on the justification
of these axioms, in which a number of considerations play a role: con-
ceptions of what a set is, more global considerations about the universe
of sets (the “iterative conception” and ideas about the inexhaustibility of
the universe of sets, which allows for extension of any explicitly described
proposed universe), analogies of various kinds, methodological maxims,
and considerations concerning consequences, that is, the ability of the
axioms to yield the established corpus of set theory and its applications
in other parts of mathematics as well as the ability to avoid untoward
consequences, in particular paradoxes. If consequences have consider-
able weight, as I argued with respect to Replacement and Power Set in
§23, then the intrinsic plausibility of these axioms falls short of intrinsic
evidence.

A question that has to be considered is whether there is a dialectical
relation of axioms and their consequences such as our general discus-
sion of Reason would suggest. A negative answer seems to be suggested
by the remarkable fact that when a set of axioms for set theory was first
proposed by Zermelo in 1908, they were questioned in many ways and
remained controversial for thirty years or so but emerged from the con-
troversy hardly revised at all. The need for clearer formulations of the
axiom of separation arose early, and not long afterward the axioms were
found incomplete in ways that were remedied by introducing the axiom
of replacement. The system ZFC as we now know it is essentially in place
in Skolem’s address of 1922.44

Nonetheless, I think we do find such a dialectical relation. We can
see such a relation at work in the familiar history of the reception of the
axiom of choice, even though its outcome was that the axiom as originally
stated by Zermelo became a quite established part of set theory. The fact
that it implies that every set can be well ordered and other existential
claims that could not be cashed in by defining the set claimed to exist was
regarded by many mathematicians as a reason for rejecting the axiom or
at least regarding it with reserve. It did indeed clash with an antecedently
reasonable idea of what a set is, roughly, the extension of an antecedently
meaningful predicate. Perhaps one reason why it was that understanding

so that it incorporates the union axiom (From Mathematics to Philosophy, p. 186). He
does sketch the same argument for the union axiom as Shoenfield’s and says that it is
“conceptually a consequence of the intended process of iteration” (ibid., p. 220 n. 4).

44 “Einige Bemerkungen.”
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rather than the axiom of choice that gave way in the end was that the
former already did not harmonize with the idea of a set of all sets of natural
numbers, which was necessary to the most straightforward set-theoretic
construction of analysis.

We also may see ZFC as having won out over various competing pro-
posed frameworks for mathematics, many of them codifiable as subtheo-
ries of ZFC. An important apparent rival of Zermelo’s axiomatization was
the simple theory of types, as it emerged in the 1920s from critical dis-
cussion of the first edition of Principia Mathematica. But it became clear
that for most mathematical purposes the syntactic type distinctions were
not essential and that simple type theory was essentially a subtheory
of Zermelo set theory. But other rivals that were not embeddable into
ZFC in such a straightforward way, such as ideas for a type-free theory,
were never made really workable. However, the jury is probably still out
on whether there is a genuinely alternative framework based on cate-
gory theory. Many people have observed that for most of mathematical
practice a much weaker theory than ZFC is sufficient, even without the
work that has been done by Harvey Friedman, Stephen Simpson, and
others to identify the weakest axiomatic framework sufficient for given
classical theorems.45 But there is no convincing ground on which the part
left out should be ruled out of court as genuine mathematics. But this is
a case where “intuitions” concerning axioms, what is known about what
follows from them (and what does not), and philosophical and method-
ological “intuitions” would enter into the justification of any view one
could reasonably hold.

The phenomenon of decreasing clarity and evidence for more abstract
and powerful principles is of course in evidence in set theory; indeed,
it is the rise of set theory that first brought it to the consciousness of
researchers in the foundations of mathematics, and where one finds the
basis for the most convincing case for its being unavoidable. This is most
evident in the case of large cardinals, and especially “large” large car-
dinals like measurables and above. But already the axioms of Power Set
and Replacement are found insufficiently evident by many.46 In §23, I

45 See Simpson, Subsystems.
46 On Replacement, see the paper by Boolos cited in note 39. Predicativism includes skep-

ticism about the axiom of Power Set. The distinction drawn on the basis of remarks
of Gödel between intrinsic and extrinsic justifications of axioms of set theory parallels
roughly that between considerations of intrinsic plausibility and possibly evidence, on
the one hand, and a posteriori considerations, on the other. As regards Gödel, however,
he seems to have had in mind by “intrinsic necessity” being “implied by the concept of
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argued that a posteriori considerations, that is, their having the right
consequences, are an essential part of their justification. If one grants
some force to the more “intuitive” or direct arguments for them, then we
have a case where the plausibility of principles is strengthened by the
consequences at lower levels that they yield. Historically, the axiom of
Replacement was introduced as an axiom when it was found that certain
natural constructions, such as that leading to the cardinal ω, could not
be carried out on the basis of Zermelo’s original axioms. Replacement was
formulated as the principle underlying these constructions.

In the higher reaches of set theory, involving large large cardinals,
whose existence is incompatible with V = L, the role of intrinsic plau-
sibility is much diminished, and some of the sophisticated defenses of
the assumptions made rely entirely on a posteriori considerations. This
has been laid out at some length by a number of writers, so that there
is no need to go into it in any detail here. As noted in §22, a case along
these lines for the determinacy hypotheses employed in descriptive set
theory and thereby for the strong axioms of infinity that have been shown
to imply them has been found convincing by set theorists and by those
philosophers who are best informed about set theory.47 However, it was
established some time ago that strong axioms of infinity of the sort

set.” Gödel’s own conceptual realism implies that such a status only yields truth if the
concept involved exists (in the further sense of being coherent).

In a discussion of arguments for various axioms of set theory in Naturalism in Math-
ematics, Penelope Maddy also distinguishes intrinsic and extrinsic justifications (p. 37).
Her use of ‘extrinsic’ seems very close to ours of ‘a posteriori’, but I do not find this entirely
evident.

In the discussion of the status of Replacement in §23, we granted “a certain conceptual
character” to reflection principles, where the first-order reflection principle stated there
implies Replacement (given the other axioms, even without Infinity). That is, it could be
seen as a working out of the idea that the universe of sets in inexhaustible in the partic-
ular sense of being undefinable, or perhaps not characterizable from below. When we
consider what is involved in the formulation of stronger, higher-order principles, ques-
tions arise about how we understand the higher-order quantification. The second-order
principle of Bernays, “Zur Frage der Unendlichkeitsschemata,” is less problematic than
the higher-order principles introduced by Tait, “Constructing Cardinals from Below.” In
any event, the limitative result of Koellner (see note 38 of Chapter 4) implies that even
Tait’s principles do not yield cardinals incompatible with V = L .

In his discussion in §2 of “On the Question of Absolute Undecidability,” Koellner
proposes to reconstruct Gödel’s views by assuming that even higher-order reflection
principles are intrinsically justified. He has made clear to me that that is not his personal
view; furthermore, he states (p. 165) that what he is offering is a “rational reconstruction”
of Gödel’s view.

47 For example Martin, “Mathematical Evidence.” Further discussion, with citation of more
recent mathematical results, is in Koellner, op. cit., §3.
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considered up to now are unable to decide the Continuum Hypothesis.
That problem has been advanced, although not solved, by recent work,
especially that of W. Hugh Woodin, so that many set theorists are hope-
ful that a generally accepted solution of that problem will be found.48

But apart from the purely mathematical difficulties, many problems of
methodology and interpretation remain in this area.

48 See Woodin, “The Continuum Hypothesis, I and II,” “The Continuum Hypothesis,” and
“Set Theory after Russell.” See also Kai Hauser, “Is Cantor’s Continuum Problem Inher-
ently Vague?” and Koellner, “On the Question,” §§4–5.
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Kleene, Stephen Cole. Introduction to Metamathematics. New York: Van

Nostrand, 1952.
See also Gödel.
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Lévy, Azriel. Basic Set Theory. Berlin: Springer, 1979.
Lewis, David. “Mathematics is Megethology.” Philosophia Mathematica (III) 1

(1993), 3–23. Reprinted in Papers in Philosophical Logic (Cambridge University
Press, 1998), pp. 203–229.

. On the Plurality of Worlds. Oxford: Blackwell, 1986.

. Parts of Classes. Oxford: Blackwell, 1991.
Linnebo, Øystein. “Epistemological Challenges to Mathematical Platonism.”

Philosophical Studies 129 (2006), 545–574.



P1: JZP
9780521452793c0bib CUNY1138/Parsons 978 0 521 45279 3 October 30, 2007 17:17

Bibliography 355

. “Plural Quantification.” In Stanford Encyclopedia of Philosophy, 2004.
Online at http://plato.stanford.edu.
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