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Abstract

We show that, in 1+1 dimensional gauge theories, a heavy probe charge is screened by

dynamical massless fermions both in the case when the source and the dynamical fermions

belong to the same representation of the gauge group and, unexpectedly, in the case when

the representation of the probe charge is smaller than the representation of the massless

fermions . Thus, a fractionally charged heavy probe is screened by dynamical fermions of

integer charge in the massless Schwinger model, and a colored probe in the fundamental

representation is screened in QCD2 with adjoint massless Majorana fermions. The screening

disappears and confinement is restored as soon as the dynamical fermions are given a non-

zero mass. For small masses, the string tension is given by the product of the light fermion

mass and the fermion condensate with a known numerical coefficient.

Parallels with 3+1 dimensional QCD and supersymmetric gauge theories are discussed.



1 Introduction

The proof of confinement in QCD remains a major unsolved problem. The heuristic picture

of confinement is well known. In pure Yang- Mills theory, the static potential between heavy

probe charges in the fundamental color representation is believed to grow linearly at large

distances

VQQ̄(r) ∼ σr. (1.1)

This corresponds to the famous area law behavior of the Wilson loop vacuum expectation

value,

< W (C) >=
〈

1

Nc

TrP exp
{
ig
∫
C
Âµdxµ

}〉
∼ exp{−σAC}, (1.2)

for large smooth quasi-planar loops whereAC is the area of the minimal surface with bound-

ary C.

It is also well-known that the area law (1.2) does not hold inQCD with dynamical quarks.

The string may tear by creating a light quark-antiquark pair so that the color charge of heavy

sources is screened by the dynamical quarks. The potential VQQ̄(r) should then approach a

constant for large r, and the Wilson loop average should display a perimeter law. The same

is true for the Wilson loop in the adjoint representation in pure Yang-Mills theory. Although

the spectrum of QCD with dynamical quarks contains only colorless states, it is important

to distinguish this screening picture from true confinement with an area law for the Wilson

loop.

Recently, the first 4D field theory example where confinement is proved (at least at a

physical level of rigorousness) has been constructed [1] . The theory is an N = 2 super-

symmetric SU(2) Yang-Mills theory with an extra term that breaks N = 2 supersymmetry

to N = 1 giving a small mass to one of the two adjoint Majorana fermions and its N = 1

scalar superpartner. Confinement is absent when m = 0 but does appear for any non-zero
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m. Due to the special nature of this model, the confinement affects only the U(1) subgroup

of SU(2); the rest of the group is in the Higgs phase.

In this paper we show that a similar onset of confinement as a mass is introduced takes

place in some simple 2D models: the Schwinger model for fractional probe charges, and

SU(N) gauge theories coupled to Majorana fermions in the adjoint representation for heavy

probe charges which are in the fundamental representation of the color group. In the latter

case, the entire SU(N) is in a screening phase for vanishing fermion mass but becomes

confining as the mass is turned on.

2 Higgs phase vs. confinement in the Schwinger model

First, we consider the well understood case of the Schwinger model, with Lagrangian

L = ψ̄(iγµ∂µ − eγ
µAµ −m)ψ −

1

4
FµνF

µν, (2.1)

where

Fµν = ∂µAν − ∂νAµ = εµνF. (2.2)

The coupling constant e has dimension of mass. After bosonizing the Dirac fermion we arrive

at the following equivalent Lagrangian,

L =
1

2
F 2 +

1

2
(∂µφ)2 +

e
√
π
Fφ+mΣ[cos(2

√
πφ)− 1], (2.3)

where

Σ = e
exp(γ)

2π3/2
(2.4)

is the absolute value of the fermion condensate in the Schwinger model (γ is the Euler

constant). We have added −1 to the cosine so as to have zero classical vacuum energy.

For our purposes it is convenient to integrate out φ (or equivalently ψ) in order to derive

the effective action for the gauge field. This is particularly easy in the case of m = 0, where
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the theory is quadratic in φ, and we obtain

Leff =
1

2
F 2 +

e2

2π
F

1

∂2
F. (2.5)

The non-local term acts essentially as a mass term for the gauge field. To show this, we pick

A1 = 0 gauge and restrict ourselves to static fields, so that 1/∂2 may be replaced by −1/∂2
1 .

After an integration by parts the effective Lagrangian reduces to

Leff =
1

2
(∂1A0)

2 +
e2

2π
A2

0. (2.6)

This may be interpreted as a peculiar two-dimensional version of the Higgs phenomenon:

the Coulomb force is replaced by a force of finite range with a mass scale µ = e/
√
π. The

consequences of this may be probed by introducing a static external charge distribution

ρ(x1). This adds −ρA0 to Leff , and the equation of motion becomes

∂2
1A0 − µ

2A0 = −ρ(x1). (2.7)

Suppose, for instance, that we fix an external charge e′ at x1 = 0, and −e′ at x1 = a. Solving

(2.7) with

ρ(x1) = e′(δ(x1)− δ(x1 − a)), (2.8)

we get

A0(x
1) =

e′

2µ
(e−µ|x

1| − e−µ|x
1−a|). (2.9)

Substituting this back into Leff we find that the energy of the two test charges is

V (a) =
e′2

2µ
(1− e−µa). (2.10)

While V (a) increases linearly for small a, it saturates at e′2/(2µ) for large separations. This

indicates a remarkable phenomenon: any fractional charge e′ is screened by integer massless

charges. Does this also occur when the dynamical charges are massive ? One way to find

the answer is to integrate out φ. The fact that the massive theory is non-polynomial in φ
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leads to a non-polynomial effective action for F . The expansion of Leff in powers of F may

be constructed by integrating φ out order by order in eF ,

Leff =
1

2
F 2 +

e2

2π
F

1

∂2 + 4πmΣ
F +

16me4

π

[
1

∂2 + 4πmΣ
F
]4

+O(F 6). (2.11)

For weak, slowly varying fields this may be approximated by

Leff =
1

2
F 2

(
1 +

e2

4π2mΣ

)
. (2.12)

Thus, the leading effect of integrating out a massive fermion is a finite renormalization of

electric charge: the Higgs phenomenon has disappeared. The absence of a mass term for the

gauge field means that we can no longer screen a fractional charge by integer charges. In

other words, V (a) ∼ a as a→∞, and the theory is in the confining phase.

Solving the equations of motion which follow from the truncated Lagrangian (2.12) with

the source (2.8) and calculating the energy, we get for small m� e

V (a) =

(
e′

e

)2

2π2mΣa. (2.13)

This is true, however, only as long as e′ � e. Otherwise, the higher-order terms in the

effective Lagrangian (2.11) cannot be neglected and the string tension is renormalized. In

the following we determine the exact dependence of the string tension on e′/e and show that

it vanishes for integer probe charges. For fractional probe charges, it vanishes only when

m = 0, but does not vanish in the massive Schwinger model.

One of the ways to reach this conclusion is by studying classical solutions of the bosonized

equations, as in [2]. Let us make the fermions of charge e′ = qe and large mass M dynam-

ical and bosonize them in terms of a new scalar field χ. The complete Schwinger model

Lagrangian becomes

L =
1

2
F 2 +

1

2
(∂µφ)2 +

1

2
(∂µχ)2 +

e
√
π
F (φ+ qχ) +mΣ[cos(2

√
πφ)−1] + cM2[cos(2

√
πχ)−1] ,

(2.14)
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where c is a numerical constant. After integrating out the gauge field, we arrive at the

following Lagrangian

1

2
(∂µφ)2 +

1

2
(∂µχ)2 −

e2

2π
(φ+ qχ)2 +mΣ[cos(2

√
πφ)− 1] + cM2[cos(2

√
πχ)− 1]. (2.15)

Following [2] we may look for static solutions, φ(x1), χ(x1), to the resulting equations of mo-

tion. The requirement of finite energy leads to the boundary conditions φ(−∞) = χ(−∞) =

0. φ and χ must also approach constant values as x1 →∞. For m = 0 there exists a finite

energy solution with

χ(∞) =
√
π , φ(∞) = −q

√
π . (2.16)

The total charge,

Q =
e
√
π

[φ(∞)− φ(−∞)] +
e′
√
π

[χ(∞)− χ(−∞)] , (2.17)

vanishes for such a solution, as it should. This solution describes a massive charge e′ screened

by a cloud of massless charges e. It provides us with a rather detailed understanding of the

mechanism for this screening. The bosonized theory with a massless field φ possesses finite

energy configurations containing any desired charge −e′ in a localized region of space. Upon

gauging of the theory, these configurations bind to charge e′ and neutralize it. Remarkably,

such fractionally charged φ-solitons acquire infinite energy as soon as m is turned on, due to

the mΣ[cos(2
√
πφ)− 1] term in L. For small m, the energy per unit length (i.e. the string

tension) may be found from the first order perturbation theory and is given by

σ = mΣ[1− cos(2πq)]. (2.18)

In section 4 this result will be rederived by analyzing the behavior of the Wilson loop in the

path integral approach.

We see that the string tension indeed vanishes when e′ is an integer multiple of e. This

has an obvious physical interpretation: one can always screen an integer charge by binding

to it a number of particles of charge −e.
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3 Non-abelian Higgs phase in the massless adjoint fermion

model

In the previous section we discussed the Schwinger model. As we have shown, it is in the

Higgs phase for massless fermions and, for fractional probe charges, in the confining phase

for massive fermions. In this section we show that essentially the same conclusions hold in

certain non-Abelian 1+1 dimensional gauge theories.

While in 3+1 dimensions confinement is a rather miraculous phenomenon, which is not

yet fully understood, in 1+1 dimensions it is hardly a mystery due to the confining nature

of the Coulomb force. In a pure SU(N) gauge theory, for example, there are no dynamical

gluons, but there exists an exactly linear Coulomb potential between test charges. In other

words, Wilson loops in any representation will exhibit an area law.

If, however, we couple dynamical fermions in the fundamental representation to the

gauge field, then the situation changes. The Wilson loops in the fundamental (or any other)

representation now exhibit the perimeter law because the dynamical fundamental charges

screen the test charges.

A more interesting situation is expected to occur in theories where all the dynamical fields

are in the adjoint representation of SU(N). Such 1+1 dimensional models have received some

recent attention because of their many similarities with 3+1 dimensional gauge theories

[3, 4, 5]. The adjoint fields play a physical role similar to that of transverse gluons. In

theories where all the dynamical fields are in the adjoint representation the adjoint Wilson

loop exhibits the perimeter law, while the Wilson loop in the fundamental representation

is usually expected to obey the area law corresponding to confinement. It is interesting

that in 1+1 dimensional models with adjoint matter the criteria for confinement are the

same as in the 3+1 dimensional gauge theories. The proof of confinement is expected to

be much simpler in 1+1 dimensions. To our surprise, however, we will find non-Abelian

models where the confining phase is replaced by the Higgs phase, much like in the Schwinger
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model. In this section we discuss the simplest such model: SU(N) gauge theory coupled to

a massless Majorana fermion in the adjoint representation. We will show that test charges

in the fundamental representation are screened by the massless adjoint fermions. This is the

non-Abelian analogue of the screening of fractional charge by massless integer charges that

we observed in the Schwinger model.

The gauged Lagrangian for a single flavor of massless Majorana fermions is

L = tr

[
iψ̄γµDµψ −

1

4g2
FµνF

µν

]
, (3.1)

where ψ = ψata, Aµ = Aa
µt
a, and ta are the N2 − 1 hermitian generators of SU(N). The

field strength and covariant derivative are defined as

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν] = εµνF , (3.2)

Dµψ = ∂µψ + i[Aµ, ψ] . (3.3)

We will integrate out ψ to derive the effective action for Aµ which is known explicitly in 1+1

dimensions [6, 7],

Seff = tr
∫
d2x

[
1

2g2
F 2 +

N

2π
(∂−A+ − ∂+A−)

1

∂2
(∂−A+ − ∂+A−)

]
+NSWZ(A+)−NSWZ(A−).

(3.4)

The non-local Wess-Zumino term is an integral over manifold B whose boundary is space-

time,

SWZ(A+) = 1
12π

∫
B d

3xεijk∂igg
−1∂jgg

−1∂kgg
−1 , (3.5)

SWZ(A−) = 1
12π

∫
B d

3xεijk∂ihh
−1∂jhh

−1∂khh
−1 , (3.6)

where A+ = ∂+gg
−1 and A− = ∂−hh

−1. The factor of N in the induced action is the central

charge of the affine algebra of the SU(N) gauge currents. In [8] it was noted that an identical

current algebra results in the gauged model of N flavors of massless Dirac fermions in the

fundamental representation of SU(N) (theory II). It was further shown [8] that the massive
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spectrum of theory II is identical to that of theory I (gauge theory coupled to one massless

adjoint multiplet). Theories I and II are not completely equivalent because I has no massless

bound states while II does, but the massless sector in II is in some sense decoupled from

the rest of the spectrum. The fact most important for us is that, since their gauge current

algebras are identical, theories I and II have identical effective actions for Aµ. 1 As a result,

the expectation value of any Wilson loop,

〈W 〉 =
∫

[DA] W e−SE(A), (3.7)

is the same in theories I and II (SE(A) is the Euclidean continuation of Seff(A)). It is

physically clear that in the model with massless fundamental fermions (II) the Wilson loops

in the fundamental (and all other) representations must obey the perimeter law: the funda-

mental fermions can screen test charge in any representation. This implies that in theory

I the fundamental Wilson loop also obeys the perimeter law. Surprisingly, we have shown

that the theory with a massless adjoint Majorana multiplet is not confining: it is rather in

the Higgs phase. In the following we will confirm this unexpected conclusion in a number of

ways.

There is a subtlety in the above argument that requires further explanation. Theory

I has gauge group SU(N)/ZN . As we explain in detail in section 4, there are N different

topological classes for Aµ associated with the elements of Π1(SU(N)/ZN ) = ZN . Only one of

them, the trivial class, is present in theory II. However, as explained in section 4, each of the

topologically non-trivial classes in I has fermion zero modes and does not contribute to 〈W 〉.

We expect, therefore, that SE(A), the Euclidean effective action obtained by integrating the

fermions out, diverges for the topologically non-trivial configurations. To show this, let us

consider the Euclidean theory defined on S2. In the topologically non-trivial sectors Aµ is

not single-valued. It has singularities of the Dirac string type where the infinitesimal Wilson

1Cf. the abelian case: the Schwinger model with four massless fermions of charge e/2 has the same
effective action as the theory with one massless fermion of charge e.
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loop surrounding the north pole is a non-trivial element of ZN . It is not hard to show

that such a singularity creates a divergence in the effective action (3.4). For simplicity, we

consider N = 2, but the argument generalizes to other N . Near the north pole (as r→ 0)

Aµ→ iΩ†∂µΩ. (3.8)

In the instanton configuration we may choose a gauge where

Ω→ exp(iθσ3/2), (3.9)

so that only A3
µ is not single valued and

F 3 = πδ2(x) + regular terms. (3.10)

Thus, the effective action in the instanton class diverges due to the term

−2π
∫
d2xδ2(x)

1

∂2
δ2(x). (3.11)

This is the well-known expression for the electrostatic self-energy of a two-dimensional charge,

which is logarithmically divergent. The fact that SE(A) turns out to be infinitely large in

the instanton sectors is directly related to the presence of the fermion zero modes before

the fermions are integrated out. 2 The divergence of SE(A) suppresses the instantons in

theory I and restores its equivalence to theory II. As a result, all Wilson loops in I and II

are identical.

One interesting check of the screening phenomenon involves a calculation of the static

quark–antiquark potential. The charge of the quark and the antiquark points in one of the

N2 − 1 directions of SU(N), which we call direction 1 without any loss of generality,

ρ1(x) ∼ δ(x)− δ(x− a) , ρa(x) = 0 , a 6= 1. (3.12)

2Strictly speaking, this reasoning is not quite rigourous. To be precise, one should treat the topologically
distinct sectors separately and single out the contribution of zero modes explicitly (see Ref.[9] for a detailed
analysis in the Schwinger model case). The more precise treatment of topologically non-trivial sectors in
QCD2 with adjoint fermions will be given in Sect.5, but it is rather remarkable that heuristic arguments
based on the universal form of the effective action give essentially the same answer.
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We will choose the A1 = 0 gauge and look for a static classical solution for A0 in the

background of this charge density. The classical gauge field points in the same group direction

as the charge density, Aa
0 = 0 for a 6= 1. The Wess-Zumino terms may be neglected because

they involve group commutators, while g, h and their derivatives commute. Thus, the

equations satisfies by a static A1
0 are the same as in the Abelian theory,

∂2
xA

1
0 −

g2N

π
A1

0 = g
√
N(δ(x− a)− δ(x)) . (3.13)

Note that the screening mass-squared is µ2 = g2N/π, which is finite in the large N limit.

Substituting the solution into the effective action, we find that the static quark–antiquark

potential behaves as

V (a) ∼ µ(1− e−µa). (3.14)

In the Schwinger model, where the effective action for Aµ was quadratic, this method of

calculation was exact. In the non-Abelian case we may only hope to have found the dominant

saddle point. The fluctuations around it probably change the simple formula (3.14) but do

not alter its qualitative behavior, which is characteristic of the Higgs phase.

At this point it is interesting to ask how the transition from confinement to screening

affects the spectrum of the theory. In the large N limit, the spectrum of single-“glueball”

states is expected to be fully discrete for any non-vanishing fermion mass. For highly excited

states, however, the gaps become astronomically small due to the exponentially growing

density of states. This is the kind of structure one expects to find in physically interesting

confining gauge theories. As we have argued above, for m = 0 confinement is replaced by

screening. The disappearance of the string tension may lead to a continuous spectrum, at

least for high enough excitation number. 3 In the numerical work of [5] the lowest couple of

3While in a theory with the adjoint matter alone the continuous spectrum is only a hypothesis, we can
do better for a theory with both a massless adjoint and a fundamental fermion mutliplets. In addition to
the glueball-like states this theory contains mesons (open strings) with the fundamental fermions at the
end-points. The large N spectrum of such mesons should become continuous at the energy sufficient for a
decay into a quark screened by a cloud of massless adjoint quanta and an antiquark screened by a cloud of
massless adjoint quanta. Thus we expect a meson spectrum consisting perhaps of a few low-lying discrete
states followed by a continuum.
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states were found to have discrete gaps, but beyond that it was difficult to judge whether the

spectrum is continuous or discrete with very small gaps. It is necessary to improve numerical

techniques to the point where it is possible to judge whether the transition to continuous

spectrum takes place. If it does, then it is clearly interesting to identify the precise energy

where the spectrum becomes continuous.

4 Changing the group representation via bosonization.

To make the screening of fundamental charges by massless adjoint fermions less mysterious we

should identify the operators in the free fermion theory which transform in the fundamental

representation of SU(N). Such operators are analogous to the fractionally charged solitons

of the massless bosonized field which, as we showed in the previous section, screen elementary

fractional charges in the Schwinger model. Below we sketch a similar construction in the

simplest adjoint fermion model corresponding to SU(2).

We will consider the left-moving (holomorphic) sector of the free fermion theory (the

antiholomorphic sector behaves analogously). The fermion fieldsψa(z), a = 1, 2, 3, transform

in the adjoint (triplet) representation under the SU(2) currents

Ja(z) =
i

2
εabcψbψc. (4.1)

It is convenient to combine ψ1 and ψ2 into a Dirac fermion, which may be bosonized in terms

of the holomorphic part of a boson field,

ψ1 + iψ2 =
√

2eiφ(z) , ψ1 − iψ2 =
√

2e−iφ(z). (4.2)

The currents assume the form

J+ = J1 + iJ2 =
√

2ψ3eiφ , J3 = −i∂zφ , (4.3)

J− = J1 − iJ2 =
√

2ψ3e−iφ . (4.4)

11



Let us recall that the c = 1/2 theory corresponding to ψ3 contains order and disorder

operators with the following OPE,

ψ3(z)σ(0) = −
1
√

2z
µ(0) , ψ3(z)µ(0) = −

1
√

2z
σ(0) . (4.5)

Now it is not hard to see that the operators

Ψ+ = σeiφ/2 , Ψ− = µe−iφ/2 (4.6)

are local with respect to the SU(2) currents and, in fact, transform in the fundamental

(doublet) representation,

J3(z)Ψ+(0) = − 1
2z

Ψ+(0) , J3(z)Ψ−(0) = 1
2z

Ψ−(0) , (4.7)

J+(z)Ψ−(0) = −1
z
Ψ+(0) , J−(z)Ψ+(0) = −1

z
Ψ−(0) , (4.8)

where we have exhibited only the singular terms in the OPE. The doublet fields have a rather

exotic holomorphic dimension, 3/16 (this is the sum of the holomorphic dimension of µ or σ,

1/16, and that of e±iφ/2, which is 1/8). This is not too surprising because in the bosonized

theory of a single massless Dirac fermion the fractionally charged objects, eiqφ, also have

fractional dimensions, q2/2. Nevertheless, it is these objects that screen external fractional

static charges in the Schwinger model.

It is thus plausible that the composite doublets we found in the free adjoint theory are

capable of screening the external test doublets in the gauged theory. We believe, although

have not checked in detail, that similar constructions of fundamentals from adjoints are

possible for all SU(N) gauge groups. In fact, somewhat simpler constructions of a similar

type demonstrate the screening of external spinor charges in SO(2n) gauge theory with

massless fermions in the vector representation.

Consider, for instance, the SO(8) gauge theory with fermion fields ψa(z), a = 1, 2, . . . , 8,

transforming as a vector. We may combine the 8 Majorana fermions into 4 Dirac fermions
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and bosonize them

ψ1 + iψ2 =
√

2C1e
iφ1(z) , ψ3 + iψ4 =

√
2C2e

iφ2(z) , (4.9)

ψ5 + iψ6 =
√

2C3e
iφ3(z) , ψ7 + iψ8 =

√
2C4e

iφ4(z) , (4.10)

where Ci are the cocycle operators necessary for maintaining the proper anticommutation

relations between different fermion fields. As is well known in string theory [10], the fields

that transform as spinors of SO(8) may be easily constructed out of the bosonic fields as

C̃ exp i

(
±
φ1

2
±
φ2

2
±
φ3

2
±
φ4

2

)
(4.11)

where C̃ are the necessary cocycles. The chirality of the spinor is the product of the signs that

appear in the exponent. The special property of the SO(8) is that the objects that transform

as spinors have dimension 1/2 which means that they are fermions, just like the original fields

that transform as a vector. This is not surprising because the two spinors (of positive and

negative chirality) and the vector are interchanged by the triality of SO(8). We conclude

that there exists an exact transformation that maps the gauge theory with massless fermions

that transform as a vector of SO(8) and into the theory of massless fermions that transform

as a spinor of definite chirality (we are free to chose whether it is positive or negative).

This tranformation preserves the number of fermion fields. To show that the external static

spinor charges are screened rather than confined we simply perform the transformation on

the lagrangian. Thus, it is certain that the “composite” spinor fermions screen the external

static spinor charges. While for other groups the “composite” objects have more exotic

dimensions, it is still very plausible that they screen external static charges that transform

in different representation from those appearing in the lagrangian.

Our ability to carry out constructions such as those shown above depends crucially on

special properties of conformal field theories. Once the mass is turned on, the fractionally

charged solitons of the type we used no longer exist. Thus, we expect that external fun-

damental charges can no longer be screened and we have confinement. Examination of the
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quadratic terms in Seff (A) for m 6= 0 also indicates that the mass term for the gauge field

is no longer present. For small m we expect the theory to be confining, with a small string

tension. As we show in the next section, this is indeed what happens.

5 Wilson loops and the topological structure.

5.1 The Schwinger model

Consider first the Wilson loop with unit probe charge. In the massless Schwinger model the

functional integral is Gaussian, and the higher-order correlators factorize into products of

pair correlators. Therefore, we find

〈
eie
∫
C
Aµdxµ

〉
=
〈
eie
∫
D
F (x)d2x

〉
=

exp
{
−

1

2
e2
∫
D

∫
D
d2xd2y < F (x)F (y) >

}
. (5.1)

The correlator < F (x)F (y) > has the form (see e.g. [9])

< F (x)F (y)>= δ(x− y)−
µ2

2π
K0(µ|x− y|), (5.2)

where µ2 = e2/π. It satisfies the property

∫
d2x < F (x)F (0) > = 0. (5.3)

The property (5.3) is natural, of course. In the Schwinger model, F (x) is the local density

of the topological charge:

ν =
e

2π

∫
F (x)d2x. (5.4)

The integral on the LHS of Eq. (5.3) is proportional to the topological susceptibility

χ =
1

V
< ν2 >=

(
e

2π

)2 ∫
d2x < F (x)F (0) >, (5.5)

which is zero in the theory with massless fermions: the topologically non-trivial sectors

with ν 6= 0 involve fermion zero modes which make the corresponding contributions to the

partition function vanish.

14



Note that in the quenched Schwinger model (without dynamical fermions) the correlator

< F (x)F (y) > is just δ(x − y) and the topological susceptibility (5.5) is not zero (cf. the

well-known situation in 4D Yang-Mills theory: the topological susceptibility is zero inQCD4

with massless quarks, but has a non-zero value χYM ∼ Λ4
Y M in the pure Yang-Mills theory).

The property (5.3) leads to the vanishing of the coefficient of the area in ln < W (C) >,

and the Wilson loop has the perimeter law

< W (C) >∼ exp
{
−e2P/(4µ)

}
(5.6)

for large contours.4 Static heavy charged sources are screened by the massless dynamical

fermions. In the quenched Schwinger model, the susceptibility (5.5) is non-zero, and the

Wilson loop has the area law corresponding to the linearly rising static Coulomb potential.

Let us consider now the Wilson loop for a fractional probe charge e′ = qe

< Wq(C) >=
〈

exp
{
ieq

∫
C
Aµdxµ

}〉
(5.7)

The derivation presented above can be easily generalized to this case, and we find that

< Wq(C) > displays the perimeter law, i.e. the dynamical fermions with integer charges

somehow manage to screen a heavy probe of arbitrary charge. This fact has been noted by

many people and is a common lore. The mechanism of this strange screening deserves some

further explanation, however.

Let us note that the perimeter law holds for the integer q Wilson loops even after the

fermions are endowed with a mass. However, for non-integer q, < Wq(C) > exhibits the area

law behavior corresponding to confinement for any non-zerom, however small it is. This was

already shown in section 3 using bosonization, but here we give an independent derivation

of this remarkable phenomenon.

Note first of all that the topological susceptibility (5.5) is no longer zero when m 6= 0.

For m � e it can be calculated exactly. The quickest way to find it is by introducing the

4The coefficient of P may be calculated by doing the integral in (5.1) with the account of boundary effects
[11] or, alternatively, from (2.10) after taking the limit a→∞.
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vacuum angle θ (this adds the term iνθ to the Euclidean Lagrangian). Then the relation

χ =
∂2εvac(θ)

∂θ2
|θ=0 (5.8)

holds (εvac is the vacuum energy density). Consider the function εvac(m, θ) where m can be

complex in general. The point is that εvac is not an arbitrary function, but rather a function

of a single complex variable z = meiθ (and its complex conjugate). This follows from the

Ward identities and the topological structure of the theory, and can be derived in the same

way as in QCD4. When m is small and real, we can expand the real function εvac(z, z̄) in a

Taylor series,

εvac = εvac(0) −
1

2
Σ(z + z̄) +O(z2) = εvac(0) − Σm cos θ +O(m2). (5.9)

The quantity −Σ is simply the fermion condensate at θ = 0 as given in Eq.(2.4):

< ψ̄aψa >θ=0 =
∂

∂m
εvac(m) |m=θ=0 = −Σ. (5.10)

Substituting (5.9) into (5.8), we immediately get the relation

χ = Σm. (5.11)

Again, this relation is analogous to the well-known relation χ = Σm/Nf in QCD4 derived

in [13] (see also [12] ).

If (5.11) is substituted into (5.1), then the string tension is found to be non-vanishing

(and proportional to m) for any probe charge q. This is wrong, however. The point is that

the massive Schwinger model is no longer a Gaussian, exactly soluble, theory. The higher-

order correlators no longer factorize into products of pair correlators but involve non-trivial

connected pieces. For the q = 1 Wilson loop one can write

< W1(C) >= exp
{
−

1

2
e2
∫
D

∫
D
d2xd2y < F (x)F (y)> +

e4

24

∫
D

∫
D

∫
D

∫
D
d2xd2yd2zd2u < F (x)F (y)F (z)F (u)>c − . . .

}
. (5.12)

16



Since we are interested only in the coefficient of the area in ln < W1(C) > for large contours,

Eq.(5.12) can be rewritten as

< W1(C) >= exp

{
AD

∞∑
n=1

(−1)n
(2π)2n

(2n)!
χ2n

}
, (5.13)

where

χ2n = (−1)n+1∂
2nεvac(θ)

(∂θ)2n
= (

e

2π
)2n

2n−1∏
i=1

∫
d2xi < F (0)F (x1) · · ·F (x2n−1) >c, (5.14)

are the generalized susceptibilities. For m� e they can be easily found from (5.9), and we

get for the string tension

σ = −
1

AD
ln < W1(C) >= Σm(1− cos 2π) = 0. (5.15)

This can be easily understood by noting that, if one is interested only in the coefficient of the

area, the integral in< exp{ie
∫
d2xF (x)} > can be extended over the whole two- dimensional

manifold where the theory is defined (the manifold may be very large but compact to provide

for infrared regularization of the path integral). This is implicit in (5.14). The flux of the

electric field through the area has the meaning of the net topological charge (5.4) on the

whole manifold. We thus have that

< W asympt
1 (C) >=

〈
e2πiν

〉
, (5.16)

and, since ν is quantized to be an integer, this is manifestly equal to 1 (the perimeter

corrections are due to the boundary effects in the flux integral and are disregarded in this

reasoning).

Now consider the Wilson loop of arbitrary test charge q, Wq(C). Eqs. (5.12-5.15) are

easily generalized, and one finds that the string tension is

σ = −
1

AD
ln < Wq(C) >= Σm(1− cos(2πq)). (5.17)
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This result was obtained earlier via bosonization, and it can also be understood as follows.

In the limit where the boundary effects are neglected, we get

< W asympt
q (C) >=

〈
e2πiqν

〉
. (5.18)

The value of e2πiqν depends on ν and the average is not 1 anymore. Actually, (5.18) can be

written as

< W asympt
q (C) >=

Z(θ = 2πq)

Z(θ = 0)
, (5.19)

where

Z(θ) ≡
∑
ν

Zνe
iνθ = exp{−εvac(θ)A}, (5.20)

and A is the total area. Substituting (5.9), we immediately find (5.17). The string tension

goes to zero and confinement disappears in the limit m → 0. Again, this can be easily

understood from the representation (5.19) and the Fourier decomposition for Z(θ). For

massless fermions, only the trivial topological sector with ν = 0 contributes to the partition

function. The contribution of the non-trivial sectors is killed by the fermion zero modes which

appear due to the index theorem. Thus, Z is θ-independent and < W asympt
q (C) > |m=0 = 1.

5.2 QCD2 with adjoint fermions.

The behavior of the Wilson loop may be related to the topological structure of the theory

also in QCD2 with adjoint fermions. It was observed in [14] and shown in detail in [15],

and later using the Hamiltonian formalism in [16], that the adjoint QCD2 has N distinct

topological classes for Euclidean gauge field configurations. This is because the true gauge

group in this theory is SU(N)/ZN rather than SU(N) (the adjoint fields are not transformed

under the action of the center), and π1[SU(N)/ZN ] = ZN is non-trivial. If we define the

theory on a Euclidean plane, for instance, then the admissible boundary conditions are

lim
r→∞

Aµ = iΩ†∂µΩ, (5.21)
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where Ω ∈ SU(N)/ZN . There are N topologically distinct ways to map the circle at infinity

into SU(N)/ZN . Therefore, there are N distinct topological classes for Aµ.

Consider first the well-understood case N = 2. The gauge group is SU(2)/Z2 = SO(3).

There are just two topological classes — the trivial class and the class containing one in-

stanton. One can be convinced [14] that for all the topologically trivial fields

W (C) =
1

2
Tr P exp

{
ig
∫
C
Aa
µt
adxµ

}
= 1, (5.22)

and for the non-trivial fields W (C) = −1. The contour C runs around infinity on the

Euclidean plane. Alternatively we may compactify the Euclidean space to S2 by, say, the

stereographic projection. Then the contour C surrounds the north pole of the sphere where

the fieldAµ(x) is pure gauge iΩ†(x)∂µΩ(x) with a trivial or non-trivial mapping S1 → SO(3).

The average of (5.22) is the order parameter for the screening or the confinement phase.

The loop C in that case should be large but not necessarily surrounding the whole two-

dimensional Euclidean manifold. However, as we have seen when discussing the Schwinger

model, since we are interested only in the string tension, it is sufficient to study < W (C) >

for loops at infinity.

In the hamiltonian language, there are 2 classical vacua related by a topologically non-

trivial large gauge transformation, and a superselection rule which is quite analogous to the

standard θ-angle superselection rule in QCD [17] may be imposed. The only difference is

that here there are only two possible values of θ: θ = 0 and θ = π. The partition function

in these two sectors has the form

Z± = Ztriv ± Zinst. (5.23)

The crucial observation is that any gauge field in the instanton sector involves 2 fermion

zero modes [15], which implies that the expectation value of W (C) is equal to its value in

the topologically trivial sector, 〈W (C)〉 = 1. Therefore, the string tension is zero and we are

in the screening or Higgs phase, in accordance with what we argued in section 3.
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The appearance of the fermion zero modes in the non-abelian 2D instanton background

is not as straightforward as in the abelian case because we do not have an index theorem

of the Atiyah-Singer kind: the topological charge cannot be presented here as an integral of

a local charge density. However, the presence of the zero modes can be seen in a number

of ways. In [15], they have been constructed explicitly in a particular instanton gauge field

configuration A(0)
µ on a torus, and it was shown that they are also there in a perturbed

background A(0)
µ + aµ to all orders in aµ. In [16], the theory was studied in the Hamiltonian

approach and the level crossing phenomenon showed the existence of the zero modes.

Consider QCD2 with adjoint fermions defined on a finite (not necessarily small) spa-

tial circle of length L. Impose the gauge Aa
0 = 0. It is possible to show that the trivial

perturbative vacuum Aa
1 = 0 has a gauge copy

Aa
1 =

2π

gL
na, (na)2 = 1. (5.24)

The field (5.24) is related to Aa
1 = 0 by a large gauge transformation not reducible to zero

by infinitesimal deformations (the configurations (5.24) with different na are related to each

other by topologically trivial gauge transformations). Therefore, the energy spectrum of the

Dirac operator in the background (5.24) is exactly the same as for the free operator. Studying

the spectrum in the constant Aa
1 background smoothly interpolating between (5.24) and the

trivial vacuum, one can be convinced that one left-handed mode and one right-handed mode

cross zero and the spectrum is rearranged. Therefore, the level crossing should occur on

any interpolating path which implies the presence of 2 zero modes of the Euclidean Dirac

operator in any instanton background interpolating between the inequivalent vacua.

Let us now give the fermion a small mass m� g. The zero modes in the instanton sector

generate a bilinear fermion condensate [15]:

− < ψ̄aψa > ≡ Σ ∼ g. (5.25)

There is a gap in the physical spectrum, hence the partition functions Z± enjoy the extensive
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property Z± = exp{−ε±(m)A}. The fermion condensate is just the first Taylor coefficient

in the expansion of ε± in m, and we have for small masses

Z± ∼ exp{±ΣmA}. (5.26)

Let us calculate 〈W (C)〉 in the sector |+ >. We have

〈W+(C)〉 =
Ztriv − Zinst
Ztriv + Zinst

=
Z−

Z+

∼ e−2ΣmA. (5.27)

Hence in the theory with non-zero Majorana fermion mass, confinement is restored and the

string tension is

σ = 2Σm. (5.28)

In calculating the string tension for theories withN ≥ 3 we encounter a peculiar difficulty.

These theories are in a sense paradoxical and the paradox is still unresolved. There are N

distinct topological sectors, and one finds that each non-trivial sector involves 2(N − 1)

fermion zero modes. This number is too large for a bilinear fermion condensate to be

generated. On the other hand, bosonization arguments suggest that the fermion condensate

is generated5. The paradox is akin to a similar controversy which arises in supersymmetric

Yang-Mills theories with higher orthogonal or exceptional gauge groups [19]. These issues

are discussed in detail in [15].

For m = 0, however, 〈W (C)〉 is not sensitive to the exact number of zero modes in the

topologically non-trivial sectors. The important fact is that the zero modes are present and

suppress the contribution of all topologically non-trivial sectors. Thus, 〈W (C)〉 is simply

equal to its value in the trivial sector, 〈W (C)〉 = 1, and we find a vanishing string tension.

For non-zero mass, the string tension is not zero anymore, but its dependence on m has not

been sorted out.

5Independent arguments show that it is generated in the infinite Nc limit [18].
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5.3 Loop equations in QCD2 with adjoint fermions.

The screening of the fundamental Wilson loop by massless adjoint fermions follows also from

the loop equations. The idea is to regard the expectation value of a Wilson loop W [C] as

a functional of the contour C. Observing how W [C] changes as we make an infinitesimal

variation of C one obtains a functional differential equation which constrains the Wilson

loop [21].

To derive this equation, consider the path integral defining the Wilson loop,

W [C] =
1

N

∫
[DAµ][Dψ] e−S[Aµ,ψ] tr

[
P exp

(
i
∮
C
Aµ(x) dxµ

)]
, (5.29)

with the action

S[Aµ, ψ] = tr
∫
d2x

[
iψ̄γµDµψ −

1

4g2
FµνF

µν

]
. (5.30)

Make an infinitesimal change of the integration variables Aµ(x) → Aµ(x) + δAµ(x) and

ψ(x)→ ψ(x) + δψ(x). Obviously, this does not change the total path integral. On the other

hand, taken separately, the action and the path ordered exponential do change. Requiring

that these changes balance each other we get a set of Schwinger–Dyson equations on the

Wilson loops—the loop equations.

Together with the path ordered exponentials of the gauge field, such equations would

involve correlators of fermions. However, in two dimensions, it is possible to eliminate all

fermionic correlators thereby obtaining a closed equation for the Wilson loop (5.29). To this

end, let the change of fields under path integral be of a special type6,δA+(x) = D+χ−(x) = ∂+χ−(x) + i[A+(x), χ−(x)]

δA−(x) = D−χ+(x) = ∂−χ+(x) + i[A−(x), χ+(x)]
(5.31)

δψ+(x) = i[χ+(x), ψ+(x)]

δψ−(x) = i[χ−(x), ψ−(x)].
(5.32)

6We work in the Eucledian light cone coordinates x± = x1 ± ix2, denote ψ =
(
ψ−
ψ+

)
and use the set of

two dimensional Dirac matrices γ1 = σ1, γ2 = σ2.
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with two arbitrary matrix valued parameters χ+(x) and χ−(x). Note that two parameters

are exactly what one needs to parametrize an arbitrary change of vector potential.

Under this transformation the fermionic kinetic term does not change while the field

strength term does, so that

δS[Aµ, ψ] = −
1

g2
tr
∫
d2x [D+δA(x)−−D−δA+(x)]F01(x)

= −
1

g2
tr
∫
d2x [χ+(x)− χ−(x)]D+D−F01(x).

(5.33)

However, the transformation (5.31, 5.32) also affects the path integral measure Dψ, due

to the chiral anomaly. Using standard methods [22] it is possible to show that under (5.32)

the fermion measure transforms as

Dψ+Dψ− →Dψ+Dψ− exp
[
−
gN

4π
tr
∫
d2x [χ+(x)− χ−(x)]F01(x)

]
. (5.34)

Finally, the variation of the path ordered exponential in (5.29) yields a contribution

δ

{
tr P exp

[
−i
∮
Aµ(y)dyµ

]}

= tr P
{

exp
[
−i
∮
Aµ(y)dyµ

] (∮
dx−D−χ+(x) +

∮
dx+D+χ−(x)

)}
.

(5.35)

If χ+ = χ− then (5.31) is a gauge transformation and the variation (5.35) vanishes. That is

to say, similarly to (5.33, 5.34), the right hand side of (5.35) depends only on the difference

χ+ − χ− rather than on χ+ and χ− by themselves.

Demanding that δW [C]/δχ+(x) = δW [C]/δχ−(x) = 0, and using the Mandelstam for-

mula [23]

1

N

〈
tr
[
Fµν(x)P exp

(
−i
∮
Aµ(y)dyµ

)]〉
=

δW [C]

δσµν(x)
, (5.36)
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we obtain the loop equation

(
∂+∂− −

g2N

4π

)
δW [C]

δσ(x)

∣∣∣∣∣
x=x(τ )

= +g2
∮
dx−(τ ′)

∂

∂x−(τ )
δ(2)(x(τ )− x(τ ′))

〈
Wx(τ )x(τ ′)Wx(τ ′)x(τ )

〉

= −g2
∮
dx+(τ ′)

∂

∂x+(τ )
δ(2)(x(τ )− x(τ ′))

〈
Wx(τ )x(τ ′)Wx(τ ′)x(τ )

〉
.

(5.37)

The right hand side of this equation involves the correlator of Wilson loops for the two

subcontours of C which are obtained by cutting it at the points x(τ ) and x(τ ′). Due to

the presence of a delta function it is different from zero only if x(τ ) = x(τ ′), so that these

subcontours are closed and Wx(τ )x(τ ′),Wx(τ ′)x(τ ) are gauge invariant. For the same reason as

in pure Yang–Mills theory [24] the contour integrals in the right hand side of (5.37) should

be understood in the principal value sense—a small interval of τ ′ ∈]τ − ε, τ + ε[ should be

excluded from the integration region. Then these integrals produce a nonzero contribution

only for contours with self-intersections. A simple, nonselfintersecting Wilson loop obeys,

therefore, the Klein–Gordon equation(
∆−

g2N

4π

)
δW [C]

δσ(x)
= 0. (5.38)

This equation is valid both for finite N and in the large N limit.

An immediate consequence of (5.38) is that, in contrast to pure Yang–Mills theory, W [C]

can not be merely a function of the total loop area. If this were the case, δW/δσ(x) would

be an x-independent constant which is not a solution of (5.38). Instead, as we shall see,

(5.38) has a different solution which for large contours exhibits a perimeter, rather than the

area, law.

To find this solution notice that the expectation value of a Wilson loop in Yang–Mills

theory without fermions can be represented as

W [C] = exp

(
−
g2N

2
A

)
= exp

[
g2N

2

∮
dxµdyµG(x− y)

]
, (5.39)
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where G(x − y) is the masless propagator defined by ∆G(x − y) = δ(2)(x − y). Indeed,

converting the contour integrals into the area integrals by Stokes’ theorem, we get

∮
dxµdyµG(x − y) =

∫
d2xd2y

∂

∂xµ
∂

∂yµ
G(x− y) = −

∫
d2xd2yδ(2)(x− y) = −A.

Similarly, equation (5.38) will be satisfied if we consider

W [C] = exp

[
g2N

2

∮
dxµdyµGm(x− y)

]
, (5.40)

where Gm(x − y) is now the massive propagator with m2 = g2/4π, satisfying the Klein–

Gordon equation (∆ − m2)G(x − y) = δ(2)(x − y). This fact is easy to check by direct

substitution.

For large contours the solution (5.40) decays like ∝ exp(−mP ) where P is the perimeter

of the loop. Indeed, the massive propagator Gm(x− y) vanishes very fast for |x− y| � 1/m.

Thus the contour integral in (5.40) is dominated by those x, y which are at most 1/m away,

giving rise to the perimeter dependence of W [C] for the loops of large size.

Although (5.40) satisfies the loop equation exactly, it does not give the exact expec-

tation value of the Wilson loop in the adjoint fermion model. The reason is that, unless

supplemented by certain boundary conditions [21], loop equations may have more than one

solution. However, even without these boundary conditions it is clear that the area law

W [C] ∝ exp(−σA) is inconsistent with (5.38), confirming that the Wilson loop is screened

in the massless adjoint model.

6 Discussion.

The surprising result of this paper is that certain 1+1 dimensional gauge theories with

massless adjoint fermions exhibit the screening of fundamental test charges rather than

confinement. Our discussion was focussed on the simplest model, the SU(N)/ZN gauge

theory with one massless adjoint multiplet. It is clear, however, that our methods carry over
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to more complicated theories, such as those with several massless adjoint multiplets, which

are also in the screening phase.

A somewhat different example, which seems particularly interesting, is the N = 1 super-

symmetric Yang-Mills theory,

L = tr

[
iψ̄γµDµψ + igψ̄γ5[φ, ψ] +

1

2
DµφD

µφ−
1

4g2
FµνF

µν

]
, (6.41)

where φ is an adjoint scalar and ψ is an adjoint Majorana fermion. This theory, which may be

obtained by dimensionally reducing the 2+1 dimensional N = 1 SYM theory, was recently

discussed in [20]. We find that the presence of fermion zero modes in the topologically

non-trivial sectors of SU(N)/ZN once again guarantees that 〈W (C)〉 = 1 for the contour

at infinity. For N = 2 it is also possible to show that the model exhibits bilinear gluino

condensation. These results imply that this theory is in the screening phase. This raises a

tantalizing question: is it possible that 2 + 1 and 3 + 1 N = 1 supersymmetric Yang-Mills

theories are also in the screening, rather than the confining phase? We will return to this

later.

There are two distinguishing features of 1+1 dimensional gauge theories which made our

analysis possible:

1. The absence of dynamical degrees of freedom for gauge fields which leads to trivial

Coulomb confinement in pure photodynamics or pure gluodynamics.

2. The rigid relation of the Wilson loop average to the topological structure of the theory.

Neither is true in 3+1 dimensions. This makes even more surprising the analogy of the

phenomenon we observe with the situation in N = 2 supersymmetric Yang-Mills theory [1].

In this theory the confinement of the unbroken U(1) subgroup sets in as soon as a certain

mass term, which breaks N = 2 supersymmetry down to N = 1, is added to the Lagrangian.

What possible lessons could we draw with respect to the more conventional 4D theories,

in particular to QCD ? The physical case of QCD with dynamical quarks is well known to
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display screening, and we have nothing new to say about it. The pure 4D Yang-Mills theory

is expected to be confining. In view of what we learned from 1+1 dimensional examples we

may wonder, however, whether instead it could be in the screening phase: certain collective

gluonic excitations might be capable of screening fundamental test charges. This possibility

seems to be experimentally ruled out, however, since no states of fractional baryon number

have been observed.

A more realistic scenario is that the pure gluodynamics is confining, while its N = 1

supersymmetric extension is not, due to the presence of the massless adjoint fermions. Our

1+1 dimensional examples show that a cloud of gluinos (with some help from the gluons)

can screen a heavy fundamental charge, and we may be bold enough to conjecture that this

is also possible in 3+1 dimensions. The screening disappears and the confinement is restored

as soon as the gluinos are given a small mass (and the supersymmetry is broken). This

scenario is sufficiently intriguing that, in our opinion, it deserves further investigation.
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