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Abstract - A parallel genetic algorithm has been developed 
to dynamically schedule heterogeneous tasks to 
heterogeneous processors in a distributed environment. 
The scheduling problem is known to be NP complete. 
Genetic algorithms, a meta-heuristic search technique, 
have been used successfully in this field. The proposed 
algorithm uses multiple processors with centralized 
control for scheduling. Tasks are taken as batches and are 
scheduled to minimize the execution time and balance the 
loads of the processors. According to our experimental 
results, the proposed parallel genetic algorithm (PPGA) 
considerably decreases the scheduling time without 
adversely affecting the maxspan of the resulting schedules. 

Keywords: Genetic algorithms, Parallel Processing, 
Scheduling 

1 Introduction 
  Distributed computing is a promising approach to 
meet the ever-increasing computational requirements [3]. 
Scheduling is the most important issue in the distributed 
system because the effectiveness of the scheduling directly 
corresponds to the parallelization obtained. With 
inappropriate scheduling mechanisms can fail to exploit the 
true potential of the distributed system. The scheduler has 
the dual responsibility of minimizing the execution time of 
the resulting schedule and balancing the load among the 
processors. Even when the target processors are fully 
connected and when no communication delay is 
considered, scheduling is NP complete. This problem is 
known as strong NP-hard intractable optimization problem 
when it assumes arbitrary number of processors and 
arbitrary task processing time [4]. Scheduling is usually 
handled by heuristic methods which provide reasonable 
solutions of the problem. 

Multiprocessor scheduling methods can be divided into list 
heuristics and Meta heuristics. In list heuristics [5], the 
tasks are maintained in a priority queue in decreasing order 
of priority. When a free processor is available, the task at 
the front of the queue is assigned to the free processor. 
Most list heuristics are not efficient for all situations. 

Genetic algorithms (GAs) are a Meta heuristic searching 
techniques which mimics the principles of evolution and 
natural genetics. These are a guided random search which 
scans through the entire sample space and therefore 
provide reasonable solutions in all situations. Many 
researchers have investigated the use of GAs to schedule 
tasks in homogeneous [8, 9] and heterogeneous [3, 6, 7] 
multi-processor systems with notable success. 
Nevertheless, the main draw back of using GAs is that too 
much time is used for doing scheduling. Hence, we 
propose a parallelized genetic algorithm to speed up the 
scheduling. 

Fitness evaluation is the most CPU intensive tasks and can 
be very time consuming and therefore become a bottleneck 
in the scheduler’s performance. We propose to use, 
synchronous master slave parallelization by which fitness 
evaluation is done in parallel. This is equivalent to a 
sequential GA as observed by [2]. 

The rest of the paper is organized as follows: Section 2 
discusses Parallel Genetic Algorithm. Section 3 elaborates 
on scheduling and parallel genetic algorithm. The proposed 
parallel genetic algorithm is discussed in Section 4. Section 
5 discusses experimental results and Section 6 concludes 
with future research directions. 

2 Parallel Genetic Algorithms (PGAs) 
 Sequential Genetic algorithms have been applied 
successfully in many different domains. However, there 
exist some problems in their utilization [2] which can be 
addressed by PGA. Some GAs need to have very large 
populations which make them impossible to run efficiently 
on a single machine. Some GAs get trapped in a 
suboptimal region of search space. The most common 
problem faced by a sequential GA is the CPU time. 
Computation time of more than 1 CPU year has been 
reported in the literature [10]. 

In most parallel algorithms, the basic idea behind the 
algorithm is to divide the task into subtasks and use 
different processors to execute each subtask. This divide-
and-conquer approach can be applied to GAs in many 
different ways, and the literature contains many examples 



of successful parallel implementations. A complete 
classification of PGAs is given in [11].  

In master slave parallelization, there is a single panmictic 
population, but the evaluation of the fitness function is 
distributed among several processors. Since, selection and 
crossover consider the entire population they are also 
called Global parallel GAs. The master always waits for 
the slowest slave processor before starting the next 
generation. Asynchronous master slave parallelization is an 
extension of synchronous master slave parallelization in 
which the master does not wait for the slowest processor. 
The selection operator gets affected because of the change 
and the resulting GA dynamics are difficult to analyze 
[2].One of the advantages of synchronous master slave 
parallelization is that the underlying GA characteristics are 
not affected. This model does not assume anything about 
the underlying architecture and therefore is most suited in 
distributed environment. 

Fine-grained parallel GAs are most suited for massively 
parallel computers and consists of one spatially-structured 
population. Selection and mating are restricted to a small 
neighborhood, but neighborhoods overlap permitting some 
interaction among all the individuals. The selection and 
mating operations in these PGAs are different from those 
of a sequential GA. 

PGAs with multipopulation are also possible. The 
important characteristics of multi-deme PGAs, also called 
as coarse grained GAs, are a few relatively large 
subpopulations and migration. They introduce fundamental 
changes in the operations of GA and are the most difficult 
to understand. Since the deme sizes are small, these GAs 
converge faster but the quality of the resulting solutions 
might be poorer. 

Hierarchical PGAs combine the characteristics of multi-
deme PGAs with fine-grained or master slave PGAs [12]. 
At the higher level, they are multideme algorithms with 
single population parallel GAs at the lower level.  

3 Parallel Genetic Algorithms and 
Scheduling  

 Artificial intelligence techniques have been 
successfully applied to task scheduling [3, 6, 7, 8, 9, 13, 
14]. Good results have resulted from the use of GAs in task 
scheduling algorithms [3, 6, 7, 8, 9].Parallel Genetic 
algorithms have been applied to homogeneous 
multiprocessor scheduling [15, 16]. Abramson, Mills, and 
Perkins [17] designed a train time-table generation 
algorithm using PGA in a distributed environment. 

Genetic algorithms is a searching strategy in which an 
initial number of ‘guesses’ is made to get an optimal 
solution (the initial population). Each guess is evaluated 

and assigned a ‘goodness’ value (the fitness function). 
Those guesses with good values are selected and new 
guesses are made by combining the existing guesses in a 
particular fashion (crossover). The guesses are evolved to 
the next generation on a survival of the fittest basis 
(selecting), thereby the ‘good’ guesses are forwarded to the 
next generation and the ‘bad’ guesses are not. Random 
mutation is done to prevent the GA from getting struck in a 
local maximum.  

GAs have been used in static scheduling [8, 13], where the 
schedule is generated before run-time and dynamic 
scheduling [3, 9, 14], where the schedule is generated at 
run-time based on the run-time characteristics which are 
not possibly known beforehand. Dynamic scheduling is 
more applicable to a real world environment. 

Current Dynamic GA schedulers show near optimum 
solutions in simulations [3, 9, 14]. But, all of the existing 
approaches using sequential GAs take a long time to 
converge [18]. We propose to parallelize the GA so that the 
scheduling time is considerably reduced. 

There are many ways to perform the parallelization as 
discussed in section 2. Synchronous master slave 
parallelization suits our proposed algorithm well because, 

1. The population of the GA is fixed as 20, to 
improve the speed. These types of GAs called 
micro GAs are widely used for scheduling [3, 9] 
and have been shown to be successful. For micro 
GAs, multi-deme parallelization is not applicable. 

2. The resulting PGA has the same characteristics of 
the underlying GA but for the increase in speed. 

3. This type of PGA does not make any assumptions 
regarding the underlying processors, which makes 
them ideal for distributed environment as 
observed by [17]. 

Each chromosome can be processed (evaluated) 
individually without considering the rest of the population. 
Mathematical analysis of master slave parallelization of 
GA has been done in [20]. 

4 The Proposed Parallel Genetic 
algorithm 

 The proposed parallel genetic algorithm involves a 
master scheduler, which has the processor lists and the task 
queue. The processors of the distributed system are 
heterogeneous. The available network resources between 
processors in the distributed system can vary over time. 
The availability of each processor can vary over time 
(processors are not dedicated can may have other tasks that 
partially use their resources). Tasks are indivisible, 



independent of all other tasks, arrive randomly, and can be 
processed by any processor in the distributed system. The 
master scheduler runs a sequential GA in which the fitness 
function evaluation alone is done by slave processors. 

When tasks arrive they are placed in the unscheduled task 
queue. They tasks are taken in batches and scheduled. 
Batch schedulers are shown to have higher performance 
than immediate schedulers in [3]. When any processor is 
idle, the processor asks for a task to perform and the task 
scheduled for that processor (if any) is given to that 
processor. All the task data are maintained only in the  

Synchronous master slave parallelization is used to 
evaluate the fitness function alone in a distributed fashion. 
These are the steps in parallelization, 

1) A master scheduler which is the processor in charge 
of scheduling chooses the slaves. This choice is 
based upon the communication overhead involved 
and the computational potential of the slave 
processor. In other words, a processor which is too 
slow or too remote will not be used as a slave. The 
number of slaves selected is almost 20, the population 
size. 

2) The master has the population of chromosomes for 
which the fitness function is to be evaluated. 

3) Each slave evaluates the fitness of a fraction (Fi) of 
the population in the master scheduler and returns the 
value. 

a. ℓj=Pj/Lj where Lj denotes previously assigned 
load in MFLOPS and Pj represents the current 
processing power of the slave processor j.  

b. T=∑ℓj  ,for all chosen slave processors. 

c. Fi= (ℓi/T)*100 for all i, chosen slave processors. 

d. The fraction Fi of the total population is 
assigned to the ith slave processor. 

 This fraction calculation ensures that a relatively 
slow slave processor does not become a bottleneck 
for the entire scheduling task. This distribution of 
task ensures that all slave processors are utilized 
efficiently. The slave processors need not be 
dedicated to the scheduling alone as their previous 
loads are also taken into account. 

4) After partitioning the population into fractions, the 
slave processors receive their fraction of 
chromosomes one at a time, evaluate and return the 
result to the master. This approach is efficient 
because, it limits the data transfer. In a distributed 

environment, the slaves may leave the system at any 
time. So the chromosomes are transferred only just 
before the calculation is to be performed. 

The above algorithm has exactly the same properties as a 
sequential GA, but executes faster. The Pseudo code for 
the underlying sequential genetic algorithm is shown in 
figure 1. 

 

Encode the chromosome. 

Initialize the population (randomize) 

do { 

Stochastic sampling with partial replacement selection  

Cycle crossover 

Mutation: randomize and rebalancing 

}while(stopping conditions not met) 

Return best individual 

Figure 1. Pseudo code for genetic algorithm 

 

This genetic algorithm is an extension of the genetic 
algorithm proposed by Page [3]. Each step in the GA is 
explained in detail. 

4.1 Encoding the Chromosome 
 Each task in the batch has a unique identification 
number. The total number of tasks in the batch is N and 
total number of processors in M. The unique identification 
task number of all the tasks allocated to a processor is 
encoded in the chromosome with -1 being used to delimit 
the different processor queues. 

 

Figure 2: A sample chromosome 

The sample chromosome in figure 2 has a batch size of 5 
tasks with 3 processors. This chromosome represents the 
following task allocation.  

 

 



Processor
s 

Tasks 

1 2,3 

2 1 

3 5,4 

Table 1: Task Allocation 

4.2 Fitness Function 
 A fitness function computes a single positive integer 
to represent how good the schedule is. We use relative 
error to generate the fitness values. The fitness of each 
individual in the population is calculated using 
synchronous master slave parallelization,in other words, by 
this function itself is computed by the slave processors. 
Previously assigned, but unprocessed, load for each 
processor is considered by calculating the finishing time of 
a processor j. δi = (Aj/Pj), where Aj denotes the previously 
assigned load, measured in MFLOPs, and Pj is the current 
processing power in Mflop/s of processor j. The current 
load of each processor is calculated, 
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where ti is the processing requirements of task i in the 
batch (in MFLOPs) and n is the total number of tasks 
assigned to the processor j. ЃC(i,j) is the communication 
time for the ith task in the jth processor.  

The mean value of Lj for all the processors is given as 
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The relative load imbalance error of individual i is given as  
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This Error value denotes how unbalanced the schedule is. 
For instance, if all the tasks are assigned to only one 
processor while the others are idle, this error value will be 
very large. Minimizing the error value ensures that 
schedules which utilize more processors at the same time 
(increase parallelization) will be consider fitter schedules. 

The fitness value of individual i is 
( )( )max max 0.001 max /i i iF span E= − + ×

 

 where, 

 max is the maximum of all finishing times. 

 maxspani is the largest task completion time among all the 
processors. 

The maxspan is nothing but the execution time of the 
resulting schedule which is to be reduced. This value is 
reduced from the maximum possible execution time.This 
value could become zero at some cases. To avoid this 
1/1000th of the max time is added to the numerator. A 
larger value of F indicates a better or fitter schedule. 

4.3 Communication Time 
 The communication time ЃC(i,j) is calculated as 
follows :  

Time taken in seconds for execution of ith task on the jth 
processor  

T (i, j) = t (i)/P (j), 

Communication cost in seconds/bits for ith task on the jth 
processor  

C (i, j) = [R (i, j) – T (i, j)] / S (i),  

where R (i, j) is the round trip time for the ith task and S(i) 
is the size in bits of the ith task. 

Predicted Communication cost in seconds/bits for ith task 
on the jth processor  

τC (i, j) = [ C(i-1,j) +  τC (i-1,j) * (i-2) ] / (i-1), 

 i>=2 and τC (0,j) = 0. 

Factor    ά = [τC (i, j) - τC (i-1,j) ] / τC (i-1,j) 

Therefore the Communication time in seconds is 

ЃC(i,j) = ά * T(i-1,j) + (1- ά) *[τC (i,j)*S(i)] 

4.4 Stochastic Sampling with partial 
replacement selection 

 In a standard weighted roulette wheel selection 
algorithm, the selection is totally based on the fitness 
function. The chromosomes are assigned slots in the 
roulette wheel based on their relative fitness function 
values. The roulette wheel is spun N times to select N 
chromosomes. Stochastic sampling with partial 
replacement selection is a simple extension of the roulette 
wheel selection in which the sector assigned for a 
particular chromosome is reduced if the chosen 



chromosome has a fitness value less than the average 
fitness value. This increases the survival rate of the fitter 
solutions when compared to standard roulette wheel 
selection. 

4.5 Cycle Crossover 
 Cycle crossover [20] is a crossover operator which 
applies to permutation encoding schemes which need to 
preserve both the allele value and the allele order of the 
gene. This operator ensures that, the two offspring will 
have their gene values taken from the same value and 
position of either of their parents. This ensures that the 
properties of the parents are carried over to the children 
there by making fitter children possible. 

Parents 

 

Children 

 

The above example uses the randomized locus for start of 
the start of the cycle as the first position. The cycle formed 
is 2-4-3-2.The 5 and 1 of the parents, which are not part of 
the cycle, are swapped to get the resulting children. 

4.6 Swapping Mutation 
An individual in the population is randomly selected 

and any two tasks in that chromosome are randomly 
selected and swapped. This approach ensures that all the 
solutions in the search space are more thoroughly 
examined. 
4.7 Stopping Conditions 
 A maximum of 1000 evolutions are used. The fitness 
values of the chromosomes obtained after 1000 evolutions 
did not show considerable improvement. The GA will also 
stop evolving if one of the processors becomes idle, in 
which case it will return the best schedule found so far. 

5 Experimental Results 
5.1 Setup 
 We construct a simulation and evaluation 
environment to evaluate a PGA based Dynamic Scheduling 
Algorithm for a heterogeneous distributed system. We 

simulated our algorithm on java platform with one node 
acting as a master scheduler and one to six slave 
processors, which are chosen by the master scheduler 
based on proximity and processor efficiency. The fitness 
function evaluation class is installed on all the slave 
processors and PPGA algorithm is installed in the master 
scheduler. The input consists of tasks whose sizes are 
uniformly distributed between 10 and 1000 MFLOPS.  

5.2 Tests 
 We compare our scheduler with two other GA based 
schedulers, Page [3], and Zomaya [9] and evaluate the 
results using two different metrics, namely, maxspan and 
time required to calculate the best schedule. Maxspan is the 
total execution time of a schedule. Time required to 
calculate the best schedule is required here as a result of 
scheduler efficiency consideration. Mathematical Analysis 
of the master slave parallelization of GA has been done in 
Cantu-Paz [20]. 
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Figure 3: Comparison of Scheduling Times 

The average execution time of the proposed algorithm was 
350ms as opposed to 680 and 830ms for algorithms 
proposed in [9] and [3] respectively. The average maxspan 
of the best schedule from the proposed algorithm was 
4200ms, similar as in [3] and considerably lesser than [9] 
which is 6200ms. In figure 3 we illustrate the decrease in 
time for finding the optimal schedule by increasing the 
slave processors from 1 to 6 for varying batch sizes. 



6 Conclusion 
A scheduling algorithm has been developed to schedule 
heterogeneous tasks onto heterogeneous processors on a 
distributed environment. It provides near-optimal schedules 
and adapts to varying processing resources and 
communication costs. The algorithm uses a dedicated 
master scheduler for centralized scheduling. It uses slave 
processors (which are not dedicated to scheduling) to 
parallelize the GA and thereby speed up the result. Genetic 
Algorithms are powerful but usually suffer from longer 
scheduling time which is reduced in our algorithm due to 
the parallelization of the fitness evaluation, the most CPU 
intensive task. 

According to our simulation results, the proposed 
algorithm not only obtains similar performance as the 
original genetic algorithm, but also spends less time doing 
the scheduling. This feature also makes the proposed 
algorithm to be more scalable and extends its practicability. 

The proposed algorithm uses a straightforward encoding 
scheme and generates a randomized initial population. The 
fitness function uses the maxspan, the balance of load 
among the processors and the communication costs while 
evaluating the schedules. Stochastic sampling with partial 
replacement selection, an extension of the roulette wheel 
selection, is used to increase the possibility of survival of 
the fitter solutions. Cycle cross over preserves the 
characteristics of the parent chromosomes in the children 
there by leading to exploration of search space. Random 
swapping is done to prevent the GA to get struck in a local 
maximum. 
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