
Machine learning in bioinformatics
Pedro Larran‹ aga, Borja Calvo, Roberto Santana,Concha Bielza, Josu Galdiano, In‹ aki Inza, Jose¤ A. Lozano,
Rube¤ n Arman‹ anzas,Guzma¤ n Santafe¤ , Aritz Pe¤ rez and Victor Robles
Submitted: 29th July 2005; Received (in revised form): 21st October 2005

Abstract
This article reviews machine learning methods for bioinformatics. It presents modelling methods, such as supervised
classification, clustering and probabilistic graphical models for knowledge discovery, as well as deterministic and
stochastic heuristics for optimization. Applications in genomics, proteomics, systems biology, evolution and text
mining are also shown.

Keywords: machine learning; bioinformatics; supervised classification; clustering; probabilistic graphical models; optimisation;
heuristic; genomics; proteomics; microarray; system biology; evolution; text mining

Corresponding author. Pedro Larrañaga, Intelligent Systems Group, Department of Computer Science and Artificial Intelligence,

University of the Basque Country, Paseo Manuel de Lardizabal, 1, 20018 San Sebastian, Spain. Tel: þ34943018045; Fax:

þ34934015590; E-mail: pedro.larranaga@ehu.es

Pedro Larran‹ aga is Professor of Computer Science and Artificial Intelligence at the University of the Basque Country. He received

MS degree in mathematics from the University of Valladolid in 1981, and PhD in computer science from the University of the Basque

Country in 1995. He has published over 40 refereed journal papers. His main research interests are in the areas of evolutionary

computation, machine learning, probabilistic graphical models and bioinformatics.

Borja Calvo received MS in Biochemistry in 1999 and Bachelor degree in Computer Science in 2004, both from the University of

the Basque Country. Currently he is a PhD student at the University of the Basque Country and a member of the Intelligent Systems

Group. His research interests include machine learning methods applied to bioinformatics.

Roberto Santana received PhD in Mathematics from the University of Havana in 2005. At present, he is at the University of the

Basque Country as a member of the Intelligent Systems Group. His research interests include estimation of distribution algorithms and

bioinformatics.

Concha Bielza received her MS degree in Mathematics in 1989 from Complutense University, Madrid, and PhD in Computer

Science in 1996 from Technical University of Madrid, Madrid. She is an Associate Professor of Statistics and Operation Research in the

School of Computer Science at Madrid Technical University. Her research interests are primarily in the areas of probabilistic graphical

models, decision analysis, metaheuristics for optimization, data mining, classification models and real applications. Her research has

appeared in journals like Management Science, Computers and Operations Research, Statistics and Computing, Naval Research

Logistics, Journal of the Operational Research Society and as chapters of many books.

JosuGaldiano is currently doing his MS in Computer Science at the University of the Basque Country. His research interests include

machine learning methods applied to bioinformatics.

In‹ aki Inza is a Lecturer at the Intelligent Systems Group of the University of the Basque Country. His research interests include data

mining and search heuristics in general, with special focus on probabilistic graphical models and bioinformatic applications.

Jose¤ A.Lozano received his BS degrees in Mathematics and Computer Science and the PhD degree from the University of the Basque

Country, Spain in 1991, 1992 and 1998, respectively. Since 1999, he has been an Associate Professor of Computer Science at the

University of the Basque Country. He has edited three books and has published over 25 refereed journal papers. His main research

interests are evolutionary computation, machine learning, probabilistic graphical models and bioinformatics.

Rube¤ n Arman‹ anzas received his MS in Computer Science from the University of the Basque Country in 2004. At present, he is a PhD

student and member of the Intelligent Systems Group. His research interests include feature selection, computational biology and bioinformatics.

Guzma¤ nSantafe¤ received his MS in Computer Science from the University of the Basque Country in 2002. At present, he is a PhD student

at the University of the Basque Country and member of the Intelligent Systems Group. His research interests include machine learning

techniques applied to bioinformatics.

Aritz Pe¤ rez received her Computer Science degree from the University of the Basque Country. He is currently pursuing PhD in Computer

Science in the Department of Computer Science and Artificial Intelligence. His research interests include machine learning, data mining and

bioinformatics. Currently, he is working on supervised classification using Bayesian networks, variable selection and density estimation, focused

for continuous domains.

VictorRobles received the MS degree in Computer Engineering and PhD from the Universidad Politécnica de Madrid, in 1998 and 2003,

respectively. During 2004, he was a postdoctoral researcher at Harvard Medical School. He is currently an associate professor in the Department

of Computer Systems Architecture and Technology at the Universidad Politécnica de Madrid. His research interests include bioinformatics, data

mining and optimization. Dr Robles has been involved in the organization of several workshops and publications, as well as in several books on

proceedings.

BRIEFINGS IN BIOINFORMATICS. VOL 7. NO 1. 86^112 doi:10.1093/bib/bbk007

� The Author 2006. Published by Oxford University Press. For Permissions, please email: journals.permissions@oxfordjournals.org

INTRODUCTION
The exponential growth of the amount of biological

data available raises two problems: on one hand,

efficient information storage and management

and, on the other hand, the extraction of useful

information from these data. The second problem is

one of the main challenges in computational biology,

which requires the development of tools and

methods capable of transforming all these hetero-

geneous data into biological knowledge about the

underlying mechanism. These tools and methods

should allow us to go beyond a mere description of

the data and provide knowledge in the form of

testable models. By this simplifying abstraction that

constitutes a model, we will be able to obtain

predictions of the system.

There are several biological domains where

machine learning techniques are applied for knowl-

edge extraction from data. Figure 1 shows

a scheme of the main biological problems where

computational methods are being applied. We have

classified these problems into six different domains:

genomics, proteomics, microarrays, systems biology,

evolution and text mining. The category named

‘other applications’ groups together the remaining

problems. These categories should be understood

in a very general way, especially genomics and

proteomics, which in this review are considered

as the study of nucleotide chains and proteins,

respectively.

Genomics is one of the most important domains in

bioinformatics. The number of sequences available

is increasing exponentially, as shown in Figure 2.

These data need to be processed in order to obtain

useful information. As a first step, from genome

sequences, we can extract the location and structure

of the genes [1]. More recently, the identification of

regulatory elements [2–4] and non-coding RNA

genes [5] is also being tackled from a computational

point of view. Sequence information is also used

for gene function and RNA secondary structure

prediction.

If the genes contain the information, proteins are

the workers that transform this information into life.

Proteins play a very important role in the life process,

and their three-dimensional (3D) structure is a key

feature in their functionality. In the proteomic domain,

the main application of computational methods is

protein structure prediction. Proteins are very

complex macromolecules with thousands of atoms

and bounds. Hence, the number of possible

structures is huge. This makes protein structure

prediction a very complicated combinatorial

problem where optimization techniques are

required. In proteomics, as in the case of genomics,

machine learning techniques are applied for protein

function prediction.

Another interesting application of computational

methods in biology is the management of complex

experimental data. Microarray essays are the best

known (but not the only) domain where this kind

of data is collected. Complex experimental data

raise two different problems. First, data need to be

pre-processed, i.e. modified to be suitably used by

machine learning algorithms. Second, the analysis of

the data, which depends on what we are looking for.

In the case of microarray data, the most typical

applications are expression pattern identification,

classification and genetic network induction.

Systems biology is another domain where biology

and machine learning work together. It is very

complex to model the life processes that take place

inside the cell. Thus, computational techniques

are extremely helpful when modelling biological

networks [6], especially genetic networks, signal

transduction networks and metabolic pathways.

Evolution and, especially phylogenetic tree

reconstruction also take advantage of machine

learning techniques. Phylogenetic trees are sche-

matic representations of organisms’ evolution.

Traditionally, they were constructed according to

different features (morphological features, metabolic

features, etc.) but, nowadays, with the great amount

of genome sequences available, phylogenetic tree

construction algorithms are based on the comparison

between different genomes [7]. This comparison

is made by means of multiple sequence

alignment, where optimization techniques are very

useful.

A side effect of the application of computational

techniques to the increasing amount of data is an

increase in available publications. This provides a

new source of valuable information, where text
mining techniques are required for the knowledge

extraction. Thus, text mining is becoming more and

more interesting in computational biology, and it is

being applied in functional annotation, cellular

location prediction and protein interaction analysis

[8]. A review of the application of text mining

techniques in biology and biomedicine can be found

in Ananiadou and McNaught [9].

Machine learning in bioinformatics 87

In addition to all these applications, computa-

tional techniques are used to solve other problems,

such as efficient primer design for PCR, biological

image analysis and backtranslation of proteins (which

is, given the degeneration of the genetic code,

a complex combinatorial problem).

Machine learning consists in programming

computers to optimize a performance criterion

by using example data or past experience. The

optimized criterion can be the accuracy provided by

a predictive model—in a modelling problem—,

and the value of a fitness or evaluation function—in

an optimization problem.

In a modelling problem, the ‘learning’ term refers to

running a computer program to induce a model by

using training data or past experience. Machine

learning uses statistical theory when building

computational models since the objective is to

make inferences from a sample. The two main

steps in this process are to induce the model by

processing the huge amount of data and to represent

the model and making inferences efficiently. It must

be noticed that the efficiency of the learning and

inference algorithms, as well as their space and

time complexity and their transparency and inter-

pretability, can be as important as their predictive

accuracy. The process of transforming data into

knowledge is both iterative and interactive. The

iterative phase consists of several steps. In the first

step, we need to integrate and merge the different

sources of information into only one format. By

using data warehouse techniques, the detection and

resolution of outliers and inconsistencies are solved.

In the second step, it is necessary to select, clean and

transform the data. To carry out this step, we need to

eliminate or correct the uncorrected data, as well as

Figure 1: Classification of the topics wheremachine learningmethods are applied.

88 Larran‹ aga et al.

decide the strategy to impute missing data. This step

also selects the relevant and non-redundant variables;

this selection could also be done with respect to the

instances. In the third step, called data mining, we

take the objectives of the study into account in order

to choose the most appropriate analysis for the data.

In this step, the type of paradigm for supervised or

unsupervised classification should be selected and the

model will be induced from the data. Once the

model is obtained, it should be evaluated and

interpreted—both from statistical and biological

points of view—and, if necessary, we should return

to the previous steps for a new iteration. This

includes the solution of conflicts with the current

knowledge in the domain. The model satisfactorily

checked—and the new knowledge discovered—are

then used to solve the problem.

Optimization problems can be posed as the task of

finding an optimal solution in a space of multiple

(sometimes exponentially sized) possible solutions.

The choice of the optimization method to be used

is crucial for the problem solution. Optimization

approaches to biological problems can be classified,

according to the type of solutions found, into exact
and approximate methods. Exact methods output the

optimal solutions when convergence is achieved.

However, they do not necessarily converge for every

instance. Approximate algorithms always output a

candidate solution, but it is not guaranteed to be the

optimal one.

Optimization is also a fundamental task when

modelling from data. In fact, the process of learning

from data can be regarded as searching for the model

that gives the data the best fitting. In this search, in

the space of models any type of heuristic can be used.

Therefore, optimization methods can also be seen as

an ingredient at modelling.

There are several reference books on machine

learning topics [10–15]. Recently, some interesting

books intersecting machine learning and bioinfor-

matics domains have been published [7, 16–27].

Special issues in journals [28–30] have also been

published covering machine learning topics in

bioinformatics.

The goal of this article is to serve as an insightful

categorization and classification of the machine

learning methods in bioinformatics including a listing

of their applications and providing a context for

readers new to the field. Due to space restrictions,

this article must not be considered a detailed

discussion of the different methods in modelling

and optimization.

This article is organized as follows. ‘Supervised

classification’ section presents the supervised classifi-

cation problem, techniques for assessing and compar-

ing classification algorithms, feature subset selection

and several classification paradigms. ‘Clustering’

section shows different types of clustering—partition

clustering, hierarchical clustering and clustering

based on mixture models—as well as validation

techniques. ‘Probabilistic graphical models’ section

focuses on probabilistic graphical models, a paradigm

able to produce supervised and unsupervised models,

and to discover knowledge in molecular biology

domains. ‘Optimization’ section shows heuristic

optimization methods that have been proposed in

bioinformatics to solve some hard computational

problems. In all the previous sections, pointers to

bioinformatics literature are provided. Final section

explains the conclusions of this revision on machine

learning methods in bioinformatics.

SUPERVISED CLASSIFICATION
Introduction
In a classification problem, we have a set of elements

divided into classes. Given an element (or instance)

of the set, a class is assigned according to some of the

Figure 2: Evolution of the GenBankdatabase size.

Machine learning in bioinformatics 89

element’s features and a set of classification rules.

In many real-life situations, this set of rules is not

known, and the only information available is a set of

labelled examples (i.e. a set of instances associated

with a class). Supervised classification paradigms are

algorithms that induce the classification rules from

the data.

As an example, we will see a possible way to

tackle splice site prediction as a supervised classifica-

tion problem. The instances to be classified will be

DNA sequences of a given size (for example, 22 base

pairs, 10 upstream and 10 downstream the 2 bp splice

site). The attributes of a given instance will be

the nucleotide at each position in the sequence.

In the example, we will assume that we are looking

for donor sites, so the possible values for the class will

be true donor site or false donor site. As we are

approaching the problem as supervised classification,

we need a set of labelled examples, i.e. a set of

sequences of true and false donor sites along with

their label. At this point, we can use this training set

to build up a classifier. Once the classifier has been

trained, we can use it to label new sequences, using

the nucleotide present at each position as an input

to the classifier and getting the assigned label (true or

false donor site) as an output.

In two-group supervised classification, there is a

feature vector X 2 <n whose components are called

predictor variables and a label or class variable C 2 {0, 1}.

Hence, the task is to induce classifiers from training
data, which consists of a set of N independent

observations DN ¼ fðxð1Þ; cð1ÞÞ; . . . ;ðxðNÞ; cðNÞÞg

drawn from the joint probability distribution p(x, c)
as shown in Table 1. The classification model will

be used to assign labels to new instances according to

the value of its predictor variables.

Assessing and comparing
classification algorithms
Error rate and ROC curve
When a 0/1 loss is used, all errors are equally

bad, and our error calculations are based on the

confusion matrix (Table 2). In this case, we can

define the error rate as (|FN|þ |FP|)/N, where

N¼ |TP|þ |FP|þ |TN|þ |FN| is the total

number of instances in the validation set.

To fine-tune a classifier, another approach is to

draw the receiver operating characteristics (ROCs) curve

[31], which shows hit rate versus false alarm rate,

namely, 1-specificity¼ |FP|/(|FP|þ |TN|) versus

sensitivity¼ |TP|/(|TP|þ |FN|), and has a form

similar to Figure 3. For each classification algorithm,

there is a parameter, for example, a threshold of

decision, which we can play with to change the

number of true positives versus false positives.

Increasing the number of true positives also increases

the number of false alarms; decreasing the number

of false alarms also decreases the number of hits.

Depending on how good/costly these are for the

particular application we have, we decide on a point

on this curve. The area under the receiver operating

Table 1: Raw data in a supervised classification
problem

X1 . . . Xn C

(x(1); c(1)) xð1Þ1 . . . xð1Þn c(1)

(x(2); c(2)) xð2Þ1 . . . xð2Þn c(2)

(x(N); c(N)) xðNÞ1 . . . xðNÞn c(N)

x(Nþ1) xðNþ1Þ
1 . . . xðNþ1Þ

n ???

Table 2: Confusion matrix in a two classes problem

Predicted class

Positive Negative

Positive TP: True positive FN: False negative
True class

Negative FP: False positive TN: True negative

Figure 3: An example of ROC curve.

90 Larran‹ aga et al.

characteristic curve is used as a performance measure

for machine learning algorithms [32].

Estimating the classification error
An important issue related to a designed classifier is

how to estimate its (expected) error rate when using

this model for classifying unseen (new) instances.

The simplest and fastest way to estimate the error

of a designed classifier in the absence of test data

is to compute its error on the sample data itself.

This resubstitution estimator is very fast to compute and

a usually optimistic (i.e. low-biased) estimator of the

true error.

In k-fold cross-validation [33], DN is partitioned into

k folds. Each fold is left out of the design process and

used as a testing set. The estimate of the error is the

overall proportion of the errors committed on all

folds. In leave-one-out cross-validation, a single observa-

tion is left out each time, which corresponds to

N-fold cross-validation.

The bootstrap methodology is a general resampling

strategy that can be applied to error estimation [34].

It is based on the notion of an ‘empirical distribu-

tion’, which puts mass 1/N on each of the N data

points. A ‘bootstrap sample’ obtained from this

‘empirical distribution’ consists of N equally likely

draws with replacement from the original data set

DN . The bootstrapzero estimator and the 0.632 bootstrap
estimator [35] are used.

In bioinformatics, Baldi et al. [36] provide an

overview of different methods to assess the accuracy

of prediction algorithms for classification. The

application of the previous error estimation methods

has mainly concentrated on the analysis of supervised

classifiers designed for microarray data. In this sense,

Michiels et al. [37] use multiple random sets for the

prediction of cancer outcome with microarrays.

Ambroise et al. [38] recommend, in a gene selection

problem based on microarray gene-expression data,

using 10-fold rather than leave-one-out cross-

validation. Concerning the bootstrap, they suggest

using the so-called 0.632 bootstrap error estimate

designed to handle overfitted prediction rules.

The superiority of the 0.632 bootstrap estimator in

small-sample microarray classification has also been

reported [39]. These same authors [40] have recently

proposed a new method called bolstered error estimation
which is superior to bootstrap in feature-ranking

performance. A method combining bootstrap and

cross-validation has also been proposed with very

good results in Fu et al. [41].

Comparing classification algorithms
Given two learning algorithms and a training set,

an interesting question is to know whether the

differences in the estimation of the expected error

rates provided by both algorithms are statistically

significant. To answer this question, classic [42] and

recently proposed tests [43–45] have been used.

Feature subset selection
One question that is common to all supervised

classification paradigms is whether all the n descrip-

tive features are useful when learning the classifica-

tion rule. In trying to respond to this question, the

so-called feature subset selection (FSS) problem appears,

which can be reformulated as follows: given a set of

candidate features, select the best subset under some

learning algorithm.

This dimensionality reduction made by an FSS

process can bring several advantages to a supervised

classification system, such as a decrease in the cost

of data acquisition, an improvement in the under-

standing of the final classification model, a faster

induction of the final classification model and an

increase in the classifier accuracy.

FSS can be viewed as a search problem, with each

state in the search space specifying a subset of the

possible features of the task. An exhaustive evalua-

tion of possible feature subsets is usually unfeasible

in practice because of the large amount of computa-

tional effort required. Four basic issues determine

the nature of the search process: a search space

starting point, a search organization, a feature subset

evaluation function and a search-halting criterion.

The search space starting point determines the

direction of the search. One might start with no

features and successively add them, or one might start

with all the features and successively remove them.

One might also select an initial state somewhere in

the middle of the search space.

The search organization determines the strategy of

the search in a space of size 2n, where n is the

number of features in the problem. The search

strategies can be optimal or heuristic. Two classic

optimal search algorithms which exhaustively evaluate all

possible subsets are depth-first and breadth-first [46].

Otherwise, branch and bound search [47] guarantees

the detection of the optimal subset for monotonic

evaluation functions without the systematic exam-

ination of all subsets. When monotonicity cannot be

satisfied, depending on the number of features and

the evaluation function used, an exhaustive search

Machine learning in bioinformatics 91

can be impractical. In this situation, heuristic search is

interesting because it can find near optimal solutions,

if not optimal. Among heuristic methods, there are

deterministic and stochastic algorithms. On one

hand, classic deterministic heuristic FSS algorithms are

sequential forward and backward selection [48],

floating selection methods [49] or best-first search

[50]. They are deterministic in the sense that all

runs always obtain the same solution and, due to

their hill-climbing nature, they tend to get trapped

on local peaks caused by interdependencies

among features. On the other hand, stochastic heuristic
FSS algorithms use randomness to escape from

local maxima, which implies that one should not

expect the same solution from different runs.

Genetic algorithms [51] and estimation of distribu-

tion algorithms [52] have been applied to the FSS

problem.

The evaluation function measures the effectiveness

of a particular subset of features after the search

algorithm has chosen it for examination. Each subset

of features suggested by the search algorithm is

evaluated by means of a criterion (accuracy,

area under the ROC curve, mutual information

with respect to the class variable, etc.) that should be

optimized during the search. In the so-called wrapper
approach to the FSS problem, the algorithm conducts

a search for a good subset of features using the error

reported by a classifier as the feature subset evaluation

criterion. However, if the learning algorithm is

not used in the evaluation function, the goodness

of a feature subset can be assessed by only regarding

the intrinsic properties of the data. The learning

algorithm only appears in the final part of the FSS

process to construct the final classifier using the set

of selected features. The statistics literature proposes

many measures to assess the goodness of a candidate

feature subset [53]. This approach to the FSS is called

filter in the machine learning field.

Regarding the search-halting criterion, an intuitive

approach is the non-improvement of the evaluation

function value of alternative subsets. Another classic

criterion is to fix a number of possible solutions to be

visited along the search.

The applications of FSS methodology to micro-

array data try to obtain robust identification of

differentially expressed genes. The most usual

approach to FSS in this domain is the filter approach,

because of the huge number of features from which

we obtain information [54–56]. Wrapper approaches

have been proposed in Inza et al. [57]—sequential

wrapper—and in [58–60]—genetic algorithms [61].

Hybrid combinations of filter and wrapper

approaches have also been proposed [62].

Classification paradigms
In this section, we introduce the main characteristics

of some of the most representative classification

paradigms. It should be noticed that, in a domain

such as bioinformatics, where the discovery of new

knowledge is of great importance, the transparency

and interpretability of the paradigm into considera-

tion should also be considered.

Each supervised classification paradigm has an

associated decision surface that determines the type

of problems the classifier is able to solve. In this sense,

a version of the non free-lunch theorem [63]

introduced in optimization is also valid for

classification—there is no best classifier for all

possible training sets.

Bayesian classifiers
Bayesian classifiers [64] minimize the total misclassi-

fication cost using the following assignment:

�ðxÞ ¼ arg mink
Pr0

c¼1 cost ðk; cÞpðcjx1; x2; . . . ; xnÞ,
where cost(k, c) denotes the cost for a bad classifi-

cation. In the case of a 0/1 loss function, the

Bayesian classifier assigns the most probable a posteriori
class to a given instance, that is: �(x)¼ arg maxc
p(c|x1,x2, . . . ,xn)¼ arg maxc p(c)p(x1,x2, . . . ,xn|c).
Depending on the way p(x1,x2, . . .,xn|c) is approxi-
mated, different Bayesian classifiers of different

complexity are obtained.

Naive Bayes [65] is the simplest Bayesian classifier.

It is built upon the assumption of conditional

independence of the predictive variables given the

class (Figure 4). Although this assumption is violated

in numerous occasions in real domains, the paradigm

still performs well in many situations. The most

probable a posteriori assignment of the class variable is

calculated as

c� ¼ arg maxcpðcjx1; . . . ; xnÞ ¼ arg maxcpðcÞ
Yn

i¼1

pðxijcÞ:

The seminaive Bayes classifier [66] tries to avoid

the assumptions of conditional independence of the

predictive variables, given the class variable, by

taking into account new variables. These new

variables consist of the values of the Cartesian

product of domain variables which overcome a

condition. The condition is related to the

92 Larran‹ aga et al.

independence concept and the reliability on the

conditional probability estimations.

The tree augmented naive Bayes [67] classifier also

takes into account relationships between the pre-

dictive variables by extending a naive Bayes structure

with a tree structure among the predictive variables.

This tree structure is obtained adapting the algorithm

proposed by Chow and Liu [68] and calculating the

conditional mutual information for each pair of

predictive variables, given the class. The tree

augmented naive Bayes classification model is limited

by the number of parents of the predictive variables.

In it, a predictive variable can have a maximum of

two parents: the class and another predictive variable.

The k dependence Bayesian (kDB) classifier [69] avoids
this restriction by allowing a predictive variable to

have up to k parents aside from the class.

Logistic regression
The logistic regression paradigm [70] is

defined as pðC ¼ 1jxÞ ¼ 1=½1þ e�ð�0þ
Pn

i¼1
�ixiÞ�;

where x represents an instance to be classified, and

�0,�1, . . . , �n are the parameters of the model. These

parameters should be estimated from the data in

order to obtain a concrete model. The parameter

estimation is performed by means of the maximum

likelihood estimation method. The system of nþ 1

equations and nþ 1 parameters to be solved does not

have an analytic solution. Thus, the maximum

likelihood estimations are obtained in an iterative

manner. The Newton–Raphson procedure is a

standard in this case.

The modelling process is based on the Wald test

and on the likelihood ratio test. The search in the

space of models is usually done with forward,

backward or stepwise approaches.

Discriminant analysis
Fisherlineardiscriminantanalysis [71] in based on finding

linear combinations, xw, of n-dimensional predictor

variable values x¼ (x1, . . . ,xn), with large ratios of

between-group to within-group sums of squares. For

an N� (nþ 1) learning set data matrix, the ratio of

between-group to within-group sums of squares is

given by w0Bw/w0Ww, where B and W denote the

n� n matrices of between-group and within-group

sums of squares and crossproducts. The extreme

values of w0Bw/w0Ww are obtained from the

eigenvalues and eigenvectors of W�1B. Denoting

by r0 the number of values of the class variable C, the
matrix W�1B has at most s¼min(r0� 1, n) non-zero
eigenvalues, �1 � �2 � � � � � �s, with correspond-

ing linear independent eigenvectors v1,v2, . . . ,vs.
The discriminant variables are defined as ul¼xvl,
l¼ 1, . . . , s and, in particular, w¼v1 maximizes

w0Bw/w0Ww.

Linear discriminant analysis constructs, for a

two-classes problem, a separating hyperplane

between the two datasets. The hyperplane is

described by a linear discriminant function

v1x1 þ v2x2 þ � � � þ vnxn þ c which is equal to

zero at the hyperplane if two pre-conditions are

fulfilled: (i) multivariate normal distribution in both

datasets and (ii) homogeneity of both covariance

matrices. For discriminant analysis, the hyperplane

is defined by the geometric means between the

centroids (i.e. the centres of gravity) of the two

datasets. To take different variances and covariances

in the datasets into account, the variables are usually

transformed first into standard means (�¼ 0) and

variances (�2¼ 1) and the Mahalanobis distance

(an ellipsoid distance determined from the covar-

iance matrix of the dataset) is more preferable than

the Euclidean distance [72].

Classification trees
It is natural and intuitive to classify a pattern through

a sequence of questions in which the next question

asked depends on the answer to the current question.

It is also usual to display the sequence of questions in

a directed classification tree [73]—also called classification
tree [74]—where the root node is located at the top,

connected by successive and directional links

or branches to other nodes. These are similarly

connected until we reach terminal or leaf nodes,

which have no further links. The classification of a

particular pattern begins at the root node, which asks

for the value of a particular property of the pattern.

The different links from the root node correspond

to the different possible values. Based on the answer,

we follow the appropriate link to a subsequent or

descendant node. In classification trees, the links

must be mutually distinct and exhaustive, i.e. one

and only one link will be followed. The next step is

Class

D90209-at D83032-at D21260-at D28118-at D87684-at

Figure 4: Structure of a naive Bayesmodel.

Machine learning in bioinformatics 93

to make the decision at the appropriate subsequent

node, which can be considered the root of a

subtree.We continue this way until we reach a leaf

node, which has no further questions. Each leaf node

bears a category label, and the test pattern is assigned

to the category of the leaf node reached.

The problem of inducing a classification tree

model from a set of labelled data can be seen as a

problem of organizing the predictor variables into

a tree. Any classification tree will progressively split

the set of training labelled data into smaller and

smaller subsets. In an ideal situation, all samples

in each subset would have the same category label.

In that situation, we would say that each subset was

pure and could terminate that portion of the tree

(Figure 5). Usually, however, there is a mixture of

labels in each subset. Thus, for each branch, we will

have to decide to either stop splitting and accept

an imperfect decision, or select another variable

and grow the tree further. This suggests an obvious

recursive tree-growingprocess: given the data included at a

node, either declare that node a leaf (and state which

category to assign to it) or find another variable to

split the data into subsets.

In order to select the appropriate variable at each

level of the tree different, impurity measures—Gini

index, gain ratio—have been used. Other questions,

such as when a node should be declared a leaf or

how a tree that becomes ‘too large’ can be made

smaller and simpler are also noteworthy.

Nearest neighbour
The nearest-neighbour rule [75] to classify x is to asign it

to the label associated with the prototype nearest to

the test point (Figure 6). An obvious extension of the

nearest-neighbour rule is the k-nearest-neighbour rule.
This rule classifies x by assigning it to the label

most frequently represented among the k nearest

samples. In other words, a decision is made by

examining the labels on the k-nearest-neighbours
and voting.

A practical problem with this simple method is

that it tends to be slow for large training sets because

the entire set must be searched for each test instance.

A strategy to avoid the computational complexity of

the nearest neighbour algorithm is to classify each

example with respect to the examples already seen

and to save only those that are misclassified. This

strategy is known as condensing.

It should be noted that this paradigm does not

provide an explicit model of the data. Hence it

is said that instead of an induction process,

the nearest-neighbour paradigm is based on a trans-
duction process that avoids the specification of the

model.

Neural networks
Artificial neural networks [76] originated from the idea

of mathematically modelling human intellectual

abilities by means of biologically plausible engineer-

ing designs. In an artificial neural network, the

elementary processing units (also called ‘nodes’ or

‘neurons’) are organised in layers, in such a way that

usually only units belonging to two consecutive

layers are connected. In a feedforward neural network
structure, a unit will receive information of several

units belonging to the previous layer. The most

simple neural network, called perceptron [77], is a

one-neutron classifier that, using a threshold activa-

tion function, separates two classes by a linear

discrimination function.

By connecting perceptrons we can design a neural

network structure called multilayer perceptron. This is a

Binding factor THG1

Na+ presence class=1

class=1class=0

false

false

true

true

Figure 5: A simple classification tree.

0

1

2

3

4

5

0 1 2 3 4 5

x

o

x

o+

YLR414C

Y
B

L
09

7W

Figure 6: A nearest-neighbour classifier.

94 Larran‹ aga et al.

feedforward structure because the output of the

input layer and all intermediate layers are submitted

only to the higher layer. The feature vector x is

submitted to an input layer, and at the output layer

there are c discriminant functions g1(x), . . . , gc(x).
The number of hidden layers and the number of

perceptrons at each hidden layer are not limited.

It can be shown that a multilayer perceptron with

two hidden layers of threshold nodes can approx-

imate any classification region with a specified

precision. Assuming that the structure of the multi-

layer perceptron is already chosen and fixed, the

problem of determining the values of the parameters

(weights) for all nodes is solved by the backpropagation
algorithm [78].

Support vector machines
Support vector machines [79] rely on pre-processing the

data to represent patterns in a high dimension—

typically much higher than the original feature space.

With an appropriate non-linear mapping to a

sufficiently high dimension, data from two categories

can always be separated by a hyperplane. This choice

will often be informed by the designer’s knowl-

edge of the problem domain. In absence of such

information, one might choose to use polynomials,

Gaussians, or other basic functions. The dimension-

ality of the mapped space can be arbitrarily high

(though in practice it may be limited by computa-

tional resources).

Defining the margin as any positive distance

from the decision hyperplane, the goal in training

support vector machines is to find the separating

hyperplane with the largest margin. We expect that

the larger the margin, the better the generalization of

the classifier.

The support vectors (Figure 7) are the (transformed)

training patterns that are (equally) close to the

hyperplane. The support vectors are the training

samples that define the optimal separating hyper-

plane and are the most difficult patterns to classify.

Informally speaking, they are the most informative

patterns for the classification task.

The problem of minimizing the magnitude of the

weight vector constrained by the separation can be

reformulated into an unconstrained problem by the

method of Lagrange undetermined multipliers.

Using the so-called Kuhn–Tucker construction,

this optimization can be rewritten as a maximizing

problem that can be solved using quadratic program-

ming [80].

Combining classifires
Each classifier paradigm has an associated decision

surface. With the combination of classifiers, our aim

is to obtain more flexible decision surfaces and a

more accurate decision at the expense of an increased

complexity. The combination of classifiers is a field

of pattern recognition that is rapidly growing and

getting a lot of attention from the machine learning

community [81]. An important aspect to be

considered is the diversity of the different base

classifiers to be combined.

The combination of classifiers can be done in

different ways and at different levels. The simplest

strategy is the majority vote. The unseen instance will

be classified as the class that obtains more votes from

the different base classifiers whose output labels are

fused. Similar strategies used to combine the output

labels of the different classifiers are simple majority
(50%þ 1) and unanimity vote (all agree).

Another classic way of combining different base

classifiers is the so-called stacked generalization [82].

The idea is to induce a classifier from the database

containing the classification output of each instance

of the initial database. This way, the number of

features that characterizes the instances coincides

with the number of base classifiers. Breiman [83]

introduces the concept of bagging, as an acronym of

Bootstrap AGGregatING. The idea behind bagging

is simple and appealing: the ensemble is made of

classifiers built—using a unique base classifier—on

bootstrap replicates of the training set. The classifier

outputs are combined by the majority vote. To make

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7
Optimal hyperplane

+

+

+

b

+ −

−

−
−

−

−

Figure 7: Three support vectors of a support vector
machine classifier.

Machine learning in bioinformatics 95

use of the variations in the training set, the base

classifier should be unstable, that is, small changes in

the training set should lead to large changes in the

classifier output. One of the most unstable classifiers

are classification trees. This explains the proposal of

Breiman [84] called random forests. Random forests is

a general class of ensemble building methods using

a classification tree as the base classifier. Another

traditional way to combine the same base classifier is

the AdaBoost algorithm [85]. The term comes from

ADAptive BOOSTing. The general idea is to

develop the classifier team incrementally, adding

one classifier at a time. The classifier that joins the

ensemble at one step is trained in a dataset selectively

sampled from the initial training data set. The

sampling distribution begins uniformly, and prog-

resses towards increasing the likelihood of ‘difficult’

data points. Thus the distribution is updated at each

step, increasing the likelihood of the objects

misclassified at the previous step.

From the field of statistics, there is one approach

to modelling called the Bayesian approach which

considers all possible structures and, for each

structure, all possible values of the parameters. This

is called the full Bayesian approach to modelling. It can

be considered an extreme case of an ensemble of

classifiers with only one base classifier.

Supervised classification
in bioinformatics
Genomics
One of the most important applications of machine

learning techniques can be found in the gene finding

problem. Mathé et al. [1] is a good review of the

methods of gene prediction. Salzberg [86] uses

classification trees when searching for protein

coding regions in human DNA. In Castelo and

Guigó [87] a new Bayesian classifier is applied to the

splice site prediction problem.

Feature subset selection has been used in the gene

finding problem. For instance, in Saeys et al. [88]
optimization procedures are applied to the FSS in the

splice site prediction problem. Another example of

FSS applied to the splice site prediction can be

consulted in Degroeve et al. [89]. The idea of

combining different sources of evidence in gene

prediction can be found in Allen et al. [90] and in

Pablovic et al. [91].
An example of the use of classification paradigms

in the search for RNA genes can be seen in Carter

et al. [5]. In this article, support vector machines and

neural networks are used in the computational

identification of functional RNA genes.

López-Bigas and Ouzounis [92] use classification

trees in the genome-wide identification of genes

likely to be involved in genetic diseases, taking

different conservation scores and gene length as

predicting variables.

Other applications of the classification paradigms

can be found in Bao and Cui [93] where the authors

compare support vector machines to random forests

in the prediction of the phenotypic effects of non-

synonymous single nucleotide polymorphisms using

structural and evolutionary information. In Sebban

et al. [94] the C4.5 algorithm is used to discover

intelligible knowledge rules from data generated by

means of a DNA analysis technique (genotyping)

called spacer oligonucleotide typing.

The reconstruction of amino-acid sequences by

means of spectral features has been addressed using

dynamic programming [224]. Dynamic program-

ming [225] is also the type of algorithms preferred for

RNA secondary structure prediction. Evolutionary

algorithms have been used to identify RNA

structural elements [226]. RNA tertiary structure

determination has been approached with tabu

search [227].

Proteomics
Several applications of nearest neighbour have been

done in the prediction of the secondary structure of

proteins [95–97]. In Selbig et al. [98], a consensus

method based on a classification tree for the

prediction of the protein secondary structure is

presented.

Yang et al. [99] develop a two-stage method

consisting of a support vector machine and a

Bayesian classifier to predict the surface residues of

a protein that participate in protein–protein

interactions.

The problem of predicting the protein

subcellular location automatically from its sequence

has been treated with a fuzzy k-nearest neighbour
algorithm [100].

Microarray
A survey about pattern recognition in microarray

data can be found in Valafar [101].

In Krishnapuram et al. [102], a Bayesian general-

ization of the support vector machine is used to

simultaneously select the optimal classifier and the

optimal subset of genes for cancer diagnosis based on

expression data. Nearest neighbour has been used in

96 Larran‹ aga et al.

Olshen and Jain [103] and in Li et al. [59]. In the

second article k-nearest neighbour is used in

conjunction with a genetic algorithm in a wrapper

approach for gene selection.

An ensemble approach can be consulted in

Tan and Gilbert [104]. This article shows that

ensemble learning (bagged and boosted decision

trees) performs better than single classification trees

in the classification of cancerous gene expression

profiles.

Comparisons between different classification

paradigms can be found in several works. In

Dudoit et al. [105], nearest-neighbour classifiers,

linear discriminant analysis, classification trees,

bagging and boosting are empirically compared in

three cancer gene expression studies. A comparison

between three binary classifiers (k-nearest
neighbours, weighted voting and support vector

machines) in a classification problem with 14 tumour

classes can be found in Ramaswamy et al. [106].

Statnikov et al. [107] show a very extensive empirical

comparison between several major classification

algorithms (support vector machines, k-nearest
neighbour, neural networks, and different ensemble

classifiers) in 11 datasets for cancer diagnosis, and

Lee et al. [108] evaluates the performance of 21

classification methods in 7 datasets in microarray

datasets.

Other applications of microarray data can be

found in Ben-Dor et al. [109], Brown et al. [110] and
Kim and Cho [111].

Systems biology
Although probabilistic graphical models are the most

used approach in systems biology, some works tackle

the problem from a supervised point of view.

For instance, Hautaniemi et al. [112] use classification
trees when modelling signal–response cascades, and

the methodology is applied to the prediction of cell

migration speed using phosphorylation levels of

signalling proteins. In Middendorf et al. [113], the
authors use boosting with classification trees as the

base classifier for the prediction of a gene regulatory

response, which is considered a binary variable

(up- or down-regulated).

Text mining
A review of the text-mining applications in

bioinformatics can be found in Krallinger et al. [8].
In the BMC Bioinformatics journal, the first special

issue of 2005 also concentrates on text-mining.

As an example of application, Zhou et al. [114]

present a new method for protein/gene identifica-

tion in text, based on an ensemble of a support

vector machine and two hidden Markov models

(‘Probabilistic Graphical Models’ section).

In Stapley et al. [115], support vector machines are

used in the prediction of the sub-cellular location

of proteins.

Other applications
Two examples of the use of mass spectrometry data

can be found in Wu et al. [116] and Baumartner et al.
[117]. Wu et al. [116] apply linear discriminant

analysis, quadratic discriminant analysis, k-nearest-
neighbour classifier, bagging and boosting classifica-

tion trees, support vector machines and random

forests in the detection of earlystage ovarian cancer

patients using mass spectrometry data as biomarkers.

In Baumgartner et al. [117], classification algorithms

(discriminant analysis, logistic regression, classifica-

tion trees, k-nearest-neighbour classifiers, neural

networks, and support vector machines) are

empirically compared in the classification of two

metabolic disorders in newborns, using data obtained

from mass spectrometry technology. Other

examples of the use of mass spectrometry data can

be found in Li et al. [118] and Satten et al. [119].
Other problems where computational methods

are used can be found in Jung and Cho [120] and

Perner et al. [121].

CLUSTERING
Introduction
Clustering consists in partitioning a set of elements

into subsets according to the differences between

them. In other words, it is the process of grouping

similar elements together. The main difference from

the supervised classification is that, in clustering,

we have no information about how many classes

there are.

The most typical example of clustering in

bioinformatics is the clustering of genes in expression

data. In microarray essays, we obtain the expression

value for thousands of genes in a few samples.

An interesting information we can extract from these

data is which genes are coexpressed in the different

samples. This is a clustering problem where genes

with similar expression level in all samples are

grouped into a cluster.

Cluster analysis, also called data segmentation,

has a variety of goals. All relate to grouping or

Machine learning in bioinformatics 97

segmenting a collection of objects into subsets or

‘clusters’, such that those within each cluster are

more closely related to one another than objects

assigned to different clusters. Sometimes the goal is

to arrange the clusters into a natural hierarchy.

This involves successively grouping the clusters

themselves so that, at each level of the hierarchy,

clusters within the same group are more similar to

each other than those in different groups.

Central to all of the goals of cluster analysis is the

notion of the degree of similarity (or dissimilarity)

between the individual objects being clustered.

A clustering method attempts to group the objects

based on the definition of similarity supplied to it.

This can only come from subject matter

considerations.

Clustering approaches
Partition clustering
Partition clustering (Figure 8) aims at obtaining a

partition of the data. Each point belongs to a unique

cluster. It is a common strategy to fix the number of

clusters, although some algorithms can search for the

most appropriate number of clusters while allocating

the objects in the different clusters.

The K-means algorithm is one of the most popular

iterative descent clustering methods [122]. The aim

of the K-means algorithm is to partition the data into

K clusters so that the within-group sum of squares is

minimized. The simplest form of the K-means

algorithm is based on alternating two procedures.

The first one is the assignment of objects to groups.

An object is usually assigned to the group whose

mean is the closest in the Euclidean sense. The

second procedure is the calculation of new group

means based on the assignments. The process

terminates when no movement of an object to

another group will reduce the within-group sum of

squares.

There are many variants of the K-means

algorithm that improve its efficiency in terms of

reducing the computing time and achieving a smaller

error. Some algorithms allow new clusters to be

created and existing ones to be deleted during the

iterations. Others may move an object to another

cluster on the basis of the best improvement in the

objective function. Alternatively, the first encoun-

tered improvement while passing by the dataset

could be used.

A method related to the K-means algorithm is

vector quantization [123]. The main purpose of

vector quantization is to compress data. A vector

quantizer consists of two components: an encoder

and a decoder. An algorithm known as the generalized
Lloyd algorithm [124] in the vector quantization

literature is clearly a variant of the K-means

algorithm. Moreover, self-organizing feature maps

are a special kind of vector quantization in which

there is an ordering or topology imposed on

the code vectors. The aim of self-organization is

to represent high-dimensional data as a low-

dimensional array of numbers (usually in 1D or 2D

array) that captures the structure in the original data.

Hierarchical clustering
Hierarchical clustering procedures [125] are the most

commonly used methods to summarize data

structures in bioinformatics. A hierarchical tree

(Figure 9) is a nested set of partitions represented

by a tree diagram or dendrogram. Sectioning a tree at a

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7

XX

X

X
X

X

X

Aquaporin-3 expression level

Ph
en

ob
ar

bi
to

l d
os

is

Figure 8: Partition clustering.

Y
L

R
414C

Y
JL

154C

Y
D

L
011C

Y
N

L
027W

Y
M

R
084W

Y
M

R
3616W

Figure 9: An example of dendrogram produced by
hierarchical clustering.

98 Larran‹ aga et al.

particular level produces a partition into K disjoint

groups. If two groups are chosen from different

partitions (the result of partitioning at different

levels), then either the groups are disjoint or one

group wholly contains the other. In hierarchical

clustering, there is a measure of the distance

or dissimilarity between two merged clusters.

The matrix containing the dissimilarity between

pair of clusters is called dissimilarity matrix. Examples

of dissimilarity measures for the case of continuous

variables are Minkowski, Mahalabobis, Lance–

Willians and Jeffreys–Matusita. The hierarchical

structure is constructed merging the closest two

groups.

There are several different algorithms to find a

hierarchical tree. An agglomerative algorithm begins

with N subclusters, each containing a single point,

and, at each stage, it merges the two most similar

groups to form a new cluster, thus reducing the

number of clusters by one. The algorithm proceeds

until all the data fall within a single cluster. A divisive
algorithm operates by successively splitting groups,

beginning with a single group and continuing until

there are N groups, each of a single individual.

Generally, divisive algorithms are computationally

inefficient.

The most common measures of distances between

clusters are single-linkage (the distance between two

groups is the distance between their closest mem-

bers), complete-linkage (defined as the distance between
the two farthest points), Ward’s hierarchical clustering
method (at each stage of the algorithm, the two

groups that produce the smallest increase in the total

within-group sum of squares are amalgamated), cen-
troid distance (defined as the distance between the

cluster means or centroids), median distance (distance

between the medians of the clusters) and groupaverage
linkage (average of the dissimilarities between all pairs

of individuals, one from each group).

Mixture models
In the mixture method of clustering [126], each

different group in the population is assumed to be

described by a different probability distribution. The

population is described by a finite mixture distribution
of the form pðxÞ ¼

PK
i¼1 �ipðx; �iÞ, where �i are

the mixing proportions ð
PK

i¼1 �i ¼ 1Þ and p(x; �i) is
an n-dimensional probability function depending, in

each mixture, on a parameter vector �i. There are

three sets of parameters to estimate: the values of �i,

the components of the vectors �i and the value of K,
the number of groups in the population.

The usual approach to clustering using finite

mixture distributions is, first of all, to specify the

form of the component distributions, p(x; �i). For
continuous variables, a usual election is the mixture

of normal distributions (each component follows a

multivariate normal distribution), while, for mixture

of binary variables, the Bernouilli distribution is often

chosen. After specifying the form of the component

distributions, the number of clusters, K, is prescribed.
The parameters of the model are now estimated (this

task may be achieved by using the EM algorithm

[127]) and the objects are gouped on the basis of

their estimated posterior probabilities of group

membership. In other words, the object x is assigned

to group i if �ip(x; �i)��jp(x; �j) for all j 6¼ i;
j¼ 1, . . . ,K.

The main difficulty about the method of mixtures

concerns the number of components, K, which in

almost all of the approaches should be specified

before the remaining parameters can be estimated.

Another problem with the mixture model approach

is that there are many local minima of the likelihood

function and several initial configurations may

have to be tried before a satisfactory clustering is

produced [128].

Validation
Depending on the specific choice of the pre-

processing method, the distance measure, the cluster

algorithm and other parameters, different runs of

clustering will produce different results. Therefore,

it is very important to validate the relevance of

the cluster. Validation can be either statistical or

biological. Statistical cluster validation can be done

by assessing cluster coherence, by examining the

predictive power of the clusters or by testing the

robustness of a cluster result against the addition of

noise. From a biological point of view, it is very hard

to choose the best cluster solution if the biological

system has not been characterized completely. Sheng

et al. [129] reviews some of the recent methodologies

described in the literature to validate clustering

results in bioinformatics.

Clustering in bioinformatics
The main application domain of clustering methods

is related to the analysis of microarray data. Based

on the assumption that expressional similarity

(i.e. co-expression) implies some kind of regulatory

or functional similarity of the genes (and vice versa),

Machine learning in bioinformatics 99

the challenge of finding genes that might be involved

in the same biological process is thus transformed

into the problem of clustering genes into groups

based on their similarity in expression profiles.

Following Sheng et al. [129], the first generation

of clustering algorithms applied to gene expression

profiles (K-means, hierarchical clustering and self-

organizing maps) were mostly developed outside

biological research. Although encouraging results

have been produced [130, 131], some of the

characterstics (such as the determination of the

number of clusters, clustering of outliers and

computational complexity) often complicate their

use for clustering expression data [132].

For this reason, a second generation of clustering

algorithms has started to tackle some of the

limitations of the earlier methods. These algorithms

include, among others, model-based algorithms

[133, 134], the self-organizing tree algorithm [135],

quality-based algorithms [136]—which produce

clusters with a quality guarantee that ensures that

all members of a cluster are co-expressed—and

biclustering algorithms [137]—they cluster both the

genes and the experiments at the same time.

PROBABILISTIC GRAPHICAL
MODELS
Probabilistic graphical models represent multivariate

joint probability densities via a product of terms,

each of which involves only a few variables. The

structure of the product is represented by a graph

that relates variables that appear in a common term.

This graph specifies the product form of the

distribution and also provides tools for reasoning

about the properties entailed by the product.

Although probabilistic graphical models that use

undirected graphs—Markov networks [138] and

region-based approximations [139, 140]—have

been also applied in bioinformatics, in this section

we restrict ourselves to the probabilistic graphical

models where the corresponding graph is a directed

acyclic graph. We consider two types of probabilistic

graphical models depending on the status of the

random variables. If all the variables are discrete, we

name the model a Bayesian network, while in the

case of continuous variables—following Gaussian

distributions—we will present the so-called Gaussian

networks.

More formally, let X¼ (X1, . . . ,Xn) be a vector

of random variables. A probabilisticgraphicalmodel for X

is a graphical factorization of the joint generalized

probability distribution, �(X¼ x) (or simply �(x)).
The representation consists of two components:

a structure and a set of local generalized probability

distributions. The structure S for X is a directed

acyclic graph (DAG) that represents a set of

conditional (in)dependence [141] assertion on the

variables in X.

The structure S for X represents the assertions

that, for all i¼ 1, . . . , n, Xi and its non-descendants

are independent given paSi , the node parents of Xi

in S. Thus, the factorization is as follows:

�ðxÞ ¼
Qn

i¼1 �ðxijpa
S
i Þ. The local generalized prob-

ability distributions depend on a finite set of

parameters �S2�S. Thus, we rewrite the previous

equation as follows: �ðxjhSÞ ¼
Qn

i¼1 �ðxijpa
S
i ; hiÞ

where �S¼ (�1, . . . , �n). Taking both components

of the probabilistic graphical model into account,

the model will be represented by M¼ (S, hS).
Probabilistic graphical models can be used for

supervised classification, for clustering and for

representing the relationships between different

variables of the domain. In the case of clustering,

the variable denoting the group is considered hidden.

HiddenMarkov models [142], a very popular paradigm

in bioinformatics, can be seen as an instantiation

of probabilistic graphical models (Figure 10).

In order to represent molecular networks by using

probabilistic graphical models, we associate each

molecular entity with a random variable. The values

of this random variable are determined by the

possible levels of the molecular entity. These types

of stochastic models have proved to be very

adequate to represent, for instance, the regulation

between genes.

Bayesian networks
Bayesian networks have been surrounded by a growing

interest in recent years, as shown by the large

number of dedicated books and the wide range of

theoretical and practical publications in this field.

State1 State2 State3 State4

Obs.4Obs.3Obs.2Obs.1

Figure 10: Structure of a hidden Markovmodel.

100 Larran‹ aga et al.

Textbooks include the classic Pearl [143]. Lauritzen

[144] provides a mathematical analysis of graphical

models and, more recently, Cowell et al. [145],

Jensen [146] and Neapolitan [147] are excellent

compilations of material covering recent advances in

the field.

The Bayesian network paradigm is mainly used to

reason in domains with an intrinsic uncertainty.

Bayesian networks are used to model relationships

between variables. There are situations where the

value of some of the variables of the system are

known (this is called evidence) and we can be

interested in knowing how this evidence affects the

probability distribution of the rest of the variables of

the system. This type of reasoning is done by means

of the propagation of the evidence through the

Bayesian network, and this can be proved [148] to be

an NP-hard risk in the general case of multiply

connected Bayesian networks.

Once the Bayesian network is built, it constitutes

an efficient device to perform probabilistic inference.

Nevertheless, the problem of building such a

network remains. The structure and conditional

probabilities necessary to characterize the Bayesian

network can be provided either externally by

experts—time consuming and subject to mistakes—

or by automatic learning from a database of cases.

On the other hand, the learning task can be separated

into two subtasks: structure learning, that is, to identify

the topology of the Bayesian network, and parametric
learning, the numerical parameters (conditional

probabilities) for a given network topology.

There are two main ways [149] to learn Bayesian

networks from data. One of them is by detecting

conditional (in)dependencies of triplets of variables

using hypothesis testing. The other is the so-called

scoreþ search method, explained subsequently.

Every algorithm that tries to recover the structure

of a Bayesian network by detecting (in)dependencies has
some conditional (in)dependence relations between

some subset of variables of the model as input, and

a directed acyclic graph that represents a large

percentage (and even all of them if possible) of

these relations as output. Once the structure has been

learnt, the conditional probability distributions

required to completely specify the model are

estimated from the database—using some of the

different approaches to parameter learning—or are

given by an expert.

Although the approach to model elicitation based

on detecting conditional (in)dependencies is quite

appealing, due to its closeness to the semantics of

Bayesian networks, a large percentage of structure

learning algorithms developed belongs to the

category of scoreþ search methods. To use this learning

approach, we need to define a metric that measures

the goodness of every candidate Bayesian network

with respect to a datafile of cases. In addition, we also

need a procedure to move intelligently through the

space of possible networks. In most of the

scoreþ search approaches, the search is performed

in the space of directed acyclic graphs that represent

feasible Bayesian network structures. Other possibi-

lities include searching in the space of equivalence

classes of Bayesian networks [150] or in the space of

orderings of the variables [151]. The problem of

finding the best network according to some criterion

from the set of all networks in which each node has

no more than K parents (K>1) is NP-hard [152].

This result gives a good opportunity to use different

heuristic search algorithms. These heuristic search

methods can be more efficient when the model

selection criterion is separable, that is, when the

model selection criterion can be written as a product

(or a sum) of variable-specific criteria. Among all

heuristic search strategies used to find good models

in the space of Bayesian network structures, we have

different alternatives: greedy search, simulated

annealing, tabu search, genetic algorithms, evolu-

tionary programming, estimation of distribution

algorithm, etc. Scoring metrics that have been used

in the learning of Bayesian networks from data are

penalized maximum likelihood, Bayesian scores

(like marginal likelihood) and scores based on

information theory.

Gaussian networks
Another particular case of probabilistic graphical

models is when each univariate variable Xi is

continuous and each local density function is the

linear-regression model f ðxijpaSi ; �iÞ � N ðxi;miþP
xj2pai

bjiðxj � mjÞ; viÞ where Nðx;�; �2Þ is a uni-

variate normal distribution with mean � and

variance �2. A probabilistic graphical model con-

structed with these local density functions is called

a Gaussian network [153].

The main difficulty when working with multi-

variate normal distributions is to assure that the

assessed covariance matrix is positive-definite.

However, with the Gaussian network representation

it is not necessary to be aware of this constraint.

Therefore, Gaussian networks are more suitable

Machine learning in bioinformatics 101

for model elicitation and understanding than the

standard representation of multivariate normal

distributions.

As in the case of Bayesian networks, there are

different approaches to induce Gaussian networks

from data. The most usual ones are based on edge

exclusion tests [154], penalized maximum liklihood

metric and Bayesian scores [155].

Probabilistic graphical models
in bioinformatics
Genomics
The main application of probabilistic graphical

models in genomics is the modelling of DNA

sequences. In Meyer and Durbin [156], hidden

Markov models are used in the gene finding process

and, in Cawley and Pachter [157] in the alternative

splicing detection. In Won et al. [4], genetic

algorithms are used in the training of hidden

Markov models to identify promoter and coding

regions. Bayesian networks are used in splice site

prediction in [158]. Gene modelling is not the only

application of probabilistic graphical models. For

instance, in Greenspan and Geiger [159], Bayesian

networks are used when modelling haplotype blocks

and, later on, these models are used in linkage

disequilibrium mapping. Bockhorst et al. [3] show an

example of the application of Bayesian networks in

operon prediction.

Proteomics
Bayesian networks have been used for the prediction

of protein contact maps [160] and for the protein

fold recognition and superfamily classification

problem [161].

Microarray
An example of the application of Bayesian networks

to expression pattern recognition in microarray data

can be found in Friedman et al. [162].

Systems biology
One of the most important applications of the

probabilistic graphical models is the inference of

genetic networks [163].

Some advantages of using this paradigm to model

genetic networks are as follows. They are based

on probability theory, a scientific discipline with

sound mathematical development. Probability

theory could be used as a framework to deal with

the uncertainty and noise underlying biological

domains. The graphical component of these

models—the structure—allows the representation

of the interrelations between the genes—variables—

in an interpretable way. The conditional indepen-

dence between triplets of variables gives a clear

semantic. The quantitative part of the models—the

conditional probabilities—allows the strength of

the interdependencies between the variables to

be established. Inference algorithms—–exact and

approximate—developed in these models enable

different types of reasoning inside the model.

Already there are algorithms that search for prob-

abilistic graphical models from observational data

based on well-understood principles at statistics.

These algorithms make it possible to include

hidden variables which are not observable in reality.

It is also achievable to combine multiple local models

into a joint global model. The declarative nature of

the probabilistic graphical models is an advantage to

the modelling process by taking additional aspects

into account, such as the existence of some edges

in the model based on previous knowledge.

The models are biologically interpretable and can

be rigorously scored against observational data.

However, not all the characteristics of probabi-

listic graphical models are appropriate for this task.

A disadvantage is that very few work has been done

in the development of learning algorithms able

to represent causality between variables [164].

The description of casual connections among gene

expression rates is a matter of special importance to

obtain biological insight about the underlying

mechanisms in the cell. Furthermore, the features

of the analysed databases with very few cases, in the

order of dozens, and a very large number of variables,

in the order of thousands, make it necessary to

adapt the learning algorithms developed. This way,

learning algorithms that are able to carry-out the

modelling of subnetworks and, at the same time,

provide robustness in the graphical structure

obtained should be of interest [165]. Finally, the

inclusion of hidden variables—where and how

many—is a difficult problem when learning prob-

abilistic graphical models from data.

Static and dynamic probabilistic graphical models

have been suggested in the literature to reconstruct

gene expression networks from microarray data.

An introduction to the problem can be found in

Husmeier [166]. There are several works that use

static Bayesian networks to model genetic networks

[162, 165–176], In Tamada et al. [177] DNA

sequence information is mixed with microarray

102 Larran‹ aga et al.

data in the Bayesian network in order to obtain a

more accurate estimation of the network when the

number of microarray data is limited. In Nariai et al.
[178] genetic networks estimated from expression

data are refined using protein–protein interactions.

Imoto et al. [179] propose a new method to measure

the reliability of inferred genetic networks based

on bootstrap. In De Hoon et al. [180], sequence

information is combined with expression data to

improve gene regulation prediction. Husmeier [181]

tests the viability of the Bayesian network paradigm

for gene network modelling. Static Gaussian networks
have also been proposed to infer genetic regulatory

networks [138, 182–184].

Dynamic Bayesian networks are able to show how

genes regulate each other across time in the complex

workings of regulatory pathways. The analysis of

time–series data potentially allows us to determine

regulatory pathways across time, rather than merely

associating genes that are regulated together.

Different works have considered the use of dynamic

Bayesian networks to infer regulatory pathways

[185–190].

In Steffen et al. [191], clustering methods applied

to microarray data and protein–protein interaction

data are combined in the construction of a signal

transduction network.

OPTIMIZATION
Many problems in bioinformatics can be posed as the

task of finding an optimal solution in a space of

multiple (sometimes exponentially sized) possible

solutions. The choice of the optimization method

to be used is crucial for the problem solution. In

this section, we describe a number of optimization

algorithms developed by the machine learning

community, and review their application to prob-

lems of bioinformatics.

In our analysis, we will not consider a number

of classic optimization and heuristic methods that,

although widely employed for the solution of

biological problems, are not relevant from the

machine learning point of view. These methods

include hill climbing, greedy heuristics, dynamic and

integer programming and branch and bound meth-

ods. However, in the section which reviews

optimization applications to bioinformatics, we

include, as a way to illustrate different alternatives

to the problems treated, references to the use of

these classic optimization methods.

Optimization approaches to bioinformatics

problems can be classified, according to the type of

solutions found, into exact and approximate methods.

Exact methods output the exact solutions when

convergence is achieved. However, they do not

necessarily converge at every instance. Approximate

algorithms always output a candidate solution, but

not necessarily the optimal one.

Exact optimization methods
Common exact optimization approaches include

exhaustive search methods. However, these algo-

rithms are feasible only for small search domains and

are not relevant to our review. Some methods are

able to use knowledge about the problem to reduce

the search space. This can be done by enforcing

some constraints which the optimal solution has to

fulfill [192].

Approximate optimization methods
Approximate algorithms can be further classified into

deterministic and stochastic according to the way

solutions are found. Given a set of input parameters,

a deterministic method will converge to the

same solution. Stochastic methods use a random

component that may cause them to obtain different

solutions when running with the same input

parameters.

Stochastic algorithms can be divided into local

and population-based search methods. Local search
algorithms visit one point of the search space at

each iteration. Population-based search methods use

a set or population of points instead of a single

point. Examples of local search methods are Monte

Carlo-based search, simulated annealing and tabu

search.

When used in the optimization framework, the

Monte Carlo algorithm [193] associates a probability

distribution with each point of the search space

based on the objective function. Markov chain

Monte Carlo produces a Markov chain of

conformations which, for a sufficiently large

number of iterations, approximates the canonical

distribution. The configurations obtained by the

method are samples from the search space and can

be combined with energy minimization to find the

optimal solution.

Simulated annealing [194] is inspired by the

annealing process that arises in physics. It uses

transition probabilities based on a Boltzmann

distribution and a non-increasing function, called

Machine learning in bioinformatics 103

the cooling schedule, to tune the search for the

optimal solutions. Tabusearch [195] allows local search
heuristic algorithms to escape from local minima

where the algorithm cannot find any further solution

in the neighbourhood that improves the objective

function value. The overall approach is to avoid

entering cycles by forbidding or penalising the moves

that the algorithm takes in the next iteration to

points in the solution space previously visited.

Evolutionary algorithms are among the best-

known population-based search methods. They start

from a random population of points and iterate until

some pre-defined stopping criterion is satisfied.

At every iteration, usually called generation, a

subset of points is selected. By applying some

variation operators to the selected set, a new

population is created. An example of evolutionary

algorithms are genetic algorithms (GAs) [196].

The distinguishing feature of GAs is the application

of the recombination and mutation operators.

Another evolutionary algorithm used for the

solution of bioinformatic problems is genetic program-
ming [197], employed in order to evolve a program

code able to solve a given problem. Another class of

population-based search methods comprises those

algorithms that use probabilistic modelling of the

solutions instead of genetic operators. Estimation
of distribution algorithms (EDAs) [198] are evolutionary

algorithms that construct an explicit probability

model of a set of selected solutions. This model

can capture, by means of probabilistic dependencies,

relevant interactions among the variables of the

problem. The model can be conveniently used to

generate new promising solutions.

Optimization in bioinformatics
Genomics
Several optimization algorithms have been proposed

to solve the multiple sequence alignment problem

[199] (Figure 11). These include tabu search [200],

Monte Carlo optimizaton [201], methods based on

genetic algorithms [202], relaxation methods [203],

simulated annealing [204], iterative algorithms [205]

and parallel simulated annealing [206].

The prediction of promoters from DNA

sequences has been achieved using GAs together

with neural networks [207]. A fuzzy guided GA

[208] has been applied to recover the operon

structure of the prokaryotic genome. Evolved

neural networks have also shown good results for

the task of discriminating functional elements

associated with coding nucleotides from non-

coding sequences of DNA [209]. Optimization of

neural network architecture using genetic program-

ming has improved the detection and modelling of

gene–gene interactions in studies of human diseases

[210]. Moreover, estimation of distribution

algorithms have been applied to splice site prediction

[88, 211] and gene selection [212].

DNA sequencing has been approached using tabu

search [213], GAs [214] and greedy algorithms [215].

Tabu search has been also recently employed

to determine sequences of aminoacids in long

polypeptides [216] and to extract motifs from

DNA sequences [217].

The physical mapping of chromosomes has

been treated with branch and bound optimization

methods [218], Monte Carlo algorithms [219],

greedy techniques [220] and parallel GAs [221].

The identification of a consensus sequence on

DNA sequences has been approached using linear

programming techniques [222] and simulated

annealing [223]. Haplotype block partitioning and

tag SNP selection have been treated using dynamic

programming algorithms.

The reconstruction of amino acid sequences using

only spectral features has been solved using dynamic

programming [224]. Dynamic programming [225]

is also the choice preferred for RNA secondary

structure prediction which can, in general, be handled

with polynomial algorithms. Evolutionary algorithms

have also been used to discover RNA structural

elements [226]. RNA tertiary structure determination

has been approached with tabu search [227].

Proteomics
Several optimization approaches have been used for

protein folding in simplified models. These include:

tabu search [228, 229], Monte Carlo methods [230–

232], GAs [233–235] and EDAs [236].

Protein side-chain prediction, an important

problem for homology-based protein structure

prediction and protein design, has been approached

using dead-end elimination algorithms [192, 237],

GAs [238–240] and other population-based search

TGGAGACCAC CGTGAACGCC CATCA CG TCC T GCCCAA

TGGAGACCAC CGTGAACGCC CACCA AT TCT T GCCCAA
TGGAGACCAC CGTGAACGCC GCCCA TCT AT TCT T GCCCAA

TGGAGACCAC CGTGAACGCC CATCA A AG TCT GCCCAA

TGGAGACCAC CGTGAACGCC CATCA − − −

− − −
− − −

− −
GG TCT T GCCCAA

Figure 11: Multiple DNA sequence alignment.

104 Larran‹ aga et al.

methods [241]. Simulated annealing [242], optimiza-

tion methods based on inference from graphical models

[243] and the self-consistent mean field approach [244]

have also been employed to solve this problem.

Simulated annealing has been used in the

modelling of loops in protein structures [245] and

genetic programming has been employed for contact

map prediction in proteins [246].

Systems biology
There are several applications of genetic programming

to the inference of gene networks [247–249] and

metabolic pathways from observed data [250]. The

identification of transcription factor binding sites has

been treated using Markov chain optimization [251].

GAs have been applied to model genetic

networks [252], select regulatory structures [253]

and estimate the parameter of bioprocesses [254].

Inference of genetic networks has been achieved

using other evolutionary algorithms [255, 256].

Microarray
Simulated annealing has been recently applied [257]

to the design of dual channel microarray studies. It

has also been employed to align experimental trans-

cription profiles to a set of reference experiments

[258], biclustering of expression data [259] and in the

analysis of temporal gene expression profiles [260].

Evolutionary algorithms have been employed to

cluster microarray data [261]. GAs have also been

applied in the normalization of gene expression data

[262], a necessary step before quantizing gene

expression data into the binary domain. The multi-

class prediction of gene expression data has been

accomplished using GAs [60]. k-nearest neighbour

genetic hybrid methods [59] have been applied to

gene expression data analysis.

Evolution and other applications
Inference of the best phylogenetic tree that fits the

data has been approached using different optimiza-

tion methods. Exhaustive searchers have been used

when the dimension of the search space is small.

Branch and bound and other heuristic techniques

have been applied in other cases [263].

Greedy algorithms [264, 265], hill climbing

methods [266] and simulated annealing [267] have

been used given their simple and fast implementa-

tions. Haplotype reconstruction has been approached

using both exact and approximate methods [268].

Small size problems have been solved using branch

and bound techniques, while more complex

instances have been solved using GAs [268].

Genetic algorithms have been used in the optimi-

zation of linkage disequilibrium studies, minimizing

the genotyping burden [269], the back-transition of

a protein sequence into a nucleid acid sequence [270]

and in primer design [271]. Evolutionary algorithms

have been also employed to improve the fractal

visualization of sequence data [272].

CONCLUSIONS
Nowadays, one of the most challenging problems

in computational biology is to transform the huge

volume of data, provided by newly developed

technologies, into knowledge. Machine learning

has become an important tool to carry out this

transformation.

This article introduces some of the most useful

techniques for modelling—Bayesian classifiers, logis-

tic regression, discriminant analysis, classification

trees, nearest neighbour, neural networks, support

vector machines, ensembles of classifiers, partitional

clustering, hierarchical clustering, mixture models,

hidden Markov models, Bayesian networks and

Gaussian networks—and optimization—Monte

Carlo algorithms, simulated annealing, tabu search,

GAs, genetic programming and estimation of distri-

bution algorithms—giving some pointers to the most

relevant applications of the former techniques in

bioinformatics. The article can serve as a gateway to

some of the most representative works in the field

and as an insightful categorization and classification

of the machine learning methods in bioinformatics.

Acknowledgements
The authors are grateful to the anonymous reviewers for their

comments, which have helped us to greatly improve this article.

This work was partly supported by the University of the Basque

Country, the Basque Government and the Ministry of

Education and Science under grants 9/UPV 00140.226-

15334/2003, SAIOTEK S-PE04UN25, ETORTEK-

GEN MODIS, ETORTEK-BIOLAN and TIN2005-03824.

Key Points
� Supervised classification, clustering and probabilistic graphical

models for bioinformatics are reviewed.
� A review of deterministic and stochastic heuristics for optimiza-

tion in the same domain is presented.
� Applications in genomics, proteomics, systemsbiology, evolution

and textmining are also shown.

Machine learning in bioinformatics 105

References
1. Mathé C, Sagot M.-F, Schlex T, et al. Current methods of

gene prediction, their strengths and weaknesses. Nucleic
Acids Research 2002;30(19):4103–17.

2. Stein Aerts, Peter Van Loo, Yves Moreau, et al. A genetic
algorithm for the detection of new cis-regulatory modules
in sets of coregulated genes. Bioinformatics 2004;20(12):
1974–76.

3. Bockhorst J, Craven M, Page D, et al. A Bayesian network
approach to operon prediction. Bioinformatics 2003;19(10):
1227–35.

4. Won K.-J, Prügel-Bennet A, Krogh A. Training HMM
structure with genetic algorithm for biological sequence
analysis. Bioinformatics 2004;20(18):3613–19.

5. Carter RJ, Dubchak I, Holbrook SR. A computational
approach to identify genes for functional RNAs in
genomic sequence. Nucleic Acids Research 2001;29(19):
3928–38.

6. Bower JM, Bolouri H (eds). Computational Modeling of
Genetic and Biochemical Networks. MIT Press, March 2004.

7. Baldi P, Brunak S. Bioinformatics. The Machine Learning
Approach. MIT Press, 2001.

8. Krallinger M, Erhardt RA, Valencia A. Text-mining
approaches in molecular biology and biomedicine. Drug
DiscoveryToday 2005;10(6):439–45.

9. Ananiadou S, McNaught J (eds). Text Mining for Biology and
Biomedicine. Artech House Publishers, January 2006.

10. Devroye L, Györfi L, Lugosi G. A Probabilistic Theory of
Pattern Recognition. Springer, 1996.

11. Duda R, Hart P, Stork DG. Pattern Classification. Wiley,
2001.

12. Fukunaga K. Introduction to Statistical Pattern Recognition.
Academic Press, 1990.

13. Hastie T, Tibshirani R, Friedman J. TheElements ofStatistical
Learning. Springer-Verlag, 2001.

14. Mitchell TM. Machine Learning. McGraw-Hill, 1997.

15. Webb A. Statistical Pattern Recognition. Wiley, 2002.

16. Durbin R, Eddy SR, Krogh A, et al. Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids.
Cambridge University Press, 1998.

17. Gary B. Fogel, David W. Corne. Evolutionary Computation
in Bioinformatics. Morgan Kaufmann, 2002.

18. Frasconi P, Shamir R (eds). Artificial Intelligence and Heuristic
Methods in Bioinformatics, Volume 183, NATO Science
Series: Computer and Systems Sciences Edited. NATO,
2003.

19. Higgins D, Taylor W (eds). Bioinformatics. Sequence, Structure,
and Databanks. Oxford University Press, 2000.

20. Husmeier D, Dybowski R, Roberts S (eds). Probabilistic
Modeling in Bioinformatics and Medical Informatics. Springer
Verlag, 2005.

21. Jagota A. Data Analysis and Classification for Bioinformatics.
Bioinformatics by the Bay Press, 2000.

22. Jiang T, Xu X, Zhang MQ (eds). Current Topics in
ComputationalMolecular Biology. The MIT Press, 2002.

23. Pevzner PA. Computational Molecular Biology. An Algorithmic
Approach. MIT Press, 2000.

24. Schölkopf B, Tsuda K, Vert J.-P (eds). Kernel Methods in
Computational Biology, . The MIT Press, 2004.

25. Seiffert U, Jain LC, Schweizer P (eds). Bioinformatics
Using Computational Intelligence Paradigms. Springer Verlag,
2005.

26. Wang JTL, Zaki MJ, Toivonen HTT, et al. (eds). Data
Mining in Bioinformatics. Springer-Verlag, 2004.

27. Wu CH, McLarty JW. Neural Networks and Genome
Identification. Elsevier, 2000.

28. Larrañaga P, Menasalvas E, Peña JM, et al. Special issue in
data mining in genomics and proteomics. Artificial
Intelligence inMedicine 2003;31:III–IV.

29. Li J, Wong L, Yang Q. Special issue on data mining for
bioinformatics. IEEE Intelligent Systems 2005;20(6).

30. Ling CX, Noble WS, Yang Q. Special issue:
Machine learning for bioinformatics-part 1. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 2005;
2(2):81–2.

31. Green DM, Swets JA. Signal Detection Theory and
Psychophysics. Wiley, 1974.

32. Bradley AP. The use of the area under the ROC curve in
the evaluation of machine learning algorithms. Pattern
Recognition 1997;30(7):1145–59.

33. Stone M. Cross-validatory choice and assessment of
statistical predictions. Journal of the Royal Statistical Society
Series B 1974;36:111–47.

34. Efron B. Bootstrap methods: another look at the jacknife.
Annals of Statistics 1979;7:1–26.

35. Efron B. Estimating the error rate of a prediction rule:
Improvement on cross-validation. JAm Statistical Association
1983;78:316–31.

36. Baldi P, Brunak S, Chauvin Y, et al. Assessing the accuracy
of prediction algorithms for classification: an overview.
Bioinformatics 2000;16:412–24.

37. Michiels S, Koscielny S, Hill C. Prediction of cancer
outcome with microarrays: A multiple random validation
strategy. Lancet 2005;365:488–92.

38. Ambroise C, MacLachlan GJ. Selection bias in gene
extraction on the basis of microarray gene-expression data.
PNAS 2002;99(10):6562–6.

39. Braga-Neto UM, Dougherty ER. Is cross-validation valid
for small-sample microarray classification?. Bioinformatics
2004;20(3):374–80.

40. Sima C, Braga-Neto U, Dougherty ER. Superior featureset
ranking for small samples using bolstered error classification.
Bioinformatics 2005;21(7):1046–54.

41. Fu WJ, Carroll RJ, Wang S. Estimating misclassification
error with small samples via bootstrap cross-validation.
Bioinformatics 2005;21:1979–1986.

42. McNemar Q. Note on the sampling error of the difference
between correlated proportions or percentages.
Psychometrika 1947;12:153–7.

43. Alpaydin E. Combining 5� 2 cv F-test for comparing
supervised classification learning algorithms. Neural
Computation 1999;11:1885–92.

44. Dietterich TG. Approximate statistical tests for comparing
supervised classification algorithms. Neural Computation
1998;10:1895–1923.

45. Nadeau C, Bengio Y. Inference for the generalization error.
Machine Learning 2003;52(3):239–81.

46. Liu H, Motoda H. FeatureSelection forKnowledgeDiscoveryand
DataMining. Kluwer Academic, 1998.

106 Larran‹ aga et al.

47. Narendra P, Fukunaga K. A branch and bound algorithm
for feature subset selection. IEEETransactions onComputation,
C 1977;26(9):917–22.

48. Kittler J. Feature set search algorithms. PatternRecognitionand
Signal Processing. Sijthoff and Noordhoff, 1978: pp. 41–60.

49. Pudil P, Novovicova J, Kittler J. Floating search methods
in feature selection. Pattern Recognition Letters 1994;15(1):
1119–25.

50. Kohavi R, John G. Wrappers for feature subset selection.
Artificial Intelligence 1997;97(1–2):273–324.

51. Kuncheva L. Genetic algorithms for feature selection
for parallel classifiers. Information Processing Letters 1993;46:
163–8.

52. Inza I, Larrañaga P, Etxeberria R, et al. Feature subset
selection by Bayesian network-based optimization. Artificial
Intelligence 2000;123:157–84.

53. Ben-Bassat M. Pattern recognition and reduction of
dimensionality. Handbook of Statistics^II. North-Holland,
1982: pp. 773–91.

54. Pan W. A comparative review of statistical methods for
discovering differentially expressed genes in replicated
microarray experiments. Bioinformatics 2002;18(4):546–54.

55. Troyanskata OG, Garber ME, Brown PO, et al.
Nonparametric methods for identifying differentially
expressed genes in microarray data. Bioinformatics 2002;
18(11):1454–61.

56. Wang Y, Tetko IV, Hall MA, et al. Gene selection from
microarray data for cancer classification–a machine learning
approach. Computational Biology and Chemistry 2004;29:
37–46.

57. Inza I, Sierra B, Blanco R, etal. Gene selection by sequential
search wrapper approaches in microarray cancer class
prediction. J Intelligent and Fuzzy Systems 2002;12(1):25–34.

58. Jarvis RM, Goodacre R. Genetic algorithm optimization
for preprocessing and variable selection of spectroscopic
data. Bioinformatics 2005;21(7):860–68.

59. Li L, Weinberg CR, Darden TA, et al. Gene selection for
sample classification based on gene expression data: study of
sensitivity to choice of parameters of the GA/KNN
method. Bioinformatics 2001;17(12):1131–42.

60. Ooi CH, Tan P. Genetic algorithms applied to multi–class
prediction for the analysis of gene expression data.
Bioinformatics 2003;19(1):37–44.

61. Inza I, Larrañaga P, Blanco R, et al. Filter versus wrapper
gene selection approaches in DNA microarray domains.
Artificial Intelligence inMedicine 2004;31(2):91–103.

62. Xing EP, Jordan MI, Karp RM. Feature selection for
highdimensional genomic microarray data. In: Proceedings of
the Eighteenth International Conference in Machine Learning.
ICML, 2001: pp. 601–8.

63. Wolpert DH, Macready WG. No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation
1997;1(1):67–82.

64. Duda RO, Hart P. PatternClassificationandSceneAnalysis. Jon
Wiley and Sons, 1973.

65. Minsky M. Steps toward artificial intelligence. Transactionson
Institute of Radio Engineers 1961;49:8–30.

66. Pazzani MJ. Searching for dependencies in Bayesian
classifiers. In: Fisher D, Lenz H (eds). Artificial Intelligence
and Statistics IV, Lecture Notes in Statistics. Springer-Verlag,
1997.

67. Friedman N, Geiger D, Goldszmidt M. Bayesian network
classifiers. Machine Learning 1997;29(2):131–64.

68. Chow C, Liu C. Approximating discrete probability
distributions with dependence trees. IEEE Transactions on
InformationTheory 1968;14:462–7.

69. Sahami M. Learning limited dependence Bayesian classifiers.
In: Proceedings of the 2nd International Conference on Knowledge
Discovery and DataMining 1996: pp. 335–8.

70. Kleinbaum DG, Kupper LL, Chambless LE. Logistic
regression analysis of epidemiologic data: theory and
practice. Communications on Statistics 1982;11(5):485–547.

71. Fisher RA. The use of multiple measurements in taxonomic
problems. Annals of Eugenics 1936;7:179–88.

72. McLachlan GJ. Discriminant Analysis and Statistical Pattern
Recognition. Wiley, 1992.

73. Breiman L, Friedman JH, Olshen RA, et al. Classification and
RegressionTrees. Chapman and Hall, 1993.

74. Quinlan R. C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

75. Fix E, Hodges JL. Discriminatory analysis: nonparametric
discrimination: consistency properties. USAF School of
AviationMedicine 1951;4:261–79.

76. McCulloch WS, Pitts W. A logical calculus of ideas
imminet in nervous activity. Bulletin of Mathematical
Biophysics 1943;5:115–33.

77. Rosenblatt F. Principles of Neurodynamics: Perceptrons and the
Theory of BrainMechanisms. Spartan Books, 1962.

78. Rumelhart DE, Hinton GE, Williams RJ. Learning internal
representations by backpropagation errors. Nature 1986;
323(99):533–6.

79. Vapnik V. The Nature of Statistical Learning. Springer-Verlag,
1995.

80. Schölkopf B, Burges CJC, Smola AJ (eds). Advances inKernel
Methods: SupportVector Learning. MIT Press, 1999.

81. Kuncheva LI. Combining pattern classifiers. Methods and
Algorithms. John Wiley and Sons, 2004.

82. Wolpert DH. Stacked generalization. Neural Netorks 1992;
5(2):241–60.

83. Breiman L. Bagging predictors. Machine Learning 1996;
26(2):123–40.

84. Breiman L. Random forests. Machine Learning 2001;45:
5–32.

85. Freund Y, Schapire R. A decision-theoretic generalization
of on-line learning and an application to boosting. J Comp
and System Sciences 1997;55(1):119–39.

86. Salzberg S. Localing protein coding regions in human
DNA using a decision tree algorithm. JComput Biol 1995;2:
473–85.

87. Castelo R, Guigó R. Splice site identification by idlBNs.
Bioinformatics 2004;20(Suppl. 1):i69–76.

88. Yvan Saeys, Sven Degroeve, Dirk Aeyels, et al. Feature
selection for splice site prediction: a new method
using EDA-based feature ranking. BMC Bioinformatics
2004;5:64.

89. Degroeve S, De Baets B, Van de Peer Y, etal. Feature subset
selection for splice site prediction. Bioinformatics 2002;
18(Suppl. 2):S75–83.

90. Allen JE, Pertea M, Salzberg SL. Computational gene
prediction using multiple source of evidence. Genome
Research 2004;14:142–8.

Machine learning in bioinformatics 107

91. Pavlovic V, Garg A, Kasif S. A Bayesian framework for
combining gene predictions. Bioinformatics 2002;18(1):19–27.

92. López-Bigas N, Ouzounis CA. Genome-wide identifica-
tion of genes likely to be involved in human genetic
disease. Nucleic Acids Research 2004;32(10):3108–14.

93. Bao L, Cui Y. Prediction of the phenotypic effects of
nonsynonymous single nucleotide polymorphisms using
structural and evolutionary information. Bioinformatics
2005;21(5):2185–90.

94. Sebban M, Mokrousov I, Rastogi N, et al. A data–mining
approach to spacer oligonucleotide typing of mycobac-
terium tuberculosis. Bioinformatics 2002;18(2):235–43.

95. Kim S. Protein beta-turn prediction using nearest-
neighbor method. Bioinformatics 2004;20(1):40–4.

96. Salamov AA, Solovyev VV. Prediction of protein
secondary structure by combining nearest-neighbor algo-
rithms and multiple sequence alignments. Journal of
Molecular Biology 1995;247:11–15.

97. Yi T.-M, Lander ES. Protein secondary structure
prediction using nearest-neighbor methods. J Mol Biol
1993;232:1117–29.

98. Selbig J, Mevissen T, Lengauer T. Decision tree-based
formation of consensus protein secondary structure pre-
diction. Bioinformatics 1999;15(12):1039–46.

99. Yang C, Dobbs D, Honavar V. A two-stage classifier
for identification of protein-protein interface residues.
Bioinformatics 2004;20:i371–8.

100. Huang Y, Li Y. Prediction of protein subcellular
locations using fuzzy k-NN mathos. Bioinformatics 2004;
20(1):21–8.

101. Valafar F. Pattern recognition techniques in microarray
data analysis: a survey. Annals of the NewYork Academy of
Sciences 2002;980:41–64.

102. Krishnapuram B, Carin L, Hartemink AJ. Joint classifier
and feature optimization for comprehensive cancer
diagnosis using gene expression data. J Comput Biol 2004;
11(2–3):227–42.

103. Olshen AB, Jain AN. Deriving quantitative conclusions
from microarray data. Bionformatics 2002;18(7):961–70.

104. Tan AC, Gilbert D. Ensemble machine learning on gene
expression data for cancer classification. Applied
Bioinformatics 2002;2(3)S:75–83.

105. Dudoit S, Fridlyand J, Speed P. Comparison of discrimi-
nation methods for classification of tumors using gene
expression data. JAm Statistical Association 2002;97:77–87.

106. Ramaswamy S, Yeang CH, Tamayo P, et al. Molecular
classification of multiple tumor types. Bioinformatics 2001;1:
S316–S322.

107. Statnikov A, Aliferis CF, Tsamardinos I, et al. A
comprehensive evaluation of multicategory classification
methods for microarray gene expression cancer diagnosis.
Bioinformatics 2005;21(5):631–43.

108. Lee JW, Lee Bok J, Park M, etal. An extensive comparison
of recent classification tools applied to microarray data.
Computational Statistics and Data Analysis 2005;48:869–85.

109. Ben-Dor A, Bruhn L, Friedman N, et al. Tissue
classification with gene expression profiles. Journal of
Computational Biology 2000;7(3–4):559–84.

110. Brown MPS, Grundy WN, Lin D, etal. Knowledge-based
analysis of microarray gene expression data by using support
vector machines. JComputBiol 2004;11(2–3):227–42.

111. Kim K.-J, Cho S.-B. Prediction of colon cancer using
an evolutionary neural network. Neurocomputing 2004;61:
361–79.

112. Hautaniemi S, Kharait S, Iwabu A, et al. Modeling of
signal-response cascades using decision tree analysis.
Bioinformatics 2005;21:2027–2035.

113. Middendorf M, Kundaje A, Wiggins C, et al. Predicting
genetic regulatory response using classification.
Bioinformatics 2004;20:i232–40.

114. Zhou GD, Shen D, Zhang J, etal. Recognition of protein/
gene names from text using an ensemble of classifiers.
BMCBioinformatics 2005;6(Suppl. 1):S7.

115. Stapley BJ, Kelley LA, Sternberg MJ. Predicting the
subcellular location of proteins from text using support
vector machines. In: Proceedings of the 7th Pacific Symposium
on Biocomputing 2002: pp. 374–85.

116. Wu B, Abbott T, Fishman D, et al. Comparison of statistical
methods for classification of ovarian cancer using mass
spectrometry data. Bioinformatics 2003;19(13):1636–43.

117. Baumgartner C, Böhm C, Baumgartner D, et al.
Supervised machine learning techniques for the classifica-
tion of metabolic disorders in newborns. Bioinformatics
2004;20(17):2985–96.

118. Li L, Umbach DM, Terry P, et al. Application of the
GA/KNN methodh to SELDI proteomics data.
Bioinformatics 2004;20(10):1638–40.

119. Satten GA, Datta S, Moura H, et al. Standardization and
denoising algorithms for mass spectra to classify whole-
organism bacterial specimens. Bioinformatics 2004;20(17):
3128–36.

120. Jung H.-Y, Cho H.-G. An automatic block and spot
indexing with k-nearest neighbors graph for microarray
image analysis. Bioinformatics 2002;18(Suppl. 2): S141–51.

121. Perner P, Perner H, Müller B. Mining knowledge for
HEp-2 cell image classification. Artificial Intelligence in
Medicine 2002;26:161–73.

122. Forgy E. Cluster analysis for multivariate data: efficiency
vs. interpretability of classifications (abstract). Biometrics
1965;21:768–9.

123. Gersho A, Gray RM. Vector Quantization and Signal
Compression. Kluwer Academic, 1992.

124. Linde Y, Buzo A, Gray RM. An algorithm for vector
quantizer design. IEEETransactions onCommunications 1980;
28(1):84–95.

125. Jardine N, Sibson R. MathematicalTaxonomy. Wiley, 1971.

126. McLachlan GJ, Basford K. Mixture Models: Inference and
Application to Clustering. Dekker, 1988.

127. Dempster AP, Laird NM, Rubin DB. Maximum like-
lihood from incomplete data via the EM algorithm. JRoyal
Statistical Society Series B 1977;39:1–38.

128. Böhning D, Seidel W. Recent developments in mixture
models. Computational Statistics and Data Analysis 2003;41:
349–57.

129. Sheng Q, Moreau Y, De Smet F, et al. Advances in cluster
analysis of microarray data. Data Analysis andVisualization
in Genomics and Proteomics. John Wiley and Sons, 2005:
pp. 153–73.

130. Spellman PT, Sherlock G, Zhang MQ, et al.
Comprehensive identification of cell cycleregulated genes
of the yeast saccharomyces cerevisiase by microarray hybridi-
zation. Molecular Biology Cell 1998;9:3271–97.

108 Larran‹ aga et al.

131. Tamayo P, Slonim D, Mesirov J, etal. Interpreting patterns
of gene expression with self-organizing maps: methods and
application to hematopoietic differentiation. In: Proceedings
of the National Academic of Sciences USA 1999;96:2907–12.

132. Sherlock G. Analysis of large-scale gene expression data.
Briefings in Bioinformatics 2001;2(4):350–62.

133. McLachlan GJ, Bean RW, Peel D. A mixture model-based
approach to the clustering of microarray data: from
expression to regulation. Proceedings of the IEEE 2002;
90(11):1722–43.

134. Yeung K, Haynor D, Ruzzo W. Validating clustering for
gene expression data. Bioinformatics 2001;17(4):309–18.

135. Herrero J, Valencia A, Dopazo J. A hierarchical unsuper-
vised growing neural network for clustering gene expres-
sion patterns. Bioinformatics 2001;17(2):126–36.

136. De Smet F, Mathys J, Marchal K, et al. Adaptive quality-
based clustering of gene expression profiles. Bioinformatics
2002;20(5):660–7.

137. Sheng Q, Moreau Y, De Moor B. Biclustering microarray
data by Gibbs sampling. Bioinformatics 2003;19(Suppl. 2):
II196–205.

138. Schäfer J, Strimmer K. An empirical Bayes approach to
inferring large-scale gene association networks.
Bioinformatics 2005;21(6):754–64.

139. Jojic V, Jojic N, Meek C, et al. Efficient approximations
for learning phylogenetic HMM models from data.
Bioinformatics 2004;20:161–8.

140. Leone M, Pagnani A. Predicting protein functions with
message passing algorithms. Bioinformatics 2005;21:239–47.

141. Dawid AP. Conditional independence in statistical theory.
Journal of the Royal Statistics Society, Series B 1979;41:1–31.

142. Krogh A, Brown M, Mianan IS, et al. Hidden Markov
models in computational biology: applications to protein
modelling. JMol Biol 1994;235:1501–31.

143. Pearl J. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann
Publishers, 1988.

144. Lauritzen SL. Graphical Models. Oxford University Press,
1996.

145. Cowell RG, Dawid AP, Lauritzen SL, et al. Probabilistic
Networks and Expert Systems. New York: Springer-Verlag,
1999.

146. Jensen FV. Bayesian Networks and Decision Graphs.
New York: Springer, 2001.

147. Neapolitan E. Learning Bayesian Networks. Upper Saddle
River, NJ: Prentice Hall, 2003.

148. Cooper GF. The computational complexity of probabil-
istic inference using belief networks. Artificial Intelligence
1990;42:393–405.

149. Heckerman D. A Tutorial on Learning with Bayesian
Networks. Technical report, Microsoft Advanced
Technology Division, Microsoft Corporation, Seattle,
Washington, 1995.

150. Chickering M. Learning equivalence classes of Bayesian
networks structures. In: Proceedings of theTwelfth Conference
on Uncertainty in Artificial Intelligence. Portland: Morgan
Kaufmann, 1996: pp. 150–7.

151. Larrañaga P, Kuijpers CMH, Murga RH, et al. Searching
for the best ordering in the structure learning of Bayesian
networks. IEEE Transactions on Systems, Man and Cybernetics
1996;41(4):487–93.

152. Chickering DM, Geiger D, Heckerman D. Learning
Bayesian Networks is NP–hard. Technical report,
Microsoft Research, Redmond, WA 1994.

153. Shachter R, Kenley C. Gaussian influence diagrams.
Management Science 1989;35:527–50.

154. Smith PWF, Whittaker J. Edge exclusion tests for
graphical Gaussian models. Learning in Graphical Models.
Dordrecht, The Netherlands: Kluwer Academic
Publishers, 1998: pp. 555–74.

155. Geiger D, Heckerman D. Learning Gaussian Networks.
Technical report, Microsoft Advanced Technology Division,
Microsoft Corporation, Seattle, Washington 1994.

156. Meyer IM, Durbin R. Gene structure conservation aids
similarity based gene prediction. Nucleic Acids Research
2004;32(2):776–83.

157. Cawley SL, Pachter L. HMM sampling and applications to
gene finding and alternative splicing. Bioinformatics 2003;
19(Suppl. 2):ii36–41.

158. Cai D, Delcher A, Kao B, et al. Modeling splice sites with
Bayes networks. Bioinformatics 2000;16(2):152–8.

159. Greenspan G, Geiger D. High density linkage disequilib-
rium mapping using models of haplotype block variation.
Bioinformatics 2004;20(Suppl. 1):i137–44.

160. Pollastri G, Baldi P. Prediction of contact maps by
GIOHMMs and recurrent neural networks using lateral
propagation from all four cardinal corners. Bioinformatics
2002;18(Suppl. 1):S62–70.

161. Raval A, Ghahramani Z, Wild DL. A Bayesian network
model for protein fold and remote homologue recogni-
tion. Bioinformatics 2002;18(6):788–801.

162. Friedman N, Linial M, Nachman I, et al. Using Bayesian
networks to analyze expression data. J Comput Biol 2000;
7(3–4):601–20.

163. Larrañaga P, Inza I, Flores JL. A guide to the literature
on inferring genetic networks by probabilistic graphical
models. Data Analysis and Visualization in Genomics and
Proteomics. John Wiley and Sons, Ltd., 2005: pp. 215–38.

164. Pearl J. Causality. Models, Reasoning, and Inference, .
Cambridge University Press, 2000.

165. Pe’er D, Regev A, Elidan G, et al. Inferring subnetworks
from perturbed expression profiles. Bioinformatics 2001;17:
215–24.

166. Husmeier D. Reverse engineering of genetic networks
with Bayesian networks. Biochemical Society Transactions
2003;31(6):1516–18.

167. Rangeland C, Angus J, Ghahramani Z. et al. Modelling
Genetic Regulatory Networks using Gene Expression Profiling
and StatespaceModels. Springer-Verlag, 2005: pp. 269–93.

168. Chang J.-H, Hwang K.-B, Zhang B.-T. Analysis of
gene expression profiles and drug activity patterns by
clustering and Bayesian network learning. Methods of
Microarray Data Analyis II. Kluwer Academic Publishers,
2002: pp. 169–184.

169. Hartemink AJ, Gifford DK, Jaakkola TS, et al. Using
graphical models and genomic expression data to statisti-
cally validate models of genetic regulatory networks. Pacific
Symposium on Biocomputation 6, 2001: pp. 422–33.

170. Hwang K.-B, Cho D.-Y, Park S.-W, et al. Applying
machine learning techniques to analysis of gene expression
data: cancer diagnosis. Methods of Microarray Data Analysis.
Kluwer Academic Publishers, 2001: pp. 167–82.

Machine learning in bioinformatics 109

171. Lee PH, Lee D. Modularized learning of genetic
interaction networks from biological annotations
and mRNA expression data. Bioinformatics 2005;21(11):
2739–47.

172. Markowetz F, Spang R. Reconstructing gene regulation
networks from passive observations and active interven-
tions. In: Proceedings of the European Conference on
Computational Biology, 2003.

173. Pasanen T, Toivanen T, Tolvanen M, et al. DNA
Microarray. Data Analysis, CSC–Scientific Computing
Ltd., 2003.

174. Peña JM, Björkegren J, Tegnér J. Growing Bayesian
network models of gene networks from seed genes.
Bioinformatics 2005;21(Supp. 2):ii224–9.

175. Segal E, Taskar B, Gasch A, etal. Rich probabilistic models
for gene expression. Bioinformatics 2001;17(1):243–52.

176. Spirtes P, Glymour C, Scheines R, et al. Constructing
Bayesian networks models of gene expression networks
from microarray data. In: Proceedings of the Atlantic
Symposium onComputational Biology, 2000.

177. Tamada Y, Kim SY, Bannai H, et al. Estimating gene
networks from gene expression data by combining
Bayesian network model with promotor element detec-
tion. Bioinformatics 2003;19(Suppl. 2):ii227–36.

178. Nariai N, Kim S, Imoto S, et al. Using protein-protein
interactions for refining gene networks estimated
from microarray data by Bayesian networks. In:
Proceedings of the 9th Pacific Symposium on Biocomputing, 2004:
pp. 336–47.

179. Imoto S, Kim SY, Shimodaira H, etal. Bootstrap analysis of
gene networks based on Bayesian networks and non-
parametric regression. Genome Informatics 2002;13:369–70.

180. De Hoon MJL, Makita Y, Imoto S, et al. Predicting
gene regulation by sigma factors in bacillus subtilis from
genome–wide data. Bionformatics 2004;20:i101–8.

181. Husmeier D. Sensitivity and specificity of inferring genetic
regulatory interactions from microarray experiments with
dynamic Bayesian networks. Bioinformatics 2003;19(17):
2271–82.

182. Friedman N. Inferring cellular networks using probabilistic
graphical models. Science 2004;303:799–805.

183. Imoto S, Higuchi T, Goto T, et al. Using Bayesian
networks for estimating gene networks from microarrays
and biological knowledge. In: Proceedings of the European
Conference on Computational Biology, 2003.

184. Wu X, Ye Y, Subramanian KR. Interactive analysis of
gene interactions using graphical Gaussian model. In:
BIOKDD03:3rdACMSIGKDDWorkshop onDataMining in
Bioinformatics 2003: pp. 63–69.

185. Husmeier D. Inferring Genetic Regulatory Networks from
Microarray Experiments with Bayesian Networks. Springer-
Verlag, 2005: pp. 239–67.

186. Murphy K, Mian S. Modelling Gene Expression Data
using Dynamic Bayesian Networks. Technical report,
Department of Computer Science. University of
California at Berkeley, 1999.

187. Nachman I, Regev A, Friedman N. Inferring quantitative
models of regulatory networks from expression data.
Bioinformatics 2004;20(Suppl. 1):i248–56.

188. Ong IM, Glasner JD, Page D. Modelling regulatory
pathways in e. coli from time series expression profiles.
Bioinformatics 2002;18(Suppl. 1):S241–8.

189. Ong IM, Page D. Inferring Regulatory Pathways in e.coli
using Dynamic Bayesian Networks. Technical Report
1426, Computer Sciences. University of Wisconsin–
Madison, 2001.

190. Sugimoto N, Iba H. Inference of gene regulatory
networks by means of dynamic differential Bayesian
networks and nonparametric regression. Genome
Informatics 2004;15(2):121–30.

191. Steffen M, Petti A, Aach J, et al. Automated modelling of
signal transduction networks. BMCBioinformatics 2002;3:34.

192. Looger LL, Hellinga HW. Generalized dead-end elimina-
tion algorithms make large-scale protein side-chain struc-
ture prediction tractable: Implications for protein design
and structural genomics. JMol Biol 2001;307(1):429–45.

193. Metropolis N, Rosenbluth AW, Teller AH, et al.
Equations of state calculations by fast computing machines.
J Chem Phys 1953;21:1087–91.

194. Kirkpatrick S, Gelatt CD, Jr, Vecchi MP. Optimization by
simulated annealing. Science 1983;220:671–80.

195. Glover F. Future paths for integer programming and links
to artificial intelligence. Computers and Operations Research
1986;5:533–49.

196. Goldberg D. Genetic Algorithms in Search, Optimization, and
Machine Learning. Reading, MA: Addison-Wesley, 1989.

197. Koza JR. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. Cambridge, MA:
The MIT Press, 1992.

198. Larrañaga P, Lozano JA (eds). Estimation of Distribution
Algorithms. ANewTool for Evolutionary Computation. Boston/
Dordrecht/London: Kluwer Academic Publishers, 2002.

199. Wei Shi, Wanlei Zhou, Yi-Ping Phoebe Chen. Biological
sequence assembly and alignment. In: Yi-Ping Chen (ed).
BioinformaticsTechnology. Springer-Verlag, 2005: pp. 244–61.

200. Tariq Riaz, Yi Wang, Kuo-Bin Li. Multiple sequence
alignment using tabu search. In: Proceedings of the Second
Conference on Asia-Pacific Bioinformatics. Australian
Computer Society, Inc., 2004: pp. 223–32.

201. Neuwald AF, Liu JS. Gapped alignment of protein
sequence motifs through Monte Carlo optimization of a
hidden Markov model. BMCBioinformatics 2004;5:157–73.

202. Hung Dinh Nguyen, Ikuo Yoshihara, Kunihito
Yamamori, et al. Aligning multiple protein sequences by
parallel hybrid genetic algorithm. Genome Informatics 2002;
13:123–32.

203. Thomas D. Schneider, David N. Mastronarde. Fast
multiple alignment of ungapped DNA sequences using
information theory and a relaxation method. Discrete
AppliedMathematics 1996;71:259–68.

204. Kim J, Cole JR, Pramanik S. Alignment of possible
secondary structures in multiple RNA sequences using
simulated annealing. Computer applications in the Biosciences
1996;12(8):259–67.

205. Hirosawa M, Totoki Y, Hoshida M, et al. Comprehensive
study on iterative algorithms of multiple sequence alignment.
ComputerApplications in theBiosciences 1995;11(1):13–18.

206. Ishikawa M, Toya T, Hoshida M, et al. Multiple sequence
alignment by parallel simulated annealing. Computer
Applications in the Biosciences 1993;9(3):267–73.

207. Knudsen S. Promoter 2.0: for the recognition of
Pol II promoter sequences. Bioinformatics 1999;15(5):
356–61.

110 Larran‹ aga et al.

208. Jacob E, Sasikumar R, Nair KNR. A fuzzy guided genetic
algorithm for operon prediction. Bioinformatics 2005;21(8):
1403–7.

209. Gary B. Fogel, Kumar Chellapilla, David B. Fogel.
Identification of coding regions in DNA sequences using
evolved neural networks. In: Gary B. Fogel, David W.
Corne (eds). Evolutionary Computation in Bioinformatics, .
Morgan Kaufmann, 2002: pp. 195–218.

210. Marylyn D. Ritchie, Bill C. White, Joel S. Parker, et al.
Optimization of neural network architecture using genetic
programming improves detection and modeling of
gene-gene interactions in studies of human diseases.
BMCBioinformatics 2003;4(28):7.

211. Yvan Saeys, Sven Degroeve, Dirk Aeyels, etal. Fast feature
selection using a simple estimation of distribution
algorithm: A case study on splice site prediction.
Bioinformatics 2003;19(2):ii179–88.

212. Blanco R, Larrañaga P, Inza I, et al. Selection of highly
accurate genes for cancer classification by estimation
of distribution algorithms. In: Proceedings of the Workshop
‘Bayesian Models in Medicine’ held within AIME, 2001 2001:
pp. 29–34.

213. Blazewicz J, Formanowicz P, Kasprzak M, et al. Tabu
search algorithm for DNA sequencing by hybridization
with isothermic libraries. Computational Biology and
Chemistry 2004;28(1):11–19.

214. Takaho A. Endo. Probabilistic nucleotide assembling
method for sequencing by hybridization. Bioinformatics
2004;20(14):2181–8.

215. Allon G. Percus, David C. Torney. Greedy algorithms for
optimized DNA sequencing. In: SODA’99:Proceedings of the
Tenth Annual ACM-SIAMSymposium on DiscreteAlgorithms.
Philadelphia, PA, USA, Society for Industrial and Applied
Mathematics, 1999: pp. 955–6.

216. Blazewicz J, Borowski M, Formanowicz P, et al.
Tabu Search Method for Determining Sequences of
Amino Acids in Long Polypeptides. Volume 3449 of
Lecture Notes in Computer Science. Springer Verlag,
2005: pp. 22–32.

217. Matsuura T, Ikeguchi T. Tabu search for extracting motifs
from DNA sequences. In: Proceedings of the 6thMetaheuristics
International Conference 2005. To appear.

218. Christof T, Junger M, Kececioglu J, et al. A branch-and-
cut approach to physical mapping of chromosomes by
unique end-probes. J Comput Biol 1997;4(4):433–47.

219. Bhandarkar SM, Huang J, Arnold J. Parallel Monte Carlo
methods for physical mapping of chromosomes. In:
Proceedings of the IEEE Computer Society Bioinformatics
Conference. IEEE press, 2002: pp. 64–75.

220. Brown DG, Vision TJ, Tanksley SD. Selecting mapping:
a discrete optimization approach to select a population
subset for use in a high-density genetic mapping project.
Genetics 2000;155:407–20.

221. Jinling Huang, Suchendra M. Bhandarkar. A comparison
of physical mapping algorithms based on the maximum
likelihood model. Bioinformatics 2003;19(7):1303–10.

222. Han-Lin Li, Chang-Jui Fu. A linear programming
approach for identifying a consensus sequence on DNA
sequences. Bioinformatics 2005;21(9):1838–45.

223. Jonathan M. Keith, Peter Adams, Darryn Bryant, et al.
A simulated annealing algorithm for finding consensus
sequences. Bioinformatics 2001;18(10):1494–9.

224. Chen T, Kao MY, Tepel M, et al. A dynamic program-
ming approach to de novo peptide sequencing via tandem
mass spectrometry. J Comput Biol 2001;8(3):325–37.

225. Michael Zuker. Mfold web server for nucleic acid folding
and hybridization prediction. Nucleic Acids Research 2003;
31(13):3406–15.

226. Gary B. Fogel, William Porto V, Dana G. Weekes, et al.
Discovery of RNA structural elements using
evolutionary computation. Nucleid Acid Research 2002;
30(23):5310–17.

227. Blazewicz J, Lukasiak P, Milostan M. RNA tertiary
structure determination: NOE pathways construction by
tabu search. Bioinformatics 2005;21(10):2356–61.

228. Blazewicz J, Lukasiak P, Milostan M. Application of tabu
search strategy for finding low energy structure of protein.
Artificial Intelligence inMedicine 2005;35:135–45.

229. Neal Lesh, Michael Mitzenmacher, Sue Whitesides. A
complete and effective move set for simplified protein
folding. In: Proceedings of the Seventh Annual International
Conference on Research in Computational Molecular Biology
2003: pp. 188–95.

230. Hsiao-Ping Hsu, Vishal Mehra, Peter Grassberger.
Structure optimization in an off-lattice protein model.
Physical Review E 2003;68(2):4.

231. Hsiao-Ping Hsu, Vishal Mehra, Walter Nadler, et al.
Growth algorithms for lattice heteropolymers at low
temperatures. J Chemical Physics 2003;118(1):444–51.

232. Liang S, Wong WH. Evolutionary Monte Carlo for
protein folding simulation. Journal of Chemical Physics 2001;
115:3374–80.

233. Natalio Krasnogor, Blackburne BP, Edmund K. Burke,
et al. Algorithms for protein structure prediction. In:
Merelo JJ, Adamidis P, Beyer HG, Fernandez-Villacañas
JL, Schwefel HP, (eds). Parallel Problem Solving from
Nature - PPSN VII, Volume 2439 of Lecture Notes in
Computer Science. Granada, Spain Springer Verlag, 2002:
pp. 769–78.

234. Gary B. Lamont, Lawrence D. Merkle. Toward effective
polypeptide structure prediction with parallel fast messy
genetic algorithms. In: Gary B. Fogel, David W. Corne,
(eds). Evolutionary Computation in Bioinformatics. Morgan
Kaufmann, 2002: pp. 137–62.

235. Smith J. The co-evolution of memetic algorithms for protein
structure prediction. In: William WH, Krasnogor N,
Smith JE (eds). Recent Advances in Memetic Algorithms,
Studies in Fuzziness and Soft Computing. Springer, 2004:
pp. 105–28.

236. Roberto Santana, Larrañaga P, Lozano JA. Protein folding
in 2-dimensional lattices with estimation of distribution
algorithms. Proceedings of the First International Symposium on
Biological and Medical Data Analysis, Volume 3337 of
Lecture Notes in Computer Science. Barcelona, Spain:
Springer Verlag, 2004: pp. 388–98.

237. De Maeyer M, Desmet J, Lasters I. The dead-end
elimination theorem: mathematical aspects, implementa-
tion, optimizations, evaluation, and performance. Methods
inMolecular Biology 2000;143:265–304.

238. Zhijie Liu, Weizhong Li, Shide Liang, et al. Beyond
rotamer library: Genetic algorithm combined with
disturbing mutation process for upbuilding protein
side-chains. Proteins: Structure, Function, and Genetics 2003;
50:49–62.

Machine learning in bioinformatics 111

239. Tuffery P, Etchebest C, Hazout S, etal. A new approach to
the rapid determination of protein side chain conformations.
J Biomolecular Structure Dynamics 1991;8:1267–89.

240. Jinn-Moon Yang, Chi-Hung Tsai, Ming-Jing Hwang,
et al. GEM: a Gaussian evolutionary method for predicting
protein side-chain conformations. Protein Science 2002;11:
1897–907.

241. Glick M, Rayan A, Goldblum A. A stochastic algorithm
for global optimization for best populations: a test case of
side chains in proteins. Proceedings of the National Academy of
Sciences 2002;99(2):703–8.

242. Lee C, Subbiah S. Prediction of protein side-chain
conformation by packing optimization. J Mol Biol 1991;
217:373–88.

243. Yanover C, Weiss Y. Approximate inference and protein-
folding. In: Becker S, Thrun S, Obermayer K (eds).
Advances in Neural Information Processing Systems 15.
Cambridge, MA: MIT Press, 2003: pp. 1457–64.

244. Koehl P, Delarue M. Building protein lattice models using
self consistent mean field theory. J Chemical Physics 1998;
108:9540–49.

245. Fiser A, Do RK, Sali A. Modeling of loops in protein
structures. Protein Science 2000;9:1753–73.

246. Robert M. MacCallum. Striped sheets and protein contact
prediction. Bioinformatics 2004;20(8)i:224–31.

247. Shin Ando, Hitoshi Iba, Erina Sakamoto. Modeling
genetic network by hybrid GP. In: David B. Fogel,
Mohamed A. El-Sharkaw, iXin Yao, Garry Greenwood,
Hitoshi Iba, Paul Marrow, Mark Shackleton, (eds).
Proceedings of the 2002 Congress on Evolutionary Computation
CEC2002. IEEE Press, 2002: pp. 291–96.

248. Shin Ando, Erina Sakamoto, Hitoshi Iba. Evolutionary
modeling and inference of gene network. Information
Sciences 2002;145(3–4):237–59.

249. Sakamoto E, Iba H. Inferring a system of differential
equations for a gene regulatory network by using genetic
programming. In: Proceedings of Congress on Evolutionary
Computation. IEEE Press, 2001: pp. 720–26.

250. Koza JR, Mydlowec W, Lanza G, et al. Reverse
engineering of metabolic pathways from observed data
using genetic programming. In: Proceedings of the Pacific
Symposium on Biocomputing 6. Hawaii: World Scientific
Press, 2001: pp. 434–45.

251. Kyle Ellrott, Chuhu Yang, Frances M. Sladek, et al.
Identifying transcription factor binding sites through
Markov chain optimization. Bioinformatics 2002;
18(90002):100–9.

252. Shinichi Kikuchi, Daisuke Tominaga, Masanori Arita, etal.
Dynamic modeling of genetic networks using genetic
algorithm and S-system. Bioinformatics 2003;19(3):643–50.

253. Gilman A, Ross J. Genetic-algorithm selection of a
regulatory structure that directs flux in a simple metabolic
model. BiophysicalJournal 1995;69:1321–33.

254. Park LJ, Park CH, Park C, et al. Application of genetic
algorithms to parameter estimation of bioprocesses. Medical
and Biological Engineering and Computing 1997;35(1):47–9.

255. Shuhei Kimura, Kaori Ide, Aiko Kashihara, et al. Inference
of S-system models of genetic networks using a
cooperative coevolutionary algorithm. Bioinformatics
2005;21(7):1154–63.

256. Noman N, Iba H. Inference of gene regulatory networks
using S-system and differential evolution. In: Proceedings of
the 2005 Conference on Genetic and Evolutionary Computation.
ACM Press, 2005: pp. 439–46.

257. Ernst Wit, Agostino Nobile, Raya Khanin. Near-optimal
designs for dual channel microarray studies. J Royal
Statistical Society Series C 2005;54(5):817–30.

258. Jonathan D. Wren, Tinghua Yao, Marybeth Langer, et al.
Simulated annealing of microarray data reduces noise and
enables cross-experimental comparisons. DNA and Cell
Biology 2004;23(10):695–700.

259. Kenneth Bryan, Padraig Cunningham, Nadia Bolshakova.
Biclustering of expression data using simulated annealing.
In: 18th IEEE Symposium on Computer-Based Medical Systems
(CBMS’05) 2005: pp. 383–8.

260. Alexander V. Lukashin, Rainer Fuchs. Analysis of
temporal gene expression profiles: clustering by simulated
annealing and determining the optimal number of clusters.
Bioinformatics 2001;17(5):405–14.

261. Emanuel Falkenauer, Arnaud Marchand. Clustering
microarray data with evolutionary algorithms. In: Gary
B. Fogel, David W. Corne (eds). Evolutionary
Computation in Bioinformatics. Morgan Kaufmann, 2002:
pp. 219–30.

262. Ilya Shmulevich, Wei Zhang. Binary analysis and
optimization based normalization of gene expression
data. Bioinformatics 2002;18(4):555–65.

263. Gary B. Fogel. Evolutionary computation for the inference
of natural evolutionary histories. IEEE Connections 2005;
3(1):11–14.

264. Kumar S. A stepwise algorithm for finding minimum
evolution trees. Mol Biol Evol 1996;13(4):584–93.

265. Ribeiro CC, Vianna DS. A GRASP/VND heuristic for
the phylogeny problem using a new neighborhood
structure. International Transactions in Operational Research
2005;12:325–38.

266. Guindon S, Gascuel O. A simple, fast, and accurate
algorithm to estimate large phylogenies by maximum
likelihood. Systematic Biology 2003;52(5):696–704.

267. Barker D. LVB: parsimony and simulated annealing in
the search for phylogenetic trees. Bioinformatics 2004;20(1):
274–5.

268. Rui-Sheng Wang, Ling-Yun Wu, Zhen-Ping Li, et al.
Haplotype reconstruction from SNP fragments by
minimum error correction. Bioinformatics 2005;21(5):
2456–62.

269. Jaime R. Robles, Edwin JCG. van den Oord. lga972:
a cross-platform application for optimizing LD
studies using a genetic algorithm. Bioinformatics 2004;20(17):
3244–5.

270. Moreira A. Genetic algorithms for the imitation of
genomic styles in protein backtranslation. Theoretical
Computer Science 2004;322:297–312.

271. Jain-Shing Wu, Chungnan Lee, Chien-Chang Wu, et al.
Primer design using genetic algorithm. Bioinformatics 2004;
20(11):1710–17.

272. Dan Ashlock, Jim Golden. Evolutionary computation and
fractal visualization of sequence data. In: Gary B. Fogel,
David W. Corne (eds). Evolutionary Computation in
Bioinformatics. Morgan Kaufmann, 2002: pp. 231–53.

112 Larran‹ aga et al.

