
DOI: 10.1126/science.1103736
, 896 (2005);307 Science

 et al.K. L. Briggman
Optical Imaging of Neuronal Populations During Decision-Making

 This copy is for your personal, non-commercial use only.

 clicking here.colleagues, clients, or customers by 
, you can order high-quality copies for yourIf you wish to distribute this article to others

 
 here.following the guidelines 

 can be obtained byPermission to republish or repurpose articles or portions of articles

 
 ): December 18, 2012 www.sciencemag.org (this information is current as of

The following resources related to this article are available online at

 http://www.sciencemag.org/content/307/5711/896.full.html
version of this article at: 

including high-resolution figures, can be found in the onlineUpdated information and services, 

http://www.sciencemag.org/content/suppl/2005/02/10/307.5711.896.DC1.html 
can be found at: Supporting Online Material 

 http://www.sciencemag.org/content/307/5711/896.full.html#ref-list-1
, 15 of which can be accessed free:cites 29 articlesThis article 

71 article(s) on the ISI Web of Sciencecited by This article has been 

 http://www.sciencemag.org/content/307/5711/896.full.html#related-urls
42 articles hosted by HighWire Press; see:cited by This article has been 

 http://www.sciencemag.org/cgi/collection/neuroscience
Neuroscience

subject collections:This article appears in the following 

registered trademark of AAAS. 
 is aScience2005 by the American Association for the Advancement of Science; all rights reserved. The title 

CopyrightAmerican Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 
(print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by theScience 

 o
n 

D
ec

em
be

r 
18

, 2
01

2
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://oascentral.sciencemag.org/RealMedia/ads/click_lx.ads/sciencemag/cgi/reprint/L22/1360082240/Top1/AAAS/PDF-R-and-D-Systems-Science-121101/RandD.raw/1?x
http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/content/307/5711/896.full.html
http://www.sciencemag.org/content/307/5711/896.full.html#ref-list-1
http://www.sciencemag.org/content/307/5711/896.full.html#related-urls
http://www.sciencemag.org/cgi/collection/neuroscience
http://www.sciencemag.org/


11. F. Verbunt, in Omega Centauri, A Unique Window into
Astrophysics, F. van Leeuwen, J. D. Hughes, F. Piotto, Eds.
(ASP Conference Series no. 265, ASP, San Francisco,
CA, 2002), p. 289.

12. C. O. Heinke et al., Astrophys. J. 590, 809 (2003).
13. D. Pooley et al., Astrophys. J. 591, L131 (2003).
14. S. Sigurdsson, E. S. Phinney, Astrophys. J. Suppl. Ser.

99, 609 (1995).
15. S. R. Kulkarni, S. B. Anderson, in Dynamical Evolution

of Star Clusters–Confrontation of Theory and Obser-
vations, P. Hut, J. Makino, Eds. (International Astro-
nomical Union Symposium no. 174, Kluwer,
Dordrecht, Netherlands, 1996), p. 181.

16. H. N. Cohn, P. M. Lugger, J. E. Grindlay, P. D. Edmonds,
Astrophys. J. 571, 818 (2002).

17. A. S. Fruchter, W. M. Goss, Astrophys. J. 536, 865 (2000).
18. The 442-ms pulsar J1748j2444 was initially identi-

fied as Ter 5 B (B1744j24B) but is now known to be
a foreground pulsar unrelated to Terzan 5 (20).

19. A. G. Lyne et al., Nature 347, 650 (1990).
20. A. G. Lyne, S. H. Mankelow, J. F. Bell, R. N. Manchester,

Mon. Not. R. Astron. Soc. 316, 491 (2000).
21. S. M. Ransom, thesis, Harvard University, Cambridge,

MA (2001).
22. The National Radio Astronomy Observatory is a

facility of the National Science Foundation operated
under cooperative agreement by Associated Univer-
sities, Incorporated.

23. D. Kaplan et al., in preparation.
24. D. J. Nice, S. E. Thorsett, Astrophys. J. 397, 249 (1992).

25. W. E. Harris, Astron. J. 112, 1487 (1996).
26. These comparisons assume a typical pulsar spectral

index of j1.6 (32).
27. S. M. Ransom, S. S. Eikenberry, J. Middleditch, Astron.

J. 124, 1788 (2002).
28. S. M. Ransom et al., Astrophys. J. 604, 328 (2004).
29. Ter 5 E was a candidate (i.e., unconfirmed) pulsar in (21).
30. A. G. Lyne et al., Mon. Not. R. Astron. Soc. 295, 743

(1998).
31. E. S. Phinney, S. R. Kulkarni, Annu. Rev. Astron.

Astrophys. 32, 591 (1994).
32. D. R. Lorimer, J. A. Yates, A. G. Lyne, D. M. Gould,

Mon. Not. R. Astron. Soc. 273, 411 (1995).
33. J. Navarro, G. de Bruyn, D. Frail, S. R. Kulkarni, A. G.

Lyne, Astrophys. J. 455, L55 (1995).
34. A. G. Lyne, R. N. Manchester, J. H. Taylor, Mon. Not.

R. Astron. Soc. 213, 613 (1985).
35. S1950,min is about 8 mJy for P È 2- to 4-ms isolated or

long orbital period MSPs.
36. F. A. Rasio, D. C. Heggie, Astrophys. J. 445, L133 (1995).
37. A. S. Fruchter, D. R. Stinebring, J. H. Taylor, Nature

333, 237 (1988).
38. A. R. King, M. B. Davies, M. E. Beer, Mon. Not. R.

Astron. Soc. 345, 678 (2003).
39. A. Possenti et al., in Binary Radio Pulsars, F. Rasio,

I. Stairs, Eds. (ASP Conference Series no. 328, ASP,
San Francisco, CA, 2005), p. 189.

40. J. Tassoul, Astrophys. J. 444, 338 (1995).
41. F. A. Rasio, S. A. Shapiro, Astrophys. J. 377, 559 (1991).
42. L. L. Smarr, R. Blandford, Astrophys. J. 207, 574 (1976).

43. N. Wex, Mon. Not. R. Astron. Soc. 298, 997 (1998).
44. E. M. Splaver et al., Astrophys. J. 581, 509 (2002).
45. D. J. Nice, E. M. Splaver, I. H. Stairs, in Binary Radio

Pulsars, F. Rasio, I. Stairs, Eds. (ASP Conference Series
no. 328, ASP, San Francisco, CA, 2005), p. 371.

46. J. M. Lattimer, M. Prakash, Science 304, 536 (2004).
47. The Tempo program is available online at http://

pulsar.princeton.edu/tempo.
48. We thank F. Rasio, S. Sigurdsson, and M. van Kerkwijk

for extremely useful discussions and J. Herrnstein,
L. Greenhill, D. Manchester, A. Lyne, and N. D’Amico for
providing or aiding with the Parkes data from 1998 and
2000. J.W.T.H. is a Natural Sciences and Engineering
Research Council of Canada (NSERC) Post-Graduate
Scholarship–Doctoral fellow. I.H.S. holds an NSERC
University Faculty Award and is supported by a
Discovery grant and University of British Columbia
start-up funds. F.C. thanks support from NSF. V.M.K.
holds a Canada Research Chair and is supported by an
NSERC Discovery Grant and Steacie Fellowship Sup-
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Optical Imaging of
Neuronal Populations During

Decision-Making
K. L. Briggman,1 H. D. I. Abarbanel,2,3 W. B. Kristan Jr.1*

We investigated decision-making in the leech nervous system by stimulating
identical sensory inputs that sometimes elicit crawling and other times
swimming. Neuronal populations were monitored with voltage-sensitive dyes
after each stimulus. By quantifying the discrimination time of each neuron,
we found single neurons that discriminate before the two behaviors are
evident. We used principal component analysis and linear discriminant
analysis to find populations of neurons that discriminated earlier than any
single neuron. The analysis highlighted the neuron cell 208. Hyperpolarizing
cell 208 during a stimulus biases the leech to swim; depolarizing it biases the
leech to crawl or to delay swimming.

Understanding the mechanisms of behavioral

choice would be a major step in bringing to-

gether neuroscience, psychology, and ethol-

ogy (1). Research into decision-making has

used several different strategies. One very

productive approach is to have a primate

make a sensory discrimination between very

similar stimuli while the activity of neurons

in various parts of the nervous system is re-

corded (2–8). A second approach uses choice

competition: presenting an animal with two

stimuli that produce mutually exclusive be-

haviors (choices), to see which behavior pre-

dominates (9). This has led to the notion that

behavioral choices are hierarchical. The neu-

ronal mechanism originally proposed to un-

derlie behavioral hierarchies was inhibitory

interactions among the neurons responsible

for triggering the different behaviors (10).

Later work has found that neurons capable of

eliciting one behavior are often activated

during other, sometimes conflicting, behav-

iors (11, 12). Among other things, this

observation suggests that individual decision-

making neurons can be multiplexed—they con-

tribute to choosing more than one behavior—

and that they trigger behaviors by being

active with other combinations of neurons.

We used a third approach to study decision-

making: choice variability. We presented a

nervous system with identical stimuli that

repeatedly produce two different, mutually ex-

clusive behaviors with roughly equal proba-

bilities. This approach allowed us to focus on

neurons involved in decision-making that are

downstream from neurons used to make

sensory discriminations.

We used the isolated central nervous

system (CNS) of the medicinal leech. Mo-

tor neuron activity patterns characteristic

of swimming (13) and crawling (14) can be

elicited from isolated preparations by elec-

trically stimulating peripheral nerves. Such

sensory stimulation activates mechanosensory

neurons in patterns that mimic touching the

leech_s skin (15). Stimulating the same kinds

of mechanosensory neurons in different loca-

tions on the leech produces characteristic be-

haviors like swimming or crawling (16, 17).

We follow the terminology proposed by Schall

(18), referring to the different behavioral out-

puts as choices and the process leading up to

a choice as decision-making.

Previously, recording from neurons intra-

cellularly one at a time, then stimulating them to

determine their effect on the initiation of

behavior, has successfully uncovered inter-

neurons that activate swimming (19, 20),

crawling (21), and whole-body shortening

(22). However, to explore how decisions are

made by populations of neurons (11), we

needed to record from many neurons at once

(23). We therefore used voltage-sensitive

dyes (24, 25) that allowed us to record

simultaneously from many neurons in a

midbody segmental ganglion at a resolution

better than 5 mV (26).

The leech CNS makes behavioral
choices. The isolated leech CNS consists

of a nerve cord connecting 21 segmental

ganglia plus a head and tail brain (Fig. 1A).

This preparation generates motor patterns that

are recognizable as behaviors observed in in-
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tact leeches, including swimming and crawling.

We exposed one ganglion between ganglia 7

(G7) and 10 (G10) for voltage-sensitive dye

imaging. We also recorded extracellularly from

at least two peripheral nerves [dorsal poste-

rior (DP) nerves] using suction electrodes.

These electrodes were used to both stimulate

and record. A train of electrical pulses to a

DP nerve mimics a touch to the body wall

in an intact leech (15) and can elicit both

swimming and crawling (Fig. 1B). By stim-

ulating DP nerves between G13 and G16, we

evoked swimming in about half of the trials

(blue) and crawling in the other half (red).

Each trial lasted 60 s, with an intertrial

interval of three min. Although the nerve

activity was recorded for the entire trial, the

ganglion was imaged during only the initial

10 s (Fig. 1B, green bar). We imaged the neu-

rons on the ventral surface of a midbody

segmental ganglion (Fig. 1C). In each prepa-

ration, we were able to resolve 130 to 150

of the È160 known neurons (27) on the ven-

tral surface. The fluorescence resonance ener-

gy transfer (FRET)–based voltage-sensitive

dye we used (24, 25) is very sensitive to small

membrane potential fluctuations (Fig. 1D).

For comparison, we show the raw data from

a swim trial and a crawl trial (Fig. 1, E and

F). Almost every neuron was activated im-

mediately after each stimulus. There was a

clear difference in the activity of many neu-

rons once the motor pattern was apparent in

the nerve recordings, usually after È4 s. These

neurons are presumably central pattern gen-

erating (CPG) interneurons or motor neurons

that generate the swimming or crawling

rhythm. We were more interested in activity

differences before this time, between the

stimulus and 4 s, when the decision between

the two behaviors was made.

Discrimination by single neurons. The

activity patterns of a subpopulation of single

neurons were able to discriminate swimming

trials from crawling trials. Of the neurons

that responded to the stimulus, we observed

four classes of responses: nondiscriminating

(ND) cells, early discriminating (ED) cells,

late discriminating (LD) cells, and transiently

discriminating (TD) cells (Fig. 2A). We quan-

tified the earliest discrimination time of each

single cell (t
SC

) by performing a sliding

window analysis of variance (ANOVA) for

each cell (Fig. 2B).

Neurons were ordered by their earliest

discrimination times (Fig. 2C). The number

of cells that discriminated at some point in

time (ED, LD, or TD cells) ranged between

50 and 75% across experiments. We also per-

formed an ANOVA on the nerve recordings

(28) to determine the time (t
NERVE

) at which

we could discriminate the behaviors on the

basis of motor neuron activity (Fig. 2, C and

D, green line). We were most interested in

cells that discriminate before t
NERVE

because

these cells are predictive of the behaviors

and are candidate decision-making neurons.

A histogram of the earliest t
SC

for each cell

shows that 17 cells (mean T SD 0 19 T 6 cells;

n 0 6 preparations) discriminated before t
NERVE

(Fig. 2D).

Fig. 1. Recording behavioral choices in the isolated leech CNS. (A) Schematic of the sites of
recording and stimulation. A midbody (G7 to G10) ganglion was imaged with a voltage-sensitive
dye. Suction electrodes were used to record from and stimulate DP nerves (DP13 to DP15). (B)
Eight sequential 60-s trials demonstrated intertrial variability. The stimulus (2 to 3 V, 10-ms pulses
at 15 Hz) lasted 300 ms (small black bar). A ganglion was imaged during the initial 10 s of each
trial (green bar). Trials are color-coded by behavior: swimming (blue, È1- to 2-Hz bursts) or
crawling (red, È0.05- to 0.1-Hz bursts). (C) The population of neurons (143 in this example) from
which we recorded on the ventral surface of a ganglion. (D) We averaged the pixels from each
neuron to produce a time-varying record of the percentage change in the fluorescence signal
(measured as dF/F). The top two traces are the signals from the two dye molecules, coumarin and
oxonol. The largest and least noisy signal is the ratio of these two signals (third trace); it was used
for all further analysis. The simultaneous intracellular recording (bottom trace) demonstrates the
high sensitivity of the dye (15 to 20% per 100 mV). Pot., potential. (E and F) Raw optical data
from two trials, one which elicited (E) swimming and the other (F) crawling. The optical signal for
each neuron is plotted versus time. Color encodes the percent change in fluorescence (dF/F):
Positive changes (red) correspond to relative depolarization, and negative changes (blue)
correspond to relative hyperpolarization. The panels below each raster plot are simultaneous DP
nerve recordings. Vertical black lines indicate the onset and duration of the stimulus.
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Discrimination by populations of neu-
rons. We view the nervous system of the leech

as a dynamical system (29, 30). Abstractly, the

behavioral state of the nervous system at any

instant is a point in the phase space of this

system (Fig. 3A). Each axis represents a

variable that measures the temporal evolution

of trajectories in this space (31, 32). For us,

these variables are linear combinations of

observed neurons. As in the single-cell anal-

ysis, we labeled the time at which the tra-

jectories have significantly diverged as the

discrimination time. The decision-making

period must occur at or before this time.

We recognize that the eventual choice may

depend on the behavioral state before stim-

ulation, but we did not address this issue in

these experiments.

The single-cell discrimination analysis

gave us an idea of the number of potential

candidate decision-making cells. However,

the purpose of simultaneously recording

populations of neurons was to look at

dynamic interactions among them. Using the

multiple recordings, we asked whether a

linear combination of neurons could discrim-

inate earlier in time than any single neuron.

To address this question, we used two analysis

techniques in conjunction: linear discriminant

analysis (LDA) (33) and principal component

analysis (PCA) (28, 34–36).

PCA identifies dimensions that sepa-
rate behaviors. For the experiment shown

in Fig. 3C, we performed PCA on a data set

containing 143 neurons (dimensions) measured

across 14 trials. We show the first three prin-

cipal components (PCs) (Fig. 3B). The bar

graphs represent the dimensionless contribu-

tion of each neuron to each PC. Values close

to zero indicate a small contribution, and high

positive or negative values indicate a large

contribution. The first three PCs typically ac-

count for 60 to 80% of the overall variance in

a data set. The remaining 140 PCs are ignored

here for visualization purposes. Effectively,

we have reduced the dimensionality of the

data set from 143 (neurons) to 3 (linear com-

binations of neurons, the PCs).

We plotted the data three-dimensionally,

using the first three PCs as the axes (Fig. 3C).

The trajectories all start in one region and

then diverge toward two different regions of

the space. From this plot, we extract two

features: (i) The separation between the trajec-

tories is an objective measure of decision-

making. (ii) The neurons that contribute most

to this separation (i.e., have large positive

or negative values) are most likely to be re-

sponsible for making the choice.

Occasionally, we observed a trial such as

the one shown in green in Fig. 3C. This trial

would have normally been classified as a

crawling trial on the basis of the nerve re-

cording. However, the trajectory in the phase

space initially diverges in the direction of the

swimming trajectories. After a delay, the tra-

jectory turns and moves toward the direction

of the crawling trajectories. Although trials

such as this were rare (2 out of 60 trials from

six experiments), we interpret this as evi-

dence that decision-making is a dynamical

process: The leech nervous system can start

to make a decision and subsequently change

to an alternative choice.

LDA finds neuronal populations that
discriminate. Having reduced the dimension-

ality of the data set with PCA, we asked (i)

at what time did the swimming and crawling

trajectories significantly diverge, and (ii)

which neurons are responsible for the sepa-

ration at this time? We thus divided the tem-

poral trajectories into time bins and estimated

the linear discriminant for each bin. We then

performed an ANOVA on the data in each

respective time bin projected onto each lin-

ear discriminant. Therefore, each time bin

has an associated P value. The time at which

this P value became significant is denoted

t
LDA

. The time bin width and the number of

PCs were varied to find the optimal t
LDA

for

each data set (37) (fig. S1).

We show an estimated linear discriminant

in Fig. 3D using three PCs. Neurons contrib-

uting strongly to the linear discriminant were

those that best helped discriminate between

swimming and crawling at t
LDA

. In this case,

PC3 had the largest weighting, so the linear

discriminant direction is similar to PC3.

We wished to visualize the spatial loca-

tions of the neurons with large-magnitude

contributions to the linear discriminant. We

Fig. 2. Single-cell discrimination. (A) Examples of the four classes of discrimination responses
observed. Each graph plots overlapping raw fluorescence traces from five swimming (blue) and
five crawling (red) trials for a single cell. In this and all subsequent plots, the gray shaded region
denotes the time and duration of the stimulus. (B) A sliding-window ANOVA was used to quantify
the discrimination times for each cell. The earliest discrimination time (tSC) was the time at which the
swimming and crawling trajectories significantly diverged (black arrow). (C) A raster plot of the
ANOVA results from all of the cells from one experiment. Black indicates nonsignificant times, and
white indicates significantly different times (P G 10j6). The discrimination time based on the nerve
recording of the behavior is shown (tNERVE, green line). (D) A histogram of the earliest tSC from the
raster plot in (C). Seventeen neurons produced significantly different trajectories before tNERVE.
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used color to encode the magnitude of each

neuron and projected the colors onto a map

of the ganglion (Fig. 3E). This spatial gan-

glion map was used as a guide for identify-

ing candidate decision-making neurons.

Discrimination of single neurons versus
neuronal populations. We compared the dis-

crimination times of the earliest single cell

(t
ESC

) and the linear discriminant (t
LDA

) from

six experiments (Fig. 4A). In all experiments,

t
LDA

occurred before t
ESC

. t
SC

times (black

lines) that occurred before the t
NERVE

times

(green lines) are also plotted.

The neuronal populations contributing

highly to the linear discriminant were generally

different from the neurons with early single-

cell discrimination times (Fig. 4, B and C).

Single-cell discrimination times (t
SC

) in Fig.

4C are color-coded, with yellow representing

the earliest t
SC

times and red representing

later t
SC

times. The ganglion maps from all

experiments are given in figs. S2 and S3.

Cell 208 biases decisions. The analyses

described to this point were performed with-

in 15 min during an ongoing experiment, so

the ganglion maps were used to identify candi-

date decision-making neurons. To test wheth-

er these neurons were sufficient to influence

decision-making individually, we passed po-

larizing current into each of them during the

nerve shock. We impaled each candidate neu-

ron and injected hyperpolarizing or depo-

larizing current before and after the nerve

shock. None of the neurons with early single-

cell discrimination times (Fig. 4C) significant-

ly affected the elicited behaviors (33 neurons

from six preparations). When we tested neu-

rons contributing strongly to the linear dis-

criminant (17 neurons from six preparations),

we found a neuron, cell 208, that can se-

lectively bias the decision to swim or to crawl

(Fig. 4B, arrow, and fig. S3). When depolar-

ized or hyperpolarized alone, this neuron did

not initiate any behaviors (28). However,

when stimulated during a nerve shock, cell

208 biased the decision toward swimming

or crawling (Fig. 4D). With cell 208 hyper-

polarized, the nerve shock reliably evoked

swimming (blue trials); with it depolarized,

the nerve shock evoked crawling or delayed

swimming (red trials). In five preparations,

the correlation between the level of current

injection and the observed behavior (Fig. 4E)

was significant (P G 0.01, Fisher’s exact

test). We conclude that this neuron plays a

role in decision-making. The neuron was

labeled with an intracellular dye in all exper-

iments and identified as cell 208 on the basis

of its morphology and electrophysiological

properties (38).

Discussion. One of the central questions

we attempted to address is whether decision-

making is performed by single neurons or by

neuronal populations (39). One extreme pro-

posal is multiple competing circuits in which

decision-making neurons for one behavior

act by inhibiting the other behaviors, so that

only one behavior occurs at a time (9, 10).

At the other extreme would be the complete

sharing of decision-making neurons by two

or more behaviors, with the dynamics of the

network determining which behavior is cho-

sen. In the leech, we hypothesize a middle

ground in which decision-making neurons

are partially shared, where the dynamics of

neuronal populations can determine choices,

but individual neurons in these populations

can profoundly influence decision-making.

This view is supported by our results that (i)

Fig. 3. Population discrimination. (A) A schematic of our conceptual framework. The state of the
leech CNS at any instant is a point in a d-dimensional phase space (d 0 3 in the drawing). The
temporal evolution of its state defines a trajectory in this space. Before stimulation, the state of
the nervous system is in a rest region. Upon stimulation, the trajectories diverge toward either a
swimming or a crawling region on the basis of which choice was made. (B) The first PC from a
single experiment. Each PC is a linear combination of the observed neurons in the N-dimensional
data set (N 0 143 in this experiment). (C) The same data as in (B), projected onto the three PC
axes. Each trajectory represents a trial (swimming blue, crawling red). The average swimming and
crawling trajectories are in bold. Black dots indicate 1-s intervals along the average trajectories.
The right panel plots the simultaneous DP nerve recording for each trial. The black arrow illustrates
the direction of a linear discriminant estimated for a 500-ms time bin in the PC space. The
direction of the linear discriminant is a weighted vector sum of the three PCs with weights x, y,
and z. (D) The resulting linear discriminant, a linear combination of the three PCs. This direction is
similar to that of PC3 in (B). (E) The linear discriminant weightings for each of the neurons
projected onto a map of the ganglion. Red indicates large-magnitude (both positive and negative)
contributions to the linear discriminant direction; blue indicates small contributions.
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neuronal populations discriminated between

swimming and crawling earlier in time than

did single neurons; (ii) none of the single

neurons that discriminated early were able to

bias the decision; and (iii) although cell 208

was able to bias the decision, it was part of a

population defined by the linear discriminant.

The finding that a linear combination of

neurons discriminates early in time shows

that there is sufficient information in a pop-

ulation of neurons for an experimenter to

predict the ultimate choice. However, this re-

sult demonstrates only that the activity pattern

of this network correlates with the eventual

choice. To show that this information is used

during decision-making, we needed to manip-

ulate the network. Ideally, we would like to

selectively hyperpolarize or depolarize a pop-

ulation of individual cells; however, we were

technologically limited to stimulating one or

two cells at a time.

Although we have not exhaustively tested

all candidate neurons detected, most of the

neurons tested were not able to bias the be-

havioral choice. However, we were able to

reliably bias the choice with one of the linear

discriminant candidates, cell 208. A relative-

ly large depolarization or hyperpolarization

of cell 208 biased the choice toward crawl-

ing or swimming, respectively. Although this

result was statistically significant, cell 208

did not determine the choice on all trials.

This less-than-perfect control by cell 208 can

probably be credited to the cell 208 homo-

logs in each of the 20 other ganglia (38) that

we did not stimulate.

Cell 208 has previously been described as

a CPG neuron (38), but a unique one that con-

nects the swim-initiating network to the swim

CPG circuit. It has not been shown to trigger

behaviors in intact isolated nerve cords. Our

results suggest that it is also part of a decision-

making circuit, although we do not yet know

its role in this circuit or the mechanism by

which it biases the system. Although it is pos-

sible that cell 208 is driven by a higher-order

decision-making neuron, we have shown that

it alone is capable of biasing the entire system.

Most recent research about decision-making

has focused on value-based choices in which

there is always a right and wrong answer (2–8).

We propose that the term decision-making

should refer to a spectrum of goal-driven be-

haviors. At the most complex level are con-

scious, introspective choices that incorporate

expected reward (1). At the simplest level are

reproducible, predictable reflexes. There is a

large area of involuntary, subconscious decision-

making that has been neglected. For example,

suppose your goal is to walk down the street.

Which foot do you lead with? This is a choice

that is made without conscious effort and will

vary from time to time. Although this choice is

goal-directed, there is no correct or incorrect

choice. In our reduced preparation, there is

no obvious value associated with swimming

versus crawling, although both choices would

achieve the goal of escaping from a stimulus.

Why then does the leech, a relatively sim-

ple nervous system, not respond in a predict-

able manner? We hypothesize two possibilities:

Either the choice depends on the rest state

before each stimulus, or the state is reset

upon stimulation and then diverges stochas-

tically because of noise in the system. The

Fig. 4. Comparing single-cell discrimination to population discrimination. (A) The distribution of
discrimination times from six experiments. Discrimination times for the LDA (tLDA, red), single
cells (tSC, black), earliest single cells (tESC, cyan), and nerve recordings (tNERVE, green) are shown.
The average difference between tLDA and tESC was 290 T 60 ms (mean T SEM). Single-cell dis-
crimination times occurring later than the tNERVE for each experiment are omitted. (B) The color-
coded linear discriminant weightings from a single experiment (color-coding as in Fig. 3E). The
black arrow indicates cell 208. (C) The color-coded single-cell discrimination times (tSC) from the
same experiment. Yellow represents the earliest discrimination times, and red represents later
discrimination times. (D) The result from one experiment. Cell 208 was intracellularly impaled and
alternately depolarized (þ1.5 nA) or hyperpolarized (–1.5 nA) for the initial 10 s of each trial (black
bar). The membrane resistance of cell 208 at rest was È50 MW. A nerve shock was delivered for
300 ms as in Fig. 1B. In the four trials in which cell 208 was hyperpolarized (blue), the preparation
swam within 10 s. In the four remaining trials in which cell 208 was depolarized (red), the
preparation either produced the crawling motor pattern or it delayed swimming until the intra-
cellular stimulation ended. (E) A contingency table summarizing the pooled results from five
preparations. The values in parentheses are the expected counts if the observed behavior did not
depend on the stimulus condition.
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leech may provide a system in which to re-

solve this important question.
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Nodal Quasiparticles and
Antinodal Charge Ordering in

Ca2–xNaxCuO2Cl2
Kyle M. Shen,1 F. Ronning,1* D. H. Lu,1 F. Baumberger,1

N. J. C. Ingle,1 W. S. Lee,1 W. Meevasana,1 Y. Kohsaka,2

M. Azuma,3 M. Takano,3 H. Takagi,2,4 Z.-X. Shen1.

Understanding the role of competing states in the cuprates is essential for
developing a theory for high-temperature superconductivity. We report angle-
resolved photoemission spectroscopy experiments which probe the 4a0 � 4a0

charge-ordered state discovered by scanning tunneling microscopy in the lightly
doped cuprate superconductor Ca2–xNaxCuO2Cl2. Our measurements reveal a
marked dichotomy between the real- and momentum-space probes, for which
charge ordering is emphasized in the tunneling measurements and photo-
emission is most sensitive to excitations near the node of the d-wave
superconducting gap. These results emphasize the importance of momentum
anisotropy in determining the complex electronic properties of the cuprates and
places strong constraints on theoretical models of the charge-ordered state.

To explain the mechanism of high-temperature

superconductivity, it is necessary to under-

stand how the parent Mott insulator, charac-

terized by very strong electron-electron

repulsion, can evolve into a high–transition

temperature (T
c
) superconductor upon the

addition of a relatively small number of

carriers. In the intervening region between

the Mott insulator and high-T
c

super-

conductor, the so-called Bpseudogap[ re-

gime, highly anomalous physical properties

have been observed (1). Many attempts to

explain these unusual properties have cen-

tered around the possibility of competing

orders, such as orbital currents (2), nanoscale

charge ordering (3, 4), or electronic phase sep-

aration (5). The particular importance of

charge ordering has recently been under-

scored by the discovery of a distinct real-

space pattern of 4a
0
� 4a

0
two-dimensional

charge ordering (2DCO) in Ca
2–x

Na
x
CuO

2
Cl

2

(Na-CCOC) by scanning tunneling microsco-

py (STM) (6). Angle-resolved photoemission

spectroscopy (ARPES) can provide crucial
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