
Chapter 2

A Theory of Data

At first glance, it would seem that we have an infinite way to collect data. Measuring the
diameter of the earth by finding the distance to the horizon, measuring the height of waves
produced by a nuclear blast by nailing (empty) beer cans to a palm tree, or finding Avogadro’s
number by dropping oil into water are techniques that do not require great sophistication in
the theory of measurement. In psychology we can use self report, peer ratings, reaction times,
psychophysiological measures such as the Electric Encephelagram (EEG), the basal level of
Skin Conductance (SC), or the Galvanic Skin Response (GSR). We can measure the number
of voxels showing activation greater than some threshold in a functional Magnetic Resonance
Image (fMRI), or we can measure life time risk of cancer, length of life, risk of mortality,
etc. Indeed, the basic forms of data we can collect probably are unlimited. But in fact, it
is possible to organize these disparate forms of data in terms of an abstract organization in
terms of what is being measured and in comparison to what.

2.1 A Theory of Data: Objects, People, and Comparisons

Consider the following numbers and try to assign meaning to them: (2.718282), (3.1415929),
(24), (37), (98.7), (365.256363051), (3,413), (86,400), (31,557,600), (299,792,458), and (6.0221415±
0.0000010)× 1023 1. Because a number by itself is meaningless, all measures reflect a com-
parison between at least two elements. Without knowing the units of measure it is difficult
to recognize that 37 °C and 98.7 °F represent the same average body tempature, that 24
(hours) and 86,400 (seconds) both represent one day, and that 365.256 (days) is the same
length of time as 31,557,600 (seconds).

The comparison can be one of order (which is more) or one of proximity (are the numbers
the same or almost the same?). Given a set of Objects (O) and a set of People (P) Clyde
Coombs, in his Theory of Data organized the types of measures one can take in a 2 x 2
x 2 table of the possible combinations of three distinct dimensions (Coombs, 1964). The
elements may be drawn from the set of People (P), the set of Objects (O), or the Cartesian
Cross Products of the sets of People (P x P), Objects (OxO), or People by Objects (PxO).

1 e, pi, hours in day, average body temperature in °C, average body temperature in °F, days in a
sidereal year, BTUs/KWH, seconds in a day, seconds in a year, speed of light in meters/sec, number
of atoms in a mole (Avogadro’s Number).
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16 2 A Theory of Data

Furthermore, we can compare the results of these comparisons by forming either single dyads
or pairs of dyads.2

That is, if we let O j refer to the jth object and Pi to the ith person, then we can compare
O j to Ok, Pi to Pk, Pi to O j , and so on.

1. The type of comparison made can either be one of order (is Pi < Pk) or of distance (if
δ = |Pi−Pk|, then is δ < X)?

2. The elements being compared may be People, Objects, or People x Objects.
3. The number of dyads may be either one or more.

2.1.1 Modeling the comparison process

The two types of comparisons considered by Coombs were an order relationship and a prox-
imity relationship. Given three objects on a line, we say that if A is greater than B if A- B
> 0. Similarly, B is greater than C if B-C > 0. Without error, if A, B and C are on a line, if
A > B and B > C, then A > C. With error we say that

p(A > B|A,B) = f (A−B). (2.1)

Alternatively, A is close to B if the absolute difference between them, is less than some
threshold, δ .

p(|A−B| < δ |A,B,δ ) = f (|A−B|,δ ). (2.2)

This distinction may be seen graphically by considering the probability of being greater as a
function of the distance A -B (Fig 2.1) or the absolute difference between A and B.3

By using these three dimensions, it is possible to categorize the kind of data that we collect
(Table 2.1).

2.2 Models and model fitting

For all of the following examples of estimating scale values it is important to ask how well do
the estimated scale values recreate the data from which they were derived. Good scale values
for the objects or for the people should provide a better fit to the data than do bad scale
values. That is, given a data matrix, D, with elements di j, we are trying to find model values,
mi and m j such that some function, f, when applied to the model values, best recreates di j.
For data that are expressed as probabilities of an outcome, the model should provide a rule
for comparing multiple scale values that are not necessarily bounded 0-1 with output values
that are bounded 0-1. That is, we are interested in a mapping function f such that for any
values of mi and m j

0≤ f (mi,m j)≤ 1 (2.3)

2 This taxonomy can be generalized if we consider a third component of measurement: when is the
measurement taken. We will consider the implications of a three dimensional organization in terms of
Cattell’s Databox (Cattell, 1966a) in chapter ??
3 The R-code for this and subsequent figures is included in Appendix-H
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Fig. 2.1 Left panel: The probability of observing A > B as a function of the difference between A
and B. The greater the signed difference, the greater the probability that A will be reported as greater
than B. The three lines represent three different amounts of sensitivity to distance. Right Panel: The
probability of observing A is the same as (close to) B as a function of the difference between A and B.
The less the absolute difference, the greater the probability they will be reported as the same.

Although there are any number of such functions, there are at least two conventional ones
that have such a property, one is the inverse normal transformation (where p values are
mapped into the corresponding z values of a cumulative normal distribution), the other is
the inverse logistic function (where p values are mapped onto the corresponding values of the
logistic function). Both of these mappings satisfy the requirements of Equation 2.3 for any
values of x and y.

Remembering Equations 1.1 and 1.2, we need to find scale values that minimize some
function of the error. Applying f(mi,m j) for all values of i and j produces the model matrix
M. Let the error matrix E = D - M. Because average error will tend to be zero no matter how
badly the model fits, median absolute error or average squared error are typical estimates
of the amount of error. But such estimates are essentially “badness of fit” indices; goodness
of fit indices tend to be 1 - badness. Both goodness or badness estimates should somehow
reflect the size of the error with respect to the original data matrix. Thus, a generic estimate
of goodness of fit becomes
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Table 2.1 The theory of data provides a 3 x 2 x 2 taxonomy for various types of measures

Elements of Dyad Number
of Dyads

Comparison Name Chapter

People x People 1 Order Tournament rankings Theory of Data 2.4
People x People 1 Proximity Social Networks Theory of Data 2.5
Objects x Objects 1 Order Scaling Thurstonian scaling 2.6.2
Objects x Objects 1 Proximity Similarities Multidimensional scaling

2.6.2
People x Objects 1 Order Ability Measurement Test Theory 7, 8.1
People x Objects 1 Proximity Attitude Measurement Attitudes 8.5.2
People x People 2 Order Tournament rankings
People x People 2 Proximity Social Networks Theory of Data 2.5
Objects x Objects 2 Order Scaling Theory of Data 2.7
Objects x Objects 2 Proximity Multidimensional scaling

Individual Differences in
MDS

Theory of Data 2.7

People x Objects 2 Order Ability Comparisons
People x Objects 2 Proximity Preferential Choice Unfolding Theory 2.8

GF = f (Data,Model) (2.4)

Variations on this generic goodness of fit estimate include Ordinary Least Squares Estimates
such as

GF =
(Data−Model)2

Data2 (2.5)

as well as measures of median absolute deviation from the median, or many variations on
Maximum Likelihood Estimates of χ2.

2.3 A brief diversion: Functions in R

The examples in the rest of this (and subsequent) chapter(s) are created and analyzed using
small example snippets of R code. For the reader interested just in psychometrics, these
snippets can be ignored and the text, tables, and figures should suffice. However, reading the
brief pieces of code and trying to run them line by line or section by section will help the
reader learn how to use R. Even if you choose not to run the R-code while reading the text,
by reading the R, some familiarity with R syntax will be gained.

As discussed in much more detail in Appendix A, R is a function driven language. Almost
all operations invoke a function, usually by passing in some values, and then taking the
output of the function as an object to be used in a later function. All functions have the
form of function(parameter list). Some parameter lists are empty. Most functions have names
that are directly understandable, at least by context. To see how a function works, entering
the name of the function without the parentheses will usually show the function, although
some functions are invisible or hidden in namespaces. A list of all functions used in the text
is in Appendix B. Table B.1 briefly describes all the functions used in this chapter.

Programming in R can be done by creating new functions made up of other functions.
Packages are merely combinations of these new functions that are found to be useful. The
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psych package is a collection of functions that have proven to be useful in doing psychometrics.
The functions within the package can be examined by entering the function name without
the parentheses. For simplicity of reading the text, if more than a few lines of code are needed
for the example, the R code will be included in appendix C rather than the text.

To obtain more information about any function, using the help function (?) provides a
definition of the function, the various options possible when calling it, and examples of how to
use the function. Studying the help pages will usually be enough to understand how to use the
function. Perhaps the biggest problem is remembering the amazing number of functions that
are available. Various web pages devoted to just listing the most used functions are common
(see, e.g., R/Rpad reference card at http://www.rpad.org/Rpad/Rpad-refcard.pdf).

2.4 Tournaments: Ordering people (pi > p j)

The most basic datum is probably comparing one person to another in terms of a direct order
relationship. This may be some sort of competition. Say we are interested in chess playing
skill and we have 16 people play everyone else in a series of round robin matches. This leads
to matrix of wins and losses. In Table 2.2, let a 1 in a cell mean that the row person beat the
column person. NAs are put on the diagonal since people do not play themselves. The data
were created by a simple simulation function (Appendix G) that assumed players differed in
their ability and then created the win loss record probabilistically using a logistic function.
Because A beating B implies B loses to A, elements below the diagonal of the matrix are just
1 - those above the diagonal.

Prob(win|Pi,Pj) = Prob(Pi > Pj|Pi,Pj) =
1

1+ e(Pj−Pi)
(2.6)

Table 2.2 Simulated wins and losses for 16 chess players. Entries reflect row beating column.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16
P1 NA 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
P2 1 NA 0 0 0 1 0 0 1 0 0 0 0 0 0 0
P3 0 1 NA 0 1 1 0 0 0 0 1 0 0 0 0 0
P4 1 1 1 NA 1 0 1 0 0 1 0 0 0 0 0 0
P5 1 1 0 0 NA 1 1 1 1 0 1 0 1 0 0 1
P6 1 0 0 1 0 NA 1 1 1 1 0 1 0 0 0 0
P7 1 1 1 0 0 0 NA 1 0 0 0 0 0 1 0 0
P8 0 1 1 1 0 0 0 NA 1 0 0 0 0 0 0 0
P9 1 0 1 1 0 0 1 0 NA 1 0 0 1 1 0 0
P10 1 1 1 0 1 0 1 1 0 NA 0 0 1 1 1 0
P11 1 1 0 1 0 1 1 1 1 1 NA 1 0 0 0 1
P12 1 1 1 1 1 0 1 1 1 1 0 NA 1 1 1 0
P13 1 1 1 1 0 1 1 1 0 0 1 0 NA 1 0 0
P14 1 1 1 1 1 1 0 1 0 0 1 0 0 NA 0 0
P15 1 1 1 1 1 1 1 1 1 0 1 0 1 1 NA 1
P16 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 NA
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2.4.1 Scaling of People

There are multiple ways to score these results. One is the simple average score (found by tak-
ing the rowMeans), a second is convert the winning percentage to a normal score equivalent,
the third is to convert the winning percentage to a logistic equivalent. It is easy to do all
three scoring procedures and to graphically compare them. This is done using the standard
data.frame function and the pairs.panels function from the psych package.

> score <- rowMeans(tournament, na.rm = TRUE)
> qscore <- qnorm(score)
> logit <- log(score/(1 - score))
> chess.df <- data.frame(latent = p, observed = score, normed = qscore, logit)

Table 2.3 Three alternative solutions to the chess problem of Table 2.2

latent observed normed logit
P1 -1.5 0.13 -1.11 -1.87
P2 -1.3 0.20 -0.84 -1.39
P3 -1.1 0.27 -0.62 -1.01
P4 -0.9 0.40 -0.25 -0.41
P5 -0.7 0.60 0.25 0.41
P6 -0.5 0.47 -0.08 -0.13
P7 -0.3 0.33 -0.43 -0.69
P8 -0.1 0.27 -0.62 -1.01
P9 0.1 0.47 -0.08 -0.13
P10 0.3 0.60 0.25 0.41
P11 0.5 0.67 0.43 0.69
P12 0.7 0.80 0.84 1.39
P13 0.9 0.60 0.25 0.41
P14 1.1 0.53 0.08 0.13
P15 1.3 0.87 1.11 1.87
P16 1.5 0.80 0.84 1.39

Just assigning numbers is not enough, for it is important to evaluate how well the assigned
numbers capture the data. This requires a model of how to combine the rankings to predict
the outcome. The average percent wins would seem reasonable until we consider how to
combine them. A simple difference would not work, for that could lead to values outside of
the range. In analogy to the axioms of choice (Bradley and Terry (1952), Luce (1977),) we
could predict that the probability of A beating B (p(A >B) is the ratio of the frequency of
A winning divided by the sum of the frequencies that A or B wins:

p(A > B|A,B) =
p(A)

p(A)+ p(B)
. (2.7)

For the normal deviate scores, a natural model would be to find the probability that A > B
by finding the cumulative normal value of the normal-score difference:

p(A > B|A,B) = pnorm(normalA−normalB) (2.8)
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> pairs.panels(chess.df)
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Fig. 2.2 Original model and three alternative scoring systems. This is also an example of a SPLOM
(scatter plot matrix) using the pairs.panels function from the psych package. A SPLOM shows the X-Y
scatter plots of each pair of variables. The x values in each plot reflect the column variable, the y values,
the row variable. The locally best fitting line is drawn as well as a error ellipse for the correlation. The
diagonal values are histograms with a density smooth. Numerical values of the Pearson corrlation are
shown above the diagonal.

For the logistic scores, the natural model would be to find the probability based upon the
difference of the logistic scores:

p(A > B|A,B) =
1

1+ e(logitB−logitA) (2.9)

For the observed scores, any of these would probably make equally good sense. The function
scaling.fits can be used to find the goodness of fit for the choice (eq 2.7), normal (eq 2.8),
or logistic (eq 2.9) model. The function uses a a list to hold multiple returned values. Note
that the choice model will not work for negative scale values, and thus when applying it to
normal or logistic modeled data, it is necessary to add in the minimum value.



22 2 A Theory of Data

Applying the scaling.fits function to the three scaling solutions found in chess.df yields
9 different estimates of goodness of fit (choice, logistic and normal models for each of the
three scoring systems of the basic data set). The output of any R function is an object that
can be used as input to any other function. We take advantage of this to make repeated calls
to the scaling.fits function and collect the output in a matrix (fits).

choice logistic normal
observed 0.64 0.58 0.61
normed 0.64 0.66 0.67
logistic 0.64 0.67 0.66

The goodness of fit tests suggests that both the normal and logistic procedures provide a
somewhat better fit of the data than does merely counting the percentage of wins.

2.4.2 Alternative approaches to scaling people

The previous example of a tournament forced all players to play each other. Although this
can be done with small groups, it is not feasible for larger groups. Tournament play for
large sets of players (or teams) needs to use alternative measurement models. The NCAA
basketball tournament of 65 teams is a well known alternative in which teams are eliminated
after loses. This allows a choice of an overall winner, but does not allow for precise rankings
below that. In addition, it is important to note in the simulated example (Table 2.2), that
a better player (P16) was defeated by a weaker player (P5), even though P16 had a much
higher winning percentage (80%) than did P5 (60%). In addition, in this 16 player match, the
observed rankings were correlated only .84 with the underlying ability (the latent score) used
to generate the data. Thus, neither a sudden death tournament nor a round robin tournament
necessarily leads to identifying the strongest over all player or team.

Using a system developed by Arpad Elo (and hence called the Elo scale) chess players
are ranked on a logistic scale where two players with equal scores have a 50% probability
of winning and a player 200 points higher than another would win 75% of the time. The
Elo system does not require all players to play each other, but rather adds and subtracts
points for each player following a match. Beating a better player adds more points than
does beating a weaker player, and losing to a player with a lower ranking subtracts more
points than losing to a player with a higher ranking. Revisions have been suggested by Mark
Glickman and others.

Logistic rating may be applied to the problem of rankings of colleges (Avery et al., 2004) as
well as sports teams. Using the pattern of student choice as analogous to direct competition
(School A beats B if student X chooses to attend A rather than B), and then scaling the
schools using the logistic model provides a better metric for college rankings than other
procedures. (As Avery and his colleagues point out, selectivity ratings can be “gamed” by
encouraging many weaker students to apply and then rejecting them, and yield ratings can
be inflated by rejecting students who are more likely to go somewhere else.)
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2.4.3 Assigning numbers to people – the problem of rewarding
merit

The previous examples considered that people are in direct competition with each other
and are evaluated on the same metric. This is not just an abstract problem for evaluating
chess players or basketball teams, but is a real life problem when it comes to assigning
salaries and raises. But it is not just a problem of evaluating merit, it is also a problem
in how to treat equal merit. Consider a department chairman with $100,000 of merit raises
to distribute to 20 faculty members who have an average salary of $100,000. That is, the
salary increment available is 5% of the total salary currently paid. Assume that the current
range of salaries reflects differences in career stage and that the range of current salaries
is uniformly distributed from $50,000 to $150,000. Furthermore, make the “Lake Wobegon”
assumption that all faculty members are above average and all deserve an “equal” raise.
What is the correct average? Is it $5,000 per faculty member ($100,000/20) or is 5% for each
faculty member (with the lecturers getting $2,500 and the full professors getting three times
as much, or $7,500)? This problem is considered in somewhat more detail when comparing
types of scales in section 3.16

2.5 Social Networks: Proximities of People (|pi− p j| < δ)

An alternative to ordering people is to ask how close two people are to each other. This can
be done either for all possible pairings of people, or for a limited set of targets. In both cases,
the questions are the same: Are two people closer than some threshold, X: if δ = |Pi−Pj|,
then is δ < X? This very abstract representation allows us to consider how well known or
liked or desirable someone is, depending upon the way we phrase the question to person i:

1. Do you know person j?
2. Do you like person j? or as an alternative:
3. Please list all your friends in this class (and is j included on the list)
4. Would you be interested in having a date with person j?
5. Would you like to have sex with person j?
6. Would you marry person j?

2.5.1 Rectangular data arrays of similarity

If we ask a large group of people about a smaller set (perhaps of size one) of people, we
will form a rectangular array of proximities. For example, evolutionary psychologists have
used responses to items 4-6 asked by an attractive stranger (person j) to show strong sex
differences in interest in casual sex (Buss and Schmitt, 1993). Typical data might look like
Table 2.4. Sociologists might use questions 1 - 3 to exam social networks in classrooms.

Note that the data will not necessarily, and in fact probably will not, be symmetric. For
more people know (or know of) Barack Obama than he could possibly know.
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Table 2.4 A hypothetical response matrix for questions 4-6 about social interaction with an attractive
stranger.

Person Gender Item 4 Item 5 Item 6
1 F 0 0 0
2 F 1 0 0
3 F 1 1 0
...
98 M 1 1 0
99 M 1 1 1
100 M 1 1 1

2.5.2 Square arrays of similarity

Another example of proximity data for pairs of people would be the results of “speed dating”
studies (Finkel et al., 2007). Given N people, each person spends a few minutes talking to
each other person in the room. After each brief conversation each person is asked whether
they want to see the other person again. (Abstractly, the assumption is that the smaller the
distance, δ , between two people, the more a person would want to see the other person). If
δ < X the person responds yes.) Here, although the matrix is square (everyone is compared
with everyone else, the proximities are not symmetric, for some people are liked (close to)
more people than others.

We simulate the data using an “experimental design” where each of 10 males interact for
3 minutes with each of 10 females, and vice versa. After each interaction both members
of the pair were asked whether they wanted to see the other person again. To simulate an
example of such data we create a 20 x 20 array of person “interest” by randomly sampling
with replacement from the numbers 0 and 1. Let the rows represent our participants and the
columns the expression of interest they have in the other participants. The first 10 participants
are females, the second 10 males (Table 2.5).

> set.seed(42)
> prox <- matrix(rep(NA, 400), ncol = 20)
> prox[11:20, 1:10] <- matrix(sample(2, 100, replace = TRUE) - 1)
> prox[1:10, 11:20] <- matrix(sample(2, 100, replace = TRUE) - 1)
> colnames(prox) <- rownames(prox) <- c(paste("F", 1:10, sep = ""),
+ paste("M", 1:10, sep = ""))
> prox

Because of the experimental design, the data matrix has missing values for same sex pairs.
We find the row and column means but specify that we want to not include the missing
values.

> colMeans(prox, na.rm = TRUE)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
0.8 0.5 0.6 0.6 0.6 0.4 0.7 0.2 0.4 0.7 0.6 0.7 0.6 0.9 0.4 0.5 0.4 0.5 0.6 0.4

> rowMeans(prox, na.rm = TRUE)
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Table 2.5 Hypothetical results from a speed dating study.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
F1 NA NA NA NA NA NA NA NA NA NA 1 1 0 1 0 1 1 1 1 0
F2 NA NA NA NA NA NA NA NA NA NA 0 1 0 1 0 0 1 0 1 1
F3 NA NA NA NA NA NA NA NA NA NA 0 1 1 1 0 1 1 0 0 0
F4 NA NA NA NA NA NA NA NA NA NA 0 0 1 1 1 0 0 0 0 0
F5 NA NA NA NA NA NA NA NA NA NA 1 1 1 1 1 1 1 0 1 0
F6 NA NA NA NA NA NA NA NA NA NA 1 1 0 1 1 1 0 0 1 0
F7 NA NA NA NA NA NA NA NA NA NA 1 0 1 1 0 0 0 1 1 1
F8 NA NA NA NA NA NA NA NA NA NA 1 0 1 0 1 0 0 1 1 0
F9 NA NA NA NA NA NA NA NA NA NA 1 1 0 1 0 0 0 1 0 1
F10 NA NA NA NA NA NA NA NA NA NA 0 1 1 1 0 1 0 1 0 1

M1 1 0 1 1 0 0 1 0 1 1 NA NA NA NA NA NA NA NA NA NA
M2 1 1 0 1 0 0 1 0 0 0 NA NA NA NA NA NA NA NA NA NA
M3 0 1 1 0 0 0 1 0 0 0 NA NA NA NA NA NA NA NA NA NA
M4 1 0 1 1 1 1 1 0 1 1 NA NA NA NA NA NA NA NA NA NA
M5 1 0 0 0 0 0 1 0 1 1 NA NA NA NA NA NA NA NA NA NA
M6 1 1 1 1 1 1 0 1 1 1 NA NA NA NA NA NA NA NA NA NA
M7 1 1 0 0 1 1 0 0 0 0 NA NA NA NA NA NA NA NA NA NA
M8 0 0 1 0 1 0 1 0 0 1 NA NA NA NA NA NA NA NA NA NA
M9 1 0 0 1 1 0 1 1 0 1 NA NA NA NA NA NA NA NA NA NA
M10 1 1 1 1 1 1 0 0 0 1 NA NA NA NA NA NA NA NA NA NA

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
0.7 0.5 0.5 0.3 0.8 0.6 0.6 0.5 0.5 0.6 0.6 0.4 0.3 0.8 0.4 0.9 0.4 0.4 0.6 0.7

Given the data matrix, prox, the column means represent how much each person was liked
(participants F8 and M3 seem to be the least popular, and participant F1 and M4 the
most popular). The row means represent differences in how much people liked others with
participants F5 and M6 liking the most people, and participants F4 and M3 liking the least
number. What is not known from the simple assignment of average numbers is whether this
is the appropriate metric. That is, is the difference between having 50% of the people like
you versus 60% the same as the difference between 80% and 90%?

The Social Network Analysis, sna, package in R allows for a variety of statistical and
graphical analyses of similarity matrices. One such analysis is the comparison of different
networks. Another is the ability to graph social networks (Figure 2.3).

2.6 The Scaling of Objects (oi < o j)

When judging the value of a particular object and a specific dimension, we can form scales
based upon the effect the object has on similar objects. This technique has long been used
in the physical sciences. For example, Friedrich Mohs’ (1773-1839) scale of hardness is an
ordinal scale based upon direct comparisons of minerals. If one mineral will scratch another,
we say the first is harder than the second. Hardness is transitive, in that if X scratches Y
and Y scratches Z, then X will scratch Z (Table 2.6). The Mohs’ hardness scale is an ordinal
scale and does not reflect that the differences between the 10 minerals can be measured more
precisely in terms of the amount of force required to make the scratch using a diamond tip
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Fig. 2.3 Social networks analysis of the data from Table 2.5

and a sclerometer. Even more precise measures may be made by measuring the size of an
indentation made by diamond tip under various levels of pressure (Burchard, 2004). When
this is done the Mohs scale can be converted from an ordinal to a relative hardness scale.
Note that a difference of 1 on the Mohs scale is a difference of hardness ranging from 3% to
a factor of 89!.

Table 2.6 Mohs’ scale of mineral hardness. An object is said to be harder than X if it scratches X.
Also included are measures of relative hardness using a sclerometer (for the hardest of the planes if
there is a ansiotropy or variation between the planes) which shows the non-linearity of the Mohs scale
(Burchard, 2004).

Mohs Hardness Mineral Scratch hardness
1 Talc .59
2 Gypsum .61
3 Calcite 3.44
4 Fluorite 3.05
5 Apaptite 5.2
6 Orthoclase Feldspar 37.2
7 Quartz 100
8 Topaz 121
9 Corundum 949
10 Diamond 85,300
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Another way of ordering objects is in terms of their effects upon the external environment.
For sailors, it is important to be able to judge wind conditions by observation. Although the
effect of wind varies as the square of the velocity, a roughly linear metric of wind speed based
upon observed sea state was developed by Sir Francis Beaufort (1774-1857) and is still in
common use among windsurfers and sailors. Beaufort’s original scale was in terms of how a
British frigate would handle and what sails she could carry but was later revised in terms of
observations of sea state. Beaufort did not classify wind speed in terms of velocity and these
estimated equivalents as well as the current descriptions have been added by meteorologists
(Table 2.7). What is most important to notice is that because of the non-linear (squared)
effect of wind velocity on sailors, equal changes in the Beaufort scale (e.g., from 1 to 2 or
from 4 to 5) do not lead to equal changes in such important outcomes as the probability of
capsizing!

Table 2.7 The Beaufort scale of wind intensity is an early example of a scale with roughly equal units
that is observationally based. Although the units are roughly in equal steps of wind speed in nautical
miles/hour (knots), the force of the wind is not linear with this scale, but rather varies as the square
of the velocity.

Force Wind (Knots) WMO Classification Appearance of Wind Effects
0 Less than 1 Calm Sea surface smooth and mirror-like
1 1-3 Light Air Scaly ripples, no foam crests
2 4-6 Light Breeze Small wavelets, crests glassy, no breaking
3 7-10 Gentle Breeze Large wavelets, crests begin to break, scattered whitecaps
4 11-16 Moderate Breeze Small waves 1-4 ft. becoming longer, numerous whitecaps
5 17-21 Fresh Breeze Moderate waves 4-8 ft taking longer form, many whitecaps,

some spray
6 22-27 Strong Breeze Larger waves 8-13 ft, whitecaps common more spray
7 28-33 Near Gale Sea heaps up, waves 13-20 ft, white foam streaks off breakers
8 34-40 Gale Moderately high (13-20 ft) waves of greater length, edges of crests begin

to break into spindrift, foam blown in streaks
9 41-47 Strong Gale High waves (20 ft), sea begins to roll, dense streaks of foam,

spray may reduce visibility
10 48-55 Storm Very high waves (20-30 ft) with overhanging crests, sea white

with densely blown foam, heavy rolling, lowered visibility
11 56-63 Violent Storm Exceptionally high (30-45 ft) waves, foam patches cover sea,

visibility more reduced
12 64+ Hurricane Air filled with foam, waves over 45 ft, sea completely white

with driving spray, visibility greatly reduced

2.6.1 Weber-Fechner scales of subjective experience

Early studies of psychophysics by Weber (1834b,a) and subsequently Fechner (1860) demon-
strated that the human perceptual system does not perceive stimulus intensity as a linear
function of the physical input. The basic paradigm was to compare one weight with another
that differed by amount ∆ , e.g., compare a 10 gram weight with an 11, 12, and 13 gram weight,
or a 10 kg weight with a 11, 12, or 13 kg weight. What was the ∆ that was just detectable?
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The finding was that the perceived intensity follows a logarithmic function. Examining the
magnitude of the “just noticeable differece” or JND , Weber (1834b) found that

JND =
∆ Intensity
Intensity

= constant. (2.10)

An example of a logarithmic scale of intensity is the decibel measure of sound intensity.
Sound Pressure Level expressed in decibels (dB) of the root mean square observed sound
pressure, Po (in Pascals) is

Lp = 20Log10
Po

Pre f
(2.11)

where the reference pressure,Pre f , in the air is 20µPa. Just to make this confusing, the reference
pressure for sound measured in the ocean is 1µPa. This means that sound intensities in the
ocean are expressed in units that are 20 dB higher than those units used on land.

Although typically thought of as just relevant for the perceptual experiences of physical
stimuli, Ozer (1993) suggested that the JND is useful in personality assessment as a way of
understanding the accuracy and inter judge agreement of judgments about other people. In
addition, Sinn (2003) has argued that the logarithmic nature of the Weber-Fechner Law is of
evolutionary significance for preference for risk and cites Bernoulli (1738) as suggesting that
our general utility function is logarithmic.

... the utility resulting from any small increase in wealth will be inversely proportionate to the

quantity of goods already possessed .... if ... one has a fortune worth a hundred thousand ducats
and another one a fortune worth same number of semi-ducats and if the former receives from it a
yearly income of five thousand ducats while the latter obtains the same number of semi-ducats,
it is quite clear that to the former a ducat has exactly the same significance as a semi-ducat to
the latter (Bernoulli, 1738, p 25).

2.6.2 Thurstonian Scalilng

Louis L. Thurstone was a pioneer in psychometric theory and measurement of attitudes,
interests, and abilities. Among his many contributions was a systematic analysis of the process
of comparative judgment (Thurstone, 1927). He considered the case of asking subjects to
successively compare pairs of objects. If the same subject does this repeatedly, or if subjects
act as random replicates of each other, their judgments can be thought of as sampled from a
normal distribution of underlying (latent) scale scores for each object, Thurstone proposed
that the comparison between the value of two objects could be represented as representing
the differences of the average value for each object compared to the standard deviation of
the differences between objects. The basic model is that each item has a normal distribution
of response strength and that choice represents the stronger of the two response strengths
(Figure-2.4). A justification for the normality assumption is that each decision represents the
sum of many independent inputs and thus, through the central limit theorem, is normally
distributed.

Thurstone considered five different sets of assumptions about the equality and indepen-
dence of the variances for each item (Thurstone, 1927). Torgerson expanded this analysis
slightly by considering three classes of data collection (with individuals, between individuals
and mixes of within and between) crossed with three sets of assumptions (equal covariance
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of decision process, equal correlations and small differences in variance, equal variances)
(Torgerson, 1958).
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Fig. 2.4 Thurstone’s model of paired discrimination. Left panel: three items differ in their mean level
as well as their variance. Right panel: choice between two items with equal variance reflects the relative
strength of the two items. The shaded section represents choosing item 2 over item 1.

Thurstone scaling has been used in a variety of contexts, from scaling the severity of crimes
(Coombs, 1964) to the severity of cancer symptoms to help nurses understand their patients
(Degner et al., 1998) or in market research to scale alternative products (Green et al., 1989).
Consider an example of scaling of vegetables, discussed in great detail in Guilford (1954).
Participants were asked whether they preferred vegetable A to vegetable B for a set of nine
vegetables (Turnips, Cabbage, Beets, Asparagus, Carrots, Spinach, String Beans, Peas, and
Corn). This produced the following data matrix where the numbers represent the percentage
of time that the column vegetable was chosen over the row vegetable Guilford (1954).

Just as when scaling individuals (section-2.4), there are several natural ways to convert
these data into scale values. The easiest is simply to find the average preference for each
item. To do this, copy the data table into the clipboard and then using the read.clipboard
function (part of the psych package, create the new variable, veg. The read.clipboard
function will create a data.frame, veg. Although a data.frame looks like a matrix, each
separate column is able to be treated individually and may be of different types of data
(e.g., characters, logical, or numeric). The mean function will report separate means for each
variable in a data frame whereas it will report just the overall mean for a matrix. Were veg
a matrix, mean would report just one value but colMeans would report the mean for each
column.

> data(vegetables) #includes the veg data set
> round(mean(veg),2)
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Table 2.8 Paired comparisons of nine vegetables (from Guilford, 1954). The numbers represent the
probability with which the column vegetable is chosen over the row vegetable. Data available in psych

as vegetables

Turn Cab Beet Asp Car Spin S.Beans Peas Corn
Turn 0.500 0.818 0.770 0.811 0.878 0.892 0.899 0.892 0.926
Cab 0.182 0.500 0.601 0.723 0.743 0.736 0.811 0.845 0.858
Beet 0.230 0.399 0.500 0.561 0.736 0.676 0.845 0.797 0.818
Asp 0.189 0.277 0.439 0.500 0.561 0.588 0.676 0.601 0.730
Car 0.122 0.257 0.264 0.439 0.500 0.493 0.574 0.709 0.764
Spin 0.108 0.264 0.324 0.412 0.507 0.500 0.628 0.682 0.628
S.Beans 0.101 0.189 0.155 0.324 0.426 0.372 0.500 0.527 0.642
Peas 0.108 0.155 0.203 0.399 0.291 0.318 0.473 0.500 0.628
Corn 0.074 0.142 0.182 0.270 0.236 0.372 0.358 0.372 0.500

Turn Cab Beet Asp Car Spin S.Beans Peas Corn
0.18 0.33 0.38 0.49 0.54 0.55 0.64 0.66 0.72

Given that the zero point is arbitrary, subtracting the Turnip value from other vegetables
does not change anything:

> veg.t <- mean(veg) - mean(veg[,1])
> round(veg.t,2)

Turn Cab Beet Asp Car Spin S.Beans Peas Corn
0.00 0.15 0.20 0.31 0.36 0.37 0.46 0.48 0.54

If these values were useful, then it should be possible to recreate the rows of the original
matrix (Table 2.8) by taking the differences between any two scale values + .5 (since a
vegetable is preferred over itself 50% of the time, adding .5 to predicted choice). But this will
produce values greater than 1 and less than 0! The predicted probability of choosing Corn
over Turnips would be .5 + .54 = 1.04!. Clearly, this is not a good solution.

Thurstone’s proposed solution was to assign scale values based upon the average normal
deviate transformation of the raw probabilities. This is found by first converting all the
observed probabilities into their corresponding standard normal values, z-scores, and then
finding the average z-score. This is done using the qnorm, as.matrix, and colMeans functions.
(Table 2.9).

Finding the average z-score for each column of Table 2.9 is the equivalent to finding the
least squares solution to the series of equations finding the pairwise distances (Torgerson,
1958). Adding a constant does not change the distances, so by subtracting the smallest to
all the numbers we find the following scale values:

But how well does this set of scale values fit? One way to evaluate the fit is to find the
predicted paired comparisons given the model and then subtract them from the observed.
The model matrix is found by taking the differences of the row and column values for the
items. For example, the modeled value for String Beans vs. Corn is 1.40 - 1.63 or -.23.

Then, convert these modeled values to probabilities (Table 2.11) and then find the residuals
or errors (Table 2.12) by comparing to the original data (Table 2.8).

> modeled <- pnorm(pdif)
> round(modeled,2)
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Table 2.9 U

sing the Convert the paired comparison data of Table 2.8 into z-scores by using the qnorm function

> z.veg <- qnorm(as.matrix(veg))
> round(z.veg,2) #see table
> scaled.veg <- colMeans(z.veg)
> scaled <- scaled.veg - min(scaled.veg)
> round(scaled,2)

Turn Cab Beet Asp Car Spin S.Beans Peas Corn
0.00 0.52 0.65 0.98 1.12 1.14 1.40 1.44 1.63

Turn Cab Beet Asp Car Spin S.Beans Peas Corn
Turn 0.00 0.91 0.74 0.88 1.17 1.24 1.28 1.24 1.45
Cab -0.91 0.00 0.26 0.59 0.65 0.63 0.88 1.02 1.07
Beet -0.74 -0.26 0.00 0.15 0.63 0.46 1.02 0.83 0.91
Asp -0.88 -0.59 -0.15 0.00 0.15 0.22 0.46 0.26 0.61
Car -1.17 -0.65 -0.63 -0.15 0.00 -0.02 0.19 0.55 0.72
Spin -1.24 -0.63 -0.46 -0.22 0.02 0.00 0.33 0.47 0.33
S.Beans -1.28 -0.88 -1.02 -0.46 -0.19 -0.33 0.00 0.07 0.36
Peas -1.24 -1.02 -0.83 -0.26 -0.55 -0.47 -0.07 0.00 0.33
Corn -1.45 -1.07 -0.91 -0.61 -0.72 -0.33 -0.36 -0.33 0.00

Table 2.10 All models are approximations to the data. An analysis of residuals is essential to evalu-
ating the goodness of fit of the model. Here Modeled z score differences (residuals) are the differences
of the data compared to the modeled scale values.

> pdif <- - scaled %+% t(scaled)
> colnames(pdif) <- rownames(pdif) <- colnames(z.veg)
> round(pdif,2)

> round(pdif,2)
Turn Cab Beet Asp Car Spin S.Beans Peas Corn

Turn 0.00 0.52 0.65 0.98 1.12 1.14 1.40 1.44 1.63
Cab -0.52 0.00 0.13 0.46 0.60 0.62 0.88 0.92 1.11
Beet -0.65 -0.13 0.00 0.33 0.46 0.49 0.75 0.79 0.98
Asp -0.98 -0.46 -0.33 0.00 0.14 0.16 0.42 0.46 0.65
Car -1.12 -0.60 -0.46 -0.14 0.00 0.03 0.28 0.33 0.51
Spin -1.14 -0.62 -0.49 -0.16 -0.03 0.00 0.26 0.30 0.49
S.Beans -1.40 -0.88 -0.75 -0.42 -0.28 -0.26 0.00 0.04 0.23
Peas -1.44 -0.92 -0.79 -0.46 -0.33 -0.30 -0.04 0.00 0.19
Corn -1.63 -1.11 -0.98 -0.65 -0.51 -0.49 -0.23 -0.19 0.00

> resid <- veg - modeled
> round(resid,2)

These residuals seem small. But how small is small? The mean residual is (as it should
be) 0. Describing the residuals (using the describe function) suggests that they are indeed
small:

Alternatively, using a goodness of fit test (e.g., Equation 2.5) finds that the sum squared
residual of .31 is much less than the sum squared data, 24.86 for a Goodness of Fit of .994.



32 2 A Theory of Data

Table 2.11 Modeled probability of choice based upon the modeled scale values

Turn Cab Beet Asp Car Spin S.Beans Peas Corn
Turn 0.50 0.70 0.74 0.84 0.87 0.87 0.92 0.93 0.95
Cab 0.30 0.50 0.55 0.68 0.72 0.73 0.81 0.82 0.87
Beet 0.26 0.45 0.50 0.63 0.68 0.69 0.77 0.79 0.84
Asp 0.16 0.32 0.37 0.50 0.55 0.57 0.66 0.68 0.74
Car 0.13 0.28 0.32 0.45 0.50 0.51 0.61 0.63 0.70
Spin 0.13 0.27 0.31 0.43 0.49 0.50 0.60 0.62 0.69
S.Beans 0.08 0.19 0.23 0.34 0.39 0.40 0.50 0.52 0.59
Peas 0.07 0.18 0.21 0.32 0.37 0.38 0.48 0.50 0.57
Corn 0.05 0.13 0.16 0.26 0.30 0.31 0.41 0.43 0.50

Table 2.12 Residuals = data - model

Turn Cab Beet Asp Car Spin S.Beans Peas Corn
Turn 0.00 0.12 0.03 -0.03 0.01 0.02 -0.02 -0.03 -0.02
Cab -0.12 0.00 0.05 0.05 0.02 0.00 0.00 0.02 -0.01
Beet -0.03 -0.05 0.00 -0.07 0.06 -0.01 0.07 0.01 -0.02
Asp 0.03 -0.05 0.07 0.00 0.01 0.02 0.01 -0.08 -0.01
Car -0.01 -0.02 -0.06 -0.01 0.00 -0.02 -0.04 0.08 0.07
Spin -0.02 0.00 0.01 -0.02 0.02 0.00 0.03 0.06 -0.06
S.Beans 0.02 0.00 -0.07 -0.01 0.04 -0.03 0.00 0.01 0.05
Peas 0.03 -0.02 -0.01 0.08 -0.08 -0.06 -0.01 0.00 0.05
Corn 0.02 0.01 0.02 0.01 -0.07 0.06 -0.05 -0.05 0.00

Table 2.13 Basic summary statistics of the residuals suggest that they are very small

> describe(resid)
var n mean sd median mad min max range se

Turn 1 9 -0.01 0.05 0.00 0.03 -0.12 0.03 0.15 0.02
Cab 2 9 0.00 0.05 0.00 0.02 -0.05 0.12 0.17 0.02
Beet 3 9 0.00 0.05 0.01 0.04 -0.07 0.07 0.14 0.02
Asp 4 9 0.00 0.04 -0.01 0.03 -0.07 0.08 0.14 0.01
Car 5 9 0.00 0.05 0.01 0.01 -0.08 0.06 0.14 0.02
Spin 6 9 0.00 0.03 0.00 0.03 -0.06 0.06 0.12 0.01
S.Beans 7 9 0.00 0.04 0.00 0.03 -0.05 0.07 0.12 0.01
Peas 8 9 0.00 0.05 0.01 0.06 -0.08 0.08 0.16 0.02
Corn 9 9 0.01 0.04 -0.01 0.02 -0.06 0.07 0.13 0.01

2.6.3 Alternative solutions to the ranking of objects

Just as in the scaling of people in tournaments there were alternative ways to assign scale
values and to evaluate the scale values, so we can consider alternatives to the Thurstone
scale. Although we can not take simple differences between scale values to predict choice,
using Equation 2.7 or Equation 2.9 does allow for alternative solutions. Consider assigning
a constant to all values, rank orders (1-9) or squared rank orders, or even reversed rank
orders (just to be extreme)! Just as we can compare the three ways of scaling people from
tournament outcomes, so can we compare using the Choice model, Thurstone Case V, or
logistic models for fitting alternative scalings of the vegetable data.
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First form a data frame made up of the six alternative scaling models (a constant, simple
rank orders of the vegetable choices, squared rank orders, reversed rank orders, frequency of
choice and Thurstonian scale values) and then apply the scaling.fits function from above
to all six scales. What is most interesting is that although the scale values differ greatly,
the Choice model fits almost as well for four of the six scaling solutions. The Thurstone and
logistic fitting techniques differ a great deal between the six methods of forming the scales.

Table 2.14 The Thurstone model is not the only model for vegetable preferences. A simple choice
model does almost as well.

> data(vegetables)
> scaled <- thurstone(veg)$scale
> veg.t <- mean(veg) - mean(veg[,1])
> tests <- c("choice","logit","normal")
> veg.scales.df <- data.frame(constant= rep(.5,9),equal= seq(1,9),squared = seq(1,9)^2,
+ reversed = seq(9,1),raw = veg.t,thurstone=scaled)
> round(veg.scales.df,2)
> fits <- matrix(rep(0, 3*dim(veg.scales.df)[2]), ncol = 3)
> for (i in 1:dim(veg.scales.df)[2]) {
+ for (j in 1:3) {
+ fits[i, j] <- scaling.fits(veg.scales.df[i],rowwise=TRUE, data = as.matrix(veg),
+ test = tests[j])$GF } }
> rownames(fits) <- c("Constant", "Equal","Squared", "Reversed","Choice", "Thurstone")
> colnames(fits) <- c("choice", "logistic", "normal")
> round(fits, 2)

constant equal squared reversed raw thurstone
Turn 0.5 1 1 9 0.00 0.00
Cab 0.5 2 4 8 0.15 0.52
Beet 0.5 3 9 7 0.20 0.65
Asp 0.5 4 16 6 0.31 0.98
Car 0.5 5 25 5 0.36 1.12
Spin 0.5 6 36 4 0.37 1.14
S.Beans 0.5 7 49 3 0.46 1.40
Peas 0.5 8 64 2 0.48 1.44
Corn 0.5 9 81 1 0.54 1.63

choice logistic normal
Constant 0.81 0.81 0.81
Equal 0.99 0.88 0.81
Squared 0.98 0.74 0.74
Reversed 0.40 -0.27 -0.43
Choice 0.97 0.89 0.93
Thurstone 0.97 0.97 0.99

What should we conclude from this comparison? Not that the Thurstone techniques are
useless, but rather that the scaling solutions need to be considered in comparison with al-
ternative hypothetical solutions. That is, just because one procedure yields a very good fit
and makes psychometric sense does not imply that it is necessarily better than a simpler
procedure.
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2.6.4 Why emphasize Thurstonian scaling?

Perhaps it seems as if too much emphasis has been given to the ordering of vegetables.
However, the process of model fitting and model testing outlined in the previous section is
similar to the process that needs to be followed in all analyses.

1. Examine the data
2. Specify a model
3. Estimate the model
4. Compare the model to the data
5. Repeat until satisfied or exhausted

2.7 Multiple Dimensional Scaling: Distances between Objects
(|oi−o j| < |ok−ol|)

The tournament rankings of chess players and the frequency of choice of vegetables (or the
severity of crimes) are found by comparing two stimuli, either subjects (2.4) or objects (2.6.2),
to each other. The social networks of friendship groups can be thought of as a representing
distances less than a certain value (|oi− o j| < δ ) (2.5). But to compare these distances to
other distances leads to ordering relationships of distances ((|oi−o j|< |ok−ol |). The typical
application is to order pairs of distances in a multidimensional space. One classic example is
multidimensional scaling of distances based upon the Euclidian distance between two points,
x and y, which, in an n-dimensional space, is

Distancexy =

�
n

∑
i=1

(xi− yi)2. (2.12)

Alternative scaling models attempt to fit a monotone function of distance rather than the
Euclidian distance. There are a variety of metric and non-metric algorithms, the basic proce-
dure of the non-metric procedures is fit a monotonically increasing function of distance (e.g.,
their ranks) rather than the distances themselves (Kruskal, 1964).

Consider the airline distances between 11 American cities in Table 2.15 (and found in the
cities dataset). Even considering issues of the spherecity of the globe, it is not surprising
that these can be arranged in a two dimensional space. Using the cmdscale function, and
specifying a two dimensional solution finds the best fitting solution (values for all the cities
on two dimensions):

Representing these cities graphically produces a rather strange figure fig 2.5) . Reversing
both axes produces a figure that is more recognizable (fig 2.6. Using the map function from
the maps package shows that the solution is not quite correct, probably due to the spherical
nature of the real locations.

Extensions of the metric multidimensional scaling procedures fit data where distances are
ordinal rather than interval (e.g, Borg and Groenen (2005); Carroll and Arabie (1980); Green
et al. (1989); Kruskal and Wish (1978)) are known as non-metric multidimensional scaling
and are available in the MASS package as isoMDS and sammon. In addition, some programs are
able to find the best fit for arbitrary values of r for distance in a Minkowski R space (Arabie,
1991; Kruskal, 1964). An r value of 1 produces a city block or Manhattan metric (there are
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Table 2.15 Airline distances between 11 American cities taken from the cities data set.

> data(cities)
> cities

ATL BOS ORD DCA DEN LAX MIA JFK SEA SFO MSY
ATL 0 934 585 542 1209 1942 605 751 2181 2139 424
BOS 934 0 853 392 1769 2601 1252 183 2492 2700 1356
ORD 585 853 0 598 918 1748 1187 720 1736 1857 830
DCA 542 392 598 0 1493 2305 922 209 2328 2442 964
DEN 1209 1769 918 1493 0 836 1723 1636 1023 951 1079
LAX 1942 2601 1748 2305 836 0 2345 2461 957 341 1679
MIA 605 1252 1187 922 1723 2345 0 1092 2733 2594 669
JFK 751 183 720 209 1636 2461 1092 0 2412 2577 1173
SEA 2181 2492 1736 2328 1023 957 2733 2412 0 681 2101
SFO 2139 2700 1857 2442 951 341 2594 2577 681 0 1925
MSY 424 1356 830 964 1079 1679 669 1173 2101 1925 0

Table 2.16 Two dimensional representation for 11 American cities.

> city.location <- cmdscale(cities, k=2) #ask for a 2 dimensional solution
> plot(city.location,type="n", xlab="Dimension 1", ylab="Dimension 2",main ="cmdscale(cities)")
> text(city.location,labels=names(cities)) #put the cities into the map
> round(city.location,0) #show the results

[,1] [,2]
ATL -571 248
BOS -1061 -548
ORD -264 -251
DCA -861 -211
DEN 616 10
LAX 1370 376
MIA -959 708
JFK -970 -389
SEA 1438 -607
SFO 1563 88
MSY -301 577

no diagonals), r of 2 is the standard Euclidean, and r values greater than 2 emphasize the
larger distance much more than smaller distances. The unit “circles” for Minkowski values of
1, 2, and 4 may be seen in the example for the minkowski function.

Distancexyr = r

�
n

∑
i=1

(xi− yi)r. (2.13)

A further example of the use of Multidimensional Scaling is to represent the patterning
of ability variables by MDS rather than component or factor analysis (Chapter 6.8.1). In
that example, MDS, by examining the relative versus absolute distances, effectively removes
the general factor of ability which is represented by all the correlations being positive (Fig-
ure 6.11).



36 2 A Theory of Data

-1000 -500 0 500 1000 1500

-6
0
0

-2
0
0

0
2
0
0
4
0
0
6
0
0

Dimension 1

D
im

e
n
s
io

n
 2 ATL

BOS

ORD
DCA

DEN

LAX

MIA

JFK

SEA

SFO

MSY

Multidimensional Scaling of 11 cities

Fig. 2.5 Original solution for 1 US cities. What is wrong with this figure? Axes of solutions are not
necessarily directly interpretable. Compare to Figure 2.6

2.8 Preferential Choice: Unfolding Theory (|si−o j| < |sk−ol|)

“Do I like asparagus more than you like broccoli?” compares how far apart my ideal vegetable
is to a particular vegetable (asparagus) with respect to how far your ideal vegetable is to
another vegetable (broccoli). More typical is the question of whether you like asparagus
more than you like broccoli. This comparison is between your ideal point (on an attribute
dimension) to two objects on that dimension. Although the comparisons are ordinal, there
is a surprising amount of metric information in the analysis.

2.8.1 Individual Preferences – the I scale

When an individual is asked whether they prefer one object to another, the assumption is
that the preferred object is closer (in an abstract, psychological space) to the person than
is the non-preferred item. The person’s location is known at his or her “ideal point” and the
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MultiDimensional Scaling of US cities
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Fig. 2.6 Revised solution for 11 US cities after making city.location <- -city.location and adding
a US map. The correct locations of the cities are shown with circles. The MDS solution is the center
of each label. The central cities (Chicago, Atlanta, and New Orleans are located very precisely, but
Boston, New York and Washington, DC are north and west of their correct locations.

closer an object is to the ideal point, the more it is preferred. Consider the case of how many
children someone would like to have. For the purpose of analysis we limit this to 0, 1, 2, 3,
4, or 5 children.

Suppose we ask each individual in a sample of people how many children they would like
to have. It is likely that the first choices would range from 0 - 5. Then, except for those whose
first choice was either 0 or 5, they are then asked “if you could not have that number, would
you rather have one more or one less?” . For people whose second choice was neither 0 nor 5,
this procedure is then continued with question #3: “If you could not have X (the first choice)
or Y (the second choice), would you rather have (one less than the minimum of X and Y) or
(one more than the maximum of X and Y)” where the questioner replaces X and Y with the
values from the subject.

There are many possible Individual preference orderings (I-scales) that will be single
peaked: For the person who prefers no children, the preference ordering is 012345, while
for the person who would like a very large family the I-scale would be 54321. For someone
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whose ideal point is between 2 and 3, the orderings 231450, 234150, 231450, or 231045 are
all possible.

Assign the scale value for no children to be 0 and for 5 children to be 100. Where on this
scale are the values for 1, 2, 3 or 4 children? The naive answer is to assume equal spacing
and give values of 20, 40, 60, and 80. But psychologically, is the difference between 0 and
1 the same as between 4 and 5? This can be determined for individual subjects by careful
examination of their preferential orders.

Table 2.17 Midpoint ordering gives some metric information. Left hand side: If the midpoint (2|3)
comes after (to the right of) the midpoint (0|5) that implies that 3 is closer to 5 than 0 is to 2. Right
hand side: The midpoint (2|3) comes before (0|5) and thus 2 is closer to 0 than 3 is to 5. Similarly,
that 2|5 comes before 3|4 implies that 4 is closer to 5 than 2 is to 3.

0 1 2 3 4 5 0 1 2 3 4 5
0 0|5 5 0 0|5 5
0 2|3 5 0 2|3 5
0 1|2 5 0 1|2 5
0 0|1 4|5 5 0 0|1 4|5 5
0 3|4 5 0 3|4 5
0 2|5 5 0 2|5 5

Consider the ordering 231450 versus the 321045 ordering. For the first person, because 5
is preferred to 0 we can say that the (0|5) midpoint has been crossed (the person is to the
right of that midpoint). But the person prefers 2 to 3, and thus the (2|3) midpoint has not
been crossed. This implies that the distance from 0 to 2 is greater than the distance from 3
to 5. The data from the second person, 321045, because the (2|3) midpoint has been crossed,
but the (0|5) has not been imply that the distance 0 to 2 is less than the distance from 3-5.
(See Table 2.17).

2.8.2 Joint Preferences – the J scale

When multiple preference orderings are examined, they can be partially ordered with respect
to their implied midpoints (Figure 2.7). The highlighted I-scales reflect the hypothesis that
for all subjects, the distance between progressive numbers of children is a deaccelerating
distance.

2.8.3 Partially ordered metrics

The ordering of the midpoints for the highlighted I-scales seen in Figure 2.7 allow distances
in the Joint scale to be partially ordered. The first and last two midpoints provide no infor-
mation, for that order is fixed. But the I-scale 12345 shows that that (0|3), (0|4) and (0|5)
come before (1|2), (1|3), and (1|4) gives a great deal of metric information. In contrast, going
down the other side of the partial orders, the I-scale 321045 shows that (1|3) and (2|3) come
before (0|4) and implies a different set of partial orders (Table 2.18).
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Fig. 2.7 Possible I-scales arranged to show ordering of mid-points. The highlighted I-scales reflect an
deaccelerating Joint scale. The labels for each path show the midpoint “crossed” when going from the
first I scale to the second I scale.

2.8.4 Multidimensional Unfolding

Generalizations of Coombs’ original unfolding to the multidimensional case, with both metric
and non metric applications are discussed by de Leeuw (2005). The basic technique is to treat
the problem as a multidimensional scaling problem of an off diagonal matrix (that is to say,
objects by subjects).
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Table 2.18 By observing particular I-scales, it is possible to infer the ordering of midpoints, which
in turn allows for inferences about the distances between the objects. The first 5 midpoint orders are
implied by the highlighted I scales in Figure 2.7 while the last three are implied by the I scale (321045).

Midpoint order Distance information
(0|3) < (1|2) 23 < 01
(0|4) < (1|2) 24 < 01
(0|5) < (1|2) 25 < 01
(0|5) < (2|3) 35 < 02
(2|5) < (3|4) 45 < 23
(2|3) < (0|4) 34 < 02
(2|3) < (1|4) 34 < 12
(1|3) < (0|4) 34 < 01

2.9 Measurement of Attitudes and Abilities (comparing si,o j)

The measurement of abilities and attitudes compares single items (objects) to single subjects.
The comparison may be either one of order (for abilities) or one of proximity (for attitudes).
The difference in these two models may be seen in Figures 2.9 and 2.10. Although most
personality inventories are constructed using the abilities model, it has been pointed out
that the ideal point (proximity) model is probably more appropriate (Chernyshenko et al.,
2007).

In the discussion of classic (Chapter 7) and modern test theory (Chapter 8), the impli-
cations of these two ordering models will be discussed in detail. Here it is just discussed in
terms of the Coombs’ models.

2.9.1 Measurement of abilities (si > o j)

The basic model is that for ability = θ and difficulty = δ that

prob(correct|θ ,δ ) = f (θ −δ ) (2.14)

That is, as the ability attribute increases, the probability of getting an item correct also
increases, and as the difficulty of an item increases, the probability of passing that item
decreases. This is either the explicit (Chapter 8) or implicit (Chapter ??) model of most
modern test theory and will be discussed in much more detail in those subsequent chapters.

2.9.1.1 Guttman scales

Guttman considered the case where there is no error in the assessment of the item difficulty
or if the items are sufficiently far apart so that the pattern of item response is completely
redundant with the total score Guttman (1950). That is,

prob(correct|θ ,δ ) = 1|θ > δ (2.15)
0|θ < δ . (2.16)
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One example of items which can be formed into a Guttman scale are those from the social
distance inventory developed by Bogardus (1925) to assess social distance which “refers to
the degrees and grades of understanding and feeling that persons experience regarding each
other. It explains the nature of a great deal of their interaction. It charts the character of
social relations.” (Bogardus, 1925, p 299).

Table 2.19 The Bogardus Social Distance Scale is one example of items that can be made to a
Guttman scale

The Bogardus social distance scale gave the following stem with a list of various ethnicities.
“According to my first feeling reactions I would willingly admit members of each race (as a class, and
not the best I have known, nor the worst member) to one or more of the classifications under which I
have placed a cross (x).”

1. Would exclude from my country
2. As visitors only to my country
3. Citizenship in my country
4. To employment in my occupation in my country
5. To my street as neighbors
6. To my club as personal chums
7. To close kinship by marriage

Such items (with a rewording of items 1 and 2) typically will produce a data matrix similar
to that in table 2.9.1.1. That is, if someone endorses item 5, they will also endorse items 1-4.
The scaling is redundant in that for perfect data the total number of items endorsed always
matches the highest item endorsed. With the exception of a few examples such as social
distance or sexual experience, it is difficult to find examples of sets of more than a few items
that meet the scaling requirements for a Guttman scale.

Table 2.20 Hypothetical response patterns for eight subjects to seven items forming a Guttman scale.
For a perfect Guttman scale the total number of items endorsed (rowSums) reflects the highest item
endoresed.

> guttman <- matrix(rep(0,56),nrow=8)
> for (i in 1:7) { for (j in 1:i) {guttman[i+1,j] <- 1}}
> rownames(guttman) <- paste("S",1:8,sep="")
> colnames(guttman) <- paste("O",1:7,sep="")
> guttman

O1 O2 O3 O4 O5 O6 O7
S1 0 0 0 0 0 0 0
S2 1 0 0 0 0 0 0
S3 1 1 0 0 0 0 0
S4 1 1 1 0 0 0 0
S5 1 1 1 1 0 0 0
S6 1 1 1 1 1 0 0
S7 1 1 1 1 1 1 0
S8 1 1 1 1 1 1 1
> rowSums(guttman)
S1 S2 S3 S4 S5 S6 S7 S8
0 1 2 3 4 5 6 7



42 2 A Theory of Data

2.9.1.2 Normal and logistic trace line models

The Guttman representation of equation 2.14 does not allow for error. A somewhat more
relaxed model that does allow for error is the Mokken scale where each item has a different
degree of difficulty (as in the Guttman scale) but some errors are allowed (Mokken, 1971).
More generally, two models of item responding that do allow for error that do not require
different difficulties and have been studied in great detail are the cumulative normal and the
logistic model. Both of these models consider that the probability of being correct on an item
is an increasing function of the difference between the person’s ability (θ) and the item’s
difficulty (δ ). These two equations are the cumulative normal of θ −δ

prob(correct|θ ,δ ) =
1√
2π

� θ−δ

− inf
e−

u2
2 du (2.17)

and the logistic function

prob(correct|θ ,δ ) =
1

1+ eδ−θ . (2.18)

With addition of a multiplicative constant (1.702) to the difference between δ and θ in
the logistic equation, the two functions are almost identical over the range from -3 to 3
(Figure 2.8).

prob(correct|θ ,δ ) =
1

1+ e1.702(δ−θ) . (2.19)

Latent Trait Theory (and the associated Item Response Theory, IRT) tends to use the
equations 2.18 or 2.19 in estimating ability parameters for subjects given a set of known
(or estimated) item difficulties (Figure 2.9). People are assumed to differ in their ability in
some domain and items are assumed to differ in difficulty or probability of endorsement in
that domain. The basic model of measuring ability is equivalent to a high jump competition.
Given a set of bars on a high jump, what is the highest bar that one can jump?

Classical test theory (Chapter 7) may be thought of as a high jump with random height
bars and many attempts at jumping. The total number of bars passed is the person’s score.
Item Response Theory approaches (Chapter 8) recognize that bars differ in height and allow
jumpers to skip lower bars if they are able to pass higher bars. For example, in the math-
ematical ability domain, item difficulties may be ordered from easy to hard, (knowing your
arithmetic facts, knowing long division, basic algebra, differential calculus, integral calculus,
matrix algebra, etc.).
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Fig. 2.8 The cumulative normal and the logistic (with a constant 1.702) are almost identical
functions. The code combines a curve for the normal probability with a curve for the logis-
tic function. curve(pnorm(x),-3,3,ylab=”cumulative normal or logistic”) curve(1/(1+exp(-1.702*x)),-
3,3,add=TRUE,lty=4)

2.9.2 Measurement of attitudes (|si−o j| < δ)

The alternative comparison model is one of proximity. This leads to a single peaked function
(Figure 2.10). Some items are more likely to be endorsed the lower the the subject’s attribute
value, some are most likely to be endorsed at moderate levels, and others have an increasing
probability of endorsement. Thus, if assessing neatness, the item “I am a messy person” will
tend to peak at the lowest levels, while the item “My room neatness is about average” will
peak at the mid ranges, and the item “I am a very neat person” will peak at the highest
levels of the attribute. An item at the highest end of the dimension can be modeled using the
ability model, and an item at the lowest level of difficulty can be modeled by reverse scoring
it (treating rejections as endorsements, and treating endorsements as rejections). However,
items in the middle range do not fit the ordering model and need to be modeled with a single
peaked function Chernyshenko et al. (2007).
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Fig. 2.9 The basic ability model. Probability of endorsing an item, or being correct on an item varies
by item difficulty and latent ability and is a monotonically increasing function of ability.
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Fig. 2.10 Basic attitude model. Probability of endorsing an item is a single peaked function of the
latent attribute and item location.
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2.10 Theory of Data: some final comments

The kind of data we collect reflects the questions we are trying to address. Whether we
compare objects to objects, subjects to subjects, or subjects to objects depends upon what is
the primary question. Considering the differences between order and proximity information is
also helpful, for some questions are more appropriately thought of as proximities (unfoldings)
rather than ordering. Finally, that simple questions asked of the subject can yield stable
metric and partially ordered metric information is an important demonstration of the power
of modeling.

In the next chapter we consider what happens if we incorrectly assume metric properties
of our data where in fact the mapping function from the latent to observed is not linear.




