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Abstract  

Finite element modeling of textile composite is 
not so easy because matrix part between winding 
fiber bundles has to be filled. In this paper, 
individual modeling in which multiple meshes are 
used to model the composite structure, has been 
proposed and applied to textile composites. The 
matrix such as resin or multi-ply is defined as global 
mesh, and the reinforcement such as complex fiber 
bundle is defined as local mesh. The periodicity of 
unit cell such as even in-plane periodicity is 
considered by the arrangement of stiffness equation. 
By the proposed method, the modeling of 
complicated textile composites such as non-crimp 
fabric composites, calculation of equivalent 
properties, stress analysis and damage development 
simulation has been carried out. 
 
1 Introduction 

Fiber Reinforced Plastics have been applied for 
many structures, because of its superior properties. It 
is not efficient and not economical procedures to 
obtain the properties of FRP to design from 
experiments. Though the finite element method 
(FEM) is used to analyze and evaluate the 
mechanical behavior of structures or materials, we 
have a limitation for total number of elements [1]. 
The homogenization method [2][3] can not be 
applied to the complicated composite materials, 
because of difficulty in making finite element mesh. 
But it is effective to obtain the equivalent properties. 
In order to analyze composite materials easily, we 
must solve two problems. First is to make the finite 
element mesh for even textile composites which 
have complicated structure such as plain, satin, twill 
weave and non-crimp fabrics. Second is to need the 
much memory in computer to carry out FEM. 

In this paper, a new technique for FE modeling 
and analysis for textile composites has been 
proposed. In the proposed method, each material in 
composite materials has been modeled as individual 
mesh, and all meshes has been combined each other 
in FE analysis. 

2 Modeling of Composite Materials 

2.1 Periodic Boundary Condition 

Textile composites sometimes have periodic 
textile structure in mesoscopic level. Because the 
mechanical properties are depended on the meso-
structure, it is important for modeling of textile 
composite to consider the periodic winding fiber 
bundles. Periodicity in FEM for structural analysis is 
defined as keeping the same shape between the 
corresponding surfaces. The equivalent properties of 
unit cell with perfect periodicity are sometimes 
calculated with homogenization method however 
that of unit cell with imperfect periodicity, for 
example periodicity in plane, can not be obtained. In 
this study, the calculation method of FE analysis for 
unit cell with imperfect periodicity was proposed, 
which go through the different procedure with the 
homogenization method. The effect of lamination on 
equivalent properties can be evaluated by the 
proposed method. 

At first, finite element mesh must have the 
corresponding surfaces which have the 
corresponding nodes each other in order to apply 
periodic boundary conditions except of by the 
penalty method. An example of mesh with P.B.C. 
was shown in Fig.1. In this mesh, both surfaces in 
right and left sides have a periodicity, and there are 
some periodic couples as nodes a and b, nodes c and 
e. In this case, displacement at nodes b and e are 
obtained as the following equations. 
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db = da + dδ
 (1) 

de = dc + dδ
 (2) 

where, dδ is displacement against the corresponding 
surface. As the nodes a and c in Eq. 1 and 2, nodes 
referred from other nodes are called master node, 
otherwise, nodes referring other node are called 
slave node. 
 

a

c

b

e

 
Fig.1 Corresponding nodes of periodicity 
 
Next, descriptions about how to make stiffness 

equation applied periodic boundary condition will be 
given as follows. Eq. 3 shows stiffness equation 
without periodic boundary condition, where there 
are 6 nodes a to f as a matter of convenience. When 
a periodic boundary condition is applied as shown in 
Fig. 1, corresponding nodes a and b, nodes c and e 
are related by the periodic boundary condition. Then, 
Eq. 3 is transformed to Eq. 4 from Eq. 1 and 2. 
Furthermore the elements of column b are moved to 
column a and δ based on the periodicity and Eq. 4 is 
transformed to Eq. 5. In the same procedure, column 
e, row b and e are moved too. Finally stiffness 
equation becomes as shown in Eq. 6. The rows and 
columns concerned with slave nodes in stiffness 
matrix are removed and new row and column 
concerned with periodicity are added. In case of 
multi-periodicity, removed and added row and 
column are more increased. 

Although the application of periodicity to 
structural analysis has been already adopted in finite 
element method like homogenization method, the 
periodic boundary condition is treated as one of 
convergence condition. There are three advantages 
of modifying stiffness equation. One is that we can 
adopt direct process to solve uneasy stiffness 
equation. Another is unnecessary of definition of 
particular coordinate system, which is depended on 
the unit cell such as equivalent coordinate system 
(ECS) by Whitcomb [4]. The other is that we need 
not to assume perfect periodicity as in 
homogenization method. These advantages 
contribute to finite element analysis of textile 
composite with complex internal structure. 
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2.2 Mesh Superposition Method 

In order to get the modeling of composite 
materials easy, we use a numerical technique 
concerned with FEM. The mesh superposition 
method is one of the multi-meshes FEM as shown in 
Fig. 2. In this method, we can use two or more FE 
meshes in order to model composite structures. 
Local mesh play role of complementary mesh. In 
this paper, a new modeling technique with mesh 
superposition method has been proposed. For 
example, in case of FRP composite, global mesh 
consists of matrix, and reinforcement such as fibers 
inside the matrix is modeled in local mesh. 

 

 
Fig. 2.  Individual modeling of composite material 

 
In proposed method, in order to relate these 

meshes, stiffness matrix equation is defined as Eq. 7. 
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Where, [KG] and [KL] are the stiffness matrices of 
the global mesh and local mesh, respectively. [KGL] 
is correlation matrix between the global and local 
mesh. {dG} and {dL} are displacement vectors in 
global mesh and local mesh, respectively. {FG} and 
{FL} are nodal force vectors in global mesh and 
local mesh, respectively. In this equation, stiffness 
matrices [KG], [KL] and [KGL] are calculated by the 
following equations. 

[ ] [ ] [ ][ ]∫= Ω
Ω

dK GGTGG
G BDB

[ ] [ ][ ]∫+ Ω
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Where, [B] and [D] are strain-displacement matrix 
and stress-strain matrix, respectively. In the method, 
however displacement is obtained by both meshes, 
the field of displacement is defined as 

{ } { }
{ }




=
G

G

d
d

d { }Ld+

on ΩG

on ΩL
 

(11) 

Where, {d} is displacement vector of the whole 
model, ΩL is the domain of local mesh. ΩG is the 
domain of global mesh expected ΩL. In addition, the 
fields of strain {ε} and stress {σ} are obtained by 
following equations. 
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(13) 

Traditionally in the mesh superposition method, 
it has been discussed that the size of local mesh is 
important to guarantee the precision of analysis and 
the region of local model must be expanded to 
uniform strain field in global mesh. In proposed 
method, we can make FE models of reinforcement 
mesh such as fiber bundle mesh and whole region 
mesh individually. The fiber bundle mesh can be 
obtained easily because of no consideration for resin 
part between fiber bundles. The whole region mesh 
can be also obtained easily because of no distinction 
between resin part and fiber bundle part, therefore 
only grid mesh consisting of resin must be prepared.  

2.3 Equivalent property of composite materials 

It is not efficient and not economical 
procedures to obtain the properties of FRP to design 
from experiments. The homogenization method is 
effective to obtain the equivalent properties. But it 
can not be applied to the complicated composite 
materials, because of the difficulty in making finite 
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element mesh. Some papers discussed about 
equivalent mechanical properties with periodic 
boundary condition [5],[6],[7]. Those are calculated 
by the average stress and the average strain in the 
unit cell with periodicity. In the proposed method, a 
calculation method by using above the mesh 
superposition method and the periodic boundary 
condition has been proposed [8].The local mesh, 
which means for example the fiber bundle mesh, is 
superposed on the global mesh. The equivalent 
properties of composite model are calculated from 
FE analysis results in applying normal or shear 
strain as shown in Fig. 3. The elastic moduli are 
obtained from the applied strain and reaction force 
in global mesh with periodicity. The Poison’s ratios 
are obtained from the transverse strain of global 
mesh.  

 

 
(a) Normal strain 

 

 
(b) Shear strain 

Fig. 3.  Applying strain to boundary condition of 
global mesh 

As shown in Fig. 4, we have modeled FRP as 
resin and unidirectional fibers and calculated the 
equivalent mechanical properties, and the equivalent 
properties were calculated by the proposed method. 
The results in case of several volume fractions are 
shown in Fig.6. In these figure, the subscript 1 
means the fiber direction, 2 and 3 mean transverse 
direction, respectively. As a verification of the 
proposed method, the results by ordinary mesh in 
Fig. 5 and empirical formulae of Uemura [9] and 
Chamis [10] are shown in the same figure. All 
results show good agreements except the result of 
Poison’s ratio (ν23). The reason why the differences 
occur is that the empirical formulae of Uemura’s and 
Chamis’s have assumed the equations respectively 
like as isotropic materials as shown in Eq. 14 and 15. 

1
2 23

22
23 −=

G
E

ν
 

(14) 

 

)( fmffT VV −+= 123 ννν  (15) 

Eq. 14, which is used for isotropic materials, has 
been used in Chamis’s, however it can not be really 
assumed because of dependence of E11. On the other 
hand, Eq. 15 has been used in Uemura’s, however it 
can not be assumed too. 

 
 

3
2

1  
(a) Resin (Global mesh)    (b) Fiber (Local mesh) 

Fig.4 Ordinary mesh 
 
 

3
2

1  
Fig.5 FE meshes of Fiber-Matrix model (Vf = 50%) 
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(a) Elastic modulus E11 
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(b) Elastic modulus E22, E33 
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(c) Shear modulus 
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(d) Poison’s ratio 

Fig.6 Comparison of the equivalent properties of 
Fiber-Matrix model 

Fibers:carbon E1(f)=220GPa, E2(f)=E3(f)=13.8GPa, 
G12(f)=G31(f)=9.0GPa, G23(f)=4.8GPa, ν12(f)=0.20, 
ν23(f)=0.47, ν31(f)=0.013, 
Resin:epoxy E(m)=4.4GPa, G(m)=1.6GPa, ν(m)=0.38 
 
 

2.4 Strength of composite materials 

Strength of composite materials is depended on 
the internal structure, the fiber volume fraction, the 
properties of materials etc. However fracture modes 
of unidirectional FRP are matrix cracks except of 
fiber breakage. So, the strength of unidirectional 
FRP as shown in Fig. 4 was calculated by stiffness 
degradation of damaged elements [11][12]. There is 
no difference; however the calculation can be carried 
with the ordinary FE model of course as shown in 
Fig. 5. The uniaxial strain was applied to the unit 
cell under periodic boundary conditions and the 
applied strain increased gradually before stresses at 
matrix part are less than matrix strength. In case the 
stress is over the strength, the stiffness of the 
element is decreased at the same applied strain. 
Fiber breakage was occurred in applied normal 
strain in fiber direction. The results in cases of 
applying normal strain 11, 22 and 33, and shear 
strain 12, 31 and 23 are shown in Fig. 7. Then 
strength of fiber is 2890MPa, strength of matrix is 
70MPa and Mises criterion is applied. 
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Fig.7 Stress-Strain curve of Fiber-Matrix model 

(Volume fraction 50%) 
 
From these results, it is recognized that the 

whole stiffness of unidirectional FRP is extremely 
decreased. So, the strength of unidirectional FRP can 
be defined from the maximum stress of stress-strain 
curve. 

 

3 Finite Element Analysis of Textile Composite 

3.1 Equivalent properties 

In the proposed method, plain woven fabric 
composite is modeled as fiber bundle mesh and 
whole region mesh. FE meshes of plain woven 
fabric composite are shown in Fig. 8. It is easy to 
make FE meshes because it is no need to make 
elements between fiber bundles. The local mesh 
consists of fiber bundles which modeled as 
unidirectional FRP, the mechanical properties were 
got from the results in the preceding chapter as 
shown in Table 1. The global mesh consists of only 
resin. As the same as in case of unidirectional FRP, 
the ordinary mesh of plain woven fabric composite, 
which was modeled as single mesh as shown in Fig. 
9 was prepared in order to compare the results. This 
mesh can be obtained by WiseTex and MeshTex 
software [11][14][15]. The results are shown in 
Table 2. By the comparison with the ordinary FEM, 
it is recognized that the equivalent properties by the 
proposed method are acceptable. 

 
 
 
 

 
(a) Resin (Global mesh) 

x

y z

 
(b) Fiber bundles (Local mesh) 

Fig.8 Finite element meshes of plain woven 
fabric composite 

 
Table1 Mechanical properties of fiber bundle and 

resin 
 Fiber bundle 

(Vf = 50%) Resin 

E11 112 GPa 
E22 7.70 GPa 
E33 7.70 GPa 

4.44 GPa 

G23 2.77 GPa 
G31 3.31 GPa 
G12 3.31 GPa 

1.58 GPa 

ν23 0.560 
ν31 0.020 
ν12 0.287 

0.380 

F11 1479 MPa 
F22 68.7 MPa 
F33 68.7 MPa 
F23 45.9 MPa 
F31 38.2 MPa 
F12 38.2 MPa 

70 MPa 

 
 

x

y z

 
Fig.9 Ordinary mesh of plain woven fabric 

composite 
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Table2 Comparison of the equivalent properties 
of woven fabric composite 

Equivalent 
property 

Ordinary 
FEM Individual model 

Ex 40.304 GPa 40.597 GPa 
Ey 40.304 GPa 40.597 GPa 
Ez 4.855 GPa 4.920 GPa 

Gyz 1.517 GPa 1.640 GPa 
Gzx 1.517 GPa 1.640 GPa 
Gxy 2.185 GPa 2.236 GPa 
νyz 0.431 0.430 
νzx 0.052 0.052 
νxy 0.108 0.099 

 

3.2 Stress analysis 

The stress and strain distributions by the 
individual modeling in case of applying normal 
strain are shown in Fig. 10. However as the above 
description, the load was applied to the global mesh, 
strain was also generated in the local mesh. 
Otherwise, the strain distribution by the ordinary 
FEM was shown in Fig. 11. Both results are good 
agreement in appearance and quantitatively. 

 

8.4

6.2

7.3

(x 10-3)
Equivalent strain

x

y z

 
Fig. 10 Strain distribution in Local mesh by the 
individual modeling in applying average strain 

0.74% in x direction 
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y z

 
Fig. 11 Strain distribution in fiber bundle part by the 
ordinary FEM in applying average strain 0.74% in x 

direction 
 

3.3 Damage development 

In order to simulate the failure of textile 
composite, failure development analysis was carried 
out by the stiffness degradation of failure elements. 
The stress-strain curves of plain woven fabric 
composite by the individual model and ordinary 
FEM are shown in Fig. 12. The curves by the both 
methods are almost same each other. 
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Fig.12 Stress-Strain curve of plain woven fabric 

composite 
 

3.4 Modeling of complicated textile composites 

Some textile composites can not be modeled 
with the ordinary FE, because the textile structure is 
too complex and it is difficult to fill in the part 
between fiber bundles with the ordinary single FE 
mesh. The purpose of this study is to model and 
evaluate such complicated textile composites. 

An example of the individual modeling of a 
multi-axial multi-ply stitched perform (called “non-
crimp fabric”) is shown in Fig. 13. In this case, 
multi-axial multi-ply mesh is used as the global 
mesh under in-plane periodic boundary condition, 
and the stitching yarn mesh is used as the local mesh. 
The strain distribution at applying normal strain 
0.5% in x direction is shown in Fig. 14. From the 
result, it is recognized that the larger strain occurred 
in the vicinity of the stitching yarn. 

So, by the individual modeling, complicated 
textile composites such as non-crimp fabric 
composite can be analyzed and evaluated. 
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(a) multi-axial multi-ply mesh [0/-45/90/45] 

 

 
(b) stitching yarn mesh 

Fig. 13 Individual model of non-crimp fabric 
composite 
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(a) multi-axial multi-ply mesh [0/-45/90/45] 
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(b) stitching yarn mesh 

Fig. 14 Strain distribution of non-crimp fabric 
composite at applying normal strain 0.5% 

 

4 Conclusions 

In order to get modeling of composite 
materials easy, an individual modeling and a 
calculation system have been proposed. In the 
proposed method, the behavior of textile composite 
with complicated fabric structure such as non-crimp 
fabrics can be evaluated. Therefore it is convenient 
technique and efficient to evaluate the macroscopic 
behavior, local stress and failure development of 
textile composite. 
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