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Abstract

Finite element modeling of textile composite is
not so easy because matrix part between winding
fiber bundles has to be filled. In this paper,
individual modeling in which multiple meshes are
used to model the composite structure, has been
proposed and applied to textile composites. The
matrix such asresin or multi-ply is defined as global
mesh, and the reinforcement such as complex fiber
bundle is defined as local mesh. The periodicity of
unit cell such as even in-plane periodicity is
considered by the arrangement of stiffness equation.
By the proposed method, the modeling of
complicated textile composites such as non-crimp
fabric composites, calculation of equivalent
properties, stress analysis and damage devel opment
simulation has been carried out.

1 Introduction

Fiber Reinforced Plastics have been applied for
many structures, because of its superior properties. It
is not efficient and not economical procedures to
obtain the properties of FRP to design from
experiments. Though the finite element method
(FEM) is used to analyze and evaluate the
mechanical behavior of structures or materials, we
have a limitation for total number of elements [1].
The homogenization method [2][3] can not be
applied to the complicated composite materials,
because of difficulty in making finite element mesh.
But it is effective to obtain the equivalent properties.
In order to analyze composite materials easily, we
must solve two problems. First is to make the finite
element mesh for even textile composites which
have complicated structure such as plain, satin, twill
weave and non-crimp fabrics. Second is to need the
much memory in computer to carry out FEM.

In this paper, a new technique for FE modeling
and analysis for textile composites has been
proposed. In the proposed method, each materia in
composite materials has been modeled as individual
mesh, and all meshes has been combined each other
in FE analysis.

2 Modeling of Composite Materials

2.1 Periodic Boundary Condition

Textile composites sometimes have periodic
textile structure in mesoscopic level. Because the
mechanical properties are depended on the meso-
structure, it is important for modeling of textile
composite to consider the periodic winding fiber
bundles. Periodicity in FEM for structural analysisis
defined as keeping the same shape between the
corresponding surfaces. The equivalent properties of
unit cell with perfect periodicity are sometimes
calculated with homogenization method however
that of unit cell with imperfect periodicity, for
example periodicity in plane, can not be obtained. In
this study, the calculation method of FE analysis for
unit cell with imperfect periodicity was proposed,
which go through the different procedure with the
homogenization method. The effect of lamination on
equivalent properties can be evauated by the
proposed method.

At firgt, finite element mesh must have the
corresponding  surfaces which  have  the
corresponding nodes each other in order to apply
periodic boundary conditions except of by the
penaty method. An example of mesh with P.B.C.
was shown in Fig.1. In this mesh, both surfaces in
right and left sides have a periodicity, and there are
some periodic couples as nodes a and b, nodes ¢ and
e. In this case, displacement at nodes b and e are
obtained as the following equations.
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dp =da+ dg (1)

=+ dy )

where, dy is displacement against the corresponding
surface. Asthe nodes a and cin Eg. 1 and 2, nodes
referred from other nodes are called master node,
otherwise, nodes referring other node are called
dave node.
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Fig.1 Corresponding nodes of periodicity

Next, descriptions about how to make stiffness
equation applied periodic boundary condition will be
given as follows. Egq. 3 shows stiffness equation
without periodic boundary condition, where there
are 6 nodes ato f as a matter of convenience. When
a periodic boundary condition is applied as shown in
Fig. 1, corresponding nodes a and b, nodes ¢ and e

arerelated by the periodic boundary condition. Then,

Eqg. 3 is transformed to Eq. 4 from Eq. 1 and 2.
Furthermore the elements of column b are moved to
column a and d based on the periodicity and Eq. 4 is
transformed to Eq. 5. In the same procedure, column
e, row b and e are moved too. Finally stiffness
equation becomes as shown in Eqg. 6. The rows and
columns concerned with slave nodes in stiffness
matrix are removed and new row and column
concerned with periodicity are added. In case of
multi-periodicity, removed and added row and
column are more increased.
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Although the application of periodicity to
structural analysis has been already adopted in finite
element method like homogenization method, the
periodic boundary condition is treated as one of
convergence condition. There are three advantages
of modifying stiffness equation. One is that we can
adopt direct process to solve uneasy dtiffness
equation. Another is unnecessary of definition of
particular coordinate system, which is depended on
the unit cell such as equivalent coordinate system
(ECS) by Whitcomb [4]. The other is that we need
not to assume perfect periodicity as in
homogenization  method. These  advantages
contribute to finite element analysis of textile
composite with complex internal structure.

1 fal.'I é(aa kab kac kad I(af k UI d u
| | Gi I
1 fb| € ba kbb kbc kbd kbe kbf ur d
?. ch, — gkca kcb koc kcd kce cf ul d T (3)
i fd?/ gkda kdb kdc kdd kde df u| d y
: fe: gkea keb kec kfd kee k UI d I
Tffb é(fa K K Ky Kee ffmd b
.\l. fau é(aa kab kac kad kae kaf U| da u
: fb: gkba Koo Kpe Koy Kpe Ky ﬂ: d, +dy; I
T ch é(ca\ kcb koc kcd kce kcf L" dc T
i y=é i ;4
i fd?l gkda Ko Ko Kag Ke Kg g| dq Y ( )
: fe.: g(ea kd) kec ked kee kef H: dc +dd :
fffb §<fa Kip Ko Kig Kie kffdf d b
1 fa_[_-] é<aa+kab 0 kac kad kae kaf kab@‘: ga :J
: fb':' %ba"’kbb 0 Ky Ky Ko Ky Ky 3: da :
:f ch ékca-"kcb 0 kcc kod koe kcf kcbul. ¢ |
Plel _ X a d
: fu%/ gkua"'kub 0 kg kg Ko Ky dbu:'d :d ?/ (5)
I fe:l: ékea+keb 0 kec ksi kee kd kebgl: Cd d:l.
1 1 | |
ffv'b Futky 0 ki kg ke ki Kyg ! i
iy
KaatKpy  Kgtky Ktk +kbb+kbeU| d,
Kotk Ketky Kotk tky, +k%t§d'
Kga K KaptKee uI (6)
kfd kff kfb+k Idf:
KpgtKey Kty Ky tKpetKy, +keeﬁd b



INDIVIDUAL MODELING OF COMPOSITE MATERIALSWITH MESH SUPERPOSITION METHOD UNDER

2.2 Mesh Superposition Method

In order to get the modeling of composite
materials easy, we use a numerical technique
concerned with FEM. The mesh superposition
method is one of the multi-meshes FEM as shown in
Fig. 2. In this method, we can use two or more FE
meshes in order to model composite structures.
Local mesh play role of complementary mesh. In
this paper, a new modeling technique with mesh
superposition method has been proposed. For
example, in case of FRP composite, global mesh
consists of matrix, and reinforcement such as fibers
inside the matrix is modeled in local mesh.
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Fig. 2. Individual modeling of composite material

In proposed method, in order to relate these
meshes, stiffness matrix equation is defined as Eq. 7.

A[KLG]T [Ki]g}l{df}v:}_{pgw
EKETT [KMIg{d ) TR

Where, [K®] and [K"] are the stiffness matrices of
the global mesh and local mesh, respectively. [K®]
is correlation matrix between the global and local
mesh. {d®} and {d'} are displacement vectors in
global mesh and local mesh, respectively. {F®} and
{F"} are nodal force vectors in globa mesh and
local mesh, respectively. In this equation, stiffness
matrices [K®], [K'] and [K®"] are calculated by the
following equations.
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PERIODIC BOUNDARY CONDITION
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Where, [B] and [D] are strain-displacement matrix

and stress-strain matrix, respectively. In the method,

however displacement is obtained by both meshes,
the field of displacement is defined as

(10)

on We

+{dL} on W (1)

Where, {d} is displacement vector of the whole
model, W is the domain of loca mesh. WP is the
domain of global mesh expected W-. In addition, the
fields of strain {e} and stress {s} are obtained by
following equations.
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Traditionally in the mesh superposition method,
it has been discussed that the size of local mesh is
important to guarantee the precision of analysis and
the region of loca model must be expanded to
uniform strain field in globa mesh. In proposed
method, we can make FE models of reinforcement
mesh such as fiber bundle mesh and whole region
mesh individually. The fiber bundle mesh can be
obtained easily because of no consideration for resin
part between fiber bundles. The whole region mesh
can be also obtained easily because of no distinction
between resin part and fiber bundle part, therefore
only grid mesh consisting of resin must be prepared.

2.3 Equivalent property of composite materials

It is not efficient and not economica
procedures to obtain the properties of FRP to design
from experiments. The homogenization method is
effective to abtain the equivalent properties. But it
can not be applied to the complicated composite
materials, because of the difficulty in making finite
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element mesh. Some papers discussed about
equivalent mechanical properties with periodic
boundary condition [5],[6],[7]. Those are calculated
by the average stress and the average strain in the
unit cell with periodicity. In the proposed method, a
caculation method by using above the mesh
superposition method and the periodic boundary
condition has been proposed [8].The local mesh,
which means for example the fiber bundle mesh, is
superposed on the globa mesh. The equivaent
properties of composite model are calculated from
FE anaysis results in applying norma or shear
strain as shown in Fig. 3. The elastic moduli are
obtained from the applied strain and reaction force
in global mesh with periodicity. The Poison’s ratios
are obtained from the transverse strain of global
mesh.
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(b) Shear strain
Fig. 3. Applying strain to boundary condition of
globa mesh

As shown in Fig. 4, we have modeled FRP as
resn and unidirectional fibers and calculated the
equivalent mechanical properties, and the equivalent
properties were calculated by the proposed method.
The results in case of several volume fractions are
shown in Fig.6. In these figure, the subscript 1
means the fiber direction, 2 and 3 mean transverse
direction, respectively. As a verification of the
proposed method, the results by ordinary mesh in
Fig. 5 and empirica formulae of Uemura [9] and
Chamis [10] are shown in the same figure. All
results show good agreements except the result of
Poison's ratio (n23). The reason why the differences
occur isthat the empirical formulae of Uemura s and
Chamis's have assumed the eguations respectively
like as isotropic materials as shown in Eq. 14 and 15.

E,
n,, = -1 14
T (14)
Ny =NV +n(1-Vy) (15)

Eqg. 14, which is used for isotropic materials, has
been used in Chamis's, however it can not be really
assumed because of dependence of Eyy. On the other
hand, Eq. 15 has been used in Uemura’'s, however it
can not be assumed too.
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Fig.5 FE meshes of Fiber-Matrix model (V¢ = 50%)
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Fig.6 Comparison of the equivalent properties of
Fiber-Matrix model
Fibers:carbon E1”=220GPa, E2"=E3"=13.8GPa,
G129=G317=9.0GPa, G23"=4.8GPa, n12=0.20,
n239=0.47, n319=0.013,
Resin:epoxy E™=4.4GPa, G™=1.6GPa, n™=0.38

2.4 Strength of composite materials

Strength of composite materias is depended on
the internal structure, the fiber volume fraction, the
properties of materials etc. However fracture modes
of unidirectional FRP are matrix cracks except of
fiber breakage. So, the strength of unidirectional
FRP as shown in Fig. 4 was caculated by stiffness
degradation of damaged elements [11][12]. There is
no difference; however the calculation can be carried
with the ordinary FE model of course as shown in
Fig. 5. The uniaxia strain was applied to the unit
cell under periodic boundary conditions and the
applied strain increased gradually before stresses at
matrix part are less than matrix strength. In case the
stress is over the drength, the stiffness of the
element is decreased at the same applied strain.
Fiber breskage was occurred in applied normal
strain in fiber direction. The results in cases of
applying norma strain 11, 22 and 33, and shear
strain 12, 31 and 23 are shown in Fig. 7. Then
strength of fiber is 2890MPa, strength of matrix is
70MPaand Mises criterion is applied.
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Fig.7 Stress-Strain curve of Fiber-Matrix model
(Volume fraction 50%)

From these results, it is recognized that the
whole gtiffness of unidirectional FRP is extremely
decreased. So, the strength of unidirectional FRP can
be defined from the maximum stress of stress-strain
curve.

3 Finite Element Analysis of Textile Composite

3.1 Equivalent properties

In the proposed method, plain woven fabric
composite is modeled as fiber bundle mesh and
whole region mesh. FE meshes of plain woven
fabric composite are shown in Fig. 8. It is easy to
make FE meshes because it is no need to make
elements between fiber bundles. The loca mesh
consists of fiber bundles which modeled as
unidirectional FRP, the mechanical properties were
got from the results in the preceding chapter as
shown in Table 1. The globa mesh consists of only
resin. As the same as in case of unidirectional FRP,
the ordinary mesh of plain woven fabric composite,
which was modeled as single mesh as shown in Fig.
9 was prepared in order to compare the results. This
mesh can be obtained by WiseTex and MeshTex
software [11][14][15]. The results are shown in
Table 2. By the comparison with the ordinary FEM,
it is recognized that the equivalent properties by the
proposed method are acceptable.
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(a) Resin (Globa mesh)

X

(b) Fiber bundles (Local mesh)
Fig.8 Finite element meshes of plain woven
fabric composite

Tablel Mechanical properties of fiber bundle and

resin
Fiber bundle .

(V; = 50%) Resin
E1l 112 GPa
E22 7.70 GPa 4.44GPa
E33 7.70 GPa
G23 2.77 GPa
G31 3.31GPa 158 GPa
G12 3.31GPa
n23 0560
nal 0.020 0.380
n12 0.287
F11 1479 MPa
F22 68.7 MPa
F33 68.7 MPa
F23 459 M Pa 70MPa
F3l 382MPa
F12 38.2MPa

Fig.9 Ordinary mesh of plain woven fabric
composite
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Table2 Comparison of the equivalent properties
of woven fabric composite

Egr%;’gf;t Or;’g,:jry Individual model

EXx 40.304 GPa 40.597 GPa
Ey 40.304 GPa 40.597 GPa
Ez 4.855 GPa 4.920 GPa
Gyz 1.517 GPa 1.640 GPa
Gzx 1.517 GPa 1.640 GPa
Gxy 2.185 GPa 2.236 GPa
v yz 0.431 0.430

v X 0.052 0.052

vV Xy 0.108 0.099

3.2 Stress analysis

The stress and strain distributions by the
individual modeling in case of applying normal
strain are shown in Fig. 10. However as the above
description, the load was applied to the global mesh,
strain was aso generated in the loca mesh.
Otherwise, the strain distribution by the ordinary
FEM was shown in Fig. 11. Both results are good
agreement in appearance and quantitatively.

Equivalent strain
(x 10%)
8.4

7.3

e 5
T
- .

62 Y

Fig. 10 Strain distribution in Local mesh by the
individual modeling in applying average strain
0.74% in x direction

Equivalent strain
(x107%)
8.3

7.1

Fig. 11 Strain distribution in fiber bundle part by the
ordinary FEM in applying average strain 0.74% in x
direction

PERIODIC BOUNDARY CONDITION

3.3 Damage development

In order to simulate the failure of textile
composite, failure development analysis was carried
out by the stiffness degradation of failure elements.
The stress-strain curves of plain woven fabric
composite by the individual model and ordinary
FEM are shown in Fig. 12. The curves by the both
methods are amost same each other.

300.0

—e—Ordinary FEM with
Damage Analysis
2500 M g
= 200.0
o
s
‘g‘ 150.0
= o4
&3 1000
50.0
0.0
0.000 0.002 0.004 . 0.006 0.008 0.010
Strain
Fig.12 Stress-Strain curve of plain woven fabric
composite

3.4 Modeling of complicated textile composites

Some textile composites can not be modeled
with the ordinary FE, because the textile structure is
too complex and it is difficult to fill in the part
between fiber bundles with the ordinary single FE
mesh. The purpose of this study is to model and
evaluate such complicated textile composites.

An example of the individual modeling of a
multi-axial multi-ply stitched perform (called “non-
crimp fabric”) is shown in Fig. 13. In this case,
multi-axial multi-ply mesh is used as the global
mesh under in-plane periodic boundary condition,
and the stitching yarn mesh is used as the local mesh.
The strain distribution at applying normal strain
0.5% in x direction is shown in Fig. 14. From the
result, it is recognized that the larger strain occurred
in the vicinity of the stitching yarn.

So, by the individua modeling, complicated
textile composites such as non-crimp fabric
composite can be analyzed and evaluated.



(b) stitching yarn mesh
Fig. 13 Individual model of non-crimp fabric
composite
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(a) multi-axial multi-ply mesh [0/-45/90/45]

Equivalent strain
(x 109)
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(b) stitching yarn mesh
Fig. 14 Strain distribution of non-crimp fabric
compositeat applying normal strain 0.5%
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4 Conclusions

In order to get modeling of composite
materials easy, an individual modeling and a
caculation system have been proposed. In the
proposed method, the behavior of textile composite
with complicated fabric structure such as non-crimp
fabrics can be evaluated. Therefore it is convenient
technique and efficient to evaluate the macroscopic
behavior, local stress and failure development of
textile composite.
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