Math 3228 - Week 9

e The Riemann Zeta function

Extension to the whole complex plane

Connection with prime numbers

The prime number theorem

The functional equation
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The Riemann zeta function

e The Riemann zeta function ((z) is defined on the half-plane {z € C :
Re(z) > 1} by the formula

2.1 1 1
= — =1
((2) ;n tor Tt
thus for instance
1 1 1 71'2
2)=1 — -
(@)=1+7 4 *9 9 + 16 *- 6

(see Assignment). Notice that if z = z + iy, then
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Since Y 07, an is convergent for x > 1 by the integral test, we thus see
that the sum defining ((2) is absolutely convergent. In fact we have

|<Z—<1+/001 = !
n® — a® x—1




e This function is analytic on the half-plane. Indeed by Morera’s theorem
it suffices to show that f7 ((z) dz = 0 for all closed contours 7 on the
half-plane. We can write this as

Lg(z) dz=/i% dz.

Y n=1

Because v is a closed contour in the open half-plane, there exists an
e > 0 such that Re(z) > 1+4¢ for all z € 7. Thus || < — for all
z € 7. Since # is uniformly convergent, we may use the Weierstrass
M-test to swap the sum and integral to write this as

i %dz.

n=1v7

But each integral is zero by Cauchy’s theorem (note that an = g ?logn
is clearly analytic in z for each n > 1) so we have f7 ((z) dz = 0 as
desired.

e The Riemann zeta function is connected to the Gamma function as
follows. Recall that for all Re(z) > 1 we have

['(2) :/ t*~te~t dt.
0

Now let n > 1 be an integer. Making the change of variables ¢ = na,
we obtain

['(z) = /Ooo(na)z_le_"“ nda

or in other words

o 1
/ a* e da = —TI'(2).
0

nz

Now we sum in 7 to obtain

g/ooo a*"te ™ da = ((2)T(2).



Now we have to swap the sum and integral again. Writing z = = + iy
we see that a®~le™™® has magnitude a®*'e~™?. Summing this over all
n would give a® ! lf:_a = gf—:ll by the geometric series formula. This is
absolutely integrable in a (for 0 < a < 1 we use the bound e* — 1 > q
and the observation that a* 2 is absolutely integrable on [0,1] when
x > 1; when a > 1 we use the bound e* — 1 > €%/2 and observe that

a®'e™® is absolutely integrable on [1,00) for any ), so we may use

e
the Lebesgue dominated convergence theorem to justify the swapping
of the sum and integral:

/0 g é e da = C(2)T(2).

Using the geometric series formula as above, we thus have

C(2)T(2) = /0 A

e’ —1
Now fix z and let f(w) be the function

elz—1Log,(w)

ew —1

fw) :

where Log,(w) is the branch of the logarithm whose argument ranges
between 0 and 27. So for w just above the positive real axis w =

a+¢i, we have f(a+ei) = Z:—ill; for w just below the positive real axis
w = a — &i, we have f(a + ¢i) ~ 62“'(2_1)::—:11. Thus if we let 7, be

the clockwise contour consisting of the leftward half-infinite ray from
+oo—ei to r—ei, the (nearly full) circle from r —¢i to r+&i transversed
once clockwise, and then the half-infinite ray from ei to +o0 + i, we
see that

2mi(z—1) > !
lim w) dw = (1 — e ™™ da — w) dw.
g [ S dw = [ e [ )
Let us get rid of the integral on the circle |w| = r. Since — has
a simple pole at the origin we see that |ew1_1| < g on this circle for

some constant C > 0. Also writing w = re®, 0 < t < 27 we see that
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w*™! = r*71e=7Y) and hence |w* ! < r*~le?"#lU. Thus |f(w)| <
Ce**=1r*=2 on the circle, and hence

| Fw) dw| < 2mrCeml=1lpa-2
|

w|=r

which goes to zero as r — 0 because z > 1. Thus we have

o) z—1
lim / f(w) dw = (1—627”(2_1))/ T da= (1= =D (2)T(2).
r,e—0 Yre 0 et — 1
Actually, since f(w) has no poles except on the integers (and a discon-
tinuity on the positive real axis) we see that the integral ~, . f(w) dw
does not actually depend on r or € as long as they are small. So we
can write

fw) dw = (1 — D) ()0 (2)

Yr,e

or equivalently (using the previous formula)

((z) = B0 —1627”'(2—1)) ((1—emi==1)y /roo ejz: . da—/|w|:r f(w) dw).

These integrals is actually convergent for all z in the complex plane
(not just those with Re(z) > 1); the point being is that we have moved
away from the origin w = 0 where singularities occur. Thus this gives
an analytic definition of the ( function for all z in C, except possibly
when z is an integer, in which case 1 — 2™~ has a simple zero (the
analyticity can be proven by yet another tedious application of Morera’s
theorem, which we omit). But we know that I has a simple pole for
every negative integer z (or 0), so in fact ¢ has no poles except at 1
(we already know ¢ has no poles for the positive integers).

The above formula tells us that at 1, {(z) has at most a simple pole. In-
deed we can work out its residue here, which is equal to lim, o+ a((1+
«). Observe from the integral test that

. =1 P A T
¢( +0‘)—Zn1+a— . alte a—a

n=1




and

N > 1 o1
C(1—’_04)_2711%5—1"' . alte da—l—i—a

n=1

and hence by the squeeze test

lim a((l+ a) =1.

a—0t
Thus ¢ has a simple pole with residue 1 at 1, and no other poles.
e Thus the poles of ( are very well understood. The zeroes of (, on

the other hand, are much more difficult, and are closely related to the
distribution of the prime numbers.
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Connection with prime numbers

e Now we connect the Riemann zeta function ¢(z) with the prime num-
bers p =2,3,5,7,.... Let Rez > 1. Observe that the series

> S N

n is a power of 2

is absolutely convergent and is equal to
formula. Similarly

1_§_Z by the geometric series

1,1 0
Z E =1+ ? + @ —+ ...
n is a power of 3
is absolutely convergent and equal to # Multiplying the two to-

gether and collecting all the terms, we see that
1 1
Z ne Z (23k)>
n is a power of 2 times a power of 3 k>0

%. Continuing in this

is absolutely convergent and is equal to # T

fashion, we see that
1
2 pe
n is a power of 2 times a power of 3 times a power of 5
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1 1 1 : :
converges t0 {57315 = As you can see, these series continue to

increase monotonically. Using the unique factorization theorem (every
positive integer can be written as the product of powers of distinct
primes in a unique way) (and the monotone convergence theorem) we

thus see that
1 1
=t I

n=1 p prime

whenever Re(z) > 1. This is known as Fuler’s formula. In particular,
we can take absolute values and conclude that

1 1
C(2)| = H mz H T

p prime p prime

Now use the estimate 1 +y < e¥ for |y| < 1/2 to conclude that

C@I= J] e” =exp(—= > p ) Zexp(—» n).
p prime p prime n=1

But this sum is absolutely convergent by the integral test, and thus
|C(2)| > 0 for Re(z) > 1; i.e. ¢ has no zeroes to the right of 1.

We can also take logarithms, and define the log-¢ function for Re(z) > 1

to be
log((z) == Y —Log(l—p~)
p prime

where Log is the principal branch of the logarithm (note that 1 — p~*
stays on the right half-plane if Rez > 1). This is clearly a branch of
the logarithm of . Differentiating this (one can use the generalized
Cauchy integral formulae to make this rigorous), we thus see that

¢'(2) p~*logp s
() "7 X Ty 2 2l ™

p prime p primem>1

We have just proven that ¢ has no zeroes to the right of 1. We now
show that ¢ also has no zeroes on the line Re(z) = 1.



e Lemma. Suppose z =1+ it for some t # 0. Then ((z) does not have
a zero at 1 +4t. (For ¢ = 0 we already know that ¢ has a simple pole).

e Proof. Suppose for contradiction that { had a zero of order m at 14t
for some m > 1, then % would have a simple pole with residue m > 1

at 1 +¢t. In particular we have
CI
¢

Suppose that ¢ also had a zero of order n at 1 + 2it (n could be zero),
SO

(1 +e+zt)——+0(1).

!
éé(1 +e42it) = — +0(1).
Meanwhile & has a simple pole of residue 1 at 1, so
¢ —1
— 4+ 0(1).
T+ =—+00)
We combine these three facts as
! ! ! 4 -3
i(1+5)+42(1+6+it) CC( +e42it) = %JFO(U.

In particular, we see that the left-hand side has positive real part for €
large enough. But we can rewrite the left-hand side as

logm —itm —2itm
Z Z m(1—|—6 3+4p +p Z )
p prime m>1
which has real part

1
Z Z T:(%fs 3 + 4 cos(mtlogp) + cos(2mt logp)).
p prime m>1 P

But 3+ 4 cosx + cos(2z) = 2+4cosx +2cosx? = 2(1+cosz)? > 0, so
this is negative; a contradiction. O

* % k % %

The prime number theorem



For any integer N > 1, let 7(/N) denote the number of primes less than
or equal to N. We can now prove (glossing over a few details, because
the theorem is quite long and messy) the famous prime number theorem,
which asserts that 7 (V) is approximately N/log N:

w(N)

Prime number theorem. limy_, NlogN =

This theorem was first conjectured by Legendre and Gauss in around
1800. It was one of the outstanding mathematical problems of the
nineteenth century, and was finally proven by Hadamard and de la
Vallée Poussin in 1986.

To prove this we have to introduce a new object, the Mdbius function
w(n). This is defined as pu(n) = (—=1) if n is the product of k distinct
primes (thus p(1) = 1, u(2) = p(3) = -1, pu(6) = +1), and p(n) =0
otherwise (i.e. of n has some repeated primes, e.g. 1(12) = 0). Thus p
oscillates between -1, 0, and +1. Its relationship to the Riemann zeta
function can be seen from the formula

S I o
n=1 p prime

for Re(z) > 1, as can be seen by multiplying out the right-hand side and
examining all the terms which appear (one can easily verify that the
collection of such terms is absolutely convergent when Re(z) > 1 and
so there is no problem justifying the expansion of the infinite product).

In other words,
S
s ((z)

n=1

for Re(z) > 1
We now prove a key result concerning the Mobius function.
Theorem. The sum ) -, @ is (conditionally) convergent to zero.

Proof. Since ((z) has a simple pole at 1, ( ; has a simple zero at

1 (if we remove the singularity). In principle, this finishes the proof
because all we need to do is substitute z = 1 in the above formula.



Unfortunately the above formula is only rigorously derived for Re(z) >
1, so we need to do a fair bit more work to conclude.

e The function L) is analytic on all of Re(z) > 1 (if we remove the

((=

singularity at 1) because we already showed that ¢ has no zeroes for
Re(z) > 1. We now let R > 0 be a large number, and consider the
semicircular contour vg(t) := 1 + Re¥, —1/2 <t < .

e Lemma 1. We have 0 = limy_,o [, ]\ézz)l (5 + 5&7) dz.

e Proof. We know that ﬁ is analytic on the line segment from 1 — Rz
to 1 + Ri, hence it is also analytic a little bit to the left of this line
segment (analyticity is an open property). Thus we can find a contour
vy from 1 + Ri to 1 — Ri which lives entirely in the half-space where

Rez < 1. Then by the Cauchy theorem

Nzl 1 z—1
0 =/ + dz,
YRR C(z) ('Z —1 R? )

since the integrand on the right-hand side is analytic inside vg + 7%

except for 1, where it has a removab]e singularity (recall ﬁ has a
simple zero here to cancel out the — pole) O
e We now spht = f<n + [>n, where
/L
fan(
n<N
and
/,L
fon(z
n>N

) dz| < 27 /R.

e Lemma 2. We have | [ N fon(2) (5 +

e Proof. The left-hand side is less than or equal to

1 z—1
R Nz 1 -
i sup NN @l =7 + 7




Write z = x + iy. Observe that if z € g, then ﬁ = ;, and hence

1 z—l‘_Q(x—l)
z—1 R ' R

Also we have |N*~!| = N*~!, while (since |u(n)| < 1 for all n)

TCIED SRl S

n>N

Putting this all together, we obtain the result. U

Lemma 3. We have

N
z—1 Z -1 . /,L(TL)
|/ N fen(D) (g + 2ot de 2%2;T| < 9n/R+21/N.
Proof. We introduce the contour v, which is the other half of the circle
traversed by g anticlockwise, i.e. y5(t) := 1+ Re®, m/2 <t < 3m/2.
Observe that f<ny(z) is analytic everywhere, and so by the Cauchy
integral formula (or residue theorem)

_ 1 z—1 ,u
z—1
/7R+7— N fSN(Z)(—Z_ 7+ 2 ) dz = 2mif<n(1) = 2mi E

R

So to prove the lemma it will suffice to show that

z—1 1 Z =
_ <
|LRN fen(e) (o + 2 L) 42 < 2n/R+ 21N,

Once again, we estimate the left-hand side by

B 1 z—1
TR sup |[N*7| fen (2)||—— + |-
2€EYR z-1 i
TR

As before we have |[N*71| = N*7! and |25 + % | = 2‘2;1‘, while
|
|fen(2)] < Z e
n=1
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If 0 < x <1, then the integral test gives
Al | Nda N
Yoo<i+ [ =<
ne Lot Tz =1
n=1

while if z < 0 then the integral test gives

Nl—x
_/ —+N < +N%
n‘” |z — 1|

Putting this all together we obtain

1 2 2
sup |[N*7!| fen(2)||— + |_ =T N
ve z—1 R2 RN
and the claim follows. O

Combining Lemma 2 and Lemma 3 we see that

|/ Nzlf(z)(LJ_l)dz—Qm'XN:@\<47T/R+27T/N
o z—1 R? n ' ’

n=1

Taking limit suprema as N — oo and using Lemma 1 we obtain

Then letting R — oo gives the result. U

We now convert the above statement about u(n) into a statement about
m(n). This now leaves the realm of complex analysis and into the world
of number theory. We use the notation O(A) to denote anything which
is bounded by CA for some constant C' > 0, and o(A(NN)) to denote
any quantity B(NN) such that limy_,, B(N)/A(N) = 0. Thus the
prime number theorem states that 7(N) = IOgLN(l +0(1)).

We first need to estimate some partial sums.

Lemma 3. We have 2521 w(n) = o(N).
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Proof. Let ¢ > 0 be arbitrary. Since > °, u(n)/n is conditionally
convergent, we see that Z’fzv:(l—s)N pu(n)/n = o(1). But 1/n =1/N +
O(g/N), and hence

Yo un)/N=o(1)+ > O(/N)=o(1)+0().
n=(1—)N n=(1—¢)N

Subdividing the interval from N/2 to N into about 1/e intervals and
doing the above estimate on each interval, we see upon summing that

N

Z wu(n) = o(N/e) + O(eN).

n=N/2

In particular, for N sufficiently large (say N > Ny, where Ny depends

on ¢) we have
N

Z pu(n) = O(eN).

n=N/2
Applying this with N replaced by N/2, N/4, etc. until one reaches N
and then summing the telescoping series, we obtain

N

S u(n) = O(eN) + O(Ny)

n=~Np

and thus if N is large enough

N
S uln) = O(eN)
n=1
Since € was arbitrary, the claim follows. O
Lemma 4. We have S logn = Nlog N — N 4+ O(N'/?).
Proof. From the integral test we have

N N N
/logada:Zlogng/ loga da + log N.

1 — 1

Since le loga da = Nlog N — N, the claim follows (log N is smaller
than N'/2 for N large). O
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e Let 7(n) denote the number of divisors of a positive integer n, thus for
instance 7(6) = 4.

e Lemma 5. We have 3. 7(n) = NlogN — N + 2yN + O(N'/?),
where v is a fixed number (called Euler’s constant).

e Proof. We can write 7(n) = >, 1, where d|n means “d divides n”.

Thus
N

ZT(TL) = iZl

n=1 n=1l d|n

Writing n = dd’, we obtain

dorm= > 1

n=1 d,d":dd'<N

If dd’ < N, then at least one of d, d' is less than or equal to v/ N. Thus
we can write the previous as

> 14 > 1— 3 1.

d,d':d<+/N,dd' <N d,d':d'<\/N,dd'<N d,d’:d,d' </N,dd' <N

The third sum is just (VN + O(1))?> = N + O(N'/?) (note that the
condition de < N is irrelevant here). The first two are symmetric, so
it will suffice to show that

1
3 1= SNlogN +yN + O(N'?).
d,d':d<~+/N,dd' <N

Writing dd’ < N as d' < N/d we see that for fixed d, the number of
availale d' is N/d + O(1), thus the left-hand side is

> (5 + o)
d<vV'N

and it will suffice to show that

1 1
d<v'N

13



But we can write %logN f VN d“, and the claim will then follow

from the integral test if we choose 7 to be the discrepancy between the
infinite integral and infinite sum. 0

e Lemma 6. We have 3, ;.4 vy #(d)(logd — 7(d') + 27) = o(N).

e Proof. Let M > 0 be a large number. If N is large enough (depending
on M), we can split the left-hand side as

Yoo wdogd—r(d)+2y)+ Y. p(d)(logd —7(d)+2y)— >
d,d":d,d'<N;d' <M d,d':d,d'<N;d<N/M d,d':d,d'<N;d<N/M
The first sum can be rewritten

> (ogd —7(d) +29)( Y w(d))
&' <M d<N/d'

and this is o(N) if N is large enough depending on M thanks to Lemma
3. In particular we can make this less than O(M~Y/2N) if N is large
enouh. The third sum can similarly be made less than O(M~'/2N). As
for the second sum, we write it as

> wld) Y logd —7(d)+2y
d<N/M d'<N/d
which by Lemmas 4, 5 is equal to
N/M
Z O((N/d)1/2) = N1/20(/ d—1/2) = N1/2O((N/M)1/2) _ O(M_I/QN).
d<N/M 1

Thus we have estimated Y, 4.4 o<y #(d)(logd'—7(d')+27) = O(M'/2N);
since M was arbitrary, the claim follows. O

e Lemma 7 Let n > 1. Then we have }_, p(d)(log — 7(3) +27) =
logp — 1 if n is equal to a power of a prime number p, and equal to —1
otherwise.

e Proof. Recall that for Rez > 1



and hence (differentiating in z)

and thus

—C'(2) — C¥(2) + 27C(2) = Z logn — 7(n) + 2,)/'

n=1

nZ

On the other hand, we have

¢'(2) _ (=% p(d) logm — 7(m) + 27)

C(Z) d=1 m=1 d m*

Making the substitution n = md, this becomes
¢'(2) R Dgn 1(d)(log § — 7(5) +27)
(o) S+ ; =

On the other hand, we have from before that

- 5

p prime m2>1

The claim then follows by comparing coefficients of n=* for all n.
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e From Lemma 6 and making the substitution n = dd’, discarding the
n =1 case (which is O(1)), and then using Lemma 7, we obtain

Z 10gp—Zl=o(N).

n<Njn is the power of a prime p n<N

There are at most O(N'/?) numbers less than N which are squares of
primes; at most O(N'/?) numbers which are cubes of primes, and so
on up to log N** powers of primes (after that, it’s impossible to stay
less than N). Each such number contributes at most log N to the first
sum, for a net contribution of O(N'/2log”> N) = o(N). Thus we have

Z logp = N + o(N).
p<N;p prime

Now let ¢ be arbitrary. Applying this with N replaced by 1 — ¢, and
then subtracting, we obtain

Z logp =eN + o(N).

(1-e)N<p<N;p prime
In this interval we have logp = log N —log N/p = log N + O(e) =
log N(1 4 O(e/log N)) and thus
log N(1+ O(g/log N)) > 1=¢N +o(N).
(1-e)N<p<N;p prime

If N is large enough, we can write eN 4+ o(N) = eN(1 + o(1)) and
1+ 0O(e/log N) =1+ o(1), while the sum is just 7(N) — 7 ((1 — €)N).
So we obtain

log Nm(N) —log Nn((1 —¢)N) =eN(1+ o(1)).
In particular, if N is large enough (say N > Ny, we have
log Nm(N) —log N7((1 —e)N) =eN(1+ O(¢)).

If we define f(N) :=a(N) — 2=, then we see that

- log
N

FN) = £((1 = £)N) < O

)
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(note that log(1 — e)N = log N +logl — e = log N + O(g)). More
generally, we see that

F((1=e)*N) = f((1 = e)*"'N) < O(e*(1 - 8)'“/2@)

whenever (1 —€)*N > N, (because N/log N grows faster than v/N).
Summing this telescoping series and noting that f(/N) = O(Np) when
N = O(N,), we obtain

glogN ’

f(N) = O(No) = O

when N is large enough we can absorb the Ny error into the e N/log N

error, and thus
m(N)

A\
N/log N

Since ¢ is arbitrary, the prime number theorem follows.

=0O(e).

X %k ok ok ok

The functional equation

e The proof of the prime number theorem was quite complicated, how-
ever one thing that can be seen was that it relied quite substantially on
there being no zeroes of ¢ for Rez > 1. The famous Riemann hypoth-
esis asserts that in fact there are no zeroes of ¢ for Rez > 1/2, and in
fact they all lie on the line Rez = 1/2 (except for the so called “trivial
zeroes” , which we discuss shortly) This is a major unsolved problem in
mathematics. What is known is that the zeta function has infinitely
many zeroes, and the first five hundred billion (!) zeroes are on this
so-called critical line Rez = 1/2. (There is in fact a distributed com-
puting project going on right now which is computing about a billion
new zeroes of the Zeta function each day). This result has many im-
plications, for instance it will allow one to improve the prime number
theorem estimate from 7(N) = N/log N + o(N/log N) (which is what
we just proved) to what is basically 7(N) = N/log N +O(N?1og N).
(Actually, this is a slight oversimplification, one has to replace N/log N
by the variant quantity fON k%). The main reason is that knowing that
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there are no zeroes in the strip Rez > 1/2 allows one to push the region
where (’/( is analytic back quite a bit, allowing one to improve Lemma
1.

The Riemann hypothesis is still extremely far from resolution; it will
probably require not just all the existing tricks and machinery known
for these problems, but some totally new ones besides. However, there
is one thing that is known about the zeroes of the Riemann zeta func-
tion, which is that they are symmetric about the critical strip. More
precisely, we have

Functional equation For any z (not an integer) we have

Proof. By uniqueness of analytic continuation it suffices to prove this
when Re(z) < —10 (say). In which case the left-hand side is just
>0 n*~!. Recall that

1 6(z—l)LOgow
M) = gy | T ™

where 7., is a clockwise contour going around the positive real axis.
Writing e?7*~1) as e2™ it thus suffices to show that

/ e(z—l)LOng . (27r)z(1—52”z) 0 -1
Ye,r

= n
ew —1 2co8(5) =

We use the residue theorem. The function % is not, analytic on
the positive real axis, but is meromorphic everywhere else, with simple
poles at integer multiples of 27i, and a residue of ez—0LOg2min
(2mn)?~te™=D/2 when w = 2min for some positive n, and a residue
of e(z=DLOgy—2min — (97rp)2-1¢37i(z=1/2 when w = —2min. For any
N > 0, let vy be the contour consisting of the horizontal ray from
+oo— (2N 4+ )i to —(2N +1)w — (2N + 1) 74, the vertical line segent
from —(2N + 1) — (2N + 1)7wi to —(2N + 1)7 + (2N + 1)7i, and the

18



horizontal ray from —(2N + 1)7 + (2N + 1)7i to +o00 + (2N + 1)mi.
The region of space between vy and <., contains the poles 2min for
—N < n < N (excluding n = 0), and so by the residue theorem

(z—1)Logyw (z—1)Log,w N . .
/ e dw = / e dw+27.”'Z(Qﬂ.n)z—1em(z—l)/?+(27Tn)z—le3rz(z—1)/2.
Yer €T 1 wo €1 n=1

We now claim that the vy integral goes to zero as NV goes to infinity. On

the vertical line segment of vy, the point is that e is very small and so
L is bounded, while e~DL08w = |yy|z-1eilz-DAIG®) = O(N-11)

ew—1
since Re(z) < —10. On either of the two horizontal rays, e” is negative

and so e“’l—l is again bounded, and again we can argue to show that

these integrals decay very quickly in N. Taking limits we thus have

e(z—l)LOng S 1 _7mi(z—1)/2 1 _3mi(z—1)/2
/YET W dw = 27'”;(277'77,)z em(zf )/ -+ (271'77,)27 e mi(z—1)/ .

We can the cancel the powers of 27, and reduce to showing that

) ] o 1— eZm'z) o0
- mi(z—1)/2 3mwi(z—1)/2 z=1 _ ( z—1
i(e +e )nz:;n 72(:05(%”) nz:;n )

We can cancel the summation and reduce to verifying that
) ) 1— 62771'2
Z-em(zfl)/2+e37rz(zfl)/2 — )

( ) 2cos(%)

But the left-hand side is 2ie™*~Y cos(m(z — 1)/2) = —2ie™ sin(rz/2)
while the right-hand side is e“izﬁ%%, and the claim then follows
from the double angle formula for sine. O

From the functional equation we see in particular (since I" has no zeroes,
and cos(zm/2) only has zeroes when z is an odd integer) that if z is a
zero of ¢ that is not an integer, then 1 — z is also a zero of (; thus the
zeroes of ( are symmetric around the point 1/2. It is also easy to show
that if z is a zero of (, then so is Z (this is in fact similar to one of the
questions in the assignment), so they are also symmetric around the
real axis, and thus around the critical line.
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e It remains to check what happens when z is an integer. We already
know that ((z) has a simple pole at z = 1 and is non-zero for larger
integers. The functional equation then tells us that {(z) has no zero at
0, has zeroes at —1,—3,—5, ..., and is non-zero at the other integers.
These are the so called trivial zeroes of the Riemann zeta function.

20



