
Found Comput Math (2010) 10: 67–91
DOI 10.1007/s10208-009-9049-1

Mathematics of the Neural Response

S. Smale · L. Rosasco · J. Bouvrie · A. Caponnetto ·
T. Poggio

Received: 24 November 2008 / Revised: 18 May 2009 / Accepted: 18 May 2009 /
Published online: 30 June 2009
© SFoCM 2009

Abstract We propose a natural image representation, the neural response, motivated
by the neuroscience of the visual cortex. The inner product defined by the neural
response leads to a similarity measure between functions which we call the derived
kernel. Based on a hierarchical architecture, we give a recursive definition of the
neural response and associated derived kernel. The derived kernel can be used in a
variety of application domains such as classification of images, strings of text and
genomics data.

Communicated by Felipe Cucker.

S. Smale
Toyota Technological Institute at Chicago and University of California, Berkeley, CA, USA
e-mail: smale@tti-c.org

L. Rosasco
CBCL, McGovern Institute, MIT & DISI, Università di Genova, Cambridge, MA, USA
e-mail: lrosasco@mit.edu

J. Bouvrie (!)
CBCL, Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: jvb@alumit.edu

A. Caponnetto
Department of Mathematics, City University of Hong Kong, Hong Kong, China
e-mail: caponnet@cityu.edu.hk

T. Poggio
CBCL, McGovern Institute, CSAIL, BCS, Massachusetts Institute of Technology, Cambridge, MA,
USA
e-mail: tp@ai.mit.edu

mailto:smale@tti-c.org
mailto:lrosasco@mit.edu
mailto:jvb@alumit.edu
mailto:caponnet@cityu.edu.hk
mailto:tp@ai.mit.edu

68 Found Comput Math (2010) 10: 67–91

Keywords Unsupervised learning · Computer vision · Kernels

Mathematics Subject Classification (2000) Primary 68Q32 · 68T45 · 68T10

1 Introduction

The goal of this paper is to define a distance function on a space of images which
reflects how humans see the images. The distance between two images corresponds
to how similar they appear to an observer. Most learning algorithms critically depend
on a suitably defined similarity measure, though the theory of learning so far pro-
vides no general rule to choose such a similarity measure [4, 5, 11, 19]. In practice,
problem specific metrics are often used [16]. In this paper we propose a natural im-
age representation, the neural response, motivated by the neuroscience of the visual
cortex. The derived kernel is the inner product defined by the neural response and
can be used as a similarity measure. The definition of neural response and derived
kernel is based on a recursion which defines a hierarchy of local kernels, and can be
interpreted as a multi-layer architecture where layers are associated with increasing
spatial scales. At each layer (local) derived kernels are built by recursively pooling
over previously defined local kernels. Here, pooling is accomplished by taking a max
over a set of transformations. This model, while purely mathematical, has a key se-
mantic component: a system of templates which link the mathematical development
to real world problems. In the case of images, derived kernels consider sub-patches of
images at intermediate layers and whole images at the last layer. Similarly, in the case
of derived kernels defined on strings, kernels at some mth layer act on sub-strings.
From a learning theory perspective the construction of the derived kernel amounts
to an unsupervised learning step and the kernel can ultimately be used to solve su-
pervised as well as unsupervised tasks. The motivating idea is that the unsupervised
preprocessing will reduce the sample complexity of a corresponding supervised task.

The work in this paper sets the stage for further developments towards a theory
of vision. One might consider especially two complementary directions, one empir-
ical, the other mathematical. The empirical requires numerical experiments starting
with databases coming from real world situations. The goal is to test (with various
algorithmic parameters) how the similarity derived here is consistent with real world
experience. In vision, to what extent does the mathematical similarity correspond to
similarity in the way humans view images? In Sect. 6 we show the results of prelimi-
nary work towards this end. On the purely mathematical side, the problem is to exam-
ine how closely the output response characterizes the input. In other words, does the
neural response discriminate well? In the case of strings, it is shown in Theorem 4.1
that if the architecture is rich enough and there are sufficient templates (“neurons”)
then indeed the answer is a sharp “Yes” (up to reversal and “checkerboard” patterns).
We show under quite mild assumptions that the neural response is invariant under
rotations, and for strings, is reversal invariant. In Sect. 5 we suggest that the Shannon
entropy is a promising tool for obtaining a systematic picture. Note that in this unsu-
pervised context, discrimination refers to the ability to distinguish images of distinct
objects in the real world.

Found Comput Math (2010) 10: 67–91 69

Our work seeks to establish a theoretical foundation for recent models designed
on the basis of anatomical and physiological data describing the primate visual cor-
tex. These models are beginning to quantitatively account for a host of novel data
and to provide human-level performance on rapid categorization of complex imagery
(see [13–15] and references therein). These efforts are the most recent examples of a
family of biologically-inspired architectures, see for example [7, 10, 20], and related
computer vision systems [8, 18]. The hierarchical organization of such models—and
of the cortex itself—remains a challenge for learning theory as most “learning al-
gorithms”, as described in [9], correspond to one-layer architectures. In this paper,
we attempt to formalize the basic hierarchy of computations underlying information
processing in the visual cortex. Our hope is to ultimately achieve a theory that may
explain why such models work as well as they do, and give computational reasons
for the hierarchical organization of the cortex.

Some preliminary results appeared in [17], whereas related developments can be
found in [2]. In the Appendix we establish detailed connections with the model in [15]
and identify a key difference with the model developed in this paper.

The paper is organized as follows. We begin by introducing the definitions of the
neural response and derived kernel in Sect. 2. We study invariance properties of the
neural response in Sect. 3 and analyze discrimination properties in a one-dimensional
setting in Sect. 4. In Sect. 5 we suggest that Shannon entropy can be used to under-
stand the discrimination properties of the neural response. Finally, we conclude with
preliminary experiments in Sect. 6.

2 Derived Kernel and Neural Response

The derived kernel can be thought of as a similarity concept on spaces of functions on
patches and can be defined through a recursion of kernels acting on spaces of func-
tions on sub-patches. Before giving a formal description we present a few preliminary
concepts.

2.1 Preliminaries

The ingredients needed to define the derived kernel consist of:

• An architecture defined by a finite number of nested patches (for example sub-
domains of the square Sq ⊂R2)

• A set of transformations from a patch to the next larger one
• A suitable family of function spaces defined on each patch
• A set of templates which connect the mathematical model to a real world setting

We first give the definition of the derived kernel in the case of an architecture
composed of three layers of patches u,v and Sq in R2, with u ⊂ v ⊂ Sq, that we
assume to be square, centered and axis aligned (see Fig. 1). We further assume that we
are given a function space on Sq, denoted by Im(Sq), as well as the function spaces
Im(u), Im(v) defined on sub-patches u, v, respectively. Functions are assumed to
take values in [0,1], and can be interpreted as grey scale images when working with

70 Found Comput Math (2010) 10: 67–91

Fig. 1 Nested patch domains

a vision problem for example. Next, we assume a set Hu of transformations that are
maps from the smallest patch to the next larger patch h : u→ v, and similarly Hv with
h : v→ Sq. The sets of transformations are assumed to be finite and in this paper are
limited to translations; see remarks in Sect. 2.2. Finally, we are given template sets
Tu ⊂ Im(u) and Tv ⊂ Im(v), assumed here to be discrete, finite and endowed with
the uniform probability measure.

The following fundamental assumption relates function spaces and transformation
spaces.

Axiom 1 f ◦ h : u→ [0,1] is in Im(u) if f ∈ Im(v) and h ∈ Hu. Similarly f ◦ h :
v→ [0,1] is in Im(v) if f ∈ Im(Sq) and h ∈Hv .

We briefly recall the general definition of a reproducing kernel [1]. Given some
set X, we say that a function K : X ×X→ R is a reproducing kernel if it is a sym-
metric and positive definite kernel, i.e.,

n∑

i,j=1

αiαjK(xi, xj)≥ 0

for any n ∈ N, x1, . . . , xn ∈ X and α1, . . . ,αn ∈ R. In this paper we deal with inner
product kernels which are known to be an instance of reproducing kernels.

In the following we always assume K(x,x) '= 0 for all x ∈X and denote with K̂

kernels normalized according to

K̂(x, x′) = K(x,x′)√
K(x,x)K(x′, x′)

. (1)

Clearly in this case K̂ is a reproducing kernel and K̂(x, x) ≡ 1 for all x ∈ X. The
kernel normalization avoids distortions traveling up the hierarchy, and provides a
more interpretable as well as comparable quantity.

Found Comput Math (2010) 10: 67–91 71

2.2 The Derived Kernel

Given the above objects, we can describe the construction of the derived kernel in
a bottom-up fashion. The process starts with some normalized initial reproducing
kernel on Im(u) × Im(u) denoted by K̂u(f, g) that we assume to be non-negative
valued. For example, one could choose the usual inner product in the space of square
integrable functions on u, namely,

Ku(f,g) =
∫

u
f (x)g(x)dx.

Next, we define a central object of study, the neural response of f at t :

Nv(f)(t) = max
h∈H

K̂u(f ◦ h, t), (2)

where f ∈ Im(v), t ∈ Tu and H = Hu. The neural response of f is a map Nv(f) :
Tu → [0,1] and is well defined in light of Axiom 1. By denoting with |Tu| the cardi-
nality of the template set Tu, we can interpret the neural response as a vector in R|Tu|

with coordinates Nv(f)(t), with t ∈ Tu. It is then natural to define the corresponding
inner product on R|Tu| as 〈·, ·〉L2(Tu)—the L2 inner product with respect to the uni-
form measure 1

|Tu|
∑

t∈Tu
δt , where we denote by δt the Dirac measure. The derived

kernel on Im(v)× Im(v) is then defined as

Kv(f,g) =
〈
Nv(f),Nv(g)

〉
L2(Tu)

, (3)

and can be normalized according to (1) to obtain the kernel K̂v .
We now repeat the process by defining the second layer neural response as

NSq(f)(t) = max
h∈H

K̂v(f ◦ h, t), (4)

where in this case f ∈ Im(Sq), t ∈ Tv and H = Hv . The new derived kernel is now
on Im(Sq)× Im(Sq), and is given by

KSq(f, g) =
〈
NSq(f),NSq(g)

〉
L2(Tv)

, (5)

where 〈·, ·〉L2(Tv) is the L2 inner product with respect to the uniform measure
1

|Tv |
∑

t∈Tv
δt . As before, we normalize KSq to obtain the final derived kernel K̂Sq.

The above construction can be easily generalized to an n layer architecture given
by sub-patches v1 ⊂ v2 ⊂ · · ·⊂ vn = Sq. In this case we use the notation Kn = Kvn

and similarly Hn = Hvn , Tn = Tvn . The definition is given formally using mathemat-
ical induction.

Definition 2.1 Given a non-negative valued, normalized, initial reproducing kernel
K̂1, the m-layer derived kernel K̂m, for m = 2, . . . , n, is obtained by normalizing

Km(f,g) =
〈
Nm(f),Nm(g)

〉
L2(Tm−1)

,

72 Found Comput Math (2010) 10: 67–91

Fig. 2 A transformation
“restricts” an image to a specific
patch

where

Nm(f)(t) = max
h∈H

K̂m−1(f ◦ h, t), t ∈ Tm−1

with H = Hm−1.

We add some remarks.

Remarks

• Examples of transformations are translations, scalings and rotations. Combining
the first two, we have transformations of the form h = hβhα , hα(x) = αx and
hβ(x′) = x′ + β , where α ∈ R and β ∈ R2 is such that hβhα(u) ⊂ v. The trans-
formations are embeddings of u in v and of v in Sq. In the vision interpretation, a
translation h can be thought of as moving the image over the “receptive field” v:
see Fig. 2.

• To make sense of the normalization (1) we rule out the functions such that K(f,f)

is zero. This condition is quite natural in the context of images since for K(f,f) to
be zero, the neural responses of f would have to be identically zero at all possible
templates by definition, in which case one “can’t see the image”.

• In the following, we say that some function g ∈ Im(vm−1) is a patch of a function
f ∈ Im(vm), or simply a function patch of f , if g = f ◦ h for some h ∈Hm−1. If
f is an image, we call g an image patch, if f is a string, we call g a sub-string.

• The derived kernel naturally defines a derived distance d on the space of images
via the equation

d(f,g)2 = K̂(f,f) + K̂(g, g)− 2K̂(f, g) = 2
(
1− K̂(f, g)

)
, (6)

where we used the fact that normalization implies K̂(f,f) = 1 for all f . Clearly,
as the kernel “similarity” approaches its maximum value of 1, the distance goes
to 0.

• The choice of the “max” as the pooling operation is natural and conforms to the
model in [14]. An interesting problem would be to explore the properties induced
by different pooling operations.

• Although we draw on the example of vision as an interpretation of our model, the
setting is general and is not limited to strings or images.

• One might also consider “input-dependent” architectures, wherein a preliminary
preprocessing of the input data determines the patch sizes. For example, in the case

Found Comput Math (2010) 10: 67–91 73

of text analysis one might choose patches of size equal to a word, pair of words,
and so on, after examining a representative segment of the language in question.

In the following section, we discuss in more detail the nature of the function spaces
and the templates, as well as the interplay between the two.

2.3 Probability on Function Spaces and Templates

We assume Im(Sq) is a probability space with a “mother” probability measure ρ.
This brings the model to bear on a real world setting. We discuss an interpretation
in the case of vision. The probability measure ρ can be interpreted as the frequency
of images observed by a baby in the first months of life. The templates will then be
the most frequent images and in turn these images could correspond to the neurons at
various stages of the visual cortex. This gives some motivation for the term “neural
response”. We now discuss how the mother probability measure ρ iteratively defines
probability measures on function spaces on smaller patches. This eventually gives
insight into how we can collect templates, and suggests that they can be best obtained
by randomly sampling patches from the function space Im(Sq).

For the sake of simplicity we describe the case of a three layer architecture u ⊂
v ⊂ Sq, but the same reasoning holds for an architecture with an arbitrary number of
layers. We start by describing how to define a probability measure on Im(v). Let the
transformation space H = Hv be a probability space with a measure ρH , and consider
the product space Im(Sq) × H endowed with a probability measure P that is the
product measure given by the probability measure ρ on Im(Sq) and the probability
measure ρH on H . Then we can consider the map π = πv : Im(Sq) × H → Im(v)
mapping (f,h) to f ◦ h. This map is well defined given Axiom 1. If Im(v) is a
measurable space we can endow it with the pushforward measure ρv = P ◦ π−1

(whose support is typically a proper subset of Im(v)).
At this point we can naturally think of the template space Tv as an i.i.d. sample

from ρv , endowed with the associated empirical measure.
We can proceed in a similar way at the lower layer. If the transformation space

Hu is a probability space with measure ρHu , then we can consider the product space
Im(v)×Hu endowed with a probability measure Pu = ρv × ρHu , with ρv defined as
above. The map πu : Im(v)×Hu → Im(u) is again well defined due to Axiom 1, and
if Im(u) is a measurable space, then we can endow it with the pushforward measure
ρu = Pu ◦π−1

u . Similarly, the template space Tu can then be thought of as sampled ac-
cording to ρu and endowed with the corresponding empirical measure. As mentioned
before, in the case of several layers one continues by a similar construction.

The above discussion highlights how the definition of the templates as well as
the other operations involved in the construction of the derived kernels are purely
unsupervised; the resulting kernel can eventually be used to solve supervised as well
as unsupervised tasks.

2.4 Normalized Neural Response

In this section we focus on the concept of (normalized) neural response which is as
primary as that of the derived kernel. The normalized neural response at f , denoted

74 Found Comput Math (2010) 10: 67–91

by N̂(f), is simply N̂(f) = N(f)/‖N(f)‖L2(T), where we drop subscripts to indi-
cate that the statement holds for any layer m within an architecture, with m− 1 the
previous layer.

The normalized neural response provides a natural representation for any func-
tion f . At the top layer, each input function is mapped into an output representation
which is the corresponding neural response

f ∈ Im(Sq)︸ ︷︷ ︸
input

/−→ N̂Sq(f) ∈ L2(T) = R|T |
︸ ︷︷ ︸

output

,

with T = Tn−1. For the time being we consider the space of neural responses to
be L2, however more generally one could consider Lp spaces in order to, for example,
promote sparsity in the obtained representation. The coordinates of the output are
simply the normalized neural responses N̂(f)(t) of f at each given t in the template
set T and have a natural interpretation as the outputs of neurons responding to specific
patterns. Clearly,

K̂(f, g) =
〈
N̂(f), N̂(g)

〉
L2(T)

. (7)

A map satisfying the above condition is referred to as a feature map in the language
of kernel methods [11]. A natural distance d between two input functions f,g is also
defined in terms of the Euclidean distance between the corresponding normalized
neural responses:

d(f,g)2 =
∥∥N̂(f)− N̂(g)

∥∥2
L2(T)

= 2
(
1−

〈
N̂(f), N̂(g)

〉
L2(T)

)
, (8)

where we used the fact that the neural responses are normalized. Note that the above
distance function is a restatement of (6). The following simple properties follow:

• If K̂(f, g) = 1, then N̂(f) = N̂(g) as can be easily shown using (7) and (8).
• If K̂(f, g) = 1, then for all z, K̂(f, z) = K̂(g, z), as shown by the previous prop-

erty and the fact that 〈N̂(f), N̂(z)〉L2(T) = 〈N̂(g), N̂(z)〉L2(T).

The neural response at a given layer can be expressed in terms of the neural re-
sponses at the previous layer via the following coordinate-wise definition:

NSq(f)(t) = max
h∈H

〈
N̂v(f ◦ h), N̂v(t)

〉
L2(T ′), t ∈ T

with H = Hv , T ′ = Tu and T = Tv . Similarly, we can rewrite the above definition
using the more compact notation

NSq(f) = max
h∈H

{
ΠvN̂v(f ◦ h)

}
,

where the max operation is assumed to apply component-wise, and we have intro-
duced the operator Πv : L2(Tu)→ L2(Tv) defined by

(ΠvF)(t) =
〈
N̂v(t),F

〉
L2(Tu)

Found Comput Math (2010) 10: 67–91 75

for F ∈ L2(Tu), t ∈ Tv . The above reasoning can be generalized to any layer in any
given architecture so that we can always give a self-consistent, recursive definition of
normalized neural responses. From a computational standpoint it is useful to note that
the operator Πv can be seen as a |Tv|× |Tu| matrix so that each step in the recursion
amounts to matrix–vector multiplications followed by max operations. Each row of
the matrix Πv is the (normalized) neural response of a template t ∈ Tv , so that an
individual entry of the matrix is then

(Πv)t,t ′ = N̂v(t)(t
′)

with t ∈ Tv and t ′ ∈ Tu.

3 Invariance of the Neural Response

In this section we discuss invariance of the (normalized) neural response to some
set of transformations R = {r | r : v → v}, where invariance is defined as N̂(f) =
N̂(f ◦ r) (or equivalently K̂n(f ◦ r, f) = 1).

We consider a general n-layer architecture and denote by r ∈ R the transforma-
tions whose domain (and range) are clear from the context. The following important
assumption relates the transformations R and the translations H :

Assumption 1 Fix any r ∈ R. Then for each h ∈ H , there exists a unique h′ ∈ H

such that the relation

r ◦ h = h′ ◦ r (9)

holds true, and the map h /→ h′ is surjective.

Note that r on the left hand side of (9) maps vm+1 to itself, while on the right hand
side r maps vm to itself.

In the case of vision for example, we can think of R as reflections and H as
translations so that f ◦ h is an image patch obtained by restricting an image f to
a receptive field. The assumption says that reflecting an image and then taking a
restriction is equivalent to first taking a (different) restriction and then reflecting the
resulting image patch. In this section we give examples where the assumption holds
true. Examples in the case of strings are given in the next section.

Given the above assumption we can state the following result.

Proposition 3.1 If the initial kernel satisfies K̂1(f,f ◦ r) = 1 for all r ∈ R, f ∈
Im(v1), then

N̂m(f) = N̂m(f ◦ r),

for all r ∈ R, f ∈ Im(vm) and m≤ n.

Proof We proceed by induction. The base case is true by assumption. The inductive
hypothesis is that K̂m−1(u,u ◦ r) = 1 for any u ∈ Im(vm−1). Thus for all t ∈ T =

76 Found Comput Math (2010) 10: 67–91

Tm−1 and for H = Hm−1, we have that

Nm(f ◦ r)(t) = max
h∈H

K̂m−1(f ◦ r ◦ h, t) = max
h′∈H

K̂m−1(f ◦ h′ ◦ r, t)

= max
h′∈H

K̂m−1(f ◦ h′, t) = Nm(f)(t),

where the second equality follows from Assumption 1 and the third follows from the
inductive hypothesis. !

The following result is then immediate:

Corollary 3.1 Let Q, U be two families of transformations satisfying Assumption 1
and such that K̂1 is invariant to Q, U . If R = {r = q ◦ u | q ∈ Q, u ∈ U }, then

N̂m(f) = N̂m(f ◦ r)

for all r ∈ R, f ∈ Im(vm) and m≤ n.

Proof The proof follows noting that for all m≤ n,

N̂m(f ◦ r) = N̂m(f ◦ q ◦ u) = N̂m(f ◦ q) = N̂m(f). !

We next discuss invariance of the neural response under reflections and rotations.
Consider patches which are discs in R2. Let

Ref =
{
ref = refθ | θ ∈ [0,2π)

}

be the set of coordinate reflections about lines passing through the origin at angle θ ,
and let Rot denote the space of coordinate rotations about the origin. Then the fol-
lowing result holds true.

Corollary 3.2 If the spaces H at all layers contain all possible translations and
K̂1(f,f ◦ ref) = 1, for all ref ∈ Ref , f ∈ Im(v1), then

N̂m(f) = N̂m(f ◦ ref),

for all ref ∈ Ref , f ∈ Im(vm) with m≤ n. Moreover under the same assumptions

N̂m(f) = N̂m(f ◦ rot),

for all rot ∈ Rot , f ∈ Im(vm) with m≤ n.

Proof We first show that Assumption 1 holds. Each translation is simply ha(x) =
x + a, and since the space of transformations contains all translations, Assumption 1
holds taking h = ha , r = refθ and h′ = ha′ , with a′ = refθ (a). Since the initial kernel
K̂1 is invariant under reflections, Proposition 3.1 implies K̂m(f,f ◦ ref) = 1 for all
ref ∈ Ref , f ∈ Im(vm), with m≤ n.

Found Comput Math (2010) 10: 67–91 77

Rotational invariance follows recalling that any rotation can be obtained out of
two reflections using the formula rot(2(θ − φ)) = refθ ◦ refφ , so that we can apply
directly Corollary 3.1. !

We add the following remark.

Remark 3.1 Although the above proof assumes all translations for simplicity, the
assumption on the spaces H can be relaxed. Defining the circle

H̃a =
{
hz | z = ref(a), ref ∈ Ref

}
,

it suffices to assume that

If ha ∈H, then H̃a ⊆H. (10)

The next section discusses the case of one dimensional strings.

4 Analysis in a One-Dimensional Case

We specialize the derived kernel model to a case of one-dimensional strings of
length n (“n-strings”). An n-string is a function from an index set {1, . . . , n} to some
finite alphabet S. We build a derived kernel in this setting by considering patches that
are sets of indices vm = {1, . . . ,)m},)m−1 <)m, m≤ n, and function spaces Im(vm)
comprised of functions taking values in S rather than in [0,1]. We always assume
that the first layer consists of single characters, v1 = S, and consider the initial kernel

K̂1(f, g) =
{

1 if f = g,

0 otherwise,

where f,g ∈ S.
In the following we often consider an exhaustive architecture in which patches

differ in size by only one character so that vm = {1, . . . ,m}, and the function
(string) spaces are Im(vm) = Sm, for m = 1, . . . , n. In this case, the template sets
are Tm = Sm, for m = 1, . . . , n, and the transformations are taken to be all possible
translations. Note that the transformation spaces H = Hm at each layer m, contain
only two elements

H = {h1, h2},
with h1(j) = j and h2(j) = j + 1. For example, if f is an n-string and H = Hn−1,
then f ◦ h1 and f ◦ h2 are the substrings obtained from the first and last n− 1 char-
acters in f , respectively. Thus, the n-layer neural response of f at some n− 1-string
t is simply

Nn(f)(t) = max
{
K̂n−1(f ◦ h1, t), K̂n−1(f ◦ h2, t)

}
.

We now introduce a few additional definitions useful for discussing and manipu-
lating strings.

78 Found Comput Math (2010) 10: 67–91

Definition 4.1 (Reversal) The reversal r of patches of size m≤ n is given by

r(j) = m− j + 1, j = 1, . . . ,m.

In the development that follows, we adopt the notation f ∼ g, if f = g or f = g ◦ r .

Finally, we introduce a pair of general concepts not necessarily limited to strings.

Definition 4.2 (Occurrence) Let f ∈ Im(Sq). We say that t ∈ Im(vn−1) occurs in f

if

Nn(f)(t) = 1,

where H = Hn−1.

Note that the above definition naturally extends to any layer m in the architecture,
replacing Sq with vm and vn−1 with vm−1.

Definition 4.3 (Distinguishing Template) Let f,g ∈ Im(Sq) and t ∈ Im(vn−1). We
say that t distinguishes f and g if and only if it occurs in f but not in g, or in g but
not in f . We call such a t a distinguishing template for f and g.

In the next sub-section we discuss properties of the derived kernel in the context
of strings.

4.1 Discrimination Properties

We begin by considering an architecture of patches of arbitrary size and show that the
neural response is invariant to reversal. We then present a result describing discrimi-
nation properties of the derived kernel.

Corollary 4.1 If the spaces H at all layers contain all possible translations then

K̂m(f,f ◦ r) = 1,

for all f ∈ Im(vm) with m≤ n.

Proof We first show that Assumption 1 holds. Let u ⊂ v be any two layers where
Im(v) contains m-strings and Im(u) contains)-strings, with) < m. Every translation
h : u→ v is given by hi : (1, . . . ,)) /→ (i, . . . , i +)−1), for 1≤ i ≤m−)+1. Then
Assumption 1 holds taking h = hi , and h′ = hϕ(i), where ϕ : (1, . . . ,m−) + 1)→
(1, . . . ,m−) + 1) is defined by ϕ(i) = m−)− i + 2. Using the fact that the initial
kernel is invariant to reversal, Proposition 3.1 then ensures that K̂v(f,f ◦ r) = 1. !

The following remark is analogous to Remark 3.1.

Found Comput Math (2010) 10: 67–91 79

Remark 4.1 Inspecting the above proof one can see that the assumption on the spaces
H can be relaxed. It suffices to assume that

If hi ∈H, then hϕ(i) ∈H (11)

with the definition ϕ(i) = m−)− i + 2.

We now ask whether two strings having the same (normalized) neural response
are indeed the same strings up to a reversal and/or a checkerboard pattern for odd
length strings. We consider this question in the context of the exhaustive architecture
described at the beginning of Sect. 4.

Theorem 4.1 Consider the exhaustive architecture where vm = {1, . . . ,m}, the tem-
plate sets are Tm = Im(vm) = Sm, for m = 1, . . . , n and the transformations are all
possible translations. If f,g are n-strings and K̂n(f, g) = 1 then f ∼ g or f,g are
the “checkerboard” pattern: f = ababa · · · , g = babab · · · , with f and g odd length
strings, and a, b arbitrary but distinct characters in the alphabet.

The theorem has the following interpretation: the derived kernel is discriminating
if enough layers and enough templates are assumed. In a more general architecture,
however, we might expect to have larger classes of patterns mapping to the same
neural response.

To prove the above theorem, we make use of the following preliminary but impor-
tant result.

Proposition 4.1 Let f,g ∈ Im(vm) with m ≤ n. If K̂m(f, g) = 1, then all function
patches of f at layer m− 1 occur in g and vice versa.

Proof We prove the lemma assuming that a function patch t̄ of f distinguishes f

from g, and then showing that under this assumption K̂m(f, g) cannot equal 1.
Since t̄ occurs in f but does not occur in g, by Definition 4.2,

Nm(g)(t̄) < 1 and Nm(f)(t̄) = 1. (12)

Now, let t ′ be any function sub-patch of g at layer m− 1, then

Nm(g)(t ′) = 1 and Nm(f)(t ′)≤ 1, (13)

where the last inequality follows since t ′ might or might not occur in f .
Now since K̂m(f, g) = 1 and recalling that by definition K̂m is obtained nor-

malizing Km(f,g) = 〈Nm(f),Nm(g)〉L2(Tm−1)
, we have that Nm(f),Nm(g) must be

collinear, that is

Nm(f)(t) = c · Nm(g)(t), t ∈ Tm−1 (14)

for some constant c.
Combining this requirement with conditions (12), (13) we find that

Nm(f)(t̄) = cNm(g)(t̄) ⇒ c > 1,

80 Found Comput Math (2010) 10: 67–91

Nm(f)(t ′) = cNm(g)(t ′) ⇒ c ≤ 1.

Thus, there is no such c and K̂m(f, g) cannot equal 1. Similarly, by interchanging the
roles of f and g above we reach the conclusion that if there is a function patch in g
which does not occur in f , then K̂m(f, g) again cannot equal 1. !

We can now prove Theorem 4.1 by induction.

Proof The statement holds trivially for K̂1 by definition. The remainder of the proof
is divided into three steps.

Step 1. We first note that since K̂n(f, g) = 1 then Proposition 4.1 says that both
n− 1 strings in f occur in g and vice versa. Denoting with s1 (s2) the first (second)
n− 1 sub-string in an n-string s, we can express this as

K̂n−1(f1, g1) = 1 or K̂n−1(f1, g2) = 1

and

K̂n−1(f2, g1) = 1 or K̂n−1(f2, g2) = 1,

and another set of similar conditions interchanging f and g. When u, v are odd-
length strings then we write u 45 v if u ∼ v or if u, v are the checkerboard pattern
(but not both). When u, v are even-length strings then u 45 v is simply u ∼ v. The
inductive hypothesis is that K̂n−1(α,β) = 1 implies α 45 β , so that the above condi-
tions translate into a large number of relationships between the sub-strings in f and
g given by combinations of the following four predicates:

(a) f1 45 g1,

(b) f1 45 g2,

(c) f2 45 g1,

(d) f2 45 g2.

Step 2. The next step is to show that the number of relationships we need to con-
sider can be drastically reduced. In fact the statement “both n− 1 strings in f occur
in g and vice versa” can be formalized as

(a + b + ab)(c + d + cd)(a + c + ac)(b + d + bd), (15)

denoting logical exclusive OR with a “+” and AND by juxtaposition. The above
expression corresponds to a total of 81 possible relationships among the n − 1-
substrings. Any product of conditions involving repeated predicates may be simpli-
fied by discarding duplicates. Doing so in the expansion of (15), we are left with only
seven distinct cases:

{abcd, abc, abd, acd, ad, bc, bcd}.

We claim that, for products involving more than two predicates, considering only
two of the conditions will be enough to derive f ∼ g or f,g checkerboard. If more

Found Comput Math (2010) 10: 67–91 81

than two conditions are present, they only serve to further constrain the structure of
the strings or change a checkerboard pattern into a reversal equivalence, but cannot
change an equivalence to a non-equivalence or a checkerboard to any other non-
equivalent pattern.

Step 3. The final step is to consider the cases ad and bc (since one or the other can
be found in each of the seven cases above) and show that this is in fact sufficient to
prove the proposition.

Let f = a1a2 · · ·an and g = b1b2 · · ·bn, and denote the checkerboard condition by
f 6 g.
Case ad : f1 45 g1 ∧ f2 45 g2

There are nine sub-cases to consider,
(
f1 = g1 ∨ f1 = r(g1)∨ f1 6 g1

)
∧

(
f2 = g2 ∨ f2 = r(g2)∨ f2 6 g2

)
,

however for n odd the n − 1 sub-strings cannot be checkerboard and only the first
four cases below are valid.

(1) f1 = g1 ∧ f2 = g2: The conditions give immediate equality, f = g.
(2) f1 = g1 ∧ f2 = r(g2): The first condition says that the strings are equal every-

where except the last character, while the second says that the last character in f

is b2. So if b2 = bn, then f = g. The conditions taken together also imply that
bi = bn−i+2, i = 2, . . . , n− 1 because g1 overlaps with g2 by definition. So we
indeed have that b2 = bn, and thus f = g.

(3) f1 = r(g1)∧ f2 = g2: Symmetric to the previous case.
(4) f1 = r(g1) ∧ f2 = r(g2): The first condition says that f = bn−1 · · ·b1an and

the second gives f = a1bn · · ·b2. Thus we have that a1 = bn−1, an = b2 and
bi = bi+2 for i = 1, . . . , n− 2. The last relation implies that g has two symbols
which alternate. Furthermore, we see that if n is even, then f = g. But for n odd,
f is a one character circular shift of g, and thus f,g are checkerboard.

(5) f1 = g1 ∧ f2 6 g2: The checkerboard condition gives that f = a1a2a3a2a3 · · ·a2
and g = b1a3a2a3a2 · · ·a3. Then f1 = g1 gives that a2 = a3 and a1 = b1 so
f = g.

(6) f1 = r(g1) ∧ f2 6 g2: The first condition imposes a1 = a2 = a3 and b1 = a3 on
the checkerboard structure, giving f = g and both strings comprised of a single
repeated character.

(7) f1 6 g1 ∧ f2 6 g2: The first condition imposes a1 = a3 and b1 = a2 on the
structure given by the second checkerboard condition, thus f = a3a2a3 · · ·a2,
g = a2a3a2 · · ·a3, and f = r(g).

(8) f1 6 g1 ∧ f2 = g2: Symmetric to the case f1 = g1 ∧ f2 6 g2.
(9) f1 6 g1 ∧ f2 = r(g2): Symmetric to the case f1 = r(g1)∧ f2 6 g2.

Case bc: f1 45 g2 ∧ f2 45 g1
There are again nine sub-cases to consider:

(
f1 = g2 ∨ f1 = r(g2)∨ f1 6 g2

)
∧

(
f2 = g1 ∨ f2 = r(g1)∨ f2 6 g1

)
.

But suppose for the moment g′ = b1 · · ·bn and we let g = r(g′) = bn · · ·b1. Then
every sub-case is the same as one of the sub-cases considered above for the case

82 Found Comput Math (2010) 10: 67–91

ad , only starting with the reversal of string g. For example, f1 = g2 here means that
f1 = bn−1 · · ·b1 = r(g′1). When n is even, note that f1 6 g2 ⇔ f1 6 r(g′1)⇔ f1 6 g′1,
where the last relation follows from the fact that reversal does not effect an odd-
length alternating sequence. Returning to the ordering g = b1 · · ·bn, each sub-case
here again gives either f = g,f = r(g) or, if n is odd, f,g are possibly checkerboard.

Gathering the case analyses above, we have that K̂m(f, g) = 1 ⇒ f ∼ g (m even)
or f 45 g (m odd). !

5 Entropy of the Neural Response

We suggest that the concept of Shannon entropy [3] can provide a systematic way
to assess the discrimination properties of the neural response, quantifying the role
played by the number of layers (or the number of templates). This motivates intro-
ducing a few definitions, and recalling some elementary facts from information the-
ory. Conversations with David McAllester and Greg Shakhnarovich were useful for
this section.

Consider any two layers corresponding to patches u ⊂ v. The space of functions
Im(v) is assumed to be a probability space with measure ρv . The neural response is
then a map N̂v : Im(v)→ L2(T) = R|T | with T = Tu. Let us think of N̂v as a random
variable and assume that

E
[
N̂v(f)(t)

]
= 0

for all t ∈ Tu (or perhaps better, set the median to be zero). Next, consider the set O
of orthants in R|T |. Each orthant is identified by a sequence o = (εi)

|T |
i=1 with εi = ±1

for all i. We define the map N̂∗
v : Im(v)→ O by

N̂∗
v (f) =

(
sign

(
N̂v(f)(t)

))
t∈Tu

and denote by N̂∗∗
v ρv the corresponding pushforward measure on O. Although re-

placing the neural response with its signs destroys information, such relaxations can
give insights by simplifying a complex situation.

We next introduce the Shannon entropies relative to the measures ρv and N̂∗∗
v ρv .

If we assume the space of images to be finite Im(v) = {f1, . . . , fd}, the measure ρv

reduces to the probability mass function {p1, . . . , pd} = {ρv(f1), . . . ,ρv(fd)}. In this
case the entropy of the measure ρv is

S(ρv) =
∑

i

pi log
1
pi

and similarly

S
(
N̂∗∗

v ρv

)
=

∑

o∈O
qo log

1
qo

,

where qo = (N̂∗∗
v ρv)(o) is explicitly given by

(N̂∗∗
v ρv)(o) = ρv

({
f ∈ Im(v)

∣∣(sign
(
N̂v(f)(t)

))
t∈Tu

= o
})

.

Found Comput Math (2010) 10: 67–91 83

When Im(v) is not finite we define the entropy S(ρv) by considering a partition
π = {πi}i of Im(v) into measurable subsets. In this case the entropy of ρv (given the
partition π) is

Sπ (ρv) =
∑

i

ρv(πi) log
1

ρv(πi)
.

One can define Sπ (N̂∗∗
v ρv) in a similar fashion.

Comparing S(ρv) to S(N̂∗∗
v ρv), we can assess the discriminative power of the

neural response and quantify the amount of information about the function space that
is retained by the neural response. The following inequality, related to the so called
data processing inequality, serves as a useful starting point:

S(ρv)≥ S(N̂∗∗
v ρv).

It is then interesting to quantify the discrepancy

S(ρv)− S(N̂∗∗
v ρv),

which is the loss of information induced by the neural response. Since the inequality
holds with equality when the map N̂∗

v is one-to-one, this question is related to asking
whether the neural response is injective (see Theorem 4.1).

5.1 Short Appendix to Sect. 5

We briefly discuss how the development in the previous section relates to standard
concepts (and notation) found in information theory [3]. Let (Ω,P) be a proba-
bility space and X a measurable map into some measurable space X . Denote by
ρ = X∗(P) the pushforward measure on X associated to X. We consider discrete
random variables, i.e., X = {x1, . . . , xd} is a finite set. In this case the pushforward
measure reduces to the probability mass function over the elements in X and we let
{p1, . . . , pd} = {ρ(x1), . . . ,ρ(xd)}. Then the entropy H of X is defined as

H(X) =
d∑

i=1

pi log
1
p i

.

Connections with the previous section are readily established when Im(v) is a
finite set. In this case we can define a (discrete) random variable X = F with values in
X = Im(v) = {f1, . . . , fd} and domain in some probability space (Ω,P) such that P

is the pullback measure associated to the measure ρv on Im(v). Then {p1, . . . , pd} =
{ρv(f1), . . . ,ρv(fd)}, and

S(ρv)≡H(F).

Moreover we can consider a second random variable Y defined as N∗
v ◦ F so that

S(N∗∗
v ρv)≡H(N∗

v ◦ F).

84 Found Comput Math (2010) 10: 67–91

6 Empirical Analysis

The work described thus far was largely motivated by a desire to understand the em-
pirical success of the model in [14, 15] when applied to numerous real-world recog-
nition problems. The simplified setting we consider in this paper trades complexity
and faithfulness to biology for a more controlled, analytically tractable framework. It
is therefore important to verify empirically that we have kept what might have been
responsible for the success of the model in [14, 15], and this is the central goal of
the current section. We first describe an efficient algorithm for computing the neural
response, followed by a set of empirical experiments in which we apply the derived
kernel to a handwritten digit classification task.

6.1 Algorithm and Computational Complexity

A direct implementation of the architecture following the recursive definition of the
derived kernel leads to an algorithm that appears to be exponential in the number of
layers. However, a “bottom-up” algorithm which is linear in the number of layers can
be obtained by consolidating and reordering the computations.

Consider a set of global transformations, where the range is always the entire
image domain vn = Sq rather than the next larger patch. We define such global trans-
formations recursively, setting

H
g
m =

{
h : vm→ Sq | h = h′ ◦ h′′, with h′ ∈H

g
m+1, h

′′ ∈Hm

}
,

for any 1≤m≤ n− 1 where H
g
n contains only the identity {I : Sq→ Sq}.

If we assume the neural responses of the templates are pre-computed, then the
procedure computing the neural response of any given image f ∈ Im(Sq) is given by
Algorithm 1. Note that in the Algorithm Cm(h, t) corresponds to the neural response
Nm+1(f ◦ h)(t), with h ∈H

g
m+1, t ∈ Tm. The sub-routine NORMALIZE simply re-

turns the normalized neural response of f .
We estimate the computational cost of the algorithm. Ignoring the cost of normal-

ization and of pre-computing the neural responses of the templates, the number of
required operations is given by

τ =
n−1∑

m=1

(∣∣Hg
m

∣∣|Tm||Tm−1| +
∣∣Hg

m+1

∣∣|Hm||Tm|
)
, (16)

where we denote for notational convenience the cost of computing the initial kernel
by |T0|. The above equation shows that the algorithm is linear in the number of layers.

6.2 Experiments

In this section we discuss simulations in which derived kernels are compared to an L2

pixel distance baseline in the context of a handwritten digit classification task. Given a
small labeled set of images, we use the 1-nearest neighbor (1-NN) classification rule:
an unlabeled test example is given the label of the closest training example under the
specified distance.

Found Comput Math (2010) 10: 67–91 85

Algorithm 1 Neural response algorithm.

Input:f ∈ Im(Sq), N̂m(t),∀t ∈ Tm,1≤m≤ n− 1
Output: N̂n(f)(t)

for m = 1 to n− 1 do
for h ∈H

g
m do

for t ∈ Tm do
if m = 1 then

Sm(h, t) = K̂1(f ◦ h, t)

else
Sm(h, t) = ∑

t ′∈Tm−1
Ĉm−1(h, t ′)N̂m(t)(t ′)

end if
end for

end for
for h ∈H

g
m+1 do

for t ∈ Tm do
Cm(h, t) = maxh′∈Hm Sm(h ◦ h′, t)

end for
end for
Ĉm = NORMALIZE(Cm)

end for
Return N̂n(f)(t) = Ĉn−1(h, t), with h ∈H

g
n , t ∈ Tn−1

An outline of this section is as follows: We compare a 3-layer architecture to a
2-layer architecture over a range of choices for the patch sizes u and v, and see that
for the digit recognition task, there is an optimal architecture. We show that three
layers can be better than two layers, and that both architectures improve upon the L2

baseline. We then illustrate the behavior of the 3-layer derived kernel as compared to
the baseline by presenting matrices of pairwise derived distances (as defined in (6))
and pairwise L2 distances. The block structure that typifies these matrices argues
graphically that the derived kernels are separating the different classes of images.
Finally, we impose a range of artificial translations on the sets of train and test images
and find that the derived kernels are robust to large translations while the L2 distance
deteriorates rapidly with even small translations.

In all experiments we have used Sq = 28× 28 pixel grayscale images randomly
selected from the MNIST dataset of handwritten digits [8]. We consider eight classes
of images: 2s through 9s. The digits in this dataset include a small amount of natural
translation, rotation, scaling, shearing and other deformations—as one might expect
to find in a corpus containing the handwriting of human subjects. Our labeled im-
age sets contain five examples per class, while the out-of-sample test sets contain
30 examples per class. Classification accuracies using the 1-NN classifier are aver-
aged over 50 random test sets, holding the training and template sets fixed. As in the
preceding mathematical analysis, the transformations H are restricted to translations.

The template sets are constructed by randomly extracting 500 image patches (of
size u and/or v) from images which are not used in the train or test sets. For the digits
dataset, templates of size 10× 10 pixels are large enough to include semi-circles and

86 Found Comput Math (2010) 10: 67–91

Fig. 3 A curve determining the
optimal u size (2-Layer
architecture)

Fig. 4 Curves determining the optimal v size given various u sizes (3-Layer architecture)

distinct stroke intersections, while larger templates, closer to 20 × 20, are seen to
include nearly full digits where more discriminative structure is present.

In Figs. 3 and 4 we show the effect of different patch size selections on classi-
fication accuracy. For this particular task, it is clear that the optimal size for patch
u is 12 × 12 pixels for both two and three layer hierarchies. That accuracy levels
off for large choices in the case of the 2-layer architecture suggests that the 2-layer
derived kernel is approximating a simple local template matching strategy [6]. It is
clear, however, from Fig. 4 that an additional layer can improve on such a strategy,
and that further position invariance, in the form of eight pixels of translation (since
v = 20×20 and Sq = 28×28) at the last stage, can boost performance. In the experi-
ments that follow, we assume architectures that use the best patch sizes as determined
by classification accuracy in Figs. 3 and 4: u = 12× 12, v = 20× 20. In practice, the
patch size parameters can be chosen via cross validation or on a separate validation
set distinct from the test set.

Figure 5 illustrates graphically the discrimination ability of the derived kernels
when applied to pairs of digits. On the left we show 3-layer derived distances, while
the L2 distances on the raw image intensities are provided for comparison on the
right. Both matrices are symmetric. The derived distances are computed from derived

Found Comput Math (2010) 10: 67–91 87

Fig. 5 Matrices of pairwise 3-Layer derived distances (left) and L2 distances (right) for the set of 240
images from the database. Each group of 30 rows/columns correspond to images of the digits 2 through 9,
in left-right and top-bottom order

kernels using (6). Each group of 30 rows/columns correspond to images of the digits
2 through 9, in left-right and top-bottom order. Off diagonal blocks correspond to
distances between different classes, while blocks on the diagonal are within-class
measurements. In both figures, we have rescaled the range of the original distances
to fall in the interval [0,1] in order to improve contrast and readability. For both
distances the ideal pattern corresponds to a block diagonal structure with 30 × 30
blocks of zeros, and ones everywhere else. Comparing the two matrices, it is clear
that the L2 baseline tends to confuse different classes more often than the 3-layer
derived kernel. For example, classes 6 and 8 (corresponding to handwritten 7s and 9s)
are frequently confused by the L2 distance.

The experiments discussed up to this point were conducted using a dataset of im-
ages that have been registered so that the digits appear approximately in the center of
the visual field. Thus the increase in performance when going from two to three layers
validates our assumption that objects particular to the task at hand are hierarchically
organized, and can be decomposed into parts and parts of parts, and so on. A sec-
ond aspect of the neural response architecture that warrants empirical confirmation
is that of invariance to transformations accounted for in the hierarchy. In particular,
translations.

To further explore the translation invariance of the derived kernel, we subjected
the labeled and unlabeled sets of images to translations ranging from 0 to 10 pixels
in one of eight randomly chosen directions. Figure 6 gives classification accuracies
for each of the image translations in the case of 3- and 2-layer derived kernels as well
as for the L2 baseline. As would be expected, the derived kernels are better able to
accommodate image translations than L2 on the whole, and classification accuracy
decays more gracefully in the derived kernel cases as we increase the size of the
translation. In addition, the 3-layer derived kernel is seen to generally outperform
the 2-layer derived kernel for translations up to approximately 20% of the field of

88 Found Comput Math (2010) 10: 67–91

Fig. 6 Classification accuracy
on artificially translated images

view. For very large translations, however, a single layer remains more robust than
the particular 2-layer architecture we have simulated. We suspect that this is because
large translations cause portions of the digits to be clipped off the edge of the image,
whereas templates used by two-layer architectures describe nearly all regions of a
class of digits. Lack of a digit part could thus undermine the descriptive advantage of
the 3-layer architecture over the 2-layer hierarchy.

On the whole the above experiments confirm that the derived kernels are robust
to translations, and provide empirical evidence supporting the claim that the neural
response includes mechanisms which can exploit the hierarchical structure of the
physical world.

Appendix: Derived Kernel and Visual Cortex

In this Appendix, we establish an exact connection between the neural response and
the model of Serre et al. [12, 14, 15]. We consider an architecture comprised of
S1, C1, S2, C2 layers as in the model, which is illustrated in Fig. 7. Consider the
patches u ⊂ v ⊂ w ⊂ Sq and corresponding function spaces Im(u), Im(v), Im(w),
Im(Sq) and transformation sets Hu = Hu,v , Hv = Hv,w , Hw = Hw,Sq. In contrast to
the development in the previous sections, we here utilize only the template spaces
Tu ⊂ Im(u) and Tw ⊂ Im(w). As will be made clear below, the derived kernel Kv on
Im(v) is extended to a kernel Kw on Im(w) that eventually defines the next neural
response.

S1 and C1 Units Processing steps corresponding to S1 and C1 cells can be defined
as follows. Given an initial kernel Ku, let

NS1(f ◦ h)(t) = Ku(f ◦ h, t) (17)

Found Comput Math (2010) 10: 67–91 89

Fig. 7 The model of Serre et
al. [15]. We consider here the
layers up to C2 (modified
from [14])

with f ∈ Im(v), h ∈Hu and t ∈ Tu. Then NS1(f ◦ h)(t) corresponds to the response
of an S1 cell with template t and receptive field h ◦ u. The operations underlying the
definition of S1 can be thought of as “normalized convolutions”.

The neural response is given by

NC1(f)(t) = max
h∈H

{
NS1(f ◦ h)(t)

}
(18)

with f ∈ Im(v), H = Hu and t ∈ Tu so that NC1 : Im(v)→ R|Tu|. Then NC1(f)(t)
corresponds to the response of a C1 cell with template t and receptive field corre-
sponding to v.

The derived kernel at layer v is defined as usual as

Kv(f,g) =
〈
NC1(f),NC1(g)

〉
L2(Tu)

with f,g ∈ Im(v).
The kernel Kv is then extended to the layer w by

Kw(f,g) =
∑

h∈Hv

Kv(f ◦ h,g ◦ h) (19)

with f,g ∈ Im(w).

90 Found Comput Math (2010) 10: 67–91

S2 and C2 Units The steps corresponding to S2 and C2 cells can now be defined as
follows.

Consider

NS2(f ◦ h)(t) = Kw(f ◦ h, t) (20)

with f ∈ Im(Sq), h ∈Hw and t ∈ Tw . Then NS2(f ◦h)(t) corresponds to the response
of an S2 cell with template t and with receptive field h ◦w for h ∈Hw . Now let

NC2(f)(t) = max
h∈H

{
NS2(f ◦ h)(t)

}
(21)

with f ∈ Im(Sq), H = Hw and t ∈ Tw so that NC2 : Im(Sq) → R|Tw |. Then
NC2(f)(t) corresponds to the response of a C2 cell with template t and with receptive
field corresponding to Sq. The derived kernel on whole images is simply

KSq(f, g) =
〈
NC2(f),NC2(g)

〉
L2(Tw)

.

We add three remarks.

• We can identify the role of S and C units by splitting the definition of neural re-
sponse into two stages, where “convolution” steps (17) and (20) correspond to S
units, and are followed by max operations (18) and (21) corresponding to C units.

• A key difference between the model in [15] and the development in this paper is
the “extension” step (19). The model considered in this paper corresponds to v = w

and is not completely faithful to the model in [14, 15] or to the commonly accepted
view of physiology. However, S2 cells could have the same receptive field of C1
cells and C2 cells could be the equivalent of V4 cells. Thus the known physiology
may not be inconsistent.

• Another difference lies in the kernel used in the convolution step. For the sake of
clarity in the above discussion we did not introduce normalization. In the model
by [15] the kernels Kw , KSq are used either to define normalized dot products or as
input to a Gaussian radial basis function. The former case corresponds to replacing
Kw , KSq by K̂w , K̂Sq. The latter case corresponds to considering

G(f,g) = e−γ d(f,g)2
,

where we used the (derived) distance

d(f,g)2 = K(f,f)− 2K(f,g) + K(g,g),

where K = Kw or K = KSq.

References

1. N. Aronszajn, Theory of reproducing kernels, Trans. Am. Math. Soc. 68, 337–404 (1950).
2. A. Caponnetto, T. Poggio, S. Smale, On a model of visual cortex: learning invariance and selectivity

from image sequences. CBCL paper 272 / CSAIL technical report 2008-030, MIT, Cambridge, MA
(2008).

Found Comput Math (2010) 10: 67–91 91

3. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991).
4. N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines (Cambridge University

Press, Cambridge, 2000).
5. F. Cucker, D.X. Zhou, Learning Theory: An Approximation Theory Viewpoint. Cambridge Mono-

graphs on Applied and Computational Mathematics (Cambridge University Press, Cambridge, 2007).
6. D.A. Forsyth, J. Ponce, Computer Vision: A Modern Approach (Prentice Hall, New York, 2002).
7. K. Fukushima, Neocognitron: A self-organizing neural network model for a mechanism of pattern

recognition unaffected by shift in position, Biol. Cybern. 36, 193–202 (1980).
8. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition,

Proc. IEEE 86(11), 2278–2324 (1998).
9. T. Poggio, S. Smale, The mathematics of learning: Dealing with data, Not. Am. Math. Soc. (AMS),

50(5) (2003).
10. M. Riesenhuber, T. Poggio, Hierarchical models of object recognition in cortex, Nat. Neurosci. 2,

1019–1025 (1999).
11. B. Schölkopf, A.J. Smola, Learning with Kernels (MIT Press, Cambridge, 2002).
12. T. Serre, M. Kouh, C. Cadieu, U. Knoblich, G. Kreiman, T. Poggio, A theory of object recognition:

computations and circuits in the feedforward path of the ventral stream in primate visual cortex. AI
Memo 2005-036 / CBCL Memo 259, MIT, Cambridge, MA (2005).

13. T. Serre, M. Kouh, C. Cadieu, U. Knoblich, G. Kreiman, T. Poggio, A quantitative theory of immediate
visual recognition, Prog. Brain Res. 165, 33–56 (2007).

14. T. Serre, A. Oliva, T. Poggio, A feedforward architecture accounts for rapid categorization, Proc. Natl.
Acad. Sci. 104, 6424–6429 (2007).

15. T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, T. Poggio, Robust object recognition with cortex-like
mechanisms, IEEE Trans. Pattern Anal. Mach. Intell. 29, 411–426 (2007).

16. J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis (Cambridge University Press,
Cambridge, 2004).

17. S. Smale, T. Poggio, A. Caponnetto, J. Bouvrie, Derived distance: towards a mathematical theory of
visual cortex. CBCL paper, MIT, Cambridge, MA (November 2007).

18. S. Ullman, M. Vidal-Naquet, E. Sali, Visual features of intermediate complexity and their use in
classification, Nat. Neurosci. 5(7), 682–687 (2002).

19. V.N. Vapnik, Statistical Learning Theory (Wiley, New York, 1998).
20. H. Wersing, E. Koerner, Learning optimized features for hierarchical models of invariant recognition,

Neural Comput. 15(7), 1559–1588 (2003).

	Mathematics of the Neural Response
	Abstract
	Introduction
	Derived Kernel and Neural Response
	Preliminaries
	The Derived Kernel
	Probability on Function Spaces and Templates
	Normalized Neural Response

	Invariance of the Neural Response
	Analysis in a One-Dimensional Case
	Discrimination Properties

	Entropy of the Neural Response
	Short Appendix to Sect. 5

	Empirical Analysis
	Algorithm and Computational Complexity
	Experiments

	Appendix: Derived Kernel and Visual Cortex
	S1 and C1 Units
	S2 and C2 Units

	References

