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APPENDIX A
The probabilistic graphical model in Figure 1 was carefully
crafted so that Bayesian inference can be conducted analyti-
cally. In this appendix, we first show that

P (w1, . . . , wn | y1:t, a1q1 , . . . , atqt)
=

∏
j

P (wj | y1:t, a1q1 , . . . , atqt)

In other words, we show that Wj is conditionally indepen-
dent of Wj′ given Y1:t and A1q1 , . . . , Atqt for all j′ 6= j.
To prove this conditional independence we will show that
every undirected path (see the graph in Figure 1) between
Wj and Wj′ is d-separated. (For brevity, we will omit the
word “undirected”.) First, note that it suffices to show
that every path without cycles betwen Wj and Wj′ is d-
separated: any path with cycles can be trivially converted
to a path without cycles, and if the simplified path (with no
cycles) is d-separated, then so too will be the original path.

Our proof proceeds in two parts. In Part 1, we will show
that any path P fromWj toWj′ must contain two nodesAνj
and Aνj′ for some timestep ν such that j′ 6= j. In Part 2 we
will use the fact that, at every round ν, the student observes
at most one node Aνj to show that the other, unobserved
node Aνj′ d-separates Wj from Wj′ .

Part 1: Notice that the only nodes to which Wj is con-
nected are A1j , . . . , Atj ; hence P must start with the nodes
WjAνj for some ν. Now, consider the next node in P after
Aνj : the only nodes to which Aνj is connected are Cν and
Wj . We can ignore the latter possibility because a path that
starts out as WjAνjWj would contain a cycle. Hence, P
must start out as WjAνjCν . From the graphical model it is
clear that any path from Cν to Wj′ must eventually proceed
through some node Aνj′ . The only remaining question is
whether j′ = j or j′ 6= j. However, we can discard the
former possibility because that would result in a cycle. Thus
every path P from Wj to Wj′ must contain two nodes Aνj
and Aνj′ such that j′ 6= j for some timestep ν.

Part 2: To finally prove d-separation between Wj and
Wj′ , we note that, at each timestep ν, at most one of Aνj
and Aνj′ can be observed by the student because only one
query is “answered” at each timestep. Since at least one of
those two nodes is unobserved, and since none of the A
nodes has any descendants, then P is d-separated (by the
“inverted fork” rule) by either Aνj or Aνj′ . Since this is true
of any path P without cycles, we conclude that Wj is d-
separated from Wj′ .

APPENDIX B
Given that the meaning of each word can be inferred in-
dependently, we can now derive the equation representing
a Bayesian learner’s belief update: Let Mt be a matrix of
random variables specifying the student’s belief at time t
about the words’ meanings, where entry Mtji specifies the
student’s posterior belief P (Wj = i | y1:t, a1q1 , . . . , atqt)
that word j means concept i given the images and answers
she has observed. As shown in the previous appendix, the
joint posterior distribution of the meanings of all words
is equal to the product of the marginal posterior distri-
butions. Now, consider the marginal posterior distribution

P (Wj = i | y1:t, a1q1 , . . . , atqt), and suppose that at timestep
t the teacher teaches a word qt 6= j. Then due to the
conditional independence properties of the graphical model
in Figure 1,

Mt+1,ji
.
= P (Wj = i | y1:t, a1q1 , . . . , atqt)
= P (Wj = i | y1:t, a1q1 , . . . , at−1,qt−1)

= P (Wj = i | y1:t−1, a1q1 , . . . , at−1,qt−1)

(cond. indep. from graphical model)
= Mtji

In other words, the posterior distribution of Wj is equal to
the prior distribution for every timestep t when the teacher
teaches a word qt 6= j.

On the other hand, if the teacher teaches word qt = j at
timestep t, then

P (Wj = i | y1:t, a1q1 , . . . , atqt)
∝ P (atqt |Wj = i, y1:t, a1q1 , . . . , at−1,qt−1)

P (Wj = i | y1:t, a1q1 , . . . , at−1,qt−1)

= P (atj |Wj = i, y1:t, a1q1 , . . . , at−1,qt−1)

P (Wj = i | y1:t, a1q1 , . . . , at−1,qt−1)

= P (atj |Wj = i, y1:t, a1q1 , . . . , at−1,qt−1)

P (Wj = i | y1:t−1, a1q1 , . . . , at−1,qt−1)

= P (atj |Wj = i, yt)P (Wj = i | y1:t−1, a1q1 , . . . , at−1,qt−1)

(by cond. indep. from graphical model)
= MtjiP (atj |Wj = i, yt)

To compute P (atj | Wj = i, yt), we handle the case that
Atj = 1 (i.e., Yt represents word Qt) and Atj = 0 (i.e., Yt
does not represent word Qt) separately. For the former case,

P (Atj = 1 |Wj = i, yt)]

=

m∑
i′=1

P (Atj = 1 | Ct = i′,Wj = i, yt)

P (Ct = i′ |Wj = i, yt)

=

m∑
i′=1

P (Atj = 1 | Ct = i′,Wj = i)P (Ct = i′ | yt)

= P (Ct = i | yt)

since i′ = i is the only value of i′ that contributes positive
probability mass to the sum. The latter case (Atj = 0) is then
simply 1− P (Ct = i | yt).

Combining these two cases, we get:

Mt+1,ji ∝MtjiP (Ct = i | yt)atj (1− P (Ct = i | yt))(1−atj)
(1)

In other words, if the teacher teaches word j at timestep t,
then the student updates her belief about the meaning of
that word: if the teacher says image yt does represent word
j (Atj = 1), then the student increases the probability that
word j means any concept i that is shown in the image
with high probability. If, on the other hand, the teacher said
yt does not represent word j (Atj = 0), then the student
decreases the probability that word j means any concept i
that is shown in the image with high probability.
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APPENDIX C
In this appendix we provide more details on how the macro-
and micro-controllers described in Sections 7.1 and 7.2.

C.1 Macro-controller
We define xt to consist of the following features:

• For each word j, the expected (w.r.t. the teacher’s
particles) “goodness”

∑
p ωpg(M

(p)
tj ) of the student’s

belief about word j, where goodness is defined as

g(M
(p)
tj )

.
=M

(p)
tji for i =Wj (2)

and M
(p)
tj is the student’s belief at time t about

word j according to particle p. In other words, the
goodness of the student’s belief about the meaning
of word j is the probability she assigns to the correct
concept.

• The teacher’s uncertainty about the student’s beliefs
(summed over all words), i.e.,

∑
p ωp

∑
j σ(M

(p)
tj ),

where the uncertainty σ is defined as

σ(M
(p)
tj )

.
= (M

(p)
tj −Mtj)

>(M
(p)
tj −Mtj)

and where
Mtj

.
=

∑
p

ωpM
(p)
tj

Note that the uncertainty is over the teacher’s belief
about the student’s belief; it is not over the student’s
belief itself. (The latter uncertainty is captured by the
“goodness” defined above.)

• A bias term (constant 1).

C.2 Micro-controller
We define “total uncertainty” as:∑
p

ωp
∑
j

σ(M
(p)
tj )+

∑
p

ωp(α
(p)
t −αt)2+

∑
p

ωp(β
(p)
t −βt)2

where αt
.
=

∑
p ωpα

(p)
t and βt

.
=

∑
p ωpβ

(p)
t , and where

α
(p)
t and β(p)

t are the student’s absorption and belief update
strength at time t according to particle p. This metric in-
cludes uncertainty not just over the student’s belief, but also
over student parameters αt and βt.

APPENDIX D
To enable a fair comparison between Bayesian Knowledge
Tracing (BKT) and AOTAOL for predicting students’ test
scores (see Section 9.5), we implemented BKT in the follow-
ing way: One model (consisting of parameters p, g, and s
– see below) was trained for each of the n = 10 words,
and each model consisted of a Hidden Markov Model with
two latent states – “learned” and “unlearned”. If the student
is in the “learned” state for word j, then with probability
(1 − s) she/he answers a question about word j correctly
on a test, where s is the slip probability. If the student is
in the “unlearned” state, then she/he answers a question
about word j correctly with probability g, which is the guess
probability. Whenever the student is given a “teach” action
about word j and she/he is currently in the “unlearned”

state, then the student will transition to the “learned” state
with probability p. The “learned” state is a trap state – the
probability of transitioning to “unlearned” is fixed at 0. The
“test” actions do not alter the student’s state. Finally, in our
implementation of BKT, all the “ask” actions are ignored
completely – to model these actions would require a more
sophisticated model than BKT (such as AOTAOL itself) that
can consider how the student responds to specific queries
about which image of two images more likely represents a
particular word.

Training: Training was conducted using data (from 40
students) collected to estimate the time costs of each action
(see Section 8). For each of the n = 10 words, we used all of
these students’ observations – consisting of whether or not
(1 or 0, respectively) the student answered a test question
about word j correctly on a test, or a “dummy” observation
(2) for “teach” actions – to train a BKT model using maxi-
mum likelihood estimation. Hence, for each word, there was
one observation per test for each student (and most students
took the test several times before completing the task). To
address the issue of local minima, we randomly tried 5
different starting points for each model and chose the one
that maximized the data likelihood. HMM optimization was
performed using Kevin Murphy’s Hidden Markov Model
(HMM) Toolbox for Matlab.

Test score estimation: For each student and for each
test at time t, all observations for that student up through
timestep t − 1 were used to estimate the probability that
the student answers a test question about each word
j ∈ {1, . . . , n} correctly. The average probability over all
n words was then taken as the expected score for that test.


