
CONDITIONS FORUNIQUE GRAPH REALIZATIONS�BRUCE HENDRICKSONyAbstract. The graph realization problem is that of computing the relative locations of a set ofvertices placed in Euclidean space, relying only upon some set of inter-vertex distance measurements.This paper is concerned with the closely related problem of determining whether or not a graph has aunique realization. Both these problems are NP-hard, but the proofs rely upon special combinationsof edge lengths. If we assume the vertex locations are unrelated then the uniqueness question canbe approached from a purely graph theoretic angle that ignores edge lengths. This paper identi�esthree necessary graph theoretic conditions for a graph to have a unique realization in any dimension.E�cient sequential and NC algorithms are presented for each condition, although these algorithmshave very di�erent 
avors in di�erent dimensions.1. Introduction. Consider a graph G = (V;E) consisting of a set of n verticesand m edges, along with a real number associated with each edge. Now try to assigncoordinates to each vertex so that the Euclidean distance between any two adjacentvertices is equal to the number associated with that edge. This is the graph realizationproblem. It appears in situations where one needs to know the locations of variousobjects, but can only measure the distances between pairs of them. Surveying andsatellite ranging are among the more obvious problems that can be expressed in thisform [27, 39]. A less obvious but potentially more important application has to do withdetermining molecular conformations. It is possible to analyze the nuclear magneticresonance spectra of a molecule to obtain pairwise inter-atomic distance information[13]. Solving the graph realization problem in this context would allow one to determinethe three-dimensional shape of the molecule, which is important in understanding themolecule's properties.Unfortunately, the graph realization problem is known to be di�cult. Saxe hasshown it to be strongly NP-complete in one dimension and strongly NP-hard for higherdimensions [35] . In practice, this means that one is unlikely to �nd an e�cient generalalgorithm to solve it. However, the graphs and edge lengths that Saxe uses in his proofsare very special and are highly unlikely to occur in practical problems.This paper will address a closely related problem: when does the graph realizationproblem have a unique solution? (For our purposes translations, rotations and re
ec-tions of the entire space are not considered to be di�erent realizations.) Clearly if thelocation of a satellite or an atom is to be determined unambiguously the solution to therealization problem must be unique.Saxe has shown this uniqueness problem to be as hard as the original realizationproblem, but again his proofs rely on very special graphs. In particular, he needs� SIAM J. Comput., 21(1):65{84, February 1992.y Mathematics and Computational Science Department, Sandia National Laboratories, Albu-querque, NM 87185. Research performed while the author was at Cornell University, supported by afellowship from the Fannie and John Hertz Foundation1



special combinations of edge lengths, implying speci�c algebraic relations among thecoordinates of the vertices. This paper will address the more typical behavior of graphs.A realization of a graph G is a function p that maps the vertices of G to points inEuclidean space. The combination of a graph and a realization is called a frameworkand is denoted by p(G). A realization is satisfying if all the pairwise distance constraintsare satis�ed. Consider a set S with nonzero measure. A subset T of S is said to containalmost all of S if the complement of T , fq 2 Sjq 62 T g, has measure zero. A realizationis said to be generic if the vertex coordinates are algebraically independent over therationals. This computationally unrealistic requirement is actually stronger than wetruly need. We just have to avoid several speci�c algebraic dependencies. However,the set of generic realizations is dense in the space of all realizations, and almost allrealizations are generic.Restricting ourselves to generic realizations will greatly simplify our analysis. Itwill allow us to ignore the edge distances and base our analysis solely on the underlyinggraph. The results we develop will apply to graphs in almost all realizations. However,non-generic realizations might have di�erent properties.How can a framework have multiple realizations? There are several distinct man-ners in which nonuniqueness can appear. First, the framework can be susceptible tocontinuous deformations, like the one in Fig. 1. The rightmost vertex in this graph............................................................................ ........ vvv vig. 1. A 
exible framework in two dimensions.can pivot freely since it is underconstrained. A framework that can be continuouslydeformed while still satisfying all the constraints is said to be 
exible; otherwise it isrigid. Even a rigid framework can su�er from nonuniqueness. The rigid framework inFig. 2 has two realizations in the plane. One half of the graph can re
ect across thevvvvv vvv ...................................... ...................................... ................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. ...........................................................................................................................................................................................................................................................................................................................................................................................................................................................Fig. 2. A graph with two realizations in the plane.central two vertices. Continuous deformations and graph rigidity will be discussed in2



x 2. Although graph rigidity is a well studied problem, the connections to the graphrealization problem have not been well explored. Discontinuous transformations likere
ections will be covered in xx 3 and 4. The de�nition of redundant rigidity in x 4 andits importance in this context is entirely new.The graph realization problem can be posed in any dimension. Clearly the mostpractically interesting dimensions are two and three. Where possible this paper willpresent the most general results. However there are some substantial theoretical dif-ferences between two-space and three-space which will be elucidated in x 2. These willlead to completely di�erent algorithms for these di�erent dimensions.2. Graph Rigidity. A graph that has a unique realization cannot be susceptibleto continuous 
exings. It must be rigid. Questions about the rigidity of graphs haveoccupied mathematicians for centuries. More recently, structural engineers have beendrawn to the problem because of novel building architectures like geodesic domes. Theframework of a building can be thought of as a set of rigid rods, joined at their endpoints.One can consider the endpoints to be vertices of a graph and the rods to be edges of a�xed length. For the framework to bear weight, the corresponding graph must be rigid.For an old problem with an easy description, the characterization of rigid graphs hasproved to be di�cult, and many important questions remain unanswered.Section 2.1 will develop the essentials of rigidity theory, stressing the importance ofthe rigidity matrix. A more complete discussion can be found in some of the references[2, 3, 33, 11]. x 2.2 will present sequential and parallel algorithms for rigidity testing.2.1. Basic Concepts. A mathematical analysis of rigidity requires a formal de�-nition of our intuitive notion of a 
exible framework. Everything in this section occursin an arbitrary Euclidean dimension d.A �nite 
exing of a framework p(G) is a family of realizations ofG, parameterized byt so that the location of each vertex i is a di�erentiable function of t and (pi(t)�pj(t))2 =constant for every (i; j) 2 E. Thinking of t as time, and di�erentiating the edge lengthconstraints we �nd that(vi � vj) � (pi � pj) = 0 for every (i; j) 2 E;(1)where vi is the instantaneous velocity of vertex i. An assignment of velocities that satis-�es Equation 1 for a particular framework is an in�nitesimal motion of that framework.Clearly the existence of a �nite 
exing implies an in�nitesimal motion, but the con-verse is not always true. However, for generic realizations in�nitesimal motions alwayscorrespond to �nite 
exings [33].The in�nitesimal motions of a framework constitute a vector space. Note that amotion of the Euclidean space itself, a rotation or translation, satis�es the de�nitionof a �nite 
exing. Such �nite 
exings are said to be trivial. In d-space there ared independent translations and d(d � 1)=2 rotations. If a framework has a nontrivialin�nitesimal motion it is in�nitesimally 
exible. Otherwise it is in�nitesimally rigid. Asnoted above, for generic realizations in�nitesimal motions correspond to �nite 
exings.3



Since we are considering only generic realizations we will drop the pre�x and refer toframeworks as either rigid or 
exible.We would like to be able to determine whether a particular framework is rigid or
exible. Conveniently, this is substantially a property of the underlying graph as thefollowing theorem indicates [18].Theorem 2.1 (Gluck). If a graph has a single in�nitesimally rigid realization,then all its generic realizations are rigid.This theorem is critical for a graph theoretic approach to the realization problem.The frameworks built from a graph are either all in�nitesimally 
exible or almost allrigid. This allows for the characterization of graphs as either rigid or 
exible accordingto the typical behavior of a framework, without reference to a speci�c realization. Italso allows us to be somewhat cavalier in the distinction between rigid frameworks andgraphs that have rigid realizations. Henceforth such graphs will be referred to as rigidgraphs.How can a rigid graph be recognized? Clearly, graphs with many edges are morelikely to be rigid than those with only a few. In some sense the edges are constrainingthe possible movements of the vertices. In d-space a set of n vertices has nd possibleindependent motions. However a d-dimensional rigid body in d-space has d translationsand d(d � 1)=2 rotations. (If the body has dimension d0 < d then it has only d0(2d �d0 � 1)=2 rotations. This corresponds to a framework with only d0 + 1 vertices.) Thetotal number of allowed motions is the number of total degrees of freedom, nd, minusthe number of rigid body motions. For convenience we will call this quantity S(n; d),where S(n; d) = ( nd� d(d + 1)=2 if n � dn(n� 1)=2 otherwise.If each edge adds an independent constraint then S(n; d) edges should be required toeliminate all nonrigid motions of the graph. This intuition is sound as the theorems inthis section will demonstrate.Any realization of a 
exible graph has a nontrivial in�nitesimal motion. An in-�nitesimal motion is a solution for velocities in Equation 1. The matrix of this set ofequations is the rigidity matrix. It has m rows and nd columns. Each row correspondsto an edge while each column corresponds to a coordinate of a vertex. Each row has 2dnonzero elements, one for each coordinate of the vertices connected by the correspond-ing edge. The non-zero values are the di�erences in the coordinate values for the twovertices. For example, consider the graph K3, the complete graph on three vertices,positioned in IR2. If the realization maps the vertices to locations (0; 1), (�1; 0) and(1; 0), the rigidity matrix would be:e1;2e1;3e2;3 vx1 vy1 vx2 vy2 vx3 vy30B@ 1 1 �1 �1 0 0�1 1 0 0 1 �10 0 �2 0 2 0 1CA4



The rank of the rigidity matrix is closely related to the rigidity behavior of theframework, as this section will elucidate.Theorem 2.2. A framework p(G) is rigid if and only if its rigidity matrix hasrank exactly equal to S(n; d).Proof. All in�nitesimal motions must be in the null space of M since the rigiditymatrix expresses all constraints on the in�nitesimal velocities. By construction, S(n; d)is the size of the rigidity matrix minus the number of trivial in�nitesimal motions. Ifthe null space of M contains any nontrivial in�nitesimal motions then the rank mustbe less than S(n; d).So the question of whether a framework is 
exible can be reduced to a questionabout the rank of the rigidity matrix. The framework is rigid if and only if the rank ofthe rigidity matrix is maximal, S(n; d).Theorem 2.3. Every rigid framework p(G) has a rigid subframework with exactlyS(n; d) edges.Proof. The rigidity matrix has rank S(n; d) and each of its rows corresponds to anedge. Simply discard redundant rows and the corresponding edges until only S remain.Corollary 2.4. For a framework p(G), if m > S(n; d) then there is lineardependence among the rows of the rigidity matrix.Proof. The maximum rank of the rigidity matrix is S(n; d).Dependence among rows in the rigidity matrix can be expressed in terms of amatroid [30, 15]. For our purposes it will be su�cient to say that a set of edges isindependent if their rows in the rigidity matrix are linearly independent in a genericrealization. A rigid graph has S(n; d) independent edges.Theorem 2.5. If a framework p(G) with exactly S(n; d) edges is rigid, then thereis no subgraph G0 = (V 0; E 0) with more than S(n0; d) edges, where n0 = jV 0j.Proof. Since there are only S(n; d) edges, their rows in the rigidity matrix must allbe independent by Theorem 2.3. But if G0 has jE 0j > S(n0; d), then by Corollary 2.4there must be linear dependence among these edges which is a contradiction.Theorems 2.3 and 2.5 say that a rigid graph with n vertices must have a set ofS(n; d) well distributed edges, where well distributed means that no subgraph with n0vertices has more than S(n0; d) edges. This requirement is often referred to as Laman'scondition after G. Laman [28] who �rst articulated the two-dimensional version. Thiscondition is necessary for a graph to be rigid in any dimension. It is su�cient in onedimension where S = n � 1. It is straightforward to show that this is equivalent torequiring the graph to be connected. Laman was able to show that it is also su�cientin two dimensions where S = 2n � 3.Theorem 2.6 (Laman). The edges of a graph G = (V;E) are independent in twodimensions if and only if no subgraph G0 = (V 0; E 0) has more than 2n0 � 3 edges.Corollary 2.7. A graph with 2n� 3 edges is rigid in two dimensions if and onlyif no subgraph G0 has more than 2n0 � 3 edges.This was the �rst graph theoretic characterization of rigid graphs in two-space.Several equivalent characterizations have since been discovered [36, 24, 30, 37, 12].5



Unfortunately, for all its intuitive appeal Laman's condition is not su�cient inhigher dimensions. A three-dimensional counterexample is depicted in Fig. 3. Althoughthis graph has the required 18 well distributed edges it is still 
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exible graph in three-space that satis�es Laman's condition.The problem with Fig. 3 is that its edges are not independent in the sense ofTheorem 2.2. The rows of the rigidity matrix are linearly dependent. Expressingthis independence graph theoretically has proved to be a very di�cult problem. Nogeneral characterization of rigid graphs in three dimensions is known, although theproblem has been considered by many researchers, and several special cases have beensolved. Cauchy proved that triangulated planar graphs (those with all 3n � 6 edges)are generically rigid in three-space [6]. Fogelsanger recently generalized this result toinclude complete triangulations of any two-manifold in three-space [14]. Another classknown to be rigid is complete bipartite graphs with at least �ve vertices in each vertexset [5, 38]. However, the characterization of general graphs remains open.Recent work by Tay, Whiteley and Graver [37] has brought such a characterizationalmost within reach. However, it is di�cult to see how this possible solution could leadto an e�cient algorithm. Any straightforward implementation of their approach wouldhave a worst case exponential time behavior.2.2. Algorithms for Rigidity Testing. In one-space, rigidity is equivalent toconnectivity. There are simple connectivity algorithms that run in time proportionalto the number of edges in the graph [1].2.2.1. Rigidity Algorithms in Two Dimensions. In two dimensions Laman'scondition characterizes rigidity, but in its original form it gives a poor algorithm. It in-volves counting the edges in every subgraph, of which there are an exponential number.Sugihara discovered the �rst polynomial time algorithm for determining the indepen-dence of a set of edges in two dimensions [36]. Imai presented an O(n2) algorithm forrigidity testing using a network 
ow approach [24]. This time complexity was matchedby Gabow and Westermann using matroid sums [15]. In this section we will develop a6



new O(n2) algorithm based on bipartite matching. Besides any intrinsic interest, thisnew algorithm will be needed in x 4 when we need to test for a stronger graph condition.We will �rst need to introduce a particular bipartite graph, B(G), generated by ouroriginal graph G = (V;E). The bipartite graph has the edges of G as one of its vertexsets, and two copies of the vertices of G for the other. Edges of B(G) connect the edgesof G with the two copies of their incident vertices. More formally, B(G) = (V1; V2; E),where V1 = E, V2 = fq11; q21; : : : ; q1n; q2ng, and E = f(e; q1i ); (e; q2i ); (e; q1j ); (e; q2j ) : e =(vi; vj) 2 Eg. B(G) has 2n+m vertices and 4m edges, where n and m are respectivelythe number of vertices and edges in G. A simple example of the correspondence betweenG and B(G) is presented in Fig. 4 for the graph K3.vv v v v v v v vv v vv1 v3v2 e1 e2e3G V1V2e3e2e1 v3v2v1 B(G)Fig. 4. The correspondence between G and B(G).This bipartite graph leads to an alternate form of Laman's condition, expressed inthe following theorem. As above, a set of edges is said to be independent if the corre-sponding rows in the rigidity matrix are linearly independent in a generic realization.Theorem 2.8. For a graph G = (V;E) the following are equivalent:A. The edges of G are independent in two dimensions;B. for each edge (a; b) in G, the graph Ga;b formed by adding three additionaledges between a and b has no subgraph G0 in which m0 > 2n0;C. for each edge (a; b), the bipartite graph B(Ga;b) generated by Ga;b has nosubset of V1 that is adjacent only to a smaller subset of V2.D. for each edge (a; b), the bipartite graph B(Ga;b) generated by Ga;b has acomplete matching from V1 to V2.Proof. The equivalence of A and B is a restatement of Laman's condition. Theequivalence of B and C is a straightforward consequence of the construction of B(Ga;b).Property D is equivalent to C by Hall's theorem from matching theory. Assertions Cand D were �rst discovered in a slightly di�erent form by Sugihara [36].Our algorithm will be based upon the characterization in Theorem 2.8D. The basicidea is to grow a maximal set of independent edges one at a time. Denote these basisedges by Ê. A new edge is added to the basis if it is discovered to be independent of theexisting set. If 2n�3 independent edges are found then the graph is rigid. Determiningwhether a new edge is independent of the current basis can be done quickly using thebipartite matching characterization.Assume we have a (possibly empty) set of independent edges Ê. Combined with7



the vertices of G these form a graph Ĝ, which generates a bipartite graph B(Ĝ). Notethat jÊj = O(n) and so B(Ĝ) will have O(n) edges. We wish to determine if anotheredge, e, is independent of Ê. Adding e to Ĝ produces �G and B( �G). By characterizationD, e is independent of Ê if and only if there is a complete bipartite matching in B afterany edge in �G is quadrupled. Actually, only e needs to be quadrupled as the followingLemma demonstrates.Lemma 2.9. If a complete matching exists when e is quadrupled then e is indepen-dent of Ê.Proof. Assume the matching succeeds but e isn't independent of Ê. Then theremust exist some edge in Ê whose quadrupling causes G0, a subgraph of �G, to havem0 > 2n0 � 3. Since the edges of Ê are independent this bad subgraph must include e.But this bad subgraph has the same number of edges it had when e was quadrupled.Since the matching succeeded when e was quadrupled we have a contradiction.Determining whether a new edge can be added to the set of independent edgesis now reduced to the problem of trying to enlarge a bipartite matching. This is astandard problem in matching and it is performed by growing Hungarian trees andlooking for augmenting paths. The basic idea is to look for a path from an unmatchedvertex in V1 to an unmatched vertex in V2 that alternates between edges that are notin the current matching and edges that are. When such an augmenting path is foundthe matching can be enlarged by changing the unmatched edges in the path to becomematching edges, and vice versa. These paths can be found by growing Hungarian treesfrom the unmatched vertices in V1. These trees grow along the unmatched edges fromthe starting vertex to its neighbor set in V2. Matching edges are followed back to V1and unmatched edges back to V2. If an unmatched vertex in V2 is ever encountered anaugmenting path has been identi�ed. Growing a Hungarian tree takes time proportionalto the number of edges in the bipartite graph.Lemma 2.10. If Ê is independent and a corresponding matching in B(Ĝ) is known,then determining whether a new edge is independent requires O(n) time.Proof. By Lemma 2.9, testing for independence of e requires just enlarging thematching in B(Ĝ) to include the four copies of e. This involves growing four Hungariantrees in a bipartite graph of size O(n).This gives a two-dimensional rigidity testing algorithm that runs in time O(nm).Build a maximal set of independent edges one at a time by testing each edge for inde-pendence. Each test involves the enlargement of a bipartite matching requiring O(n)time. If the matching succeeds the edge is independent and is added to the basis.Otherwise it is discarded.To improve this to O(n2) we need to make use of failed matchings to eliminatesome edges from consideration. De�ne a Laman subgraph as a subgraph with n0 verticesand 2n0 � 3 independent edges. A matching will fail precisely when the new edge liesin a subgraph which already has 2n0 � 3 independent edges. No edge can be addedbetween vertices in this subgraph, so it is a waste of time even to try. By avoiding theseunnecessary attempts we can improve the performance of our algorithm. To accomplishthis we will need some further insight into the bipartite matching.8



Theorem 2.11. In a bipartite graph (V1; V2; E), if a Hungarian tree fails to �nd analternating path then it spans a minimal subgraph which violates Hall's theorem. Thatis, it identi�es a minimal set of k vertices in V1 with fewer than k neighbors.Proof. This is a simple consequence of Hall's theorem.Lemma 2.12. If the new edge, e, is tripled instead of quadrupled, generating agraph G from Ĝ, then B(G) has a complete matching.Proof. Assume the contrary. Then there is some subgraph G0 of �G with m0 > 2n0.Remove the three copies of e from this subgraph and quadruple one of the other edges.This altered subgraph still has m0 > 2n0, but it is the graph generated by quadruplingan edge in Ĝ. But since the edges of Ĝ are assumed to be independent this is acontradiction.Lemma 2.13. If edge e fails the matching test, then the failing Hungarian treespans a set of edges of Ê that form a Laman subgraph.Proof. By Lemma 2.12 when e is quadrupled the �rst 3 copies of it can be matched.By Theorem 2.11 when the fourth fails it spans a set of vertices of V1 adjacent to asmaller set from V2. Discarding the four copies of e leaves a set of k elements of V1adjacent to no more then k + 3 vertices from V2. By the construction of the bipartitegraph this is a set Ê 0 of k edges of Ê incident upon no more than (k + 3)=2 vertices.That is, m0 � 2n0 � 3. Since the edges of Ê are independent we must have equality.We will need the following result to analyze the running time of our algorithm.Lemma 2.14. Let G = (V; Ê) be a graph whose edges are independent. If twoLaman subgraphs of G share an edge then their union is a Laman subgraph.Proof. Let the subgraphs be (V 0; E 0) and (V 00; E 00) with union ( �V ; �E). Let �m =m0 +m00 � l and �n = n0 + n00 � k. Since the subgraphs share at least one independentedge, l � 2k � 3. Hence, �m = 2n0 + 2n00 � 6� l� 2n0 + 2n00 � 2k � 3= 2(n0 + n00 � k)� 3= 2�n � 3:Since the edges are independent we must have equality.We are now ready to present our algorithm. We will maintain the appropriatebipartite graph with a matching of all the independent edges discovered so far. We willalso keep a collection of all the Laman subgraphs that have been identi�ed, representedas linked lists of independent edges. The algorithm is outlined in Fig. 5.By Lemma 2.14 we know that no edge need be in more than one subgraph. Bymerging whenever a new Laman subgraph is found, we guarantee that the total numberof elements in all the subgraphs is kept to O(n). This ensures that the marking andmerging operations can be done in O(n) time. As above, checking for independence of(u; v) requires O(n) time. Each time an edge is checked it results in either a new basisedge or a merging of components, so this can only happen O(n) times. Hence the totaltime for the algorithm is O(n2). 9



basis  ;For Each vertex vMark each vertex in a Laman subgraph with v, and unmark all othersFor Each edge (u; v)If u is unmarked ThenIf (u; v) is independent of basis Thenadd (u; v) to basiscreate Laman subgraph consisting of (u; v)Else a new Laman subgraph has been identi�edMerge all Laman subgraphs that share an edgeMark each vertex in a Laman subgraph with vFig. 5. An O(n2) algorithm for two-dimensional graph rigidity.2.2.2. Rigidity Algorithms in Higher Dimensions. For dimensions greaterthan two there are no graph theoretic characterizations of rigidity, so there are no goodcombinatoric algorithms to test for it. One approach would involve a symbolic calcu-lation of the rank of the rigidity matrix by symbolically constructing the determinant.However, the determinant can have an exponential number of terms, so this requires anexponential amount of time. A di�erent approach is possible which relies instead uponTheorem 2.1. Since this theorem is valid in all dimensions, the following discussion isapplicable to all spaces. If the graph is rigid then almost any realization will generatea rigid framework. Simply select a random realization for the graph. Once these vertexlocations are selected it is a straightforward matter to determine the rigidity of theframework using Theorem 2.2. Just construct the rigidity matrix M and determineits rank. If the rank is S(n; d) then the graph is rigid. A lower rank indicates thatthe framework is 
exible. Unless the selection of vertex coordinates was extremely un-lucky the underlying graph will be 
exible as well. So even without a graph theoreticcharacterization an e�cient practical randomized algorithm for rigidity exists.To determine the rank of M we suggest using a QR decomposition with columnpivoting, requiring O(mn2) time [19]. This is more numerically stable than Gaussianelimination, but not as costly as a singular value decomposition. A QR factorizationhas several advantages over an SVD in this application. Performing a QR on MT willidentify a maximal independent set of rows of M one at a time, corresponding to amaximal set of independent edges in the graph. This ability to identify independentrows will be needed in x 4. Also, the rigidity matrix is quite sparse, having only 2dnonzeros in each row. To save time and space, sparse techniques could be used for largeproblems. There are sparse QR algorithms, but none for SVD [8, 16, 17].There are also e�cient parallel algorithms for �nding the rank of a matrix. Ibarra,Moran and Rosier [23] discovered an algorithm that runs in O(log2m) time on O(m4)processors. This means that rigidity testing is in random NC for any dimension. Theclass NC is the set of problems that can be solved in polylogarithmic time using a10



polynomial number of processors. It is a standard measure of a good parallel algorithm,although its applicability is more theoretical than practical.3. Partial Re
ections. Even rigid graphs can have multiple realizations as wasshown in Fig. 2. This discontinuous 
avor of nonuniqueness has not been well studied,probably because it is not relevant to structural engineers. Buildings can only deformcontinuously. For the graph realization problem these discontinuous transformationsmust be considered. This section and the next will be concerned with multiple real-izations that do not arise from 
exibility. These are cases in which there are two ormore noncongruent realizations that satisfy all the distance requirements, but there isno continuous 
exing of the framework to transform one to another while maintainingthe constraints. Whereas 
exible graphs have an in�nite number of potential con�gura-tions, the number of realizations of a rigid graph is �nite, although possibly exponentialin the size of the graph.A two-dimensional example of the simplest type of discontinuous transformation isdepicted in Fig. 2. The right half of this graph is able to fold across the line formedby the two middle vertices. When can this type of nonuniqueness occur? As in Fig. 2there must be a few vertices about which a portion of the graph can be re
ected. Thesevertices form a mirror. There must be no edges between the two halves of the graphseparated by this mirror. For the general d-dimensional problem, the mirror verticesmust lie in a (d � 1)-dimensional subspace. We will say that a framework in d-spaceallows a partial re
ection if a separating set of vertices lies in a (d � 1)-dimensionalsubspace.The realizations in which more than d vertices lie in a (d�1)-dimensional subspaceare not generic. So for almost all frameworks, partial re
ections only occur when thereis a subset of d or fewer vertices whose removal separates the graph into two or moreunconnected pieces, that is, when G is not vertex (d+ 1)-connected. This gives us thefollowing well known result.Theorem 3.1. A rigid graph positioned generically in dimension d will have apartial re
ection if and only if it is not vertex (d+ 1)-connected.The connectivity of a graph is an important property, and it has been well studied.There are well known O(m) time algorithms for vertex two-connectivity, also known asbiconnectivity [1]. Avoiding partial re
ections in two dimensions requires a vertex three-connected (or triconnected) graph. Hopcroft and Tarjan [22] were the �rst to discoveran O(m) time algorithm to �nd triconnected components. Miller and Ramachandran[31] have recently proposed a parallel algorithm to identify triconnected components inO(log2 n) time with O(m) processors. This places triconnectivity in NC.Four-connected components are more di�cult, but Kanevsky and Ramachandran[25] have recently found an O(n2) time algorithm. They also discovered a parallelimplementation of their algorithm that runs in O(log n) time using O(n2) processors.So the problem of partial re
ections is in NC in both two and three dimensions.For k greater than 4, the question of k-connectivity for a general k is less well un-derstood. Consequently the partial re
ection problem is more di�cult in spaces of di-mension greater than three. There are randomized algorithms for general k-connectivity11



that run in time proportional to n5=2 [4, 29]. Recently, Cheriyan and Thurimella havedescribed an algorithm with a time complexity of O(k3n2), which reduces to O(n2) fora �xed k [7]. There are also NC algorithms that run in time O(k2 log n) [26].4. Redundant Rigidity. Rigidity and (d+1)-connectivity are necessary but notsu�cient to ensure that a graph has a unique realization. A two-dimensional exampleof a rigid, triconnected graph with two satisfying realizations is given in Fig. 6.v vvvvvvv vvvvd dfec baa feb c
Fig. 6. Two realizations of a rigid triconnected graph in the plane.To understand this nonuniqueness, consider Fig. 7. Edge (a; f) has been removed
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ca fe dFig. 7. Intermediate stages in the construction of Fig. 6.from the original graph. This resultant graph is now composed of a quadrilateral bcdewith two attached triangles abe and cdf . The quadrilateral is not rigid, so this newgraph can 
ex. The 
exing will lift vertex d up until it crosses the line between c ande as depicted in the center picture of Fig. 7. Eventually vertex c can swing all theway around to the right. As the graph moves, the distance between vertices a and fvaries. When vertex c swings far enough around, this distance becomes the same as itwas originally, as shown in the rightmost picture of Fig. 7. Now the missing edge canbe replaced to yield a new satisfying realization.12



The fundamental problem with the graph in Fig. 6 is that the removal of a singleedge makes it 
exible. We will de�ne an edge of a framework to be in�nitesimallyredundant if the framework remaining after its removal is in�nitesimally rigid. A frame-work is in�nitesimally redundantly rigid if all its edges are in�nitesimally redundant.Redundant bracing is a familiar concept to engineers who wish to build frameworkswith additional strength and failure tolerance properties, but this precise formulationand its signi�cance with regards to the unique realization problem are entirely new.In�nitesimal redundant rigidity is clearly a more restrictive property than in�nites-imal rigidity, but the two properties have many similarities. For generic realizationsin�nitesimal motions always correspond to �nite 
exings. So as with rigidity, since weare only interested in generic realizations we can drop the pre�x and refer to frameworksas redundantly rigid. The following theorem is a trivial consequence of Theorem 2.1.Theorem 4.1. If a graph has a single in�nitesimally redundantly rigid realization,then all its generic realizations are redundantly rigid.As with Theorem 2.1 for rigid graphs, Theorem 4.1 says that either none of a graph'srealizations are redundantly rigid, or almost all of them are. Almost all again meansthat the set of counter examples has measure zero. This blurs the distinction between aredundantly rigid framework and its underlying graph. Graphs with redundantly rigidrealizations will be referred to as redundantly rigid graphs.In Fig. 6 the lack of redundant rigidity led to multiple realizations. This is usuallytrue, and the proof will be the main result of this section. Intuitively, a 
exible frame-work can move around, but it must always end up back where it started. That is, thepath it traces in nd-space will be a loop. If the removal of an edge allows the graph to
ex, then the distance corresponding to that edge must be a multivalued function asthe 
exing completes its loop. However, there are some graphs for which this argumentfails. Consider the triangle graph, K3. It has only one realization, but if an edge isremoved it becomes 
exible. To understand which graphs need to be redundantly rigidto have unique realizations we will need to carefully investigate the space of satisfyingrealizations for 
exible graphs. This will require an incursion into di�erential topology,and is the subject of the next section.5. The Necessity of Redundant Rigidity. The proof that 
exible graphs typ-ically move in closed loops will rely upon some special properties of the graph realiza-tion problem. Given a framework p(G) there is a pairwise distance function q : IRnd !IRn(n�1)=2 that maps vertex locations to squares of all the pairwise vertex distances.That is, q(p(v1); : : : ; p(vn)) = (: : : ; jp(vi)� p(vj)j2; : : :):For the molecule problem we are only interested in a speci�c set of pairwise distances;namely, those corresponding to the edges of G. These can be obtained from Rn(n�1)=2by a simple projection, �. We will de�ne an edge function, f , to be the compositionof these two operations, f = � � q. These functions are described by the followingcommutative diagram. 13



................................................................................................................................................................. ............................................................................................................................................................................................................................................. f �q IRn(n�1)=2pV IRnd IRmThe functions f and q have many nice properties. We will say a function is smoothat a point x if it has continuous partial derivatives of all orders at x. The functionsf and q are everywhere smooth. Also, the Jacobian of f is twice the rigidity matrixintroduced in x 2.1.The realization problem is really that of �nding the inverse of the edge function. Ofcourse, this inverse is multivalued because edge lengths are invariant under translations,rotations and re
ections of the entire space. Two realizations will be considered equiv-alent if all pairwise distances between vertices are the same under the two realizations.That is, two realizations are equivalent if they map to the same point under q. We willbe interested only in the inverse of f modulo equivalences. More formally, de�ne therealization set of p(G) to be ��1f(p(G)), the set of nonequivalent, satisfying realizationsfor the graph realization problem generated by p(G). For p(G) to be a unique solutionto the realization problem it is necessary and su�cient that this realization set consistof a single point. Our goal in this section is to investigate the structure of the realizationset. Our �rst result is the following theorem.Theorem 5.1. If a graph, G, is connected, then the realization set of p(G) iscompact.Proof. The realization set is a subset of IRn(n�1)=2. It is bounded since the graph isconnected, and it is trivially closed.Although every point in IRnd corresponds to a realization, the image of IRnd underq does not cover IRn(n�1)=2. De�ne this image to be a space W � IRn(n�1)=2. The spaceW has a natural topology and measure inherited from the larger Euclidean space. Fortechnical reasons we will restrict our consideration of realizations to those in which notall the vertices lie in a hyperplane. Call this subset of realizations T . The space T is adense, open subset of IRnd. De�ne X to be the subset of points in W that are images ofpoints in T under q. If the graph has d or fewer vertices then X is empty. Otherwise,X is a dense, open subset of W , with a nice structure, as we will see shortly. De�ne Zto be the image of X under �. This gives us the following structure................................................................................................................................................................................................................................................................................................................................... ............................................................................ f �q XpV T ZWe will need the following notation from di�erential topology. Say the largest rankthe Jacobian of a function g : A! B attains in its domain is k. A point x 2 A is calleda regular point if the Jacobian of g at x has rank k. A point y 2 B is a regular value ifevery point in the preimage of y under g is a regular point. If a point or value is not14



regular, it is singular. Note that for the edge function singular points are not generic.A j-dimensional manifold is a subset of some large Euclidean space that is everywherelocally di�eomorphic to IRj.Consider the following procedure for identifying equivalent realizations, which isde�ned for any realization in T . Select a set of d + 1 vertices from p(G) whose a�nespan is all of IRd. Translate the realization so that the �rst of these vertices is at theorigin. Next rotate about the origin to move the second of these vertices onto thepositive x1 axis. Now rotate, keeping the �rst two vertices �xed, to move the third tothe (x1; x2) plane so that the x2 coordinate is positive. Continuing this process in theobvious way gives a smooth mapping that makes d(d + 1)=2 of the vertex coordinateszero. Finally, if the d + 1st vertex has its d + 1st coordinate less than zero, re
ect thevertices through the hyperplane de�ned by the x1; : : : ; xd�1 axes.This procedure maps all equivalent realizations to a single one. This single re-alization can be described by its remaining variable coordinates, of which there arend � d(d + 1)=2. Since each of these remaining coordinates can vary continuously, therealization can be considered to be a point in IRnd�d(d+1)=2. This de�nes a coordinatechart for X. Note that the sequence of operations performed on the original realizationis smooth and invertible. If a di�erent set of d+1 initial vertices was selected a di�erentcoordinate chart would have been generated. Since these coordinate transformationsare smooth and invertible, on regions of intersection the two charts are di�eomorphic.The union of all such charts gives a di�erentiable structure to our space X. This con-struction provides a di�eomorphism between each open set of a collection that coversX and IRnd�d(d+1)=2, giving us the following theorem.Theorem 5.2. If the graph has at least d+1 vertices, then X is a smooth manifoldof dimension nd � d(d+ 1)=2.The dimension of this manifold is a quantity that will come up frequently so it willbe convenient to reintroduce the following notation: S(n; d) = nd � d(d + 1)=2. Thisfunction was �rst de�ned in x 2.1 as the maximal rank of the rigidity matrix of a graphwith n vertices positioned in d-space.The procedure described above gives us an alternate way in which to view the spaceX. The sequence of translations, rotations and re
ections constitute a function �q thatmaps an entire set of equivalent realizations to a single one. The remaining variablecoordinates uniquely de�ne a point in X. Considering these to be the independentvariables, the mapping fromX to Z becomes more complicated than a simple projection.We will de�ne this function to be �f , giving us the following commutative diagram................................................................................................................................................................................................................................................................................................................................... ............................................................................ f �f�q XpV T ZThis function �f is closely related to the edge function f . In fact, �f is everywhere smoothinX, and the rank of the Jacobian of f(x) is the same as that of �f(�q(x)). So the singular15



values of f are the same as the singular values of �f(�q). If we designate the number ofindependent edges of G by k then the rank of these Jacobians is almost always k. Thefollowing is a special case of a well known theorem due to Sard [34].Theorem 5.3 (Sard). The set of singular values of f has k-measure zero.Lemma 5.4. If Z 0 is a subset of Z with k-measure zero, then for almost all real-izations p, f(p) 62 Z 0.Proof. The singular points of f constitute an algebraic variety in IRnd with dimen-sion less than nd. Hence, the regular points of f can be covered by a countable numberof open neighborhoods in such a way that the rank of the Jacobian of f is maximalwithin each neighborhood. Consider one of these neighborhoods R, and let its imageunder f be Z. By the implicit function theorem from analysis there is a submersionfrom R to Z. That is, on this neighborhood f is di�eomorphic to a projection fromIRnd to IRk. Since Z 0 has k-measure zero its inverse image under this submersion musthave (nd)-measure zero in R. The countable union of these sets of (nd)-measure zeroyields a preimage for Z 0 with (nd)-measure zero.These last two results imply the following theorem.Theorem 5.5. For almost every realization p, f(p) is a regular value.All this has been leading up to the following crucial result.Theorem 5.6. For almost every realization p, the realization set of p(G) restrictedto X is a manifold.Proof. Almost all realizations map to regular values of f and hence of �f(�q). Thepreimage of a regular value is a submanifold of X by the implicit function theorem fromdi�erential topology [20].If the graph is 
exible then this manifold describes the allowed 
exings. At anypoint in the manifold, the tangent space is exactly the null space of the Jacobian of �f . Toshow that 
exings typically move in closed loops (actually, one-manifolds di�eomorphicto the circle), we will need the 
exings to remain entirely in our manifold X. This canbe ensured if the graph has enough independent edges. Enough means more than canbe independent in a lower dimensional space as the following theorem demonstrates.Theorem 5.7. If G has more than S(n; d� 1) independent edges, then for almostall realizations p(G), the realization set of p(G) stays within X.Proof. Assume the theorem is false. By the de�nition of X this means that therealization set must include a point at which all the vertices lie in a (d�1)-dimensionalhyperplane. When this happens the edges can only constrain in�nitesimal motionswithin the hyperplane. The rows of the rigidity matrix describe these in�nitesimalconstraints, so when the vertices lie in a hyperplane the rank of the rigidity matrix canbe no larger than S(n; d� 1). Since there are more than S(n; d� 1) independent edges,this implies that f(p(G)) is a singular value, but by Theorem 5.5 this cannot be thecase for almost all realizations.We can �nally prove that 
exings typically move in closed loops.Theorem 5.8. If a graph, G, is connected, 
exible, and has more than d + 1vertices, then for almost all realizations p(G) the realization set of p(G) contains asubmanifold that is di�eomorphic to the circle.16



Proof. Generate a new graph G0 from G by arbitrarily adding additional edges untilG0 has S(n; d) � 1 independent edges. The realization set of p(G0) must be a subsetof the realization set of p(G). Since n > d + 1 it is easy to show that the number ofindependent edges is now greater than S(n; d� 1). By Theorems 5.6 and 5.1 we knowthat for almost all realizations the realization set of p(G0) is a compact manifold ofdimension one. It is a well known result from di�erential topology that such manifoldsare di�eomorphic to the circle.This �nally leads us to the main result of this section.Theorem 5.9. If G is not redundantly rigid and G has more than d + 1 vertices,then almost all realizations of G are not unique.Proof. Assume the only interesting case, that G is rigid. Then the graph G musthave S(n; d) independent edges, and there is some edge eij of G whose removal generatesa 
exible graph G0. By Theorem 5.8, for almost all realizations p the realization set ofp(G0) contains a submanifold di�eomorphic to the circle. The distance between verticesi and j will be a multivalued function for almost every point on this circle. The onlydistances that might not be multivalued are the extremal ones. When a 
exing reachesa realization that induces an extremal value between i and j the derivative of d2i;j is zeroin the direction of the 
ex. In this case the realization is not generic [32]. So almost allrealizations do not induce extremal edge lengths.Theorem 5.9 means that the example in Fig. 6 was not a 
uke. Redundant rigidityis a necessary condition for unique realizability.5.1. Algorithms for Redundant Rigidity. How di�cult is it to test for redun-dant rigidity? A simplistic approach would use the algorithm for rigidity repeatedly,removing one edge at a time. This approach parallelizes easily by simply running the mdi�erent problems on independent sets of processors. Since rigidity testing was shownto be in deterministic or random NC for all dimensions, redundant rigidity is as well.In one dimension redundant rigidity is equivalent to edge two-connectivity. Thisproperty can be determined by looking for cut points of the graph, requiring O(m) time[1]. For the two-dimensional case a simple modi�cation of the rigidity testing algorithmdescribed in x 2.2 can be employed. The rigidity algorithm grows a basis set of inde-pendent edges one at a time by checking them against the existing independent set. If anew edge is found to be independent of the existing set, then it is added. Independenceis determined by the success of a particular bipartite matching. If the matching failsthen there must be some dependence among the edges. Identifying and utilizing thesedependencies will lead to an e�cient redundant rigidity algorithm.As in x 2.2 we will denote byB(G) the bipartite graph constructed fromG = (V;E).The current set of independent, basis edges is Ê, generating a subgraph Ĝ = (V; Ê).When a new edge, e, is to be tested for independence, four copies of it are added toĜ generating �G with its corresponding bipartite graph B( �G). As we saw in x 2.2, if acomplete bipartite matching exists in B( �G) then e is independent of Ê. For our currentpurposes we are interested in dependent edges and how they contribute to redundantrigidity. Dependent edges fail to have complete matchings in B( �G). However, if we17



triple e instead of quadrupling it, generating G and B(G), then Lemma 2.12 guaranteesthat B(G) always has a complete matching. So only a single vertex in B( �G) can gounmatched. This is important because of the following general property of bipartitematching.Theorem 5.10. Let B = (V1; V2; E) be a bipartite graph with a matching from V1to V2 involving all but one vertex from V1, denoted by v. Also let V1 be the subset of V1that is in the Hungarian tree built from v. Then if any vertex from V1 is deleted fromB, the resulting graph will have a complete matching.Proof. The removal of a vertex w from V1 creates an unmatched vertex in V2 thatis reachable from v along an alternating path.Theorem 5.10 identi�es which vertices of a bipartite graph can be removed to resultin a perfect matching. For our purposes, these are vertices in B( �G), which correspondto edges of �G. If any of these edges of �G is removed then the new edge e will beindependent of the remaining basis edges. That is, e can replace any of these edgesidenti�ed by the Hungarian tree, leaving the number of basis edges unchanged. Moreformally, we have the following theorem.Theorem 5.11. In the rigidity algorithm, assume a new edge, e, is found to be notindependent of the current set of k independent edges. Let V1 be the subset of verticesof V1 that are in the Hungarian tree of the failed matching. Then if e replaces any ofthe edges in V1 the resulting set of k edges is still independent.Theorem 5.11 gives an e�cient algorithm for redundant rigidity testing. An edgeis not independent of the current basis set if the bipartite matching fails. When thishappens the Hungarian tree identi�es precisely which edges are dependent. All theseedges are redundant because any of them could be replaced by the new edge. In theO(n2) algorithm from x 2.2 a Laman subgraph is identi�ed by this Hungarian tree.Hence, any edge in the Laman subgraph is redundant. When the algorithm is �nished,if there is a basis edge that has not been merged into a larger Laman subgraph thenit is not redundant and the graph is not redundantly rigid. Note that if the full graphis not redundantly rigid then the Laman subgraphs identi�ed by this procedure areredundantly rigid components. This takes essentially no more e�ort than testing forrigidity, so two-dimensional redundant rigidity can be decided in O(n2) time.In dimensions greater than two there is no graph theoretic characterization of re-dundant rigidity. As in x 2.2 an algorithm will have to randomly position the verticesand then examine the rigidity matrix. Like the two-dimensional case, the basic idea willbe to build a set of independent edges one at a time, and then determine which of themare redundant. Every time a new edge fails to be independent it supplies informationabout the redundancy of some of the independent edges. If a full set of redundant,independent edges are found then the graph is redundantly rigid.Begin by positioning the vertices randomly and constructing the rigidity matrixM . The rigidity of the framework can be determined by performing a QR factorizationon MT to �nd its rank. This procedure will form an independent set of edges one ata time. A new column is added if it is linearly independent of the current set of kcolumns; otherwise it is discarded. A discarded column, corresponding to an edge e,18



can be expressed as a linear combination of some set of the independent columns. Thediscarded column could replace any of the columns in the linear combination whichforms it, without altering the span of the independent set.How di�cult is it to determine which of the current columns contribute to the linearcombination? Assume the algorithm has identi�ed k independent columns ofMT . Placethese columns together to form an nd � k matrix, Ak. The QR factorization has beenproceeding on these columns as they are identi�ed, so there is a k�k orthogonal matrixQk and a nd � k upper triangular matrix Rk satisfying QkRk = Ak. If a new columnb of MT is linearly dependent upon the columns of Ak then there must be a vectorc satisfying Akc = QkRkc = b, or alternately Rkc = QTk b. In the course of the QRfactorization the column b has been overwritten with QTk b, so it is easy to solve theupper triangular system for c. The nonzero elements of c identify which columns of Akcontribute to the linear combination composing b, that is, which columns are redundant.How much work does this take? There are O(m) triangular systems to solve, eachof which requiresO(k2) operations, where k is always O(n). So the total additional timeis of the same order as the QR factorization itself, O(mn2). As in the two-dimensionalcase, the redundant rigidity of a graph can be determined by modifying the rigidityalgorithm without incurring substantial increased cost.As was noted in x 2.2, the rigidity matrix consists mostly of zeros. For largeproblems this property should be exploited by using sparse matrix techniques. Theonly real modi�cation to the rigidity algorithm required to verify redundant rigidity isa sequence of triangular solves. These can be done sparsely, so the entire algorithmcan be implemented in a sparse setting. An algorithm very similar to this has beendescribed by Coleman and Pothen [9].6. Conclusion. Three necessary conditions for almost all realizations of a graphto be unique in d dimensions have been derived. They are, in order of appearance,rigidity, (d + 1)-connectivity, and redundant rigidity. The �rst condition is a trivialconsequence of the third so there are really only two independent criteria. However,
exibility leads to a very di�erent kind of nonuniqueness than lack of redundant rigidityso it is useful to think of them independently. E�cient algorithms for testing each ofthese three conditions have been presented that deal solely with the underlying graph,ignoring the edge lengths. The price for this convenience is that there are combinationsof edge lengths for which these conditions aren't necessary. But these counter-examplesare very rare. For almost all realizations, a graph that violates one of these conditionswill have multiple satisfying realizations.Establishing necessary conditions for a graph to have a unique realization makesit possible to prune the initial graph before attempting the di�cult task of �ndingcoordinates for the vertices. If the entire graph does not have a unique realization thenit would be impossible to assign coordinates unambiguously. Instead portions of thegraph that do satisfy the necessary criteria can be identi�ed and positioned. Not onlydoes this alleviate the confusion of a poorly posed problem, but since the cost of �ndingthe realization can grow exponentially with the size of the graph, it should be possibleto save time by positioning a sequence of smaller subgraphs instead of the original full19
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