CONDITIONS FOR
UNIQUE GRAPH REALIZATIONS*

BRUCE HENDRICKSONT

Abstract. The graph realization problem is that of computing the relative locations of a set of
vertices placed in Euclidean space, relying only upon some set of inter-vertex distance measurements.
This paper is concerned with the closely related problem of determining whether or not a graph has a
unique realization. Both these problems are NP-hard, but the proofs rely upon special combinations
of edge lengths. If we assume the vertex locations are unrelated then the uniqueness question can
be approached from a purely graph theoretic angle that ignores edge lengths. This paper identifies
three necessary graph theoretic conditions for a graph to have a unique realization in any dimension.
Efficient sequential and NC algorithms are presented for each condition, although these algorithms
have very different flavors in different dimensions.

1. Introduction. Consider a graph G = (V| F) consisting of a set of n vertices
and m edges, along with a real number associated with each edge. Now try to assign
coordinates to each vertex so that the Euclidean distance between any two adjacent
vertices is equal to the number associated with that edge. This is the graph realization
problem. 1t appears in situations where one needs to know the locations of various
objects, but can only measure the distances between pairs of them. Surveying and
satellite ranging are among the more obvious problems that can be expressed in this
form [27, 39]. A less obvious but potentially more important application has to do with
determining molecular conformations. It is possible to analyze the nuclear magnetic
resonance spectra of a molecule to obtain pairwise inter-atomic distance information
[13]. Solving the graph realization problem in this context would allow one to determine
the three-dimensional shape of the molecule, which is important in understanding the
molecule’s properties.

Unfortunately, the graph realization problem is known to be difficult. Saxe has
shown it to be strongly NP-complete in one dimension and strongly NP-hard for higher
dimensions [35] . In practice, this means that one is unlikely to find an efficient general
algorithm to solve it. However, the graphs and edge lengths that Saxe uses in his proofs
are very special and are highly unlikely to occur in practical problems.

This paper will address a closely related problem: when does the graph realization
problem have a unique solution? (For our purposes translations, rotations and reflec-
tions of the entire space are not considered to be different realizations.) Clearly if the
location of a satellite or an atom is to be determined unambiguously the solution to the
realization problem must be unique.

Saxe has shown this uniqueness problem to be as hard as the original realization
problem, but again his proofs rely on very special graphs. In particular, he needs
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special combinations of edge lengths, implying specific algebraic relations among the
coordinates of the vertices. This paper will address the more typical behavior of graphs.

A realization of a graph G is a function p that maps the vertices of G to points in
Euclidean space. The combination of a graph and a realization is called a framework
and is denoted by p((). A realization is satisfying if all the pairwise distance constraints
are satisfied. Consider a set § with nonzero measure. A subset 7 of § is said to contain
almost all of § if the complement of 7, {q € S|¢ € T}, has measure zero. A realization
is said to be generic if the vertex coordinates are algebraically independent over the
rationals. This computationally unrealistic requirement is actually stronger than we
truly need. We just have to avoid several specific algebraic dependencies. However,
the set of generic realizations is dense in the space of all realizations, and almost all
realizations are generic.

Restricting ourselves to generic realizations will greatly simplify our analysis. It
will allow us to ignore the edge distances and base our analysis solely on the underlying
graph. The results we develop will apply to graphs in almost all realizations. However,
non-generic realizations might have different properties.

How can a framework have multiple realizations? There are several distinct man-
ners in which nonuniqueness can appear. First, the framework can be susceptible to
continuous deformations, like the one in Fig. 1. The rightmost vertex in this graph

Fic. 1. A flexible framework in two dimensions.

can pivot freely since it is underconstrained. A framework that can be continuously
deformed while still satisfying all the constraints is said to be flexible; otherwise it is
rigid. Even a rigid framework can suffer from nonuniqueness. The rigid framework in
Fig. 2 has two realizations in the plane. One half of the graph can reflect across the

Fig. 2. A graph with two realizations in the plane.

central two vertices. Continuous deformations and graph rigidity will be discussed in
2



§ 2. Although graph rigidity is a well studied problem, the connections to the graph
realization problem have not been well explored. Discontinuous transformations like
reflections will be covered in §§ 3 and 4. The definition of redundant rigidity in § 4 and
its importance in this context is entirely new.

The graph realization problem can be posed in any dimension. Clearly the most
practically interesting dimensions are two and three. Where possible this paper will
present the most general results. However there are some substantial theoretical dif-
ferences between two-space and three-space which will be elucidated in § 2. These will
lead to completely different algorithms for these different dimensions.

2. Graph Rigidity. A graph that has a unique realization cannot be susceptible
to continuous flexings. It must be rigid. Questions about the rigidity of graphs have
occupied mathematicians for centuries. More recently, structural engineers have been
drawn to the problem because of novel building architectures like geodesic domes. The
framework of a building can be thought of as a set of rigid rods, joined at their endpoints.
One can consider the endpoints to be vertices of a graph and the rods to be edges of a
fixed length. For the framework to bear weight, the corresponding graph must be rigid.
For an old problem with an easy description, the characterization of rigid graphs has
proved to be difficult, and many important questions remain unanswered.

Section 2.1 will develop the essentials of rigidity theory, stressing the importance of
the rigidity matrix. A more complete discussion can be found in some of the references
[2, 3, 33, 11]. § 2.2 will present sequential and parallel algorithms for rigidity testing.

2.1. Basic Concepts. A mathematical analysis of rigidity requires a formal defi-
nition of our intuitive notion of a flexible framework. Everything in this section occurs
in an arbitrary Fuclidean dimension d.

A finite flexing of a framework p(() is a family of realizations of (¢, parameterized by
t so that the location of each vertex ¢ is a differentiable function of ¢ and (p;(t)—p;(¢))* =
constant for every (¢,7) € E. Thinking of ¢ as time, and differentiating the edge length
constraints we find that

(1) (vi —vj) - (pi —p;j) =0 forevery (i,5) € I,

where v; is the instantaneous velocity of vertex :. An assignment of velocities that satis-
fies Equation 1 for a particular framework is an infinitesimal motion of that framework.
Clearly the existence of a finite flexing implies an infinitesimal motion, but the con-
verse is not always true. However, for generic realizations infinitesimal motions always
correspond to finite flexings [33].

The infinitesimal motions of a framework constitute a vector space. Note that a
motion of the Euclidean space itself, a rotation or translation, satisfies the definition
of a finite flexing. Such finite flexings are said to be trivial. In d-space there are
d independent translations and d(d — 1)/2 rotations. If a framework has a nontrivial
infinitesimal motion it is infinitesimally flexible. Otherwise it is infinitesimally rigid. As
noted above, for generic realizations infinitesimal motions correspond to finite flexings.



Since we are considering only generic realizations we will drop the prefix and refer to
frameworks as either rigid or flexible.

We would like to be able to determine whether a particular framework is rigid or
flexible. Conveniently, this is substantially a property of the underlying graph as the
following theorem indicates [18].

THEOREM 2.1 (GLUCK). If a graph has a single infinitesimally rigid realization,
then all its generic realizations are rigid.

This theorem is critical for a graph theoretic approach to the realization problem.
The frameworks built from a graph are either all infinitesimally flexible or almost all
rigid. This allows for the characterization of graphs as either rigid or flexible according
to the typical behavior of a framework, without reference to a specific realization. It
also allows us to be somewhat cavalier in the distinction between rigid frameworks and
graphs that have rigid realizations. Henceforth such graphs will be referred to as rigid
graphs.

How can a rigid graph be recognized? Clearly, graphs with many edges are more
likely to be rigid than those with only a few. In some sense the edges are constraining
the possible movements of the vertices. In d-space a set of n vertices has nd possible
independent motions. However a d-dimensional rigid body in d-space has d translations
and d(d — 1)/2 rotations. (If the body has dimension d’ < d then it has only d'(2d —
d" —1)/2 rotations. This corresponds to a framework with only d’ 4+ 1 vertices.) The
total number of allowed motions is the number of total degrees of freedom, nd, minus
the number of rigid body motions. For convenience we will call this quantity S(n,d),
where

_fnd—=d(d+1)/2 iftn>d
S, d) = { n(n—1)/2 otherwise.

If each edge adds an independent constraint then S(n,d) edges should be required to
eliminate all nonrigid motions of the graph. This intuition is sound as the theorems in
this section will demonstrate.

Any realization of a flexible graph has a nontrivial infinitesimal motion. An in-
finitesimal motion is a solution for velocities in Equation 1. The matrix of this set of
equations is the rigidity matriz. 1t has m rows and nd columns. Each row corresponds
to an edge while each column corresponds to a coordinate of a vertex. Each row has 2d
nonzero elements, one for each coordinate of the vertices connected by the correspond-
ing edge. The non-zero values are the differences in the coordinate values for the two
vertices. For example, consider the graph K3, the complete graph on three vertices,
positioned in IR®. If the realization maps the vertices to locations (0,1), (—1,0) and
(1,0), the rigidity matrix would be:

vy vi/ vy Uy vy Ug
€1,2 1 -1 -1 0
€1,3 —1 1 0 0 1 -1
6273 0 -2 0



The rank of the rigidity matrix is closely related to the rigidity behavior of the
framework, as this section will elucidate.

THEOREM 2.2. A framework p(G) is rigid if and only if its rigidity matriz has
rank exactly equal to S(n,d).

Proof. All infinitesimal motions must be in the null space of M since the rigidity
matrix expresses all constraints on the infinitesimal velocities. By construction, S(n, d)
is the size of the rigidity matrix minus the number of trivial infinitesimal motions. If
the null space of M contains any nontrivial infinitesimal motions then the rank must
be less than S(n,d). O

So the question of whether a framework is flexible can be reduced to a question
about the rank of the rigidity matrix. The framework is rigid if and only if the rank of
the rigidity matrix is maximal, S(n, d).

THEOREM 2.3. FEvery rigid framework p(G') has a rigid subframework with exactly
S(n,d) edges.

Proof. The rigidity matrix has rank S(n,d) and each of its rows corresponds to an
edge. Simply discard redundant rows and the corresponding edges until only S remain.
U

COROLLARY 2.4. For a framework p(G), if m > S(n,d) then there is linear
dependence among the rows of the rigidity matriz.

Proof. The maximum rank of the rigidity matrix is S(n,d). O

Dependence among rows in the rigidity matrix can be expressed in terms of a
matroid [30, 15]. For our purposes it will be sufficient to say that a set of edges is
independent if their rows in the rigidity matrix are linearly independent in a generic
realization. A rigid graph has S(n,d) independent edges.

THEOREM 2.5. [f a framework p(G) with exactly S(n,d) edges is rigid, then there
is no subgraph G' = (V', E') with more than S(n',d) edges, where n’ = |V'].

Proof. Since there are only S(n,d) edges, their rows in the rigidity matrix must all
be independent by Theorem 2.3. But if G’ has |E'| > S(n’,d), then by Corollary 2.4
there must be linear dependence among these edges which is a contradiction. 0O

Theorems 2.3 and 2.5 say that a rigid graph with n vertices must have a set of
S(n,d) well distributed edges, where well distributed means that no subgraph with n’
vertices has more than S(n’,d) edges. This requirement is often referred to as Laman’s
condition after G. Laman [28] who first articulated the two-dimensional version. This
condition is necessary for a graph to be rigid in any dimension. It is sufficient in one
dimension where S = n — 1. It is straightforward to show that this is equivalent to
requiring the graph to be connected. Laman was able to show that it is also sufficient
in two dimensions where S = 2n — 3.

THEOREM 2.6 (LAMAN). The edges of a graph G = (V, E) are independent in two
dimensions if and only if no subgraph G' = (V', E') has more than 2n’ — 3 edges.

COROLLARY 2.7. A graph with 2n — 3 edges is rigid in two dimensions if and only
if no subgraph G' has more than 2n' — 3 edges.

This was the first graph theoretic characterization of rigid graphs in two-space.
Several equivalent characterizations have since been discovered [36, 24, 30, 37, 12].
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Unfortunately, for all its intuitive appeal Laman’s condition is not sufficient in
higher dimensions. A three-dimensional counterexample is depicted in Fig. 3. Although
this graph has the required 18 well distributed edges it is still flexible. The top and
bottom halves can pivot about the left and right-most vertices.

Fia. 3. A flexzible graph in three-space that satisfies Laman’s condition.

The problem with Fig. 3 is that its edges are not independent in the sense of
Theorem 2.2. The rows of the rigidity matrix are linearly dependent. Expressing
this independence graph theoretically has proved to be a very difficult problem. No
general characterization of rigid graphs in three dimensions is known, although the
problem has been considered by many researchers, and several special cases have been
solved. Cauchy proved that triangulated planar graphs (those with all 3n — 6 edges)
are generically rigid in three-space [6]. Fogelsanger recently generalized this result to
include complete triangulations of any two-manifold in three-space [14]. Another class
known to be rigid is complete bipartite graphs with at least five vertices in each vertex
set [5, 38]. However, the characterization of general graphs remains open.

Recent work by Tay, Whiteley and Graver [37] has brought such a characterization
almost within reach. However, it is difficult to see how this possible solution could lead
to an efficient algorithm. Any straightforward implementation of their approach would
have a worst case exponential time behavior.

2.2. Algorithms for Rigidity Testing. In one-space, rigidity is equivalent to
connectivity. There are simple connectivity algorithms that run in time proportional
to the number of edges in the graph [1].

2.2.1. Rigidity Algorithms in Two Dimensions. In two dimensions Laman’s
condition characterizes rigidity, but in its original form it gives a poor algorithm. It in-
volves counting the edges in every subgraph, of which there are an exponential number.
Sugihara discovered the first polynomial time algorithm for determining the indepen-
dence of a set of edges in two dimensions [36]. Imai presented an O(n?) algorithm for
rigidity testing using a network flow approach [24]. This time complexity was matched
by Gabow and Westermann using matroid sums [15]. In this section we will develop a
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new O(n?) algorithm based on bipartite matching. Besides any intrinsic interest, this
new algorithm will be needed in § 4 when we need to test for a stronger graph condition.

We will first need to introduce a particular bipartite graph, B((), generated by our
original graph G = (V| F). The bipartite graph has the edges of G as one of its vertex
sets, and two copies of the vertices of G for the other. Edges of B(() connect the edges
of (¢ with the two copies of their incident vertices. More formally, B(G) = (V4,V2, &),
where Vi = B, Vo = {q1,4},..., 43,42}, and € = {(e,q}), (e, 47), (e, qyl‘)v (e, q?) e =
(vi,vj) € E}. B(G) has 2n 4+ m vertices and 4m edges, where n and m are respectively
the number of vertices and edges in (. A simple example of the correspondence between
G and B(() is presented in Fig. 4 for the graph K.

vy " U2 U3 "
2
Vi

€3 vs €1 €9 €3

G B(G)

U2

Fi1G. 4. The correspondence between G and B(G).

This bipartite graph leads to an alternate form of Laman’s condition, expressed in
the following theorem. As above, a set of edges is said to be independent if the corre-
sponding rows in the rigidity matrix are linearly independent in a generic realization.

THEOREM 2.8. For a graph G = (V, E) the following are equivalent:

A. The edges of GG are independent in two dimensions;

B. for each edge (a,b) in G, the graph G, formed by adding three additional
edges between a and b has no subgraph G’ in which m' > 2n’;

C. for each edge (a,b), the bipartite graph B(G,.;) generated by Gop has no
subset of Vi that is adjacent only to a smaller subset of V.

D. for each edge (a,b), the bipartite graph B(G.p) generated by Gup has a
complete matching from Vi to V.

Proof. The equivalence of A and B is a restatement of Laman’s condition. The
equivalence of B and C is a straightforward consequence of the construction of B(Gy ).
Property D is equivalent to C by Hall’s theorem from matching theory. Assertions C
and D were first discovered in a slightly different form by Sugihara [36]. O

Our algorithm will be based upon the characterization in Theorem 2.8D. The basic
idea is to grow a maximal set of independent edges one at a time. Denote these basis
edges by E. A new edge is added to the basis if it is discovered to be independent of the
existing set. If 2n —3 independent edges are found then the graph is rigid. Determining
whether a new edge is independent of the current basis can be done quickly using the
bipartite matching characterization.

Assume we have a (possibly empty) set of independent edges E. Combined with
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the vertices of G these form a graph é, which generates a bipartite graph B(é) Note
that |E| = O(n) and so B(() will have O(n) edges. We wish to determine if another
edge, e, is independent of E. Adding e to G produces GG and B((). By characterization
D, e is independent of E if and only if there is a complete bipartite matching in B after
any edge in (¢ is quadrupled. Actually, only e needs to be quadrupled as the following
Lemma demonstrates.

LEMMA 2.9. If a complete matching exists when e is quadrupled then e is indepen-
dent of E.

Proof. Assume the matching succeeds but e isn’t independent of E. Then there
must exist some edge in E whose quadrupling causes G, a subgraph of ¢, to have
m’ > 2n’ — 3. Since the edges of E are independent this bad subgraph must include e.
But this bad subgraph has the same number of edges it had when e was quadrupled.
Since the matching succeeded when e was quadrupled we have a contradiction. 0O

Determining whether a new edge can be added to the set of independent edges
is now reduced to the problem of trying to enlarge a bipartite matching. This is a
standard problem in matching and it is performed by growing Hungarian trees and
looking for augmenting paths. The basic idea is to look for a path from an unmatched
vertex in V; to an unmatched vertex in V; that alternates between edges that are not
in the current matching and edges that are. When such an augmenting path is found
the matching can be enlarged by changing the unmatched edges in the path to become
matching edges, and vice versa. These paths can be found by growing Hungarian trees
from the unmatched vertices in Vj. These trees grow along the unmatched edges from
the starting vertex to its neighbor set in V5. Matching edges are followed back to 1}
and unmatched edges back to V,. It an unmatched vertex in V; is ever encountered an
augmenting path has been identified. Growing a Hungarian tree takes time proportional
to the number of edges in the bipartite graph.

LEMMA 2.10. [fE is independent and a corresponding matching in B(G) is known,
then determining whether a new edge is independent requires O(n) time.

Proof. By Lemma 2.9, testing for independence of e requires just enlarging the
matching in B(é) to include the four copies of e. This involves growing four Hungarian
trees in a bipartite graph of size O(n). O

This gives a two-dimensional rigidity testing algorithm that runs in time O(nm).
Build a maximal set of independent edges one at a time by testing each edge for inde-
pendence. Each test involves the enlargement of a bipartite matching requiring O(n)
time. If the matching succeeds the edge is independent and is added to the basis.
Otherwise it is discarded.

To improve this to O(n?) we need to make use of failed matchings to eliminate
some edges from consideration. Define a Laman subgraph as a subgraph with n’ vertices
and 2n’ — 3 independent edges. A matching will fail precisely when the new edge lies
in a subgraph which already has 2n’ — 3 independent edges. No edge can be added
between vertices in this subgraph, so it is a waste of time even to try. By avoiding these
unnecessary attempts we can improve the performance of our algorithm. To accomplish
this we will need some further insight into the bipartite matching.
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THEOREM 2.11. In a bipartite graph (V1, V3, ), if a Hungarian tree fails to find an
alternating path then it spans a minimal subgraph which violates Hall’s theorem. That
is, it tdentifies a minimal set of k vertices in Vi with fewer than k neighbors.

Proof. This is a simple consequence of Hall’s theorem. 0O

LEMMA 2.12. If the new edge, ¢, is tripled instead of quadrupled, generating a
graph G from G, then B(G) has a complete matching.

Proof. Assume the contrary. Then there is some subgraph G’ of G with m’ > 2n’.
Remove the three copies of e from this subgraph and quadruple one of the other edges.
This altered subgraph still has m’ > 2n’, but it is the graph generated by quadrupling
an edge in (:. But since the edges of G are assumed to be independent this is a
contradiction. 0O

LEMMA 2.13. If edge e fails the matching test, then the failing Hungarian tree
spans a set of edges ofE that form a Laman subgraph.

Proof. By Lemma 2.12 when e is quadrupled the first 3 copies of it can be matched.
By Theorem 2.11 when the fourth fails it spans a set of vertices of V; adjacent to a
smaller set from V5. Discarding the four copies of e leaves a set of £ elements of V)
adjacent to no more then k + 3 vertices from V,. By the construction of the bipartite
graph this is a set £’ of k edges of E incident upon no more than (k + 3)/2 vertices.
That is, m’ > 2n’ — 3. Since the edges of E are independent we must have equality. O

We will need the following result to analyze the running time of our algorithm.

LEMMA 2.14. Let G = (V,E) be a graph whose edges are independent. If two
Laman subgraphs of G share an edge then their union is a Laman subgraph.

Proof. Let the subgraphs be (V') E’) and (V" E”) with union (V,E). Let m =
m'+m” — [l and n = n' +n” — k. Since the subgraphs share at least one independent
edge, [ < 2k — 3. Hence,

7 o' +2n" —6—1
on' +2n" — 2k — 3
2(n' +n" —k)—3
2n — 3.

3
IIAVAR]

Since the edges are independent we must have equality. O

We are now ready to present our algorithm. We will maintain the appropriate
bipartite graph with a matching of all the independent edges discovered so far. We will
also keep a collection of all the Laman subgraphs that have been identified, represented
as linked lists of independent edges. The algorithm is outlined in Fig. 5.

By Lemma 2.14 we know that no edge need be in more than one subgraph. By
merging whenever a new Laman subgraph is found, we guarantee that the total number
of elements in all the subgraphs is kept to O(n). This ensures that the marking and
merging operations can be done in O(n) time. As above, checking for independence of
(u,v) requires O(n) time. Each time an edge is checked it results in either a new basis
edge or a merging of components, so this can only happen O(n) times. Hence the total
time for the algorithm is O(n?).



basis « 0
For Each vertex v
Mark each vertex in a Laman subgraph with v, and unmark all others
For Each edge (u,v)
If w is unmarked Then
If (u,v) is independent of basis Then
add (u,v) to basis
create Laman subgraph consisting of (u,v)
Else a new Laman subgraph has been identified
Merge all Laman subgraphs that share an edge
Mark each vertex in a Laman subgraph with v

Fic. 5. An O(n?) algorithm for two-dimensional graph rigidity.

2.2.2. Rigidity Algorithms in Higher Dimensions. For dimensions greater
than two there are no graph theoretic characterizations of rigidity, so there are no good
combinatoric algorithms to test for it. One approach would involve a symbolic calcu-
lation of the rank of the rigidity matrix by symbolically constructing the determinant.
However, the determinant can have an exponential number of terms, so this requires an
exponential amount of time. A different approach is possible which relies instead upon
Theorem 2.1. Since this theorem is valid in all dimensions, the following discussion is
applicable to all spaces. If the graph is rigid then almost any realization will generate
a rigid framework. Simply select a random realization for the graph. Once these vertex
locations are selected it is a straightforward matter to determine the rigidity of the
framework using Theorem 2.2. Just construct the rigidity matrix M and determine
its rank. If the rank is S(n,d) then the graph is rigid. A lower rank indicates that
the framework is flexible. Unless the selection of vertex coordinates was extremely un-
lucky the underlying graph will be flexible as well. So even without a graph theoretic
characterization an efficient practical randomized algorithm for rigidity exists.

To determine the rank of M we suggest using a QR decomposition with column
pivoting, requiring O(mn?) time [19]. This is more numerically stable than Gaussian
elimination, but not as costly as a singular value decomposition. A QR factorization
has several advantages over an SVD in this application. Performing a QR on M7 will
identify a maximal independent set of rows of M one at a time, corresponding to a
maximal set of independent edges in the graph. This ability to identify independent
rows will be needed in § 4. Also, the rigidity matrix is quite sparse, having only 2d
nonzeros in each row. To save time and space, sparse techniques could be used for large
problems. There are sparse QR algorithms, but none for SVD [8, 16, 17].

There are also efficient parallel algorithms for finding the rank of a matrix. Ibarra,
Moran and Rosier [23] discovered an algorithm that runs in O(log? m) time on O(m?)
processors. This means that rigidity testing is in random NC for any dimension. The
class NC is the set of problems that can be solved in polylogarithmic time using a
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polynomial number of processors. It is a standard measure of a good parallel algorithm,
although its applicability is more theoretical than practical.

3. Partial Reflections. Even rigid graphs can have multiple realizations as was
shown in Fig. 2. This discontinuous flavor of nonuniqueness has not been well studied,
probably because it is not relevant to structural engineers. Buildings can only deform
continuously. For the graph realization problem these discontinuous transformations
must be considered. This section and the next will be concerned with multiple real-
izations that do not arise from flexibility. These are cases in which there are two or
more noncongruent realizations that satisfy all the distance requirements, but there is
no continuous flexing of the framework to transform one to another while maintaining
the constraints. Whereas flexible graphs have an infinite number of potential configura-
tions, the number of realizations of a rigid graph is finite, although possibly exponential
in the size of the graph.

A two-dimensional example of the simplest type of discontinuous transformation is
depicted in Fig. 2. The right half of this graph is able to fold across the line formed
by the two middle vertices. When can this type of nonuniqueness occur? As in Fig. 2
there must be a few vertices about which a portion of the graph can be reflected. These
vertices form a mirror. There must be no edges between the two halves of the graph
separated by this mirror. For the general d-dimensional problem, the mirror vertices
must lie in a (d — 1)-dimensional subspace. We will say that a framework in d-space
allows a partial reflection if a separating set of vertices lies in a (d — 1)-dimensional
subspace.

The realizations in which more than d vertices lie in a (d — 1)-dimensional subspace
are not generic. So for almost all frameworks, partial reflections only occur when there
is a subset of d or fewer vertices whose removal separates the graph into two or more
unconnected pieces, that is, when G is not vertex (d 4 1)-connected. This gives us the
following well known result.

THEOREM 3.1. A rigid graph positioned generically in dimension d will have a
partial reflection if and only if it is not vertex (d +1)-connected.

The connectivity of a graph is an important property, and it has been well studied.
There are well known O(m) time algorithms for vertex two-connectivity, also known as
biconnectivity [1]. Avoiding partial reflections in two dimensions requires a vertex three-
connected (or triconnected) graph. Hopcroft and Tarjan [22] were the first to discover
an O(m) time algorithm to find triconnected components. Miller and Ramachandran
[31] have recently proposed a parallel algorithm to identify triconnected components in
O(log® n) time with O(m) processors. This places triconnectivity in NC.

Four-connected components are more difficult, but Kanevsky and Ramachandran
[25] have recently found an O(n?) time algorithm. They also discovered a parallel
implementation of their algorithm that runs in O(logn) time using O(n?) processors.
So the problem of partial reflections is in NC in both two and three dimensions.

For k greater than 4, the question of k-connectivity for a general £ is less well un-
derstood. Consequently the partial reflection problem is more difficult in spaces of di-
mension greater than three. There are randomized algorithms for general k-connectivity
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that run in time proportional to n%/? [4, 29]. Recently, Cheriyan and Thurimella have
described an algorithm with a time complexity of O(k*n?), which reduces to O(n?) for
a fixed k [7]. There are also NC algorithms that run in time O(k?logn) [26].

4. Redundant Rigidity. Rigidity and (d + 1)-connectivity are necessary but not
sufficient to ensure that a graph has a unique realization. A two-dimensional example
of a rigid, triconnected graph with two satisfying realizations is given in Fig. 6.

b C

d

Fia. 6. Two realizations of a rigid triconnected graph in the plane.

To understand this nonuniqueness, consider Fig. 7. Edge (a, f) has been removed

Fia. 7. Intermediate stages in the construction of Fig. 6.

from the original graph. This resultant graph is now composed of a quadrilateral bede
with two attached triangles abe and edf. The quadrilateral is not rigid, so this new
graph can flex. The flexing will lift vertex d up until it crosses the line between ¢ and
e as depicted in the center picture of Fig. 7. Eventually vertex ¢ can swing all the
way around to the right. As the graph moves, the distance between vertices ¢ and f
varies. When vertex ¢ swings far enough around, this distance becomes the same as it
was originally, as shown in the rightmost picture of Fig. 7. Now the missing edge can
be replaced to yield a new satisfying realization.
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The fundamental problem with the graph in Fig. 6 is that the removal of a single
edge makes it flexible. We will define an edge of a framework to be infinitesimally
redundant if the framework remaining after its removal is infinitesimally rigid. A frame-
work is infinitesimally redundantly rigid if all its edges are infinitesimally redundant.
Redundant bracing is a familiar concept to engineers who wish to build frameworks
with additional strength and failure tolerance properties, but this precise formulation
and its significance with regards to the unique realization problem are entirely new.

Infinitesimal redundant rigidity is clearly a more restrictive property than infinites-
imal rigidity, but the two properties have many similarities. For generic realizations
infinitesimal motions always correspond to finite flexings. So as with rigidity, since we
are only interested in generic realizations we can drop the prefix and refer to frameworks
as redundantly rigid. The following theorem is a trivial consequence of Theorem 2.1.

THEOREM 4.1. If a graph has a single infinitesimally redundantly rigid realization,
then all its generic realizations are redundantly rigid.

As with Theorem 2.1 for rigid graphs, Theorem 4.1 says that either none of a graph’s
realizations are redundantly rigid, or almost all of them are. Almost all again means
that the set of counter examples has measure zero. This blurs the distinction between a
redundantly rigid framework and its underlying graph. Graphs with redundantly rigid
realizations will be referred to as redundantly rigid graphs.

In Fig. 6 the lack of redundant rigidity led to multiple realizations. This is usually
true, and the proof will be the main result of this section. Intuitively, a flexible frame-
work can move around, but it must always end up back where it started. That is, the
path it traces in nd-space will be a loop. If the removal of an edge allows the graph to
flex, then the distance corresponding to that edge must be a multivalued function as
the flexing completes its loop. However, there are some graphs for which this argument
fails. Consider the triangle graph, Ks. It has only one realization, but if an edge is
removed it becomes flexible. To understand which graphs need to be redundantly rigid
to have unique realizations we will need to carefully investigate the space of satisfying
realizations for flexible graphs. This will require an incursion into differential topology,
and is the subject of the next section.

5. The Necessity of Redundant Rigidity. The proof that flexible graphs typ-
ically move in closed loops will rely upon some special properties of the graph realiza-
tion problem. Given a framework p((7) there is a pairwise distance function q : R™ —
IR*("=Y/2 that maps vertex locations to squares of all the pairwise vertex distances.

That is,

q(p(v1), .. p(va)) = (s Ip(vi) — plv)[?, . ).

For the molecule problem we are only interested in a specific set of pairwise distances;
namely, those corresponding to the edges of G. These can be obtained from R™"~1)/2
by a simple projection, #. We will define an edge function, f, to be the composition
of these two operations, f = 7 0 g. These functions are described by the following
commutative diagram.
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The functions f and ¢ have many nice properties. We will say a function is smooth
at a point x if it has continuous partial derivatives of all orders at . The functions
f and ¢ are everywhere smooth. Also, the Jacobian of f is twice the rigidity matrix
introduced in § 2.1.

The realization problem is really that of finding the inverse of the edge function. Of
course, this inverse is multivalued because edge lengths are invariant under translations,
rotations and reflections of the entire space. Two realizations will be considered equiv-
alent if all pairwise distances between vertices are the same under the two realizations.
That is, two realizations are equivalent if they map to the same point under ¢q. We will
be interested only in the inverse of f modulo equivalences. More formally, define the
realization set of p(G) to be 7! f(p(G)), the set of nonequivalent, satisfying realizations
for the graph realization problem generated by p(G'). For p(() to be a unique solution
to the realization problem it is necessary and sufficient that this realization set consist
of a single point. Our goal in this section is to investigate the structure of the realization
set. Our first result is the following theorem.

THEOREM 5.1. If a graph, G, is connected, then the realization set of p(G) is
compact.

Proof. The realization set is a subset of IR"" /2. Tt is bounded since the graph is
connected, and it is trivially closed. O

Although every point in IR™ corresponds to a realization, the image of IR™ under
¢ does not cover IR*"™1/2_ Define this image to be a space W C IR*"~1/2. The space
W has a natural topology and measure inherited from the larger Fuclidean space. For
technical reasons we will restrict our consideration of realizations to those in which not
all the vertices lie in a hyperplane. Call this subset of realizations T'. The space T' is a
dense, open subset of IR". Define X to be the subset of points in W that are images of
points in 1" under ¢. If the graph has d or fewer vertices then X is empty. Otherwise,
X is a dense, open subset of W, with a nice structure, as we will see shortly. Define Z
to be the image of X under 7. This gives us the following structure.

V————aT > 7
\/
X

We will need the following notation from differential topology. Say the largest rank
the Jacobian of a function ¢ : A — B attains in its domain is k. A point x € A is called
a regular point if the Jacobian of ¢ at = has rank k. A point y € B is a regular value if
every point in the preimage of y under ¢ is a regular point. If a point or value is not

14



regular, it is singular. Note that for the edge function singular points are not generic.
A j-dimensional manifold is a subset of some large Euclidean space that is everywhere
locally diffeomorphic to IR?.

Consider the following procedure for identifying equivalent realizations, which is
defined for any realization in T'. Select a set of d + 1 vertices from p(G) whose affine
span is all of IR?. Translate the realization so that the first of these vertices is at the
origin. Next rotate about the origin to move the second of these vertices onto the
positive z1 axis. Now rotate, keeping the first two vertices fixed, to move the third to
the (11, x5) plane so that the xy coordinate is positive. Continuing this process in the
obvious way gives a smooth mapping that makes d(d + 1)/2 of the vertex coordinates
zero. Finally, if the d + 1% vertex has its d + 1" coordinate less than zero, reflect the
vertices through the hyperplane defined by the z1,..., 241 axes.

This procedure maps all equivalent realizations to a single one. This single re-
alization can be described by its remaining variable coordinates, of which there are
nd — d(d + 1)/2. Since each of these remaining coordinates can vary continuously, the
realization can be considered to be a point in IR™™¥4*+Y/2 This defines a coordinate
chart for X. Note that the sequence of operations performed on the original realization
is smooth and invertible. If a different set of d+ 1 initial vertices was selected a different
coordinate chart would have been generated. Since these coordinate transformations
are smooth and invertible, on regions of intersection the two charts are diffeomorphic.
The union of all such charts gives a differentiable structure to our space X. This con-
struction provides a diffeomorphism between each open set of a collection that covers
X and R™4H1/2 giving us the following theorem.

THEOREM 5.2. [f the graph has at least d+1 vertices, then X is a smooth manifold
of dimension nd — d(d +1)/2.

The dimension of this manifold is a quantity that will come up frequently so it will
be convenient to reintroduce the following notation: S(n,d) = nd — d(d 4+ 1)/2. This
function was first defined in § 2.1 as the maximal rank of the rigidity matrix of a graph
with n vertices positioned in d-space.

The procedure described above gives us an alternate way in which to view the space
X. The sequence of translations, rotations and reflections constitute a function ¢ that
maps an entire set of equivalent realizations to a single one. The remaining variable
coordinates uniquely define a point in X. Considering these to be the independent
variables, the mapping from X to Z becomes more complicated than a simple projection.
We will define this function to be f, giving us the following commutative diagram.

This function f is closely related to the edge function f. In fact, f is everywhere smooth
in X, and the rank of the Jacobian of f(z) is the same as that of f(q(x)). So the singular
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values of f are the same as the singular values of f(q). If we designate the number of
independent edges of G by k then the rank of these Jacobians is almost always k. The
following is a special case of a well known theorem due to Sard [34].

THEOREM 5.3 (SARD). The set of singular values of f has k-measure zero.

LEMMA 5.4. If 7' is a subset of Z with k-measure zero, then for almost all real-
izations p, f(p) & 7.

Proof. The singular points of f constitute an algebraic variety in IR"* with dimen-
sion less than nd. Hence, the regular points of f can be covered by a countable number
of open neighborhoods in such a way that the rank of the Jacobian of f is maximal
within each neighborhood. Consider one of these neighborhoods R, and let its image
under f be Z. By the implicit function theorem from analysis there is a submersion
from R to Z. That is, on this neighborhood f is diffeomorphic to a projection from
IR" to IR*. Since Z’ has k-measure zero its inverse image under this submersion must
have (nd)-measure zero in R. The countable union of these sets of (nd)-measure zero
yields a preimage for 7' with (nd)-measure zero. 0O

These last two results imply the following theorem.

THEOREM 5.5. For almost every realization p, f(p) is a regular value.

All this has been leading up to the following crucial result.

THEOREM 5.6. For almost every realization p, the realization set of p(G) restricted
to X is a manifold.

Proof. Almost all realizations map to regular values of f and hence of f(¢). The
preimage of a regular value is a submanifold of X by the implicit function theorem from
differential topology [20]. O

It the graph is flexible then this manifold describes the allowed flexings. At any
point in the manifold, the tangent space is exactly the null space of the Jacobian of f. To
show that flexings typically move in closed loops (actually, one-manifolds diffeomorphic
to the circle), we will need the flexings to remain entirely in our manifold X. This can
be ensured if the graph has enough independent edges. Enough means more than can
be independent in a lower dimensional space as the following theorem demonstrates.

THEOREM 5.7. If G has more than S(n,d — 1) independent edges, then for almost
all realizations p(G), the realization set of p(G) stays within X.

Proof. Assume the theorem is false. By the definition of X this means that the
realization set must include a point at which all the vertices lie in a (d — 1)-dimensional
hyperplane. When this happens the edges can only constrain infinitesimal motions
within the hyperplane. The rows of the rigidity matrix describe these infinitesimal
constraints, so when the vertices lie in a hyperplane the rank of the rigidity matrix can
be no larger than S(n,d —1). Since there are more than S(n,d — 1) independent edges,
this implies that f(p(G)) is a singular value, but by Theorem 5.5 this cannot be the
case for almost all realizations. O

We can finally prove that flexings typically move in closed loops.

THEOREM 5.8. If a graph, G, is connected, flexible, and has more than d + 1
vertices, then for almost all realizations p(G') the realization set of p(G) contains a
submanifold that is diffeomorphic to the circle.
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Proof. Generate a new graph G’ from G by arbitrarily adding additional edges until
(" has S(n,d) — 1 independent edges. The realization set of p(G’) must be a subset
of the realization set of p((). Since n > d + 1 it is easy to show that the number of
independent edges is now greater than S(n,d — 1). By Theorems 5.6 and 5.1 we know
that for almost all realizations the realization set of p(G”) is a compact manifold of
dimension one. It is a well known result from differential topology that such manifolds
are diffeomorphic to the circle. O

This finally leads us to the main result of this section.

THEOREM 5.9. If G is not redundantly rigid and G has more than d + 1 vertices,
then almost all realizations of G' are not unique.

Proof. Assume the only interesting case, that GG is rigid. Then the graph G must
have S(n, d) independent edges, and there is some edge ¢;; of (¢ whose removal generates
a flexible graph G’. By Theorem 5.8, for almost all realizations p the realization set of
p(G") contains a submanifold diffeomorphic to the circle. The distance between vertices
2 and 7 will be a multivalued function for almost every point on this circle. The only
distances that might not be multivalued are the extremal ones. When a flexing reaches
a realization that induces an extremal value between ¢ and j the derivative of d ; is zero
in the direction of the flex. In this case the realization is not generic [32]. So almost all
realizations do not induce extremal edge lengths. O

Theorem 5.9 means that the example in Fig. 6 was not a fluke. Redundant rigidity
is a necessary condition for unique realizability.

5.1. Algorithms for Redundant Rigidity. How difficult is it to test for redun-
dant rigidity? A simplistic approach would use the algorithm for rigidity repeatedly,
removing one edge at a time. This approach parallelizes easily by simply running the m
different problems on independent sets of processors. Since rigidity testing was shown
to be in deterministic or random NC for all dimensions, redundant rigidity is as well.

In one dimension redundant rigidity is equivalent to edge two-connectivity. This
property can be determined by looking for cut points of the graph, requiring O(m) time
[1].

For the two-dimensional case a simple modification of the rigidity testing algorithm
described in § 2.2 can be employed. The rigidity algorithm grows a basis set of inde-
pendent edges one at a time by checking them against the existing independent set. If a
new edge is found to be independent of the existing set, then it is added. Independence
is determined by the success of a particular bipartite matching. If the matching fails
then there must be some dependence among the edges. Identifying and utilizing these
dependencies will lead to an efficient redundant rigidity algorithm.

Asin § 2.2 we will denote by B(() the bipartite graph constructed from G = (V, E).
The current set of independent, basis edges is E generating a subgraph G = (V, E)
When a new edge, e, is to be tested for independence, four copies of it are added to
G generating GG with its corresponding bipartite graph B(G). As we saw in § 2.2, if a
complete bipartite matching exists in B(G) then ¢ is independent of E. For our current
purposes we are interested in dependent edges and how they contribute to redundant
rigidity. Dependent edges fail to have complete matchings in B((G). However, if we
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triple e instead of quadrupling it, generating G and B(G), then Lemma 2.12 guarantees
that B(G) always has a complete matching. So only a single vertex in B(G) can go
unmatched. This is important because of the following general property of bipartite
matching.

THEOREM 5.10. Let B = (V4, V2, &) be a bipartite graph with a matching from V4
to V3 involving all but one vertex from Vi, denoted by v. Also let Vi be the subset of Vi
that is in the Hungarian tree built from v. Then if any vertex from Vy s deleted from
B, the resulting graph will have a complete matching.

Proof. The removal of a vertex w from V; creates an unmatched vertex in V, that
is reachable from v along an alternating path. 0O

Theorem 5.10 identifies which vertices of a bipartite graph can be removed to result
in a perfect matching. For our purposes, these are vertices in B((7), which correspond
to edges of . If any of these edges of G is removed then the new edge e will be
independent of the remaining basis edges. That is, e can replace any of these edges
identified by the Hungarian tree, leaving the number of basis edges unchanged. More
formally, we have the following theorem.

THEOREM 5.11. In the rigidity algorithm, assume a new edge, e, is found to be not
independent of the current set of k independent edges. Let Vi be the subset of vertices
of Vi that are in the Hungarian tree of the failed matching. Then if ¢ replaces any of
the edges in V1 the resulting set of k edges is still independent.

Theorem 5.11 gives an efficient algorithm for redundant rigidity testing. An edge
is not independent of the current basis set if the bipartite matching fails. When this
happens the Hungarian tree identifies precisely which edges are dependent. All these
edges are redundant because any of them could be replaced by the new edge. In the
O(n?) algorithm from § 2.2 a Laman subgraph is identified by this Hungarian tree.
Hence, any edge in the Laman subgraph is redundant. When the algorithm is finished,
if there is a basis edge that has not been merged into a larger Laman subgraph then
it is not redundant and the graph is not redundantly rigid. Note that if the full graph
is not redundantly rigid then the Laman subgraphs identified by this procedure are
redundantly rigid components. This takes essentially no more effort than testing for
rigidity, so two-dimensional redundant rigidity can be decided in O(n?) time.

In dimensions greater than two there is no graph theoretic characterization of re-
dundant rigidity. As in § 2.2 an algorithm will have to randomly position the vertices
and then examine the rigidity matrix. Like the two-dimensional case, the basic idea will
be to build a set of independent edges one at a time, and then determine which of them
are redundant. Every time a new edge fails to be independent it supplies information
about the redundancy of some of the independent edges. If a full set of redundant,
independent edges are found then the graph is redundantly rigid.

Begin by positioning the vertices randomly and constructing the rigidity matrix
M. The rigidity of the framework can be determined by performing a QR factorization
on M7 to find its rank. This procedure will form an independent set of edges one at
a time. A new column is added if it is linearly independent of the current set of &
columns; otherwise it is discarded. A discarded column, corresponding to an edge e,
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can be expressed as a linear combination of some set of the independent columns. The
discarded column could replace any of the columns in the linear combination which
forms it, without altering the span of the independent set.

How difficult is it to determine which of the current columns contribute to the linear
combination? Assume the algorithm has identified & independent columns of M7. Place
these columns together to form an nd x & matrix, Ag. The QR factorization has been
proceeding on these columns as they are identified, so there is a k£ x k orthogonal matrix
Qr and a nd x k upper triangular matrix Ry satisfying QrRr = Ax. If a new column
b of M7 is linearly dependent upon the columns of Aj then there must be a vector
c satisfying Agec = QpRrc = b, or alternately Rye = QFb. In the course of the QR
factorization the column b has been overwritten with Qb so it is easy to solve the
upper triangular system for ¢. The nonzero elements of ¢ identify which columns of Ay
contribute to the linear combination composing b, that is, which columns are redundant.

How much work does this take? There are O(m) triangular systems to solve, each
of which requires O(k?*) operations, where k is always O(n). So the total additional time
is of the same order as the QR factorization itself, O(mn?). As in the two-dimensional
case, the redundant rigidity of a graph can be determined by modifying the rigidity
algorithm without incurring substantial increased cost.

As was noted in § 2.2, the rigidity matrix consists mostly of zeros. For large
problems this property should be exploited by using sparse matrix techniques. The
only real modification to the rigidity algorithm required to verify redundant rigidity is
a sequence of triangular solves. These can be done sparsely, so the entire algorithm
can be implemented in a sparse setting. An algorithm very similar to this has been

described by Coleman and Pothen [9].

6. Conclusion. Three necessary conditions for almost all realizations of a graph
to be unique in d dimensions have been derived. They are, in order of appearance,
rigidity, (d + 1)-connectivity, and redundant rigidity. The first condition is a trivial
consequence of the third so there are really only two independent criteria. However,
flexibility leads to a very different kind of nonuniqueness than lack of redundant rigidity
so it is useful to think of them independently. Efficient algorithms for testing each of
these three conditions have been presented that deal solely with the underlying graph,
ignoring the edge lengths. The price for this convenience is that there are combinations
of edge lengths for which these conditions aren’t necessary. But these counter-examples
are very rare. For almost all realizations, a graph that violates one of these conditions
will have multiple satisfying realizations.

Establishing necessary conditions for a graph to have a unique realization makes
it possible to prune the initial graph before attempting the difficult task of finding
coordinates for the vertices. If the entire graph does not have a unique realization then
it would be impossible to assign coordinates unambiguously. Instead portions of the
graph that do satisty the necessary criteria can be identified and positioned. Not only
does this alleviate the confusion of a poorly posed problem, but since the cost of finding
the realization can grow exponentially with the size of the graph, it should be possible
to save time by positioning a sequence of smaller subgraphs instead of the original full

19



one.

Following this idea to its logical conclusion, even if the original graph has a unique
realization it might be possible to position subgraphs first and then piece them together.
Since the running time grows rapidly with problem size this could lead to a substan-
tial reduction of computational effort. In fact, an approach to the molecule problem
using precisely this approach has recently been proposed [21]. For this approach to be
infallible we would need to develop sufficiency conditions for a graph to have a unique
realization. Unfortunately, the necessary conditions developed in this paper are not
sufficient. Connelly has identified a class of bipartite graphs that satisty the conditions
presented here, while still allowing multiple realizations in high dimensional spaces [10].
There are no graphs in this class in one or two dimensions, and K 5 is the only example
in three-space. A complete characterization of uniquely realizable graphs remains an
open problem. In fact, it is also unknown whether uniqueness itself is a generic property.
That is, if a single generic realization of a graph is unique, are almost all realizations
unique?
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