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Résumé. - L'écoulement plastique des solides polycristallins 3 hautes températures a lieu par
1'un des trois mécanismes indépendants de déformation : glissement des dislocationms,
glissement des joints de grain, et fluxdiffusionnel directionnel. On considére que les trois
mécanismes sont activés thermiquement et controlés par la diffusion des atomes. On a developpé
des équations constitutives qui décrivent exactement chacun des trois mécanismes indépendants.
Ces équations se fondent sur une dépendence exponentielle de la vitesse de déformation. Ainsi,
on montre que l'exposant de la contrainte, n, en €a0 , a des valeurs discrétes dépendant du
mécanisme de 1'écoulement plastique. Pour la déformation par glissement des dislocations, n
prend des valeurs dans l'intervalle n=1 et n=8 en dépendant du mécanisme spécifique. Pour le
glissement des joints de grain, n, peut-&tre plutdt 2 ou 4, et pour le fluage-diffusion, n est
1'unité. Lamicrostructure est un facteur important pour 1l'établissement de la magnitude de la
vitesse de déformation dans chacun des trois mécanismes indépendants de déformation. La taille
des grains est la principale caractéristique de détermination de la vitesse de déformation par
le glissement des joints de grains et par le fluage-diffusion. D'autre part, la taille des
sous-grains et la densité des dislocations, jouent un important rdledans la détermination de la
vitesse de déformation par le mouvement des dislocations. On montre des exemples pour des
alliages ODS. Une compétition entre ces différents mécanismes peut &tre décrite quantitativement
par 1l'usage des équations constitutives et des cartes de mécanismes de déformation. On montre
que le fluage-diffusionn'est pas un processus dominant, comme on considére dans la littérature,
et que le glissement des joints de grains, ou la déformation Harper-Dorn sont les mécanismes

les plus probables qui ont lieu d faibles contraintes, et hautes températures pour matériaux avec
taille de grain fin.

Abstract.- Plsstic flow of polycrystalline solids at elevated temperatures occurs by one of three independent deformation
mechanisms: slip by dislocation movement, sliding of adjacent grains along grain bounderies, and directional diffusional flow. All
three mechanisms are considered to be thermally activated and controlled by the diffusion of atoms. Constitutive equations have
been developed which accurately describe eech of the three independent mechenisms. These equations center on a power law
dependence of the creep rate. Thus the stress exponent, n, in ¢ e e, is shown to have discrete values depending on the plastic flow
mechanism. For deformation by slip, n cen take on values ranging from n=1 to n=8 depending on the specific dislocation
mechanism. For grain boundery sliding, n cen be either 2 or 4, and for diffusional creep, n is unity. The microstructure is sn
important factor in establishing the magnitude of the creep rate for each of the three independent deformation mechanisms. Grain
gize is the principal microstructural feeture in determining the creep rete for deformation by grain boundery sliding and by
diffusional flow. On the other hand, the subgrain size and the dislocation density plays an important role in determining the creep
rate for deformation by dislocation motion; examples are shown for 0DS alloys. Competition between these various mechanisms
can be described quantitatively through the use of constitutive equations and deformation mechsnism maps. It is shown that
diffusional creep is not as dominating a process as has been considered in the literature, and that grain boundary sliding or
Harper-Dorn creep are the more likely deformation mechanisms occurring at low stresses and high temperatures for fine grain

size materials.

1. Introduction lever arm and its length is measured as a function ot
time or ii) constant strain-rate tests where the
In the last thirty years much experimental somple, held between two grips, is deformed ot a
effort has been expended to understanding creep constent crosshead-speed and the exerted force is

deformation of polycrystalline materials at elevated measured as a function of time.
temperatures. Usually the date ere obtained from In order to determine the possible controlling
uniaxiol tests of either two classes: i) creep tests mechanisms, the experimental dota are compared
where a dead-load is applied to the somple through @ with proposed mechanisms of deformation. Usually,
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the association of the activation energy for creep
with that for lattice self-diffusion or grain boundary
diffusion is considered in most of the deformation
models.

in a general form, the creep rate or strain rate,
¢, has been observed to be related with the absolute
temperature, T:

& = 1(s) exp (-Q/RT) (c/E)" (0

where
f{s) = function of structure,
E = average unrelaxed polycrystalline Young's
modulus,
n = stress exponent,
Q = activation energy for plastic flow,
R = universal gas constant.

The function f(s) represents principally the
influence of grain size, d, subgrain size, A, and
dislocation density, p. Over a certain temperature
range, Q is constant and is related to a particular
deformation mechanism.

Although time-dependent deformation of metals
at high temperatures, above 0.6 T, (where T, is the

absolute melting temperature), is usually correctly
described by e diffusion-controlled dislocation creep
mechanism, other mechanisms may become
important. Grain boundary sliding and directional
diffusional flow may in fact dominate deformation
especielly in fine-grained materials. These three
mechanisms are considered to operate independently
of one another, are thermally activated, are
controlled by atom diffusion and can be described by
Eq.(1).

Each of the mechanisms for creep has specific
values of n and Q by which the mechanism can be
defined uniquely. For example, plastic flow by slip is
associated with a high stress exponent (S or higher)
and an activetion energy equal to that for lattice
self-diffusion, Q. Plastic deformation by grain

boundary sliding is characterized by a low stress
exponent of about 2 and an activation energy which is
equal to 0, or to the activation energy for

grain-boundary diffusion, ng. Plastic deformation

by diffusional flow is characterized by & stress
exponent of unity and an activation energy equal to
Q  or ng.

As mentioned, deformation at high temperatures
is dominated by the effects of diffusion controlled
creep which allows the attainment of a steady state.
The existing deformation mechanism modetls, in
general, describe well the steady state creep
properties and permit accurate predictions of the
deformation behavior. At intermediate temperatures,
however, in the range (0.3-0.6) T, the measured

activation energies for creep are usually smaller

than those for lattice self-diffusion. In this range,
basically two approaches has been taken:

1) Description of the deformation behavior
involving the contribution of pipe diffusion to the
overall atom mobility, if & steady stete can be
reached.

2) Description of the deformation behavior by
thermally activated cross slip [1,2], intersection of
moving dislocations with dislocation forests {31,
interaction of dislocations with impurity atoms 4]
and dislocation glide controlled by the Peierls stress
[S].

Much controversy still exists on the controlling
creep mechanisms at intermediate temperatures
because any mechanism satisfactorily explains the
experimental creep date for a large number of
materials. In the present review only diffusion
controlled creep will be considered.

2. Deformation mechanisms

Three principal modes of deformation, os
mentioned, have generally been considered in
explaining the creep behavior of polycrystalline
materials, namely diffusional flow, grain boundary
sliding (GBS) and slip creep. Each of these
mechanisms can be described by a constitutive
equation of the form of Eq. (1). If only the influence
of grain size on the function f(s) is considered, the
following creep equation can be used: )

& = A (b/d)P Dggq (EBS/KTHA (6/E) (12)

where A, n, q and p are material constants, b is
Burgers’ vector and Dggg is the effective diffusion

coefficient as is given by

where_ Dy, Dp and ng are the lattice, dislocation pipe
diffusion and grain boundery diffusion coefficients
respectively, and f, fp and fgb are the fractions of
atoms participating in lattice, pipe and grain
boundary diffusion respectively. This means that, in
8 general sense, the presence of dislocations within
the lattice makes it necessary to include the
contribution of pipe diffusion to the overall atom
mobility [6,7].

Table | resumes the constitutive equations for
creep corresponding to the three mentioned modes of
deformation of polycrystalline metals.

Diffusional creep

Diffusional creep is based on the redistribution
of vacancy concentrations in the vicinity of grain
boundaries which are subjected to normal stresses.
¥hen a vacency is formed at a grain boundary that is
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Table |I. Constitutive equations for creep of poly- those boundaries subjected to tension to those
crystalline metals of high stacking fault energy. subjected to compression. The equation, obtained
independently by Nabarro [8] and Herring [9], has n=1,

Creep process fe* Equation p=2, g=1 and Q=Q;. Constant A depend on the grain
Diffusional flow boundary shape, but has a typical value of 14.
Nabarro-Herring (3) £=14(0/6%) (EB3/KT) (ofE) For the flux of vacancies taking place along
Coble {4) i=50 (ngbfd3) (Eb3/KT) ( o/E) grein boundaries, Coble [10] celculeted the creep rate

to have n=1, p=3, q=1 and Q:ng. Constant A for this
Boundary sliding

Lattice diffusion controlled (5) &=6.4x 10% (D 42) (o/E)2  CBSE ii:h"“t si‘:-i ¢ equations for Nabarro-Herring and
. I ‘e 8 3 2 e spec e ons for Nabarro- ng an
Grain boundary diff.contr. {(6) &=56x10 {ng b/d?) ( o/E) Coble creep are shown as Egs. (3) and (d) (Table 1)

Slip respectively.

Lattice diffusion controlled (7) é=10'1(D /b2 (/E)°
Grain boundary sliding

Subjected to a normal tensile stress, 0", o force that Grain bnundoru shd"'g occurs hy the movement
is equal to u|b2 will move the vacancy a distance b. of individual grains sliding over each other along
their common boundary. The most important
phenomenon that may result from grain boundary
sliding is the enhanced ductility, or superplasticity,
atomic volume. A flux of vacancies through the  associated with fine grains which remain essentially
lattice, given by Fick's law, may then exist from equiaxed after deformation. Observations made on

The required energy to create a vacancy in this
region is reduced by the amount o {Q where Q is the

Table Il. Summary of proposed models of grain boundary sliding.

Mechanism Creep Equation Ref. Remarks

Diffusional Accomodation (rate controlling)

Ashby-Verrall  é=Ky(0/0)2 Dggp (6-04/E) 12 Dygr=Dy[1+(3.3w/0)(Dyp/Dy)]

Slip Accommodation (rate controlling)

Ball-Hutchison &= K,(b/d)? Dy, (o/E)? 13 Stide of group of grains

Mukherjee 8= K3b/d)? Dgp, (o/E) 14 Grains slide individually

Gifkins &= K4(b/ d)? ng (o/E)? 15 Pile up at triple points{core- mantle)

Langdon t= Ks(bf d) DL (s/E)? 16  Movement of dislocations adjacent to g.b.

Gittus ¢=Kg(b/ a2 Dypp o0,/ B2 17 Pie up &t interphase boundary (IPB)

Hayden et al. ¢=K7(b/d)3 D, (o/E)? 18 T<T, GBSIs rate controlled by stip
&=K7{b/d)2 D (o/E) 1T, creepin the greins

Arieli-Muknerjee & =Kg(b/d)? Doy (o/E)2 19 Climb of individusl dislocations near .b.

Diffusional Accommodation {(not rate controlling)

Padmanabhan &= Kg(l)/d)2 D (o/E)2 20 D maydiffer from Dy and Dy,

Definitions: Ky - Kq = material constants, o, = threshold stress, w = grain boundary
width, Tc = critical temperature.
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superplastic materials revealed that individual grain
rotate and switch neighbors while sliding over each
other [11]. No gross formation of cavities is
observed under optimal deformetion conditions. In
order for the grains to mantain compatibility during
the deformation process an accommodation process
is incorporated which avoid the formation of holes at
triple junctions. This accommodation process is
interdependent with the process of GBS ond the
slower will be rate controlling.

Several deformation mechanisms have been
proposed to describe GBS. Table Il summarizes the
creep equations that have been developed by
different models [refs. 12-20]. The deformation can
be controlled by the grain boundary itself or by the
accommodation process. This may take place by
diffusional flow or by slip. As can be seen, the
models have n=2 (except for the Ashby-Yerrall
model), p=1 to 3, q=0 ond Q=0; or ng.

An examination of experimental data for a large
number of materials deformed by GBS revealed that
none of the proposed equations are consistent with
these data. For this reason, a phenomenological flow
stress-strain rate relationship was developed to
best fit the avilable experimental data. Such
phenomenological analysis used n=2, ¢=0 and &
temperature dependence of the strain rate associated
either with the activation energy for lattice or grain
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Fig. 1. Diffusion- and grain-size-compensated strain rate ss s
function of modulus- compensated stress for polycrystalline
materials where super plastic flow is controlled by grain boundary
diffusion.
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boundary diffusion [21]. Those materials where the
creep rate is controlled by lattice diffusivity showed
p=2. Those materials where the creep rate appears
to be controlled by grain boundary diffusivity showed
p=3. These observations are contained in the
phenomenclogical relations [22], Eqs. (5) and (6),
given in Table I.

An example of the predictive ability of Eq. (5) in
describing superplastic flow in materials where
IJ:ng is shown in Fig. 1 for 30 separate

investigations [13,18,21,23-49). The predicted curve
from Eq. (5) is shown by the dashed line. As can be
seen, the lines shown for the meany materials
investigated exhibit stress exponents of about two in
agreement with Eq. (5). In addition, the absolute
values of the creep rate, after compensation for
temperature and linear intercept grain size, L, are
mostly within on order of magnitude of that
predicted by Eq. (5) ot a given value of modulus
compensated stress. The relation between 1 and d
was shown to be d=1.776 L [50].

Similarly, Fig. 2 shows the predictive ability of
Eq. (6) in describing superplastic flow in materials
when Q=Q; for 17 seporate investigations [18,29,

51-65]. The curve from Eq. (6), shown by the dashed
line, predict well the creep behavior within an order
of magnitude.
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Slip creep

The steady state creep rates for a large number
of polycrystalline pure metals tested at high
temperature have been observed to be associated
with n=5, g=p=0 and Q=Q; [66-69]. The specific

constitutive equation for describing this mode of
creep, known as power-law creep, is given by Eq. (7)
in Table |.

The phenomenological correlation of Eq. (7) is
supported by many theoretical models. The best
known is based on a dislocation climb mechanism and
vwas proposed by Weertman [70]. In this model,
dislocations are produced by symmetrically spaced
Frank-Read sources in which the rate controlling
process is the climb of edge dislocations from
piled-up groups. Barrett and Nix [71] proposed a
model based on the diffusion controlled motion of
jogged screw dislocations in which the enly
undetermined parameter was the distance between
jogs.

Some coarse-grained polycrystalline materials
tested at high temperatures and low stresses show
Newtontan viscous behavior (n=1) known as
Harper-Dorn creep [72]. The scarcity of data has
limited the number of detailed analysis of this mode
of creep. It is well established, however, that the
mechanism of deformation in Harper-Dorn (H-D)
creep is diffusion controlled dislecation motion and
thet no grain size dependence exists. The
phenomenological relationships correlating the
existing data will be reviewed later.

3. Microstructural factors affecting the creep

MECHANISMS AND MECHANICS OF PLASTICITY 629

dislocation core, N= number of atoms per unit area
and p = dislocation density. The dislocation density
can be expressed, using the Taylor relation, as equal
to C/b2 (6/E)2, where C is a constant typically equal
to 5-100 [73,74]. The term f;=1- Ty is about unity.
Therefore, utilizing C=50 and substituting these
terms in Eq. (2): )

We can now substitute Dy, for D in Egs. (3),

(5) and (7) of Table | in order to have three new
equations for diffusional flow, grain boundary sliding
and slip creep respectively. Al low stresses the
term containing Dp is small compared with DL' At

high stresses, however, these equations can be
written as:

Hgifr = 700 (p/d2) € b5/k T) (0/E)> (10)
dgps=32% 1011 (0, 702)  (o/E)? (1)
4g1ip=50% 101202 (o/E)! (12)

From these equations, only Eq. (12) has been
used extensively [75]. In the following, examples are
gives of the predictive ability of Eq. (11)

- L N o 1284MP0 -

mechanisms. \ See o (0/E=8.62x10%
F———-2_ 08

-6 \ o —

It is well established that microstructural o }\ .
factors, such as subgrains and dislocation density es' [ \ SN o _('(gfé?',’;",o-o,:
yithin subgrains or grains, influence the creep rate. i

They may influence the creep rate by changing the \
rate of atom mobility (diffusion coefficient) through \
pipe diffusion, by serving as barriers to plastic flow 10— 9
(for example through the presence of subgrains) and _ \
by contributing to enhanced dislocation glide through L N 4

. . . . 658 MPa
internal stresses from non-mobile dislocations. S~e_ & (0/E=4.42x10Y

T e ——

Pipe diffusion g

As mentioned before, pipe diffusion can be i
important in a number of creep mechanisms, | Lol | |
including slip creep, grain boundery sliding end even 10 100 1000
diffusional flow. d, um

In Eq. (2), the term
= Fig. 3. The influence of grain size on the creep rate of a
fp (n/Np ® 17Cr- 14Ni austenitic stainless steel at 704°C. The broken lines
number of atoms surrounding the are predicted from Eq. (15).

lll 1. llLl

where n =
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when pipe diffusion is considered, some
experimental observations which show a grain size
dependence of the creep rate and a reiatively large
stress exponent can be explained on the basis of
pipe-diffusion-controlled grain boundary sliding
represented by Eq. (11).

Garofalo et al. {76] studied the effect of grain
size on the creep resistance of an austenitic
iron-bsse alloy. They showed that the grain size
affected the creep rate for fine grain sizes
(following the form ¢ oc d™2) but that there was no
grein size effect for coarse grain sizes. This
observetion is illustrated in Fig. 3. Garofalo et al.
explained the trend observed on the basis of grain

boundaries which eacted as generators of
dislocations. However, they made no quantitative
analysis.

The dete of Garofalo et al. revesl that the
stress exponent n is 4 for fine grain sizes where the
creep rate was found to be proportional to d‘z, and
the stress exponent is about 6 for coerse grain sizes.
These observations indicate that the data can be
analyzed in terms of pipe-diffusion-controlled grain
boundary sliding, using Eq. {11), where :  ¢%/d2 and
Eq.(12), whereé e o'

The concept utilized in our analysis is that the
two processes contribute to the total creep rate er

additively. Thus

41 = Egbs(Dp) * ¢slip (13)

The term égbs(Dp) is given by Eq. (11) where only the
Dp term is unknown. The term islip can readily be

evaluated by analysis of the creep rate-stress
relation at coarse grain sizes where slip dominates
the deformation process and is done elsewhere [7].
The best fit correlation obtained in the power law
range is given by
¢=34x%1012/E)f 571 (14)

Substituting Eqs. (11) and (14) into Eq. (13), it
is obtained:

¢=3.2x10! '(D,,fu"’)(mls)4 +34x10'2e/08 57! (15)

Equetion (15) predicts the steady state creep
rate of austenitic stainless steel as a function of
grain size and modulus-compensated stres at 704°C,

provided that Dp is known. The value of Dp was

chosen so that the eT values fit the experimental
data at a grain size of d= 17 ym 8t o/E=7.17x 10°4
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A value of DD =14% 10719 m2 57! was used. The

resulting creep rate-grain size relationship from Eq.
(15) is given by the broken lines in Fig. 3. The
predicted behavior agrees remarkably well with the
experimental data, attesting to the validity of Eq.
(15). The creep rate power dependence of 2 on the
grain size together with the creep rate power
dependence of 4 on the modulus-compensated stress
is well verified by the experimental data in the range
of fine grain sizes. These predictions give
considerable support to the concept that pipe
diffusion plays an important role in controlling creep
yhen grain boundary sliding dominates.

The creep of fine-grained materials exhibits
different rate-controlling regimes. Thus materials
that exhibit superplastic characteristics with n=2
can be expected to show a stress exponent of n=4 as
the stress is increased. An example from the
literature is a fine-grained copper-base alloy
investigated by Shei and Langdon [77]. Figure 4
shows the creep rate as a function of stress for this
alloy. The broken lines represent the predicted
behavior considering the three contributions to creep
associated with GBS-ng controlled, GBS—Dp

controlled and slip creep Dp controlled. Specifically,
the following equation was used to correlate the
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Fig. 4. The steady 3tate creep rate as a function of the

modul us-compensated stress for a fine-grained Cu-Al-S5i-Co alloy
8t 500°C. o d=35um; vd=72.9um; a d=12.7 um.

The broken lines are predicted from Eq. (16) usingcy=8.6x
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data:
t=Cy/0% (0/6)? + ¢p/02 (6/E)* + 3 6/EY0  (16)

where ¢, is associated with ng (Eq. (6)), ¢y is
associated with DD (Eq. (11)) and c3 is related to slip

creep. The slip creep term is given as stress to the
sixth power, which is near to that given by Eq. (12).
It can be seen an excellent agreement between Eq.
(16) and the experimental data.

In order to test the importance of pipe diffusion
in the creep of fine-grained materials, the data of
Shei and Langdon were analyzed by a traditional
approach in which only the additive contributions of
the normally accepted GBS term and the slip creep
term were considered, i.e. Eq. (16) was used without
the use of the pipe diffusion term. The resulting

correlation is shown in Fig. 5. The predictive curves
do not agree st all with the experimental data,

indicating the necessity for including the pipe
diffusion contribution.

Subgrain size

It is well established that subgrain boundaries are
formed during creep flow of polycrystalline metais
at elevated temperature. Furthermore, subgrains
were shown to be a basic structural feature of
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Fig. 5. The steady state creep rate as & function of the

modul us-compensated stress for & fine-grained Cu-Al-Si-Co alloy
at 500°C. 0 d=35um; v d=7.9um; 4 d=12.7 um.

The broken lines are predicted from Eq. {16) where the pipe
diffusion term was neglected.
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steady state flow structures [67,68,78], with the
subgrain size, A, given by the relation:

A=y b (/E)"! an

where A, is about 4 for many materials.

Thus, the slip creep equation (Eq. (7)), which
shows excellent correlations with experimental
data, must teke into consideration structure as a
variable. It is, therefore, important to obtain a creep

relation determined at constant structure in order to
evaluate the possible influence of dislocation

structure (i.e. subgrains) on the creep rate.

Constant structure creep tests were analyzed in
order to studied the creep rate-stress relationship
at constant subgrain size [79). Such studies reveal
that for a large number of msterials ¢ « A3, The
introduction of & structure term in the slip creep
relation (Eq. (7)), considering the strain rate
dependence with subgrain size and Eq. (17), yields
the following equation in the power law region of
creep:

£ =109 /b)3 (0 /b?) (6/E)8 (18)
10" :
10"}
10
¢
Geff, - Al
m-2 A=40pm
10"t
10°} ) .
AL T
107 | 2=1608m |
108} ]
Pyt
- ! / /
10% 10?2 10' 10° 107 A predicted from
10° [ /) 1y, Eals)
10°° 107 107 1073 10°2
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Fig. 6. Diffusion- compensated strain rate ss a function of
modulus- compensated stress for various meterials. Al, Fe-3%Si
and NaCl are tested under constant structure conditions.
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This equation predicts that the creep rate will
follow an eight power law relation if the structure
is constant.

Many oxide dispersion strengthened (0ODS)
materials contain fine subgrain structures that are
stabilized by the presence of the fine second phase
oxide particles. Such ODS alloys are then likely
candidates to exhibit invariant structures during
creep deformation [80). Figure 6 shows effective
diffusion-compensated creep rete as a function of
the modulus-compensated stress for some O0DS
materials as well as for Al, Fe-3Si and NaCl. The
data for the latter three materials were obtained at

8 given subgrain size. The data for the ODS alloys
were obtained under conditions of constant

structure. The predicted curves from Eq. (18) as a
function of subgrain size are given in the upper part
of the figure. The data illustrate that the average
stress exponent for creep is high and equal to about 9
which is close to predicted value of 8, and quite
different from the value of 5 for pure metals. As
shown, the experimental curves fit well the
predicted lines, and confirm the important influence
of subgrain size in describing the creep behavior over
a wide range of strain rates.

Internal stresses; Harper-Dorn creep

It is well known that internal stresses can be
generated in a material in a number of ways, most

commonly by the presence of dislocations in the
matrix. Quantitatively, it is difficult to celculote
the true values of the internal stress through
analytical methods and no successful attempts have
been made to determine such stress.

High internal stress can arise from phase
transformations involving volume changes from one
phase to another phase, from grain shape mismatch
during temperature change due to anisotropy of
thermal expansion coefficients, and from the
presence of defects by radistion damage. The
presence of random dislocations can also contribute
to the internal stress.

A phenomenological model that incorporates an
internal stress term, ¢;, may be developed using Eq.

(7) for slip creep [81]. The physical basis of the
internal stresses is as follows: dislocations moving
under an applied stress are envisioned to be both
aided and inhibited by the presence of the internsl
stress fields that arise from stationary dislocations.
Specifically, it can be considered that, at any given
moment, one-half of the moving dislocations are
influenced by an internal stress that adds to the
applied stress and the remaining half of the moving
dislocations are influenced by an internal stress that
subtracts from the applied stress. This concept can
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be formulated by the equation:

e=1/2¢* [f(o+o,-)l+ 1/2¢% lf(o-oi)] (19)
Using the slip creep equation (Eq. (7)) for the &*
function of o and o;, the following equation is

obtained:
= Dog/220(0 +o,/E)" + J(g—_"gi,il (o -0,/ (20)

where Ap) is the slip creep constant (power law).
If 6j<< o, Eq. (20) reduces to the slip creep
equation:

&= Apl (Do"‘/D2) (Uff)n (2 1)

If << o then Eq. (20) reduces to & linear
relation between ¢ and o, yielding:

é= A n (Dgre/62) o/ To/E  (22)
This equation will be used to describe
Harper-Dorn (H-D) creep based on the internal stress
maodel.
Another equation that has been used to describe
the uniaxial creep rate for H-D creep [72,82] is the
following:

where AHD is a material constant.

Harper- Dorn creep data can be used to calculate
the material constants Ayp (of Eq. (23)) and o;/E (of

Eq. (22)). These constants are believed principally to
be functions of the dislocation density and
dislocation substructure [76).

An example of the predictive aspect of Eq. (20)
is shown in Fig. 7 for pure aluminum using a value of

oI/E=2.5xIO'6. The figure illustrates that Newtonian

viscous behavior is observed in the H-D region at
stress values below about 6/E = 3 X 10'6; power law
creep, with n = O, is observed st stresses above
about 6/E = 3 x 100 The solid line drawn through
the deta points is that obtained from Eq. (20) end
provides strong support for the internal stress
model. The value of internal stress is related to the
dislocation density and cen be calculated through the
Taylor relation [83]. It will be shown later that this
equation for describing H-D creep is applicable to a
large number of pure metals studied at low stresses
near the melting point.

There have been a remarkable revival of



N°4

interest in H-D creep in recent years and a further
discussion of this subject will be presented in the
last section of this paper.
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Fig. 7. Diffusion- compensated strain rate as a function of
modulus- compensated stress for pure sluminum in the power low
and Harper-Dorn creep regimes. The solid line is predicted from
Eq. (20).

4. Competition between deformation

mechanisms.

We have seen that a polycrystalline material
can deform plastically in a number of ways each of
which is described by & different deformation
mechanism. Each mechanism is considered to
operate independently of the others end has o
particuler dependence of creep rate with stress,
temperature and grain size.

Over a certain temperature and strain rote
range only one particular deformation mechanism
will operate because, being independent, all
mechanisms operote simultaneously and the faster
will control creep.

It is usual in the literature to use only the
equations of diffusional flow (Eqs. (3) and {(4)) and
slip (Eq. (7)) when considering the possible
controlling mechanism for creep of polycrystalline
materials at high temperature. It is our contention
thet grain boundary sliding, given by Eqs. (S) and (6),

107 10 1078 10 103
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usually dominates the deformation process in the
ronge where diffusional creep proceses are claimed
to be rate-controlling. Examples are given in the
following to present this view.

Creep data of f-Co was obtained by Sritharan
and Jones [S0] at various temperstures and grain
sizes. These investigators suggested that the data
can be explained by diffusional (Coble) creep
accompanied by a threshold stress below which creep
will not occur. The f-Co creep data at 773 K and
1073 K is plotted on & double-logarithmic scale in
Fig. 8. The creep data at 1073 K do not seem to show
evidence of a threshold stress. Rather, two linear
regions are observed; the slope at low stresses is
equal to sbout 2, a value that can be associated with
GBS, and the slope at high stresses is about 4-5,

10
- -20
1 <110
= _1073K
o L=125um
107°
. 'O'Zl
? E
| » 7__,
10° q10%
- _T73K
T - L= -
= 0% 2pm 5%
w
o -~
Io"o- é i n i J S U O |02‘
0% 0 L)

o/E

Fig. 8. Strain rate as a function of modulus- compensated stress
for the creep of g-Co. The dats were taken from reference 50.

which in turn can be associated with slip creep. The
creep data at 773 K reveal a pattern that can be
interpreted to show a threshold stress. If the lowest
point is not considered, however, the remainder of

the data can be accurately described by means of &
straight line. The slope of this line is nearly equal

to 2 and also suggests evidence for GBS as a
deformation mechanism. The data of Fig. 8 can be
analyzed in the light of predictions made by Eq. (6).
If Eq. (6) is valid, the value obtained for the
activation energy for creep should be related to the
activetion energy for grain boundary diffusion. Thus,
a plot of > (or :L3) versus o/E allows the
activation energy for creep to be determined. The
right-hand scale of Fig. 8 gives the values of £ for
the two test temperatures, 773 K and 1073 K. An
activation energy for creep of 130 kJ mol™! s
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obtained at 6/E=4 x 1079, This value is nearly equal
to the activation energy for grain boundary diffusion,
Qgh=‘ 17 kJ mol™ ', reported by Brik et al. [84].

Equations (4) and (6) were used to predict the
creep rate of polycrystalline cobalt and the results
of these predictions are shown in Fig. 9. In this
figure the creep rate is normalized with respect to d
and ng, and is plotted as a function of 6/E. As can

be seen, the creep data follow closely the line
predicted by the GBS equation, both in absolute
values and in the slope. In contrast, the diffusional
creep prediction falls below most of the data.

The conclusions described for B-Co were also
verified for other metals. A way of illustrating this
point is to prepare a Langdon-Mohamed deformation

T T T T T T
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0.08
006t
0.04¢
o
002 é 1 ; 1 1 1. i 1]
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Fig. 9. Comparison of creep data for p-Co at 773 {0) and 1073
{0) with predictions from grain boundary sliding ( Dgp
controlled) and diffusional creep {Coble).

mechanism type of map [85,86]. This map predicts
the deformation mechanisms expected at different
grain sizes and modulus-compensated stresses.
Figure 10 illustrates such a map at 0.55 Ty, based on

diffusional creep (Egs. (3}, (4) and (10)), GBS (Egs.
(S), (6) and (11)) and slip creep (Egs. (7), (12) and
(23)). The material constants used for the
construction of this map are given in Table Ill. The
values of modulus-compensated stress used in the
creep tests for B-cobalt [50], «-iron [87], copper
[88], magnesium [89] and 304 stainless steel [90]
are plotted as a function of the grain size for those
investigations where diffusional {Cable) creep with a
threshold stress was believed to be operational. As

N°4

Table I1l. The material constants used for the
construction of the deformation mechanism map
shown in Fig. 10.

Ayp=17x 10711

E=69x1010pg
b=25%x10"10p
k=138%10"23 jg-1
T = 1000 K

Dgp =Dp=2% 10712 m2 571

DL = ‘0‘19 m2 S—]

10° . , . -
T=055Tm SLIP 0-B-Co, 773K | 102
Dv. ® -B-Co,1073K
108+ ) a° D -a-Fe . 873K
SLIP,D .0 m-a-Fe . 1073K "
d/b HARPER-DORN —azr . 829K .
107,_ Q -304s.5,,973K mﬁ'\
P a-Mg 474K 1100
. o8 v -Cu 548K
L
o . SLIP, Dp, 07
1P, Dp, -
O-F=-0_-N\ P 410
s ¢f--ov--0
10 - o0-——-
DIFFUSIONAL 6.8.5,0p.0" 41072
FLOW,Dgp, 0"
10“| coBLE ,
6.85,Dgp. 0 _J10_3
103 4 ! 1 A !
107 10% 100 10t 107 107

0/
Fig.10. Deformation mechanism map at an homologous
temperature T/T,=0.55. The material constants used for the
construction of the map are given in Table Il

can be seen, most of the data for those metals fall in
the stress range where ng-controlled GBS

dominates the deformation.

Another materisl analized was an austenitic
stainless steel (25Cr- 20Ni) investigated by Yamane
et al. [91). These authors interpreted also their
results by diffusional (Coble) creep and a threshold
stress. They studied the influence of stress on the
steady-state creep rate of antimony-addition
stainless steels for a number of different grain
sizes. Their data are plotted in Fig. 11 as grain
size-compensated stress against the
modulus-compensated stress. Predictions based on
diffusional flow and on grain boundary sliding are
given by the full lines shown in the figure. The
predicted lines from Nabarro-Herring creep (Eq. (3))
and from Coble creep (Eq. (4)) are observed to result
in creep rates that are considerably below the



N°4

experimental deta. On the other hand, the predicted
lines from the grain boundary sliding model (Eq. (S)
and (11)) show excellent agreement with the data.
The important feature of Fig. 11 is the transition
from 2 to o4 behavior in agreement with a change
from GBS (D ) to GBS (D) behavior.

A deformation mechanism map at 0.7 Tm is

constructed in Fig. 12. The relations used for the
construction of the map are the same as for the map
of Fig. 10. The material constants used are given in
Table IV. The stress and grain size region covered by
Yamane et al. is shown in the figure. As can be seen,
deformation of the 25Cr-20Ni stainless steel in this
range is predicted to be principally by grain boundary
sliding and by slip creep. Oniy if GBS is ignored as &

T T
T=1173K
1072 Q -30um ?7
o -40 » 4 J
a =52~ {10°®
= -105 ~
v -160 ~
103 M
z / ,
Lo PREDICTED BY 1°
sTUm GB S.(Deff JEQUATION /o €5
104} (for d=60pm)
COBLE
for d=60um 41078
2 8
10°5f
NABARRO-HERRING | 4¢-9
{107°
1 1
10'6 10~5 10-4

O/E

Fig. 11. The predicted grain-size- compensated strain rate-
modulus- compensated stress relations for both grain boundary
sliding and diffusional creep flow models are shown with
exa[em;nmol data for 25Cr- 20Ni stainless steel from Yamane et
al.[91].

Table IV. The material constants used for the
construction of the deformation mechanism map
shown in Fig. 12

- -11

E-=69x10'0pa
b=25%10"10m
k=138x10"23 gk !
T=1173K

gb= Dp=98%10712mZ 7
D =168x 10717 m2¢!
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Fig.12. Deformation mechanism map at an homologous )
temperature T/T,=0.7. The grain size and stress regimes used in

the experimental study of Yamane et al. [91] are shown on the
figure &s the region bounded by broken lines. The material con-
stants used for the construction of the map are given in Table I¥.

mechanism does the diffusional creep regime become
important. Therefore, using a deformation map that
includes the important contributions of GBS
mechanisms, Coble creep is predicted not to occur in
the stress range investigated by Yamane et al. and
only becomes important at fine grain sizes and at
values of o/E below 3% 1070,

The examples given above indicate the
importance of grain boundary sliding as 8 mechanism
at low stresses and intermediate temperatures.
Creep st low stresses and high temperatures,
however, is often controlled by either
Nabarro-Herring diffusional creep, grain boundary
sliding or Harper-Dorn creep. Recents investigations
on H-D creep [92-97], in fact, suggest that this
mechanism is more important than normally
considered. A summary of this study is given in the
following paragraph.

There are a large number of studies covering the
deformation of a large number of polycrystalline
metals at low stresses and high temperatures [98].
In these studies, a linear dependence of strain rate
with stress was also reported, and Nabarro-Herring
diffusional creep was described as the mechanism of
plastic flow. Figure 13 show the ratio of the
diffusion coefficient estimated from creep, Dcreep'

to the radiotracer diffusion value, Dexp’ plotted as a

function of a dimensionless test duration parameter
P= (Dexplfa-l)” 2 | where t= test time and &l:
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product of the grain dimensions, and is taken from
the work of Jones [98]. As can be observed from the
figure, the creep rates of most of these metals (i.e.
y-Fe [99], Ni [100], Ag [101], B-Co [102], Cu[103], Mo
[104] and Cr [104]), however, are significantly faster
than those ~ predicted by the diffusional
(Nabarro-Herring) creep relation. These high rates
were attributed to a transient effect from
dislocation short-circuiting during diffusional creep.
Another possible explanation for the observed
high creep rates in this group of metals is that H-D
diffusion-controlled-dislocation creep takes place
more readily than diffusional creep.
A deformation mechanism map yas constructed
for analyses of those metals that exhibit anomalous
diffusional creep behavior. Figure 14 shows a plot

25 Y T T T T T

o Cu
® Cu
o % Cu
20F 2 ::g .
v A
[o] ; au
u
s a 4
15 o 2 C(‘>
Dcresp s Ve
Dexp - ¢ Cr
‘0 - ¢ 4 Mo -
a o
®
‘gt 0 a
] .
T T,
D@lj%A
1 “vovv'$ ™ ’\zo 5‘ 0- %00

c v 2 3 4 5 6 7 8 9 10
P-‘-\'Dexp‘t/ﬂ'l

Fig. 13. The ratio of the diffusion coefficient estimated from creep
Dereep 10 the diffusion coefficient experimentally determined by

radiotracer analysis Dy, , 83 a function of a dimensionless test
duration parameter P = (Dexp' t37a-1)1/2 for various pure
metals. Taken from reference [98].

Table V. The material constants used for the
construction of the deformation mechanism map
shown in Fig. 14.

Agp=15% 10710

E=9x10'0pg
b=26%10"10m
k=138% 1023 ¢!
T=1600K
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Fig. 14. Deformation mechanism map at an homologous
temperature T/T,,=0.9 showing location of metals exhibiting

anomaloys diffusional creep behavior. The material constants used
for the construction of the map are givenin Table ¥.

of grain-size normalized by the Burgers' vector, d/b,
as a function of the modulus-compensated stress,
o/E, at a homologous temperature of 0.90 T,,,. The

relations used for the construction of the map are
the same as for the other maps. The material
constants used are given in Table V. A value of Ay,

equal to 1.5 x lO"o was used. This is the expected
value for H-D creep at 0.9 Ty, where most of the

creep tests were carried out. The map of Fig. 14
shows the range of stresses used in the low stres
creep studies on metals that exhibit anomalously
high diffusional-flow creep rates. The lines all fall
in the H-D region at low stresses, and in a GBS region
at high stresses. It is clear from the deformation
map that Nabarro-Herring creep will only be rate
controlling for these metals at grain sizes less than
100 pm and at stresses less than 2 x 1077E
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