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1 Requirements
Audience

The intended audience for this guide is developers of web-based applications to connect to the Workspaces
services.

Required Knowledge

The developers should be familiar with the HTTP protocol and JSON formats for HTTP messages.

Prerequisites

In order to use the Workspaces API you must have an organization account in the Workspaces cloud service or
have an on-premises Workspaces server (deployed as a virtual appliance).

An organization administrator account will be set up by BlackBerry.
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2 Introduction
This guide explains how developers can use the Workspaces web API to develop applications to allow end users to work with
files protected by Workspaces.

Workspaces allows users to securely share files with others. File owners maintain full control of each file that they share,
including permissions to view, print, copy and download a file. For example, file owners can change access permissions, set
a file expiration date, or revoke access to a file at any time even after a file is shared with devices beyond your organization's
control.

Workspaces consists of two core services

1. Workspaces: into which files can be uploaded to be securely shared with others

2. Send: by which files are securely shared with others

API Version

This document refers to Workspaces API version 3.0.

Workspaces model

The Workspaces platform is a web-based service that may be hosted on Workspaces cloud-based servers or locally
on virtual appliances at an organization (on-premises).
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3 User Types
Workspaces has the following types of users:

Organization Administrator

An administrator that has access to all workspaces in the organization's account, with the ability to create, remove,
and modify users (including other administrators), workspaces, groups and all other entities associated with the
organization's account. The first Organization Administrator is defined by BlackBerry when the account is first
created. The Organization Administrator cannot view documents within the account. There is more than one type of
organization administrator. For more information about the different types of organization administrators, see the
Workspaces web application.

Workspace Administrator

An administrator for a workspace or group of workspaces within an organization that can view all files in these
workspaces, add groups and users, and upload files.

Contributor

A user with the ability to manage content in a workspace (for example, view, upload and delete files).

Visitor

Someone who is not a user of the service that can view files that they receive from a Workspaces user. The file can
be viewed in protected format only. A visitor cannot upload files to a workspace or update files in a workspace.
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4 Resources
The Workspaces API is divided into the following categories, each relating to a distinct part of the service:

Files - The following resources are used to manage the Workspaces Send feature for an organization (a service for ad-hoc
sending and receiving of document securely).

Resource Description
Upload & download Upload files to the Workspaces server where the files can be shared

from and download files received from other Workspaces users

Send Send files by email to recipients

Enumerate List the files sent via Workspaces

Manage permissions Set or change access permissions for files sent via Workspaces

Search Search for files by text or metadata

Track View audit and tracking information for activities on files sent and
received via Workspaces

Organization administration - The following resources are used to manage the workspaces, Workspaces Inbox, and Sent
Items in an Organization account.

Resource Description
Users Create, update, and remove the organization's users

Roles Assign roles to users (e.g. workspace Administrator, Contributor)

Aliases Set email aliases which enable a user to view, in a single session, all
files received under different email addresses

Distribution lists Setup and manage distribution lists of users. Distribution Lists are
named sets of users defined globally at the organization level.
They can be used as an alias for sending files or be referred to by
workspace groups.

Tags Define metadata tags that can be assigned to files in workspaces

Watermarks Define the watermark template that can be applied to files
downloaded from workspaces

Global Policies Set global access and usage policies

Workspace management - The following resources can be used to manage a single workspace. For example, a single
workspace might be used by a group that is collaborating on a common set of files.

Resource Description
Groups & Users Set up groups and users of a workspace

Folders Set up folders in a workspace

Enumerate List the files, folders and groups in a workspace

Alerts Configure alerts for new or changes to files that users should be
aware of

Upload, download Upload or download files to a workspace

Permissions Set access permissions for files in a workspace
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5 Using the API
The Workspaces API design borrows concepts from REST. It consists of a set of HTTP requests for resources using GET and
POST methods, sent to the Workspaces server. The request may include parameters in the URL path and/or a message body
in JSON format. The following is an example of a generic message:

GET https://www.workspaces.com/api/3.0/room/{roomId}/new
Authorization: Bearer <ssid>
Content-type: application/json

{
  path: String
}

In the above example, the parameter roomId is included in the URL. An authorization header line follows (see below) and
then a header line indicates that the MIME type of the message body is in JSON format. The message body follows, in this
example, specifying the path field.

The HTTP Responses from the server include an HTTP status line and, optionally, response data in JSON format

Upload file message format

Files are uploaded in multipart/form-data. The following example shows the format:

POST https://www.workspaces.com/api/3.0/documents/{guid}/upload HTTP/1.1
Content-Type: multipart/form-data; boundary=---------------------------114782935826962
Content-Length: 454

-----------------------------114782935826962
Content-Disposition: form-data; name="data"; filename="Filename.doc"
Content-Type: application/octet-stream

... File data here in binary ...
-----------------------------114782935826962--

Response Status and error codes

The Workspaces server returns standard HTTP status codes in response to requests.

HTTP Status Description
200 OK The request completed successfully.

201 Created A request that created a new resource completed, and no response
body containing a representation of the new resource is being
returned.

202 Accepted The request has been accepted for processing, but the processing
has not completed.

204 No Content The server fulfilled the request, but does not need to return a
response message body.

400 Bad Request The request could not be processed because it contains missing or
invalid information. For example,a validation error on an input field,
or a required value is missing.

401 Unauthorized The authentication credentials included with this request are missing
or invalid.

403 Forbidden The server recognized the requester's credentials, but the requester
does not have authorization to perform this request.

404 Not Found The request specified a URI of a resource that does not exist.
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405 Method Not Allowed The HTTP command specified in the request (DELETE, GET,
HEAD, POST, or PUT) is not supported for this request URI.

409 Conflict A create or update request could not be completed because it would
cause a conflict in the current state of the resources supported by
the server. For example, an attempt to create a new resource with a
unique identifier is already assigned to an existing resource.

500 Internal Server Error The server encountered an unexpected condition that prevented it
from fulfilling the request.

501 Not Implemented The server does not currently support the functionality required to
fulfill the request.

503 Service Unavailable The server is currently unable to handle the request due to
temporary overloading or maintenance of the server.

Successful requests generally return an HTTP status code of 200 (OK), 201 (Created), or 204 (No Content), to indicate that
the requested action has been successfully performed. In addition, successful requests may include a response message body
containing a representation of the requested information.

Error responses can be run-time, in response to severe problems with the request message which prevent the Workspaces
server from processing it at all (for example, a request on a non-existent workspace), or bulk error responses. These are errors
in part of a request (eg. for requests with multiple parts) or errors in requests that can be processed.

Run-time errors will return an HTTP Status Code of type 40x/50x and a run-time JSON error message block in the body of
the response message. For example:

HTTP/1.1 400
Content-type: application/json

{
  "messages" : [ {
    "action" : "NO_DOCUMENTS_IN_ZIP_OUTPUT",
    "code" : 330,
    "severity" : "ERROR",
    "text" : "No documents were found for adding to zip file "
  } ]
}

Explanation of fields:

Action Error description text

Code Error code (enum)

Severity Severity of error (enum)

Text Description of error (plain text)
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Bulk error messages return a code of 200 and a JSON error message block in the response message body. The message may
be an aggregated result with a single code summarizing multiple requests. For example:

HTTP/1.1 200
Content-type: application/json

{
  "problematicItems" : [ {
    "errors" : [ {
      "errorCode" : 371,
      "isAggregatedMessage" : true,
      "errorArgs" : [ "1" ],
      "errorMessage" : "Attempted to download 1 folders, all of them empty"
    } ]
  } ],
  "fullSuccess" : false,
  "success" : "PARTIAL"
}

Alternatively, the message can indicate the result of each request separately. For example:

{
  "problematicItems" : [ {
    "itemId" : "aaaa",
    "errors" : [ {
      "errorCode" : 300,
      "isAggregatedMessage" : false,
      "errorArgs" : [],
      "errorMessage" : "Document was not found"
    } ]
  } ],
  "fullSuccess" : false,
  "success" : "PARTIAL"
}

Explanation:

errorCode Error code (enum)

isAggregateMessage Boolean: true if error relates to a few items (eg on multiple files), or
false if each item has its own exception.

errorArgs Aggregate number of operations

errorMessage Description of error (plain text)

fullSuccess Boolean: indicates whether bulk operation was successful (all
operations)

Success Enum: indicates degree of success of all operations if 'fullSuccess'
flag is False.

Creating a Session

An application that uses the Workspaces service must be authenticated to start a session. A secure session id (SSID) token is
generated and passed to the application during the authentication. It must be used in all requests messages during that session.

There are two methods of authentication:

1. Workspaces email authentication - the application provides an email address (eg. alice@abc.com) and a password in the
create resource. If these values are valid, the service returns a secure session id (SSID) token.

2. External authentication - the application authenticates to an external Identity Provider over OAuth2.0 and uses the
returned token in a session with Workspaces.
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6 Authentication using Service
Accounts

6.1 Overview
Service accounts provide an alternative means of authenticating requests sent to the Workspaces server. Using a service
account removes the need to have a user's password in order to authenticate a user. When using a Service Account you
can configure Workspaces to allow groups of users based on their email domain(s) and/or specific users access to their
Workspaces accounts.

The steps for creating and using service accounts are as follows:

1. Create or obtain a SSL certificate. There are a number of ways to do this including using tools like OpenSSL or Java's Keytool
application to create a Self-Signed certificate, or you can purchase a commercial certificate from any number of certificate providers.

2. Extract the Public key from the certificate. You'll need this to paste the Public key into the Workspaces Admin console.

3. Configure the Service Account in Workspaces.

While logged in to the Workspaces Admin Console as an administrator:

a. Navigate to Service Accounts under Authentication on the left-hand side, and click the + icon.

b. Under System accounts:

i. In the Public key field, copy and paste the contents of the Public key. Depending on how the certificate was generated and
the public key displayed, the key may be bracketed by a set of tags such as -----BEGIN PUBLIC KEY----- and -----END
PUBLIC KEY-----. Do not include these tags when copying the pubilc key.

ii. In the System acounts field, enter a list of user email addresses that will be allowed to authenticate using this service
account. Separate each address with a space. If you only want to authenticate groups of users using their email domain this
field may be left blank.

iii.In the Domain system accounts field, enter a list of email domains that will be allowed to authenticate using this service
account. Separate each domain with a space. If you only want specific users to be able to authenticate this field may be left
blank.

iv.In the Algorthm dropdown, select the algorithm that was used to create the certificate.

v. Click Apply to save the Service Account configuraiton.

4. In your application code:

a. Create a valid, signed Workspaces Authentication token by using the private key from the certificate.

b. Use the generated token in an Authorization header in your request to the Workspaces server.

6.2 Using OpenSSL to create a certificate
Run the openssl applicaiton to create a certificate and private key file. In the example below <PRIVATEKEY> represents
the name of the file where the private key will be stored. <CERTIFICATE> represents the name of the file where the
certificate will be stored.

When you run the openssl command you will be prompted for several pieces of information used in creating the certificate.

openssl req -newkey rsa:2048 -nodes -keyout <PRIVATEKEY> -x509 -out <CERTIFICATE>

Run openssl again to display the public key.

openssl rsa -in <PRIVATEKEY> -pubout
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The output will look something like the example shown below. The public key is the text shown between the -----BEGIN
PUBLIC KEY----- and -----END PUBLIC KEY----- tags.

-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA0X43UwF1exJMv8JktJGa
XIYOwARj/w95tvYuGiY42pTwH8Ttp8eYlwAX3bT5awdC/D7qLz2oEWIMb8QH+0qF
L7KU0nBHzyWBIqgjJKywegbsFuKXHxlMZrGkcaAmIiQ0VxesZyxtWzPlHvvX2i67
kAygyZ2VCgj/D7KZXluLV55XY/vH44ohgPu18D3mbwX8pTWqfaOeUQUzv4kIWwta
yDiQu4+ec+sr47zNNzBUCYoAR99+2b/anmxdrOn8/QJcCu6zWBzlQGyXK5fhI5tA
18AC32rKBkV/hLhIM5D7n3JjQ73hwiUcqct85gl4Nf9YowUGC3h1ejuhKf4VYah/
KQIDAQAB
-----END PUBLIC KEY-----

6.3 Using Keytool to create a certificate
Run the Java keytool application to create a certificate and insert it into a Java KeyStore. <ALIAS> in the example below
represents the name or alias that will later be used to retrieve the certifcate from the keystore. <KEYSTORE FILE NAME>
represents the name of the KeyStore file where the certificate will be stored.

You will be prompted for several pieces of information that will be used to create the certificate. You will also be prompted
for a password to secure the keystore. Make a note of this password as you will need it in the next step.

keytool -genkey -alias <ALIAS> -keyalg RSA -keystore <KEYSTORE FILE NAME> -keysize 2048

Run the keytool application again piping the result through OpenSSL to display the public key information. In the example
below the command would be on a single line. It is wrapped across lines here for readability.

keytool -list -rfc -keystore <KEYSTORE FILE NAME> -alias <ALIAS> \
-storepass <KEYSTORE PASSWORD> | openssl x509 -inform pem -pubkey -noout

The resulting output will look something like the example shown below. The public key is the text shown between the -----
BEGIN PUBLIC KEY----- and -----END PUBLIC KEY----- tags.

-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAy+ZwUOXSlAnq5oM6qGZC
yCt0PfJVY9lyEr4jaRGXJMPTohegS2qonDkH9+yCYDtJ/8hz3LZ4PPedhG99pddG
kBp5uUdPETJTQv10vOtov4shMbs8wQwATumnn9Hcgu3edITJWSKirSYAoslTRg4P
/Q1nHOaGv+vARRZ4wwuJylthSMlH+0RALkYLHu11X38iLNK1zdM3nOxgN7ldqOsH
Y/Ub/lTFD9Q8sCWMjPHGGk0hYjla1CbkJOoUi5xPrFvph6J15nTYOdZcua41R0Et
A9PGEE9rGNuIAtGV1kknoXXjejf356R7LP/iIsWE66ozoJiKkhWJA3lrrGD0kpNa
vwIDAQAB
-----END PUBLIC KEY-----

6.4 Creating an authentication token
To create an autentication token you must first know the username or email address of the user the request will be
made on the behalf of, the issuer id for the Service account and determine how long the signed token will be valid
for. How an application determines or aquires a users email address would be up to the applicaiton. The issuer is
identifier assigned when the service account was created in the WatchDox Admin console. This issuer would be in
the format com.watchdox.system.xxxx.yyyy where xxxx and yyyy are some set of numbers and letters. For example,
com.watchdox.system.fadd.3015. The expiration timestamp is a number of seconds since January 1, 1970, 00:00:00 GMT.

The first step is to create a string in which the user, issuer and expires values are formatted as they would be in an URL with
each of the values URL encoded using UTF-8.

If we assume the following:

user

user1@mycompanydomain.biz
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issuer

com.watchdox.system.fadd.3015

expires

1472688269

The URL formatted string would look like this:

user=user1%40mycompanydomain.biz&issuer=com.watchdox.system.fadd.3015&expires=1472688269&

Next the string must be signed using the private key from the certificate. Exactly how this is done will vary depending you
the language being used. If Java is being used with a Java KeyStore the process would involve getting the private key from
the keystore, and using the Java Security APIs to sign the string with the private key.

After the string has been signed, the binary result should be Base64 encoded. The original string should then be concatenated
with the Base64 encoded, signed value using a colon to seperate the two.

Note: This example wraps the value for readabilty. The actual value would not have any line breaks

user=user1%40mycompanydomain.biz&issuer=com.watchdox.system.fadd.3015&expires=1472688269& \
: \
gYaao7kCrmihuQ/fiYzlPZO1gaiekxdKGEoUPFrjYQhtX+rDw22wD6aYDUvI3uPVe6/e8NkOVmoBIZhgI7OyMz \
0aDXraqW5gP6GzmhLOvS4lD2iFo+/3+UXxkuE8lcGDkOjjcAbnVP4hPtdiLwRk3x+0BZx6yS15ktNjj20mS4b/mk \
O3ukP7wZfnoFA8Lf/vVbfGb72CkeYRZVwkhoeeoeb5dQTOWoyP8Fsv3inCKShnsX1cKVCoJJ49sJoKYZ4EQCw3uy \
6hZm3Tv3sD8aWBxMygeh318D0042f2zb6CNTaEd4TSQT1UqeqiMy2Yw9lhGKeJarnSXmbx3fY6gYwTyQ==

The resulting value value is then used as the authentication token in the HTTP Authoriziation header.

Authentication: Bearer user=user1%40mycompanydomain.biz&issuer=com.watchdox.system.fadd.3 ...
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7 Authentication using OAuth

7.1 Overview
Workspaces OAuth lets users allow other applications to interact with their Workspaces account without providing that other
application their Workspaces authentication credentials, and for only a time-limited basis. For example, a sales management
application can integrate Workspaces functionality to allow the controlled sharing of documents via Workspaces, within
the sales management app, without requiring users to provide their Workspaces usernames and passwords to the sales
management app.

7.2 Registering a client with a Workspaces server
Someone wishing to use Workspaces OAuth must register with Workspaces and obtain a client ID and client secret that will
be passed to Workspaces in order to obtain a Workspaces authentication token.

7.3 Steps in authenticating using OAuth
The basic flow is(WDX_URL means the base URL of the Workspaces server being used):

1. Make an unauthenticated call to WDX_URL/api/3.0/authentication/parameters to get the authentication URI's. In the returned values,
authorizationUri is the URI for the temporary token in #2 below; accessTokenUri is the URI for obtaining the full token in #4 below.

2. Direct the user to the Workspaces authenticationUri (e.g. via a redirect in your own web app), passing the proper params(see below).
One of these params is the redirect URI in your app to which the user should be sent after authenticating with Workspaces. It will look
something like this (wrapped across lines here, but one single line when used):

<WDX_URL>/<AUTHORIZATION_URI>?response_type=code&client_id=<CLIENT_ID>&locale=en_US
&redirect_uri=<REDIRECT_URI> 

3. When that redirect URI is serviced in your web app, a temporary code is included on the URL that will be used to obtain a valid auth
token. It will look something like this:

<REDIRECT_URI>/?code=219e5a32-d74f-473a-91a4-fd74f95e091c&locale=en-us 

4. Make a call to the Workspaces accessTokenUri to obtain a valid auth token, refresh token, and an expiration value for the auth token.
That auth token can be used to authenticate subsequent API calls to the Workspaces server (wrapped across lines here, but one single
line when used).

<WDX_URL>/<ACCESS_TOKEN_URI>?client_id=<CLIENT_ID>&redirect_uri=<REDIRECT_URI>&
client_secret=<CLIENT_SECRET>&grant_type=authorization_code&code=<AUTH_CODE> 

5. That call will return JSON that contains an access token, expiration, and refresh token. The access token can be used in the
authorization header of subsequent calls.
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8 Examples
This section describes examples of common application scenarios to illustrate how to use the API.

In cases where the message structure is complex, only the fields pertinent to the example are shown, and the rest is
represented by "...".

Note that the term room is interchangeable with workspace.
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9 Example 1: Connect and
authenticate a user
This example shows how to connect a user to the service by using OAuth to login and create a session. This requires
registration as an OAuth provider to obtain a clientId and client secret that will be passed to Workspaces in order to obtain a
Workspaces authentication token.

The server returns an access token that must be included in subsequent requests in the session.

9.1 Determine the URI to be used
Make an unauthenticated request to get the authorization URI's. The URIs of interest are authorizationUri and
accessTokenUri.

Request

GET /api/3.0/authentication/parameters

Response

{
  "isOauth" : true,
  "authorizationUri" : "<WDX_SERVER_URL>/ngdox/oauth/up/signin/",
  "accessTokenUri" : "<WDX_SERVER_URL>/api/3.0/authentication/token",
  ...
}

Parameters

isOauth - indicates whether or not the server supports OAuth authentication
authorizationUri - identifies the URL a user should be directed to to signin
accessTokenUri - identifies the URL to be used in requesting an Access token or
  Refresh token.

9.2 Direct the user to the Workspaces signin page
Direct the user to the Workspaces authenticationUri (e.g. via a redirect in your own web app), passing the proper parameters.
One of these params is the redirect URI in your app to which the user should be sent after authenticating with Workspaces.
The request will look something like this (wrapped across lines here, but one single line when used):

Request

GET /ngdox/oauth/up/signin/?response_type=code& client_id=<CLIENT_ID>&locale=en_US&
redirect_uri=<REDIRECT_URI>

Parameters

response_type - should always be "code"
client_id - would be the identfier registered with the Workspaces server for the application.
locale - indicates the language that should be used for the signin page. If the Workspaces
  server does not support the requested locale English will be used.
redirect_uri - indicates where the user should be redirected after successfully
  authenticating. The URI must have been previously registered with the Workspaces server and
  associated with the client_id being used.
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Response

HTTP 302 redirect to 
  https://<REDIRECT_URI>/?code=219e5a32-d74f-473a-91a4-fd74f95e091c&locale=en-us

9.3 Retrieve the Access token
Using the code parameter returned in the redirect URL, make a request to fetch the access token from the server.

Request

GET /api/3.0/authentication/token/?client_id=<CLIENT_ID>&client_secret=<CLIENT_SECRET>&
grant_type=authorization_code&redirect_URI=<REDIRECT_URI>&
code=219e5a32-d74f-473a-91a4-fd74f95e091c

Parameters

client_id -  would be the identfier registered with the Workspaces server for the application.
client_secret - is the secret string associated with the client id.
grant_type - would be "authorization_code" when requesting an Access token using a code
  received in a redirect URL.
redirect_uri - must match the redirect uri provided in the initial request to the sign in
  page.

Response

{
   error: String,
   error_description: String,
   token_type: String,
   refresh_token: String,
   expires_in: Long,
   access_token: String
} 

Parameters

If there was an error the (error) and (error_description) fields.
If the request was successful the (access_token) field contains the token to be used in
subsequent API requests.
The (refresh_token) would be used to obtain an new access token when the current token
becomes invalid.
The (expires_in) field indicates when the current access token will expire.

That access token is used in subequent requests in an HTTP authorization header like this;

Authorization: Bearer expires=1473288317&user=.........
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10 Example 2: Add users to a
workspace
This example shows how to add a user to a workspace. It requires three separate requests: create a workspace, create a new
room group, and add members (users) to the group. Different permissions are required for each step.

10.1 Create a workspace
(can only be done by an Organization Administrator)

Request

POST /api/3.0/rooms/create
Authorization: Bearer <xxxxxx>
Content-type: application/json

{
  name: "myroom",
  description: "this is my room",
  administrators: "admin@abc.com"
}

Parameters

Room name ("myroom")
ssid ("xxxxxx")
description and administrator name

Response

HTTP/1.1 200 OK
Content-type: application/json

{
  id: "37",
  name: "myroom",
  description: "this is my room"
  ...
}

Parameters

Room id (37)

10.2 Create new room group
(can only be done by a Workspace Administrator)
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Request

POST /api/3.0/rooms/37/entities/add
Authorization: Bearer <xxxxx>
Content-type: application/json

{
  Address: "mygroup",
  permittedEntity: {
    address: "mygroup",
    entityType:GROUP,
    role: VISITORS,
    newPermissions: {
      downloadOriginal: False,
      download: False,
      copy: True,
      print: True,
      edit: True,
      neverExpires: True,
      progAccess: Boolean
    }
  }
}

Parameters

  Room id (37),
  ssid, from previous request
  Group name ("mygroup")
  Permissions

Response

HTTP/1.1 200 OK

10.3 Add members (users) to group
Request

POST /api/3.0/rooms/37/groups/mygroup/members/add
Authorization: Bearer <xxxxxxx>
Content-type: application/json

{
  membersList: List( {
    entity: {
      address: "alice@abc.com",
      entityType: USER
    },
    entity: {
      address: "bob@abc.com",
      entityType: USER
    }
  } )
}

Parameters

Room id (37),
ssid,
group ("mygroup"),
users to add (alice@abc.com, bob@abc.com)
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Response

HTTP/1.1 200 OK
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11 Example 3: Add permissions for a
group of users to access a file
This example shows how to allow a group of users to access a document. It assumes a workspace (room 37) and a group
("mygroup") exists - see Example 2. The document name in this example is "mydocument.doc". This example requires two
separate requests: retrieve a list of files in the workspace with no filtering, and add permissions for the group to access the
file.

11.1 Retrieve the list of documents in a workspace
Request

POST /api/3.0/rooms/37/documents/list
Authorization: Bearer <xxxxxx>

{
  pageSize: 20,
  pageNumber: 1,
  folderPath: "\afolder",
  documentOrder: DOCUMENT_NAME,
  orderAscending: True,
  folders: True,
  documentFilter: ALL,
  filterScope: ENTIRE_ROOM,
  noTags: True
}

Parameters

Room id (37),
ssid token

Response

HTTP/1.1 200 OK
Content-type: application/json

{
  total: 1,
  items: List( {
    id: Integer,
    guid: "4bd675d8-1904-4288-9a82-89bdb1c56dfc",
    ...
    filename: "mydocument.doc",
    ...
    room: String,
    folder: "\afolder"
    ...
  } )
}

Parameters

List of documents in the workspace (room), including guids for each file.
In this case, the file in question is in the returned list, and its guid
is included (4bd675d8-1904-4288-9a82-89bdb1c56dfc).
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11.2 Add permissions to the file
Add permissions for the group "mygroup" to access the file, referenced by its guid

Request

POST /api/3.0/rooms/37/documents/permissions/add
Authorization: Bearer <xxxxxx>
Content-type: application/json

{
  Address: "mygroup",
  permittedEntities: List( {
    entityType: GROUP
  } ),
  permissionSet: {
    downloadOriginal: Yes,
    ...
  },
  documentGuids: "4bd675d8-1904-4288-9a82-89bdb1c56dfc",
  ...
}

Parameters

Room id (37),
ssid token,
permissions list (download original permitted),
document guid ("4bd675d8-1904-4288-9a82-89bdb1c56dfc")

Response

HTTP/1.1 200 OK
Content-type: application/json

{
  fullSuccess: Yes,
  success: Full
}
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12 Example 4: Upload a file to
workspace
This example shows how to upload a file to a workspace assuming that a workspace has already been created. There are three
steps: create a guid for the new file, upload the file, and submit the groups (recipients) that are allowed to access the file.

12.1 Create a guid for the document in the workspace
Request

POST /api/3.0/rooms/37/documents/create
Authorization: Bearer <xxxxxx>

Parameters

Room id (37),
ssid token (xxxxxx)

Response

HTTP/1.1 200 OK
Content-type: application/json

{
  guid: "7bc67511-164b-5744-2382-8a7db1c56dfc"
}

Parameters

The new guid (7bc67511-164b-5744-2382-8a7db1c56dfc) is returned.

12.2 Upload the file to the workspace
Request

POST /api/3.0/rooms/37/documents/7bc67511-164b-5744-2382-8a7db1c56dfc/upload
Authorization: Bearer <xxxxxx>
Content-type: multipart/form-data

Parameters

Room id (37),
document guid (7bc67511-164b-5744-2382-8a7db1c56dfc),
ssid token (xxxxxx)
 
File data is uploaded to the Workspaces server as HTTP multipart form-data.

Response

HTTP/1.1 200 OK
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12.3 Submit the list of groups (recipients) that are
allowed to access the file
Request

POST /api/3.0/rooms/37/documents/submit
Authorization: Bearer <xxxxxx>
Content-type: application/json

{
  documentGuids: "7bc67511-164b-5744-2382-8a7db1c56dfc",
  recipients: {
    groups: "mygroup",
    ...
  },
  ...
}

Parameters

The group (mygroup) is associated with the file. The permissions are also set but
this is not illustrated in the example.

Response

HTTP/1.1 200 OK
Content-type: application/json

{
  total: 1,
  items: List( {
    id: Integer,
    guid: "7bc67511-164b-5744-2382-8a7db1c56dfc",
    ...
  })
}
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13 Example 5: Send a file via
Workspaces
This example shows how to send a file to a recipient. The guid for the file is created, the file is uploaded to Workspaces, and
a link is sent to the email recipients.

13.1 Create the file guid
Request

POST /api/3.0/documents/create
Authorization: Bearer <xxxxxx>

Parameters

Session token (xxxxxx)

Response

HTTP/1.1 200 OK
Content-type: application/json

{
  guid: "2dc68811-374b-52c4-2382-897db7d56dfc"
}

Parameters

Guid for new document (2dc68811-374b-52c4-2382-897db7d56dfc)

13.2 Upload the file
Request

POST /api/3.0/documents/2dc68811-374b-52c4-2382-897db7d56dfc/upload
Authorization: Bearer <xxxxx>
Content-type: multipart/form-data

Parameters

Document guid (2dc68811-374b-52c4-2382-897db7d56dfc),
session token (xxxxxx),
document data (multipart form-data).

Response

HTTP/1.1 200 OK



1 3 E x a m p l e 5 : S e n d a f i l e v i a W o r k s p a c e s 23

© 2 0 1 9 , B l a c k B e r r y • A L L R I G H T S R E S E R V E D .

13.3 Submit request to send link to recipient
(bob@abc.com)
Request

POST /api/3.0/documents/submit
Authorization: Bearer <xxxxxx>
Content-type: application/json

{
  userRecipients: "bob@abc.com",
  permission: {
    print: Boolean,
    edit: Boolean,
    ...
  },
  documentGuids: "2dc68811-374b-52c4-2382-897db7d56dfc"
}

Parameters

Document guid (2dc68811-374b-52c4-2382-897db7d56dfc),
recipients' names (bob@abc.com),
permissions list

Response

HTTP/1.1 200 OK
Content-type: application/json

{
  total: 1,
  items: List( {
    id: 1,
    guid: "2dc68811-374b-52c4-2382-897db7d56dfc",
    ...
  }),
  ...
}
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14 Example 6: Enumerate files in a
workspace
This example shows how to request a list of all files in a workspace that a user has permission to access.

Request

POST /api/3.0/rooms/37/documents/list
Authorization: Bearer <xxxxxx>

{
  ...
}

Parameters

Room id (37),
session token (xxxxxx).

Additional Parameters in the {...} block specify filters and ordering for the enumeration.

Response

HTTP/1.1 200 OK
Content-type: application/json

{
  total: 2,
  items: List( {
    id: Integer,
    guid: "23a78931-3749-5184-2ca2-907dc8d59dfc",
    filename: "document1.doc",
    permissionsJson: {
      print: True,
      edit: True,
      spotlight: False,
      watermark: True,
      neverExpires: True,
      ...
    },
    documentName:"document1.doc"
  },
  {
    guid: "27678251-3843-5184-2ca3-2c7dc8d59dfc",
    filename: "document2.doc",
    permissionsJson: {
      print: False,
      edit: True,
      spotlight: False,
      watermark: True,
      ...
    },
    documentName:"document2.doc"
  } )
}

Parameters

In this example, two documents are returned in the enumerated list (document1.doc
and document2.doc).
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15 Example 7: Change file
permissions
This example shows how to change access permissions for files in a workspace. In this example, file access permissions
are changed for all files that a group (“mygroup”) has access rights to. The permissions are set to enable editing and disable
printing, spotlight view, and watermarks. Other permissions remain the same.

Request

POST /api/3.0/rooms/37/documents/permissions/edit
Authorization: Bearer <xxxxxx>
Content-type: application/json

{
  permittedEntities: List( {
    address: "mygroup",
    entityType: GROUP
  }),
  permissionSet: {
    print: "No",
    edit: "Yes",
    spotlight: "No",
    watermark: "No"
  },
  ...
}

Parameters

Room id (37),
session token (xxxxxx),
Permissions (Edit), groups to apply this to ("mygroup")

Response

HTTP/1.1 200 OK
Content-type: application/json

{
  fullSuccess: "Yes",
  success: "Full"
}

The response indicates that the request was completed successfully.
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16 Example 8: Enumerate folders and
workspaces
This example shows how to get the list of all folders and workspaces that a user has access to. There are two steps: get the list
of all workspaces and retrieve the list of all folders in these workspaces.

16.1 Retrieve the list of workspaces (rooms) for the user.
Request

GET /api/3.0/rooms
Authorization: Bearer <xxxxxx>

Response

HTTP/1.1 200 OK
Content-type: application/json

{
  total: 1,
  items: List( {
    id: 37,
    name: "Room1",
    description: "Primary room",
    ...
  })
}

Parameters

Number of rooms (1),
list of workspaces, including room 37.

16.2 Get list of folders in workspace 37
Request

GET/api/3.0/rooms/37/folders
Authorization: Bearer <xxxxxx>

Response

HTTP/1.1 200 OK
Content-type: application/json

{
  id: Integer,
  hasSubfolders: "Yes",
  room: "37",
  folder: "\String,
  subFolders: List(
    "subfolder1",
    "subfolder2"
  ),
  fullPath: String "\myworkspace\myfolder\"
}
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Parameters

Name of the folder ("myfolder"),
name of the subfolders ("subfolder1","subfolder2"),
path of folder ("\myworkspace\myfolder")
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17 Example 9: Retrieve a list of
activities for a named file
This example shows how to obtain a file guid for a named file and retrieve the activity log for this file using the guid. There
are two requests: retrieve the guid for a named file, and retrieve the activity log for the file by referencing the guid.

17.1 Retrieve the guid for named file, where the name is
"myFile.doc"
Request

POST /api/3.0/rooms/37/documents/guid
Authorization: Bearer <xxxxxx>

{
  folderPath: "\afolder",
  documentName: "myFile.doc"
}

Parameters

Room id (37),
Session token (xxxxxx),
document path ("\afolder") and name ("myFile.doc")

Response

HTTP/1.1 200 OK
Content-type: application/json

{
  guid: "23173251-344c-2b84-63a3-19adc8d59dfc"
}

Parameters

The guid for the document (23173251-344c-2b84-63a3-19adc8d59dfc)

17.2 Obtain the activity log for a file by referencing its
guid
Request

POST /api/3.0/documents/activityLog
Authorization: Bearer <xxxxxx>
Content-type: application/json

{
  documentGuid: "23173251-344c-2b84-63a3-19adc8d59dfc"
}
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Parameters

document guid (23173251-344c-2b84-63a3-19adc8d59dfc),
session token (xxxxxx)

Response

HTTP/1.1 200 OK
Content-type: application/json

{
  total: 2,
  items: List( {
    email: "bob@abc.com",
    activity: "Downloaded original document", details: "-",
    time: "Mon Jun 4, 2012 8:25:20 PST",
    location: "Palo Alt,CA, United States",
    ip: "79.179.169.154",
    device: "8CC133AA"
  },
  {
    email: "tom@abc.com",
    activity: "Opened document",
    details: "On iPad / iPhone",
    time: "Wed Jun 4, 2012 11:03:290 PST",
    location: "Palo Alt,CA, United States",
    ip: "66.201.44.15",
    device: "A3B7A1DE"
   } )
}

Parameters

The response shows that two users accessed the file. In this example, bob@abc.com downloaded
the file and tom@abc.com opened the file on his iPad or iPhone.



1 8 E x a m p l e 1 0 : A d d a u s e r t o a r o o m g r o u p 30

© 2 0 1 9 , B l a c k B e r r y • A L L R I G H T S R E S E R V E D .

18 Example 10: Add a user to a room
group
In this example, the user tom@abc.com is added to the group "mygroup".

Request

POST /api/3.0/rooms/37/members/add
Authorization: Bearer <xxxxxx>
Content-type: application/json

{
  newMembers: {
    permittedEntity: {
      address: "tom@abc.com",
      entityType: USER
    },
    group: {
      address: "mygroup",
      entityType: GROUP
    }
  }
}

Parameters

Room id (37),
session token (xxxxxx),
the user that you want to add (tom@abc.com),
the group that you want to add the user to ("mygroup")

Response

HTTP/1.1 200 OK
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19 Example 11: Delete a file from a
workspace
This example shows how to delete a file from a workspace. It requires two steps: retrieve the guid for the file that you want to
delete, and request to delete the file from its room.

19.1 Retrieve the guid for the file that you want to delete:
Request

POST /api/3.0/rooms/37/documents/guid
Authorization: Bearer <xxxxxx>

{
  folderPath: "\myfolder",
  documentName: "myFile.doc"
}

Parameters

Room id (37),
Session token (xxxxxx),
document path ("\myfolder") and name ("myFile.doc")

Response

HTTP/1.1 200 OK
Content-type: application/json

{
  guid: "23173251-344c-2b84-63a3-19adc8d59dfc"
}

Parameters

The guid for the document (23173251-344c-2b84-63a3-19adc8d59dfc)

19.2 Request to delete the file
Request

POST /api/3.0/rooms/37/documents/delete
Authorization: Bearer <xxxxxx>
Content-type: application/json
{
  folderPaths: "\myfolder",
  documentGuids: "23173251-344c-2b84-63a3-19adc8d59dfc"
}

Parameters

Room id (37),
session token (xxxxxx),
document path ("\myfolder"),
document guid (23173251-344c-2b84-63a3-19adc8d59dfc).
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Response

HTTP/1.1 200 OK
Content-type: application/json

{
  fullSuccess: "Yes",
   success: "Full"
}

The response indicates that the request was completed successfully, and the file was deleted from the workspace. The
document is moved to the Recycle Bin, where it can be recovered if necessary.
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20 Example 12: Update or remove a
file from the Workspaces Inbox or
Sent items
This example shows how to delete a file sent via Workspaces. It requires two steps: retrieve the guid for the file that you want
to delete, and request to delete the file from its room.

20.1 Obtain the file guid by searching the database for
the file name
Request

POST /api/3.0/documents/search
Authorization: Bearer <xxxxxx>
Content-type: application/json

{
  searchString: "myfile.doc"
}

Parameters

Session token (xxxxxx),
file name to search for ("myfile.doc")

Response

HTTP/1.1 200 OK
Content-type: application/json

{
  total: 1,
  items: {
    guid: "23173251-344c-2b84-63a3-19adc8d59dfc",
    filename: "myfile.doc"
  }
}

Parameters

Number of search results (1),
document guid (23173251-344c-2b84-63a3-19adc8d59dfc),
file name ("myfile.doc")
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20.2 Request to delete the file
Request

POST /api/3.0/documents/delete
Authorization: Bearer <xxxxxx>
Content-type: application/json

{
  documentGuids: "23173251-344c-2b84-63a3-19adc8d59dfc"
}

Parameters

Session token (xxxxxx),
document guid (23173251-344c-2b84-63a3-19adc8d59dfc)
and flag indicating not to force delete.

Response

HTTP/1.1 200 OK
Content-type: application/json

{
  fullSuccess: "Yes",
  success: "Full"
}

The response indicates that the request was completed successfully.
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WORKSPACES, WORKSPACES & Design and BLACKBERRY WORKSPACES & Design are the trademarks or
registered trademarks of BlackBerry Limited, its subsidiaries and/or affiliates, the exclusive rights to which are expressly
reserved.

All other trademarks are the property of their respective owners.

This documentation including all documentation incorporated by reference herein such as documentation provided or made
available on the BlackBerry website provided or made accessible "AS IS" and "AS AVAILABLE" and without condition,
endorsement, guarantee, representation, or warranty of any kind by BlackBerry Limited and its affiliated companies
("BlackBerry") and BlackBerry assumes no responsibility for any typographical, technical, or other inaccuracies, errors, or
omissions in this documentation. In order to protect BlackBerry proprietary and confidential information and/or trade secrets,
this documentation may describe some aspects of BlackBerry technology in generalized terms. BlackBerry reserves the right
to periodically change information that is contained in this documentation; however, BlackBerry makes no commitment to
provide any such changes, updates, enhancements, or other additions to this documentation to you in a timely manner or at
all.

This documentation might contain references to third-party sources of information, hardware or software, products or
services including components and content such as content protected by copyright and/or third-party websites (collectively
the "Third Party Products and Services"). BlackBerry does not control, and is not responsible for, any Third Party Products
and Services including, without limitation the content, accuracy, copyright compliance, compatibility, performance,
trustworthiness, legality, decency, links, or any other aspect of Third Party Products and Services. The inclusion of a
reference to Third Party Products and Services in this documentation does not imply endorsement by BlackBerry of the Third
Party Products and Services or the third party in any way.

EXCEPT TO THE EXTENT SPECIFICALLY PROHIBITED BY APPLICABLE LAW IN YOUR JURISDICTION,
ALL CONDITIONS, ENDORSEMENTS, GUARANTEES, REPRESENTATIONS, OR WARRANTIES OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY CONDITIONS, ENDORSEMENTS,
GUARANTEES, REPRESENTATIONS OR WARRANTIES OF DURABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR USE, MERCHANTABILITY, MERCHANTABLE QUALITY, NON-INFRINGEMENT, SATISFACTORY
QUALITY, OR TITLE, OR ARISING FROM A STATUTE OR CUSTOM OR A COURSE OF DEALING OR
USAGE OF TRADE, OR RELATED TO THE DOCUMENTATION OR ITS USE, OR PERFORMANCE OR NON-
PERFORMANCE OF ANY SOFTWARE, HARDWARE, SERVICE, OR ANY THIRD PARTY PRODUCTS AND
SERVICES REFERENCED HEREIN, ARE HEREBY EXCLUDED. YOU MAY ALSO HAVE OTHER RIGHTS THAT
VARY BY STATE OR PROVINCE. SOME JURISDICTIONS MAY NOT ALLOW THE EXCLUSION OR LIMITATION
OF IMPLIED WARRANTIES AND CONDITIONS. TO THE EXTENT PERMITTED BY LAW, ANY IMPLIED
WARRANTIES OR CONDITIONS RELATING TO THE DOCUMENTATION TO THE EXTENT THEY CANNOT BE
EXCLUDED AS SET OUT ABOVE, BUT CAN BE LIMITED, ARE HEREBY LIMITED TO NINETY (90) DAYS FROM
THE DATE YOU FIRST ACQUIRED THE DOCUMENTATION OR THE ITEM THAT IS THE SUBJECT OF THE
CLAIM.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN YOUR JURISDICTION, IN NO EVENT
SHALL BLACKBERRY BE LIABLE FOR ANY TYPE OF DAMAGES RELATED TO THIS DOCUMENTATION
OR ITS USE, OR PERFORMANCE OR NON-PERFORMANCE OF ANY SOFTWARE, HARDWARE, SERVICE, OR
ANY THIRD PARTY PRODUCTS AND SERVICES REFERENCED HEREIN INCLUDING WITHOUT LIMITATION
ANY OF THE FOLLOWING DAMAGES: DIRECT, CONSEQUENTIAL, EXEMPLARY, INCIDENTAL, INDIRECT,
SPECIAL, PUNITIVE, OR AGGRAVATED DAMAGES, DAMAGES FOR LOSS OF PROFITS OR REVENUES,
FAILURE TO REALIZE ANY EXPECTED SAVINGS, BUSINESS INTERRUPTION, LOSS OF BUSINESS
INFORMATION, LOSS OF BUSINESS OPPORTUNITY, OR CORRUPTION OR LOSS OF DATA, FAILURES
TO TRANSMIT OR RECEIVE ANY DATA, PROBLEMS ASSOCIATED WITH ANY APPLICATIONS USED IN
CONJUNCTION WITH BLACKBERRY PRODUCTS OR SERVICES, DOWNTIME COSTS, LOSS OF THE USE OF
BLACKBERRY PRODUCTS OR SERVICES OR ANY PORTION THEREOF OR OF ANY AIRTIME SERVICES,
COST OF SUBSTITUTE GOODS, COSTS OF COVER, FACILITIES OR SERVICES, COST OF CAPITAL, OR OTHER
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SIMILAR PECUNIARY LOSSES, WHETHER OR NOT SUCH DAMAGES WERE FORESEEN OR UNFORESEEN,
AND EVEN IF BLACKBERRY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. TO THE
MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN YOUR JURISDICTION, BLACKBERRY SHALL
HAVE NO OTHER OBLIGATION, DUTY, OR LIABILITY WHATSOEVER IN CONTRACT, TORT, OR OTHERWISE
TO YOU INCLUDING ANY LIABILITY FOR NEGLIGENCE OR STRICT LIABILITY.

THE LIMITATIONS, EXCLUSIONS, AND DISCLAIMERS HEREIN SHALL APPLY: (A) IRRESPECTIVE OF THE
NATURE OF THE CAUSE OF ACTION, DEMAND, OR ACTION BY YOU INCLUDING BUT NOT LIMITED TO
BREACH OF CONTRACT, NEGLIGENCE, TORT, STRICT LIABILITY OR ANY OTHER LEGAL THEORY AND
SHALL SURVIVE A FUNDAMENTAL BREACH OR BREACHES OR THE FAILURE OF THE ESSENTIAL PURPOSE
OF THIS AGREEMENT OR OF ANY REMEDY CONTAINED HEREIN; AND (B) TO BLACKBERRY AND ITS
AFFILIATED COMPANIES, THEIR SUCCESSORS, ASSIGNS, AGENTS, SUPPLIERS (INCLUDING AIRTIME
SERVICE PROVIDERS), AUTHORIZED BLACKBERRY DISTRIBUTORS (ALSO INCLUDING AIRTIME SERVICE
PROVIDERS) AND THEIR RESPECTIVE DIRECTORS, EMPLOYEES, AND INDEPENDENT CONTRACTORS.
IN ADDITION TO THE LIMITATIONS AND EXCLUSIONS SET OUT ABOVE, IN NO EVENT SHALL ANY
DIRECTOR, EMPLOYEE, AGENT, DISTRIBUTOR, SUPPLIER, INDEPENDENT CONTRACTOR OF BLACKBERRY
OR ANY AFFILIATES OF BLACKBERRY HAVE ANY LIABILITY ARISING FROM OR RELATED TO THE
DOCUMENTATION.

Prior to subscribing for, installing, or using any Third Party Products and Services, it is your responsibility to ensure that
your airtime service provider has agreed to support all of their features. Some airtime service providers might not offer
Internet browsing functionality with a subscription to the BlackBerry® Internet Service. Check with your service provider
for availability, roaming arrangements, service plans and features. Installation or use of Third Party Products and Services
with BlackBerry's products and services may require one or more patent, trademark, copyright, or other licenses in order
to avoid infringement or violation of third party rights. You are solely responsible for determining whether to use Third
Party Products and Services and if any third party licenses are required to do so. If required you are responsible for acquiring
them. You should not install or use Third Party Products and Services until all necessary licenses have been acquired. Any
Third Party Products and Services that are provided with BlackBerry's products and services are provided as a convenience
to you and are provided "AS IS" with no express or implied conditions, endorsements, guarantees, representations, or
warranties of any kind by BlackBerry and BlackBerry assumes no liability whatsoever, in relation thereto. Your use of Third
Party Products and Services shall be governed by and subject to you agreeing to the terms of separate licenses and other
agreements applicable thereto with third parties, except to the extent expressly covered by a license or other agreement with
BlackBerry.

The terms of use of any BlackBerry product or service are set out in a separate license or other agreement with BlackBerry
applicable thereto. NOTHING IN THIS DOCUMENTATION IS INTENDED TO SUPERSEDE ANY EXPRESS
WRITTEN AGREEMENTS OR WARRANTIES PROVIDED BY BLACKBERRY FOR PORTIONS OF ANY
BLACKBERRY PRODUCT OR SERVICE OTHER THAN THIS DOCUMENTATION.

BlackBerry Enterprise Software incorporates certain third-party software. The license and copyright information associated
with this software is available at http://worldwide.blackberry.com/legal/thirdpartysoftware.jsp.

BlackBerry Limited
2200 University Avenue East
Waterloo, Ontario
Canada N2K 0A7

BlackBerry UK Limited
200 Bath Road
Slough, Berkshire SL1 3XE
United Kingdom

Published in Canada
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