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Riemann and his zeta function *
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Abstract

An exposition is given, partly historical and partly mathemat-
ical, of the Riemann zeta function ((s) and the associated Rie-
mann hypothesis. Using techniques similar to those of Riemann,
it is shown how to locate and count non-trivial zeros of {(s). Rel-
evance of these investigations to the theory of the distribution of
prime numbers is discussed.
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1 Introduction

The aim of this note is to give a straightforward introduction to some
of the mysteries associated with the Riemann zeta function ((s) of a
complex variable s and the Riemann hypothesis (usually written RH)
about the location of its zeros, both from an historical and a mathe-
matical perspective. The mathematical development will be largely self
contained, and understandable to readers having a basic acquaintance
with real and complex analysis. We hope to elucidate the answers to
the following questions:

(a) What is the Riemann zeta function?
(b) What is the RH?

(c) Why is this conjecture considered so important?

*Invited Article.
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(d) Using techniques available to Riemann, how can one actually lo-
cate zeros of (7

(e) How much did Riemann know about RH (did he even consider it
relevant)?

(f) What is the history of this problem since Riemann?

(g) What is some of the current research being done on RH? (In par-
ticular, recent work of the authors will be briefly mentioned in
this context.)

The zeta function is intimately connected with the distribution of the
primes. Indeed one of Riemann’s primary motivations for studying it
was to prove the Prime Number Theorem, cf. (13). Discussion about
the distribution of primes will therefore be included (cf. §4). Another
extremely important aspect of the Riemann zeta function is its very
significant generalizations, however we only give the briefest of intro-
ductions to this.

The outline of the paper is as follows. Section 2 clarifies the nota-
tions used. In §3 meromorphic functions f and their zeros are intro-
duced, including results for the functions f = sin, I', { that will be
used in the sequel. The RH is stated here. In §4 the history of the
zeta function and the distribution of primes, from Euclid [27] through
Riemann [76], is sketched. The next two sections develop the mathe-
matical theory of ¢ and its zeros starting with basic results such as the
intermediate value theorem from real analysis and the argument princi-
ple from complex analysis, and leading to the location of the first three
zeros of ¢ along the critical line. As mentioned in (d), this will be done
using techniques that Riemann himself may well have used. In §7 we
return to the historical perspective, discuss Weierstrass’ contributions,
and address questions (c), (e), (f), and (g), including Siegel’s very impor-
tant 1932 study [80] of Riemann’s Nachlass. Appendices A, B give short
proofs, respectively, of the Prime Number Theorem and von Mangoldt’s
Theorem. Details of the proof of the Riemann—von Mangoldt explicit
formula 4.6 appear in Appendix C, as well as further discussion, partly
speculative, of question (e).

2 Notation

All notations used in this paper are standard, however we list some of
them here for completeness and convenience.
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logz=1Inz the natural logarithm of a complex number z

|z] the greatest integer < z, also floor of =

[x] the nearest integer to a real number z, x & 1 +Z
{z} x — |z], the fractional part of x

f(x) ~g(x) fis asymptotic to g, i.e. mll)rglo ggi =1

Q

approximately equal, for two complex numbers

2

N—o00
n=1

,Z,H respectively i, Z , H
n=1

p prime p prime

p P
, Z respectively Z , Z

p<z n=1 p prime, p<z

N
1
Euler’s constant, v := lim ( E - — logN) ~ 0.5772
n

i\

3
A
8

the sum taken over all zeros p of ¢ (or £) in the
entire critical strip, with their multiplicities, and in
order of increasing [Im(p)|

M

For functions f, g of a complex (or real) variable z, where g is positive
real valued, we define

(a) f(z) =o(g(2)) if lim|, |0 [ (2)[/9(2) = O,
(b) f(z) = O(g(z)) if there exists a constant C' > 0 such that | f(z)| <
Cy(z) as |z| — oo.

For any piecewise continuous function f of a real variable z, with only

jump discontinuities, we define f(z) := %lir%(f(x +e)+ flx —¢)).
e—

3 Meromorphic functions

Recall that an entire function f: C — C is one that is complex differ-
entiable (i.e. holomorphic, equivalently analytic) at each s € C. One
calls a function meromorphic on a subset A C C if it is defined on
some open neighbourhood U of A, except at a discrete (possibly empty)
subset S C A, and is holomorphic everywhere on U \ S with poles
at the points of S. The remainder of this section gives examples of
meromorphic functions (as well as their poles and zeros) that will be
important in the subsequent development of the Riemann zeta function
¢(s). Throughout this note we write s = o + it for a complex variable,
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o = Re(s), t = Im(s) being respectively the real and imaginary parts of
s, a tradition that goes back (at least) to Landau [57] in 1909.

Example 3.1 Let f(s) = % be a rational function, where p,q are

relatively prime polynomials of degree m,n respectively. Then f has m
zeros and n poles, where zeros are always counted with their multiplic-
ities, and poles with their orders. A zero of multiplicity 1, or a pole of
order 1, is called simple. As a specific illustration of this type, consider

— _ s34l ; — 1 1438,
fls) = CRYEE Here f has the three (simple) zeros s = —1, 5 £ %5°i,

and the pole of order two s = 2¢. In this way, any two disjoint finite
sets with assigned multiplicities (respectively orders) can be obtained
for the zeros and poles of a meromorphic function, which can be taken
to be a rational function.

As the following examples show, for more general meromorphic func-
tions the number of zeros or poles can well be infinite.

Remark 3.2 For any non-constant meromorphic function the numbers
of zeros and poles are at most countably infinite, since it is standard
that the sets of zeros and poles must be topologically discrete subsets
of C (cf. [58], III, §1 and V, §3). The latter property will be useful in
the sequel.

Example 3.3 Let f(s) = sin(s). Then f is an entire function (hence
meromorphic with no poles), and all zeros lie on the real axis, namely
s =nm, n € Z. To verify the statement about the zeros, recall that

sin(s) = sin(o + it) = sin(o) cosh(t) + i cos(o) sinh(t).

An easy calculation now shows that |sin(s)|? = sin?(o) +sinh?(t), hence
sin(s) = 0 implies both sinh(¢) = 0 and sin(o) = 0, i.e.t = 0 and 0 = n.

We remark that the function sin satisfies the well known functional
equations sin(s + 7) = —sin(s), sin(—s) = —sin(s).

Example 3.4 f(s) =I'(s). The gamma function is usually introduced
in real analysis courses via the integral due to Euler [28]:
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The second form for this integral is called the Mellin transform [70]
of L. (The integral (1) can also be viewed as a Laplace transform.)
The requirement s > 0 guarantees convergence. An easy exercise in
integration by parts shows that I'(s) = (s — 1)I'(s — 1) for s > 1. Also
['(1) = 1 is clear, hence I'(n) = (n — 1)! for n € N. Exactly the
same arguments work if s = o + it € C, ¢ > 0, and thus the above
integral defines a holomorphic function I'(s) for o > 0, satisfying the
functional equation I'(s) = (s — 1)['(s — 1), s € C and o > 1. Using the
functional equation and the principle of analytic continuation extends I
to a meromorphic function on C with simple poles at s =0, —1,—2,... .

Other basic properties of the gamma function are the reflection for-
mula of Euler

s

2)  D(s)[(1—s)=

Sin(ms)’ s¢€7Z (ie. sin(ws) #0),

and the duplication formula of Legendre

3) T(s)0(s + %) _ R (2s), 25 ¢ Zeo.

From (2) it is easy to see that I'(s) # 0 for all s in its domain. An
interesting historical discussion of the gamma function is given in [21],
and proofs of (2), (3) can be found in the classic work of Artin [3] as
well as many other texts. For example, in [58], XV, §2, proofs are given
based on the Weierstrass product formula (30).

Example 3.5 f(s) = ((s). The Riemann zeta function will be de-
scribed in much more detail in §4 and thereafter. Here we introduce
it by three equivalent formulae, the usual Dirichlet series, the Euler
product, and a Mellin transform expression similar to (1):

=1 1 1 [ 25 dx
) C(S):Zns:1_[1—10_5:1%3)/0 e —1 o> 1L
n=1 P

The integral representation of ((s) in (4), at least for s € R, s > 1, is
due to Abel [1] in 1823. Riemann [76] obtained it by making the change
of variable z = tn in the definition (1), and then summing for all n > 1,
as shown by the following sequence of formulae, for o > 1:

0 ,.s—1 o0 ts—1
F(s):/ SU dz, I(s) :/ t dt, and
0 0

er ns etn
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T(s)¢(s) = /0 A

et —1

In all three cases in (4) the condition ¢ > 1 is necessary for con-
vergence. Again, by analytic continuation (cf. (10), or (16), (17)), ¢(s)
can be extended to a meromorphic function on C with a single (simple)
pole at s = 1, and satisfying a functional equation relating ((1 — s) and
¢(s), cf. (18). Using the functional equation we shall see in §5 that ¢
has (simple) zeros at s = —2,—4, —6,... . These are called the trivial
zeros, and we shall also see that the functional equation implies that all
other zeros, the non-trivial zeros, lie in the critical strip 0 < o < 1. The
line o0 = % is called the critical line.

The Riemann Hypothesis asserts that, for any non-trivial zero
s = o +it of (, 0 = 1/2, i.e. all non-trivial zeros of ((s) lie on the
critical line.

Remark 3.6 All functions f considered in 3.3, 3.4, 3.5 satisfy f(s) € R

for all real s in their domain, which is equivalent to f(5) = f(s) for any
meromorphic function on C. This means that all their zeros are real or
occur in conjugate pairs o =+ it.

4 History from Euclid to Riemann

Let us now look at some of the fundamental ideas and theorems that
played an important role in the historical development of the theory of
the Riemann zeta function, up to and including Riemann’s monumental
1859 paper [76], which is also quite remarkable since it is only eight
pages long (see Appendix of [25] for an English translation). It should be
mentioned that while much of this work (including Riemann’s), coming
before modern standards of mathematical rigour were introduced to
analysis by Weierstrass and his successors (notably Hardy), falls short
of what would be considered acceptable proofs today, this in no way
detracts from the originality and significance of this pioneering work.

The Fundamental Theorem of Arithmetic, originating in Book IX of
Euclid’s Elements [27] (Proposition 14), states that every n € N has a
unique representation, up to order, as a product of prime numbers

(5) n=p/Mpy?-pt =] pf,  mixL
Pi|n
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Here the existence of a prime factorization easily follows by induction.
Uniqueness, likely first proved by Gauss in 1801 [37] (although tacitly
assumed by many prior authors), also can be proved by induction and
Euclid’s lemma (Proposition 30 of [27]), i.e. plab = p|a or p|b. Euclid
used the existence of a prime decomposition to show that there are
infinitely many primes [27] (Proposition 20).

The Fundamental Theorem of Algebra, proved by Gauss in his The-
sis [36] of 1799, states that if P(z) is a polynomial of degree n > 0
with complex coefficients, then P(z) has a unique (again up to order)
factorization into n monic factors of degree 1 and a constant non-zero
factor, over the complex numbers. In other words, P(z) has n zeros (or
roots) in C, counted with multiplicities, and factors as

(6) P(z)=a(z—21)(z— 2) - (2 — ) = a ] [ (z — 2),
=1

for z; € C and a € C\ {0}. Partial results (for situations in R) had been
obtained by Girard [39] in 1629 and Descartes (his Rule of Signs) [23]
in 1637, and again this theorem was tacitly assumed by various authors
prior to Gauss.

In the early 1730s, Euler found new, ingenious ways to combine (5)
and (6) with theorems from analysis in order to prove new results in
number theory. In 1737, in his Variae observationes [32] he used (5) to
prove that the function ((s) has the product representation (4) for all
real s > 1. Its significance comes from the fact that, for the very first
time, one has an explicit link between prime numbers, natural numbers,
and analysis, that can be used to study the distribution of primes (Euler
mainly considered the special case where s is an integer, s > 1). As an
immediate application of this product representation, the divergence of
the harmonic series Y, 1 = ((1) gives a new proof of Euclid’s theorem
on the infinitude of primes. As a second application, taking logarithms
of both sides of the product representation in (4), Euler himself was

able to obtain, for s > 1,

log((s) = Y log (1 - ;)1

(7) ’
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1 1 1 1 1
where 0 < R(s) < 32,0 o mpm = 322 p5p-1) < 2 2one2 n(n=1) —
%. Letting s — 17, we now see that the divergence of the harmonic
series Zn% = ((1) implies that Zp% = 00, a non-trivial statement of

Euler [32] about the density of the primes.

Remark 4.1 Using Euler-Maclaurin summation (cf. §6), discovered by
Euler [29] in 1732, and Maclaurin [67] in 1742, Euler found:

1 rdt [T {t} {z}
© o= o) war-tT e Gosn o)

n<x

and then guessed the 1874 theorem of Mertens [71]:

1
Z — ~ loglogz.
p

p<z

The inequality (similar to (7)) logd~, , 1< > p<a % + %Zpgx ﬁ
and (8) imply a weaker, but still very interesting lower bound

1 1\ ¢ 1 1 1
- > log <1—> - = — > loglogz — =
> 11 32 o7 =T 5

p<w p<z p p<z

for all z > 2. This gives a second non-trivial statement about the density
of the primes, strengthening the conclusion Zp% = oo from (7).

In 1734 (see [30] and [31]), Euler showed that ((2) = %2, a difficult
question proposed by Cavalieri’s student Mengoli [97] as early as 1650.
Factoring the function sinz in terms of its zeros: 0,+m, 27, ..., as if
it were a polynomial in (6), Euler found its product representation (see
also 7.3), and he equated it with the Taylor series of sinz,

sing = xﬁ[@;)(l%)}:xﬁ(l;;)

n= n=
D 1
T TR
Comparing the coefficients at 22 immediately gives us — Don 7r21n2 = —%.
Another proof of the formula for {(2) can be obtained using the Fourier
series expansion of f(z) = 2%, —m < 2 < 7, evaluated at * = 7. See

also 5.2 for another method.
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Remark 4.2 In 1837, Dirichlet [24] generalized parts of Euler’s work
on the zeta function in two significant ways. First, in (4), he now
thought of s € R, s > 1, whereas Euler had mainly considered cases
where s € Q, s > 1, see also (18). Second, Dirichlet introduced the
generalization of (4) and of (17)

—1
9) L(s,x)zzxg) :H<1—X(p)> Cos> 1,

S
p p

where x is a Dirichlet character modulo a prime ¢ (we do not define
this here, it is not necessary for the further discussion). Using this he
generalized Euler’s argument and proved his celebrated theorem [24]
that, for any coprime a and b, we have

Y o

p=b (mod a) p

He thereby proved a famous conjecture of Legendre [60], that any arith-
metical progression {an + b|n € N}, where a,b are relatively prime
integers, contains an infinitude of prime numbers.

From the work of Euler and Dirichlet, it became clear that analytical
methods were a powerful tool in number theory.

The main reason Riemann, who was a student of Dirichlet, was able
to make tremendous advances in the theory of the zeta function, was the
growth of the new field of complex analysis, created by Fourier, Cauchy,
Gauss, and others in the period 1800-1830. In his thesis, submitted to
the University of Gottingen in 1851, Riemann himself vastly enlarged
this new branch of analysis. Such basic notions as the Cauchy-Riemann
equations, the Riemann mapping theorem, and Riemann surfaces are
among his many contributions to the subject, especially to that part
now called geometric function theory. Probably no mathematician, for
at least the 50 years following Riemann’s death (at age 39, in 1866),
came close to his mastery of geometric function theory, which he used
to good advantage in his work on the zeta function.

In 1859, Riemann defined ((s) as a function of a complex variable s.
The first step was to extend (or to analytically continue) the definition
(4) of ¢(s) to all of C\ {1}. This can be accomplished by noticing that,
for o >0, n7* =5 [ a7 tdz, and so

o0

10) () =YL = i<s/noox‘ff1>_ silwx‘fi

n=1 n=1
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/ z; xs+1: /100$Lﬁ1 dz = /1 x;if}
s > {x}

= — S dx for o>1.
s—1 1 s+l

Since {z} € [0,1), it follows that the last integral converges for o > 0,
and defines a continuation of ((s) to the half-plane 0 = Re(s) > 0. If one
continues this process, one can extend ((s) to a holomorphic function
on all of C\ {1}. One sees from (10) that s = 1 is a simple pole with
residue 1. See also (16) for Riemann’s original technique, or (17).

Remark 4.3 Note that for s real, s > 0, the last integral in (10) is
always positive real. It follows at once from (10) that {(s) < 0, s € (0,1),
and clearly ((s) > 1 for s € (1,00).

Remark 4.4 The next step of this continuation process gives

oot ) <t
1

o, o> —1.

1
&) =577 27 "3

It follows at once that ((0) = —%. Applying Stirling’s formula (22) and
the definition of v, one also shows (’(0) = —3 log(2m).

In order to see a deeper connection between ((s) and prime num-
bers, let us now follow Riemann’s ideas [76] and employ the logarithmic
derivative of the Euler product (4), using (7):

(11) - SS Z Z logp = Z AT(;Z) for o >1,

pml n=2

where A(n) is von Mangoldt’s function [68], defined as A(p™) = logp
for a prime power p, and 0 otherwise. We also define the Chebyshev
function (cf. [13])

= ZA(n Z log p.

n<x pm<z
Note that (11) can also be written, for o > 1, as

(12) - Ss ZZ Ing = / x %dy(x) = 8/100 fﬁfl) dx

pml
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We now turn to the early developments related to the Prime Number
Theorem (PNT), stated in (13) below, a much stronger statement about
the asymptotic distribution of the primes (e.g. compared to Zp ]% = 00).
In a letter written to the astronomer (his former student) Encke in 1849
(cf. [38] or Appendix B of [40]), Gauss stated that he observed as early
as 1792 or 1793 (when he was only 16) that the density of primes around
a number x appears to be on the average inversely proportional to logx,
and therefore the logarithmic integral Li(z) := ; lodgt ; should provide
a good approximation to the prime counting function 7(z) := Zpgz 1.
Gauss’ work on this question, both as a youth and in his 1848 letter,
was empirical in nature and unpublished.

Prime Number Theorem (PNT):
(13) m(x) ~ Li(z).

Remark 4.5 The PNT was proved in 1896, cf. Appendix A. The RH
is closely related to refining the PNT further by estimating the error

in the approximation (13), indeed, it is equivalent to this error being
O(y/xlogz), cf. [54] and §5.5 of [25]. See also A.2 and A.3.

The first published account is probably due to Legendre [60] in 1798,
again based on empirical observations. Legendre conjectured that, for
x large, m(x) ~ z/(logz — 1.08366). Let us mention here that Legen-
dre’s formula clearly implies 7(z) ~ loiw, and this in turn is equivalent
to PNT, due to (15). Gauss, in his 1849 letter, compared Legendre’s
formula to Li(z) for values of z = 5 x 10°, 105, 1.5 x 10°,...,3 x 10°.
He noted that while the Legendre formula seemed to have smaller devi-
ations from 7(z), these deviations seemed to be growing more rapidly
than for Li(z), and therefore it was “quite possible they may surpass
them” (i.e. the deviations of the Legendre formula would eventually
become larger than for Li(x)).

The two memoirs published by Chebyshev [12], [13] in 1848 and 1850
comprised the first mathematical attack on the PNT. In [13] he defined
the function ¥ (z) (above), also defined 0(z) := > _, logp, realized
that ¢(z) is nearly equal to x (e.g. for n = 102, 103, 10%, 10%, ¢(n)/n =
0.94045, 0.99668, 1.00134, 1.00051 respectively), and can be estimated
more easily than w(z). He was able to prove that, for x sufficiently
large, it satisfies the inequality Az < ¢(x) < Bz with A = 0.92129,
B =1.10555. He used this to show that, for x large,

Yo oa@) < 1112

(14) 0.89

log x log x
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(see also [25], §1.1).2 As an application, Chebyshev [13] gave the first
proof of Bertrand’s postulate®, as well as obtained the following inter-
esting result: for any positive non-increasing function F' = F'(n), n € N,
the series >, F'(n) and }_, F'(p) logp either both converge or both di-

verge. Chebyshev [12] also proved that hm /1( 2) , if it exists (possibly

infinite), equals 1, and hm( =y — log x) 1f it exists (possibly infinite),

equals —1. As a consequence, based on the asymptotic expansion of

Li(z):

x x x x
15) Li(z)= — + —— 4 ... —1)! :
(15) i) log = * log? oot =) log" x +o <10g”:n)

for any fixed n, he showed (by taking n = 1 and n = 2) that oz T
provides the best approx1mat10n to m(x) among all formulae of the form
(in particular, both and Legendre’s empirical formula),

Alogxx—B log
provided that the above two limits exist. Validity of the latter assump-
tion was finally confirmed in 1899, see §7 and A.2.

Riemann’s original motivation for his study of the zeta function was
to obtain an explicit formula such as (49) for m(x), similar to 4.6 below,
and to prove the PNT. Being aware of Chebyshev’s work (indeed Cheby-
shev had met Riemann’s mathematical mentor Dirichlet in 1852%), Rie-

2Chebyshev’s method was used later to give an elementary proof of PNT, see
Appendix A.

3In his group-theoretical investigation in 1845, Bertrand used the following propo-
sition which he only verified within the limits of tables of primes: for each integer
x > 7 there exists a prime p € (§,z—2], cf [57], §4. In fact Chebyshev [13] strength-
ened this by proving 7(2z) — w(z) > 2 Tog(zzy for « sufficiently large.

4“Tn the summer of 1852, however, he [Chebyshev] was sent on an official mission,
lasting six months, to visit the cities of Berlin, London and Paris. The main purpose
of this was the inspection of factories and workshops, in order to learn about the use
of steam engines and other types of machinery. ...

However while studying new technologies in the daytime he found opportunities in
the evenings to meet the foremost mathematicians in the places he was visiting. For
example in Berlin he spent a considerable time with Dirichlet, in London with Cayley
and Sylvester, and in Paris he was warmly received by Liouville, who introduced him
to other French mathematicians. ...”  Excerpted from [51], Ch. 4.

“It was of great interest for me to become acquainted with the celebrated geometer
Lejeune-Dirichlet. ... [I] found an occasion each day to talk with this geometer
concerning [applications of calculus to number theory] as well as other questions
on pure and applied analysis. ... [I attended] with particular pleasure one of his
lectures on theoretical mechanics.”  Excerpted from Chebyshev’s report on his trip
to Western Europe [14], p. XVII.
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mann came up with the revolutionary idea of applying Fourier analy-
sis (of which he was a master) in order to get more precise informa-
tion about m(x) via a function II(z), cf. (46), which is analogous to
Chebyshev’s 1 (x). For the purpose of Fourier analysis we also modify
1 slightly (by a standard procedure) to 1, as given in §2.

A fundamental link between the functions ((s) and ¢ (z) can be
obtained by inverting (12) to get an analytic expression for &(m) In
fact, starting from (12), the classical Fourier inversion formula® implies,

for any fixed a > 1,

B L 1 a+iT C/<3> SdS
Y(x) = lim ‘/a_iT <_C(s)>xs’ x> 0.

Now consider the closed rectangular contour C with vertices a + 147,
—(2n + 1) £ 4T, with counterclockwise orientaion, where 7" — oo is
suitably chosen (cf. C.1 (a)) and n € N, n > TlogT. With careful
estimations of the modulus of the integrand on the horizontal edges of
C, as well as the left hand edge, one shows that the contribution of these
three edges approaches 0 with T'— oo as above, and hence (cf. C.1)

C’(3)> s ds

U(z) =

P 2mi c< ¢(s)

T’ —, x> 1.
s

The latter integral is easily evaluated using the residue formula
(cf. [58], VI, §1). The poles of the integrand inside C occur at s = 1,
at the non-trivial zeros p of (, at the trivial zeros —2n of (, and at
s = 0. The residues are, respectively, x (since s = 1 is a simple pole
of ¢, cf. (10)), —m(p)%, m(p) € N being the multiplicity of p, %
(since all trivial zeros of ¢ are simple, cf. 5.1), and —% = —log(2m),
see 4.4. This leads directly to formula (38), which in turn leads to the
important “explicit formula”, stated by Riemann [76] in slightly differ-
ent form (47), and proved in both Riemann’s form and the following

form by von Mangoldt [68]:

*When o = a > 1, we can rewrite (12) as

(latit) 1 _ (e
Clat+it) a+it’ ‘

f(t) = / T eitig(y)dy, where  f(t) = —

Lt
t € R, y € R. By the Fourier inversion formula, g(y) = lim — / e f(t) dt.
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4.6 Explicit formula (Riemann—von Mangoldt [68], 1895) For
z>1,

2

P(x) =z — Z% + %log <x2:c_1> — log(2m),

the sum being extended over all zeros p (with multiplicities) of ¢ in the
entire critical strip, in order of increasing |p| (compare §2). O

Evidently, the explicit formula 4.6 gives a very precise description
of the error committed in the approximation i(z) ~ z, and more im-
portantly, it relates (e.g. in Appendix A) the estimation of this error to
the location of the non-trivial zeros. Since the vertical distribution is
reasonably well known, see (33), 7.5, the horizontal location of the zeros
becomes of paramount importance, see also Remark A.3.

We close this historical discussion by appending Riemann’s formula
in [76] to obtain the analytic continuation of ¢ to all of C\ {1}:

(16) ((s) = M H(s), where H(s) := /c

21

(—2)° d=

e —1 z

)

s € C\ N, and C = C; UCy UCs3 is the contour from 400 to +0o shown
in Figure 1 with Cy a circle of radius €, 0 < ¢ < 2.

Co

O £ 634>

Figure 1: The Contour C for the Hankel Integral

Nowadays H (s) is known as the Hankel integral ([58], XV, §4), and
the exponential function (—z)* = e°1°8(=2) is defined by taking log(—z)
to be the principal value of log on C with the negative real axis deleted.
It follows that Im(log(—=z)) varies from —7 to +m on Cy, and hence one
defines log(—z) = log |z| — mi on Cy, log(—z) = log|z| + mi on C3. The
radius € of Co is taken less than 27 so that z = 0 is the only zero of
the denominator e* — 1 inside or on C. The exponential decay of the
integrand and Lemma 1.1 of [58], XV (which allows one to differentiate
under the integral sign) show that H is an entire function.
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Formula (16) for ¢ > 1 follows from (2) and the Mellin transform
expression (4) of ¢, by showing that

o S d
H(s) = | + [ + [ = 2isin(rs) R !
v 1
C1 Co Cs 0o ¢ x

where Eli%l+( fCl + sz) equals the right hand expression, while fcz equals

(—=z

271 times the average value of 62_15 = (—2)* 132

e*—1
has limit 0 as € — 0. Thus (16) gives the analytic continuation of ¢ to

C\ {1}.

on Co, and hence

5 Symmetry and the associated ¢ function

In 1749, Euler returned to the subject in his paper [35], see also his 1748
book [33]. This time he considered the closely related function®

(_1)n+1

(17 ols) = 3 = (1217 ().

. . . —1)ntl . .
Using the associated power series ¢(s,z) =) ( n)s z™, which is ab-
solutely convergent for |z| < 1, s € R, and taking limits as © — 1~ (cf.
Hardy [46], §2.3, for details), he proved that, for any integer m > 2, we
have

7-(-7n(2'm71_1)
0 if m is odd.

. o1 —m,z) (—1)ym/2H1 2221 () — 1) if m is even,
s d(m,xz)
He then formally replaced lim ,_,;- &(s,x) by ¢(s) and, with the help
of the cosine function, rewrote this in the simple form

o(1 —m) om _ 1

o) = T 1) (m — 1)!008% for all m € N\ {1}.

At this point Euler states his belief that the same should remain true
for all real numbers, i.e.
b(1—s) 25— 1

s
o6) = mpeion ®esy fors €RV{LO,-1,-2,.

5The series in (17) uniformly converges in the half plane ¢ > ¢ for any ¢ > 0 [57],
§42, and thereby determines an analytic continuation of {(s) to o > 0.
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Due to (2), this is equivalent to saying that, for all s € R\ Z>¢, we have
(18) C(s) = |27 (1 — ) sin %S] C(1—ys),

the so called functional equation of (. Euler did not know how to prove
this intriguing assertion, but he verified it for several non-integer values

_ 1 3
of s,e.g. s =3, 3,

and %

In 1859 Riemann [76] was the first to indicate that (18) is true,
indeed for all s € C\ Z>p. Today, many proofs of this important result
exist (see [25], [55], [57], [58], or [85]). In [76] Riemann first expressed
((s) in terms of the Hankel integral H(s) for all s € C\ N, cf. (16).
He then evaluated H(s), for o < 0, by reversing the orientation of the
contour C shown in Figure 1, and applying the residue formula (cf. [58],
VI, §1) to the domain D exterior to C (taking account of the poles of the
integrand in this domain at z = 2nki, k € Z \ {0}, where ¢* — 1 = 0).
This yields the functional equation (18) for o < 0, and therefore for all
s € C\Zs>p, since the difference of the two sides of (18) is a meromorphic
function on C having a non-discrete set of zeros, see 3.2. Since D is not
bounded, to make Riemann’s argument rigorous one can replace D by its
intersection with a large square |Re(z)| < (2n+1)7, [Im(2)| < (2n+1)m,
and take the limit of the integral as n — oco. Notice that |e* — 1| > 1/2

. (—2)° dz
on the boundary Q of the square, hence lim —=0,0<0

n—oo [oe* —1 z
(see also [25], §1.6).

Remark 5.1 Strictly speaking (18) does not hold when I'(1 — s) is
undefined, which as we saw in 3.4 is true precisely for the poles at

s =1,2,3,.... However, for s = 3,5,7,..., ((s) is some positive real
number and |sin(%’)| = 1, so an easy continuity argument shows ¢(1 —
s) then must equal 0, i.e. 0 = ((—2) = ((—4) = .... As mentioned

in 3.5, these are called the “trivial” zeros of the zeta function. We
now see that they are the only possible zeros on the real axis, and
are simple zeros. Since any convergent infinite product with non-zero
factors cannot equal 0, the Euler product formula (4) already shows
¢(s) # 0, 0 > 1. Then (18) and the observations about the zeros of
the functions sin,I' in Examples 3.3, 3.4, show that {(s) # 0, o < 0,
apart from the trivial zeros on the negative real axis. The assertion in
Example 3.5, that all non-trivial zeros lie in the critical strip 0 < o <1,
is thus proved.
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Remark 5.2 Alternatively, the result about the trivial zeros of { in
Remark 5.1 can be thought of as a special case of the following explicit
formula, which can be easily derived from the Hankel integral (16),
cf. [25], §1.5:

Bn+1
n+1’

¢(=n) = (=1)" n=0,1,2,....

Here B,, is the nth Bernoulli number [7], defined by

For example, By =1, B, =1/6, By = —1/30, Bs = 1/42, Bg = —1/30,
BlO = 5/66, B1 = —1/2, Bg = B5 = B7 = ... = 0. In view of
the functional equation (18) with s = —2k + 1, the above formula for
((—n), with n = 2k — 1, is equivalent to Euler’s famous formula in [34]:

C(2k) = (—1)’““% ,  keN.

Having derived the functional equation (18), Riemann proceeded at
once to obtain a more symmetric form by defining

(19) &(s) = gsle =N = (= DG + )7,

Proposition 5.3 (Riemann [76], 1859) The function £ satisfies

(a) &(s) =&(1 = s),

(b) € is an entire function, and £(3) = &£(s),
(c) £(3 +it) € R,

(d) If £&(s) =0, then 0 < o <1,

(e)6(0) = £(1) =1/2,

(f) &(s) >0 for all s € R.

Outline of proof: Using the properties (2), (3) of the gamma function,
deriving the functional equation (a) for £ from that of ¢, i.e. (18), is a
straightforward exercise. The second expression in the definition (19)
shows at once that & is holomorphic for ¢ > 0, since the simple pole
of ¢ at 1 is removed by the factor s — 1, and there are no other poles
for o > 0. But then (a) implies £ holomorphic on all of C. The second
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part of (b) follows trivially from (19) and 3.6. Combining (a) with (b)
and 3.6 gives (c), and similarly for (d) by first noting £(s) # 0, o > 1.
The known values I'(1) = 1, ((0) = —1/2 (see 3.4, 4.4) imply (e) for
€(0), and the functional equation (a) then gives the result for £(1).
Finally, to prove (f), first note from (1) that I'(s) > 0 for all s € R,
s > 0. Combining this with Remark 4.3 and the definition (19) of ¢
proves (f) for s > 0, s # 0,1. Combining this with (e) then proves (f)
for all s > 0, whence the functional equation (a) shows that (f) holds
for all s € R. 0

Corollary 5.4 The zeros of the function & are identical to the non-
trivial zeros of the function . O

It is now possible to understand what Riemann meant when he
stated (his version of) the RH, which we quote in the original Ger-
man, followed by an English translation ([25], Appendix): “Man findet
nun in der That etwa so viele reele Nullstellen innerhalb dieser Grenzen,
und es ist sehr wahrscheinlich, dass alle Wurzeln reel sind” (One finds
in fact about this many real roots within these bounds, and it is very
likely that all of the roots are real). At this stage (the third page) of
his paper [76], Riemann is referring to the function £(1/2 + iu) of the
complex variable u. The fact that all zeros of this function are real (i.e.
u € R) is equivalent to the fact that all zeros of £(s) have real part
Re(s) = 0 = 1/2, which by Corollary 5.4 is equivalent to RH.

Remark 5.5 Riemann used the letter ¢ for the complex variable that
we have denoted by 1/2 + iu above (so as to avoid any confusion with
the previous use of ¢ throughout this paper). In fact Riemann’s choice
of the letter ¢t was somewhat unfortunate and has led to some confusion
in the literature, as well as a minor error in Riemann’s paper, see the
footnotes to 5.3 (e) and (47).

It is also now possible to anticipate Riemann’s strategy in [76] for
locating zeros of ( (equivalently of &) in the critical strip, which we
will carry out in detail in the next section. Estimating the real number
€(1/2 + it) for various real values of ¢ in an interval 0 < ¢ < T, at
least closely enough to determine its sign, will guarantee the existence
of at least N zeros (along this portion of the critical line) when the
sign changes N times, by the intermediate value theorem. Further,
the argument principle (a standard result in complex analysis, stated
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immediately below as Theorem 5.6), and some further estimation of a
suitable contour integral, will allow us to count the number

(20) N(T) := |{s€C |0<Re(s) <1,0<Im(s) <T,{(s) =0}

where each zero is counted with its multiplicity. When N > N(T)), it
follows that there are exactly IV zeros in this portion of the critical strip,
all lying on the critical line and simple.

Theorem 5.6 (Cauchy’s principle of the argument)  Let f be
meromorphic on a simple closed curve C and in its interior. Further
assume f has no zero or pole on C. Then

Acarg(f(2) = 2~ P,

where Z equals the number of zeros (with multiplicities counted), and
P the number of poles (with orders counted), of f in the interior of C,
and Ac arg(f(z)) equals the net change in the argument arg(f(z)) as z
makes one counterclockwise circuit of C. g

In our application of 5.6 we will have f = £, thus P = 0. It is
important to also note that

21)  Acarg(f(2) = Im < /C ffl((j)) dz) _ % /C J;/((j)) dz.

Furthermore, the first equality in (21) holds more generally for any path
C, not necessarily closed.

6 Location of the first three zeros of (

Following the strategy outlined before 5.6, let us choose T = 28. We
shall show that N > 3 and N(28) = 3.

6.1 Demonstration that N > 3

We already know (Proposition 5.3 (f)) that £(1/2 + it) is positive for
t = 0, and now outline a method that will show £(1/2 + 18i) < 0,
€(1/2+423i) > 0, £(1/2 + 27i) < 0. Thus there must be at least three
zeros on the portion of the critical line s = 1/2 +it, 0 < t < 28.
Our technique to approximate the £ values, at least accurately enough
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to determine the signs, is based on the Euler-Maclaurin summation
method and simple computations that can be done by hand. It is clear
that with modern computers similar computations can easily be carried
out for much larger values of T.

The Euler-Maclaurin summation formula arises from the approxima-
tion of a discrete sum by a definite integral, and can be found in many
references (cf. [25], §6.2, or [77], §3). The theory is more or less ele-
mentary and involves Bernoulli numbers as well as their generalization
to Bernoulli polynomials. A simple example, familiar from elementary
calculus, is the approximation of the harmonic sum 2?21 1/j by the
definite integral [["(1/z)dz =logn, see (8), or the last equality in (10)
for another example. We will content ourselves in this section with a
couple of further examples which illustrate the method and apply to our
proposed computations. A nice feature of the method is that it enables
one to estimate partial sums of potentially divergent series, with a strict
control of the error term.

Example 6.2 The sharp Stirling series for logI'(s). The formula, de-
rived by Stirling [84] in 1730 (for s € R, s > 0), states that, if s = re'?,
r>0, —7m<60<m, then

n
logT'(s) = (s—f)logs—s+ log (2m) +; 2k—1 ka%_l + Ron(s),

where one has the strong upper bound (due to Stieltjes [83], see also [25],
§6.3) for the error term

Ron(s)] < ((19/2))+

It may not be obvious that this infinite series is actually divergent.
The divergence is due to the fact that the Bernoulli numbers actually
grow very rapidly, for example Bsg = %2103 ~ 1425517.17, or more
generally®

Bop o
(2n+1)(2n + 2)s2ntL |’

2n
| Bop| ~ 4/ (1)
e

8This asymptotic formula for the Bernoulli numbers is very accurate. For example,
for n = 13, it gives Bag ~ 1420956, compare 6.2. It does not seem to appear in the
literature, but can be deduced from [59] or [20].
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Nevertheless, one can use the first few terms of the series to estimate
log'(s) very accurately, i.e. with very small remainder. As a conse-
quence, we also obtain the “classical” Stirling formula

[2m s°
(22) F(S) ~ ? E, g 2 O, ‘S‘ — OQ0.

As a specific example (that will be used later), take s = 5/4 + 9i
and n = 1. Then

1/6
1-2'80

logT'(s0) = (so — 1/2)log(sg) — so + %10{;(277) + + Ra(s0),

where the inequality |so| > 9 and the Stieltjes remainder formula give
|Ra(s0)| < 4-(1/30)/(3-4-9%) ~ 1.52416 x 10~°. Evaluating the above
then gives log I'(5/4+9i) ~ —11.5698+11.92657, where the magnitude of
the remainder shows that the accuracy is to about six significant digits.
Exponentiating this gives I'(5/4+9i) ~ 107%(7.57806 — 5.640574), again
with about six digit accuracy.

We remark that several calculations with complex numbers are in-
volved in the above evaluation, and also the use of the well known
formula log(r - €?) = log r + i 6. This must be applied carefully since
is only unique mod(27); we take the branch of the logarithm function
(for log(3 + 9i)) where 0 < @ < m/2. Mathematical software can differ
on the choice of branch, so an answer differing by 2mm¢, for some inte-
ger m, can easily occur. For example MAPLE gives logI'(5/4 + 9i) ~
—11.56982768 — 0.6398651938i, to ten digit accuracy. Of course, this

difference of 47i becomes irrelevant once the exponential is taken.

Before turning to our next example, we state an Euler-Maclaurin
summation formula for IV(s)/I'(s), essentially the derivative of the first
formula in 6.2, with n = 0, that will be of use in other parts of this

paper:

1
=logs — o~ + Ry(s),

(23) I'(s) 2s

where |Rj(s)| < sec3(0/2) - ‘Bz ,and s = re >0, -1 < 0 < T,

252
cf. [25], §6.3. The corresponding estimations for all n > 0 are given
in [77], §8.
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Example 6.3 Estimating ((s). In somewhat similar fashion to the
previous example, Euler-Maclaurin summation can be applied to the
tail of the Dirichlet series to obtain an accurate estimation of ((s), even
for s in the critical strip (where the Dirichlet series diverges). It gives
us

N—-1
1 N1-s 1 By s
C(s) = ;js + Tt ow o o

Bop-s(s+1)...(s+2n—2)
(Qn)!Neranl

where the error (due to Backlund [6], see also [25], §6.4) is controlled by

+ RQTL,N(S)7

s+2n+1 ‘B2n+2-s(s—|—1)...(s+2n)
o+2n+1 (2n + 2)INst+2ntl ’

|[Ran,n ()] < o> —2n.

Example 6.4 Computation of ((1/2 + 18i). Specializing the previous
example, with N = 6, n = 4, we have

() = 14+ =+ =+~ 4 L4 ! -
% = 25 T3 T T p T (s—1)61 | 2.6°
N tos B % s(s+1)(s+2) Hos(s+1)...(s+4)
21. 6s+1 4) . 6s+3 6! - 6st5
1
a=-s(s+1)...(s+6)
_ 30 TN +R876(8),
where
5
P 1)...(s+8
|Rg6(s)| < i S L Chil) o> —8.

Iyg 10! - 6549 ’

Evaluating this at s = s1 := 1/24 18i with modern computational tools
is easily done, but it is worthwile at least thinking about how much work
it would have been for Riemann, Backlund, or Gram to do this by hand.
In particular, evaluating the exponentials such as 1/651+! = 6—3/2- 180
involves using the well known identity m*™% = m® - (cos(ylogm) +
isin(ylogm)). The estimation of the remainder Rgg(s1) is somewhat
simpler, e.g. one can use |si(s1 + 1)...(s1 + 8)] < [s1 + 8% < 20°.
The outcome of the calculations is ((1/2 + 18¢) ~ 2.32922 — 0.188651,
with error less than 1073. Thus the value is accurate to about three
significant digits.
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We now return to the original goal of calculating £(1/2 + 18i) =
(—1/2 + 18i)C(1/2 + 18i)['(5/4 + 9i)x— /48", The difficult parts are
already done in Examples 5.1 and 5.3, and the calculation a/4=8i
—0.4798582 + 0.5778631: is routine (with seven significant digits accu-
racy). One then finds £(1/2+18i) ~ —10~4x 2.986 with about three sig-
nificant digits accuracy. This proves £(1/2418:) < 0. With calculations
quite similar to those above, and again about three digits accuracy, one
finds £(1/2+23i) ~ 1075x5.622 > 0, £(1/2+27i) ~ —10~"x5.656 < 0.
The first goal of this section, showing that N > 3, is thus accomplished.

6.5 Demonstration that N(28) =3

To commence the second objective of this section let us apply the Prin-
ciple of the Argument 5.6 to £(s) using the simple closed rectangular
curve D = D(T) with vertices —1, 2, 2 + T4, —1 + T, traversed in
that order. Let us also write C = C(T) for the contour consisting of the
portion of D from 2, to 2+ T'i, to 1/2 + Ti. Finally, define

(24) 9(t) == Tm (logF (i 4 g)) - glogw.

This function has the following estimation, due to Stirling’s formula
(6.2) with n = 0:

T T T =« 1
p T)y=log(—)-2_T - T :
(25) W(T) 5 0g(27r) 5 8+O<T>’ — 00

This approximation can be further refined up to O(1/T*"*!) by us-
ing (6.2), for any n (see also [25], §6.5, or [53], III, §4).

Riemann had the asymptotic estimate N(T') ~ (T'/27) log(T/27) —
T /27 (without proof, however see also Theorem 7.5 and B.2), but the
following exact formula of Backlund [5] is a substantial improvement:

Proposition 6.6 (Backlund [5], 1914) (a) For any T > 0 such
that {(s) #0 on C,

(26) N(T) = %ﬁ(T) +14 %Im ( | Cg/((j)) ds).

(b) If also Re(¢(s)) # 0 on C then
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Remark 6.7 Actually, in both (a) and (b), the non-vanishing hypoth-
esis need only be checked on the horizontal portion of C, i.e. where
t =T and 1 < ¢ < 2. For (a) this is obvious since the vertical
portion lies outside the critical strip. For (b), it is easily verified, us-
ing the Dirichlet series (4) and Euler’s formula for ((2), cf. §4, that
Re(¢(2 4 it)) > 2 —((2) > 0 for any t € R. The latter implies that the
absolute variation of arg(¢(2 + it)) is < m on any segment [t1, to].

We will next sketch a proof of Proposition 6.6, but first let us note
that, for T' = 28, 6.6 (b) gives N(T') = [3.078...| = 3, which will
then complete the objective of this section, namely showing that ¢ has
three simple zeros on the critical line up to 1/2 + 28i. The fact that
Re(¢(s)) # 0 on the horizontal portion s = o + 28i, 1/2 < o < 2, of
C(28) is somewhat delicate and can be proved similarly to 6.4, cf. [25],
§6.6. We omit the details here and simply remark that it follows, in
particular, that (s) is nowhere zero on the closed curve D.

Proof of Proposition 6.6:  The Principle of the Argument 5.6, together
with (21) and the fact that & has no poles, give

_ Ll 1 §'(s)
MT) = 2mi p &(s) = 2 Im< p &(s) d8>'

Now since, from Proposition 5.3 (f), £ is positive real on the portion of
D on the real axis, the argument of £(s) does not change here, so by (21)
this contributes nothing to the above integral. By the symmetry of both
¢ and D in the critical line 0 = 1/2, it follows that

-5 4)

Considering the definition (19) of £(s) and then taking its logarithmic
derivative, we are able to write

) 1, 1L ) 1T

€s) s s-1 2 s T2T)
Using the above definition (24) of (), one can readily obtain (26). This
completes (a).

As for (b), the assumption that Re({(s)) # 0 on C clearly implies
this quantity is in fact positive on C. Since ((2) € R*, its argument
starts at 0. Hence the absolute variation in its argument, over C, is
strictly less than 7/2. This and (21) show that the last integral in (26)

(27)
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has absolute value strictly less than 1/2. Since N(7T') must be an integer,
we obtain (b). O

Remark 6.8 In this section we have shown that ((1/2+it) has a zero
for three values t = aq, a9, 3 with 0 < a1 < 18, 18 < ag < 23, 23 <
a3 < 27. With more calculations of the type we have made, it would be
possible to narrow down the precise locations of the zeros. Riemann had
estimated at least the first three zeros, although this does not appear
in his paper. In 1903 Gram [42] located the first 15 zeros, for the first
three one has a1 =~ 14.134725, as ~ 21.022040, a3 ~ 25.010856, using
methods similar to those we have used in this section. Riemann used
the more efficient Riemann-Siegel formula, which was not available until
Siegel’s publication [80] in 1932 of Riemann’s Nachlass (see also §7).

7 History of the zeta function since Riemann

The two decades following the publication of Riemann’s paper [76],
in 1859, were largly uneventful. Weierstrass, who was eleven years older
than Riemann, but whose rise to fame —from an obscure schoolteacher
to a professor at Berlin— happened in a way very different from Rie-
mann’s, began working and lecturing on complex numbers and the gen-
eral theory of entire functions already during the 1860’s. But it wasn’t
until 1876, when Weierstrass finally published his famous memoir [96],
that mathematicians became aware of some of his revolutionary ideas
and results. The first half of this section will discuss these ideas and
how, together with the zeta function, they led to the estimation of the
vertical location of the non-trivial zeros and to the proof in 1896 of
the Prime Number Theorem (13), arguably the greatest achievement
of 19th century mathematics (a short version of the original proof is
given in Appendix A). In the second half we return to the discussion of
Riemann’s paper, the RH, Riemann’s Nachlass (the 1932 study [80] by
Siegel), and some of the subsequent history of the RH.

We say that an entire function f is an entire function of finite order
if
(28) log |f(s)] = O(|s|'), forsome A > 0.

The order of f(s) is the lower bound of all A, for which the inequality
(28) holds.

Among Weierstrass’ many contributions were the following two im-
portant theorems:
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Theorem 7.1 (Weierstrass [96], 1876) Let {c,} be an infinite se-
quence of complex numbers, such that 0 < |c1| < |ca| < |es| < ..., and
assume that its only limit point is oo. Then there exists an entire func-
tion f(s) with zeros (with prescribed multiplicities) at precisely these
complex numbers. ]

Remark 7.2 Note that in both this theorem and Theorem 7.3 zeros
of arbitrary multiplicities are accounted for by taking e.g. ¢; = ¢j11 =

:Cj+7’-

Theorem 7.3 (Weierstrass [96], 1876) Fuvery entire function g(s)
of order < 1, which has no zeros in C, can be written as g(s) = e®+bs,
where a and b are constants, while every entire function f(s) of order

<1, which has N < oo zeros at c1,ca,c3,... % 0, can be written in the
form
N s
29 _ atbs 1 2 s/cn
(29 o = e I (1-2)e

where a and b are constants, and the product converges absolutely (if
N =o0) for all s € C. O

Remark 7.4 Let v be Euler’s constant. Weierstrass proved the prod-
uct formula

2 g = o TI[0+ 5 ]

This, along with Riemann’s paper, set the stage for the great work
of Hadamard and de la Valée-Poussin in the 1890’s. Recall the defini-
tion (19) of £(s) and note that, applying (6.3) with n =0, NV = 1, and
Stirling’s formula (6.2) with n = 0, one can find constants C1,Ca, Cs
such that, for all s € C\ {1} with o > 3,

e 1 < st [ (2)] < st (o] < i
From this, using the properties 5.3 (a,b) of &, we have
(3].) ‘g(s)| < eC"s“Og|5|’ S e (C’

for a constant C' > 0. Stirling’s formula also tells us that the upper
bound |£(s)| < eCl#l fails as s = 0 — co. Therefore £(s) is of order 1,
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has infinitely many zeros, and can be written in Weierstrass’ form as
follows:

(32 ) = o I [ (1- 2 ) em)

n=1 Pn

where A and B are constants, and p, = 8, + i, are all the zeros of &,
arranged so that |y1| < |y2| < |y3] < ..., and the p; may repeat, as in
Remark 7.2.

Entire functions of arbitrary order have product representations
analogous to (29), as Weierstrass proved in [96]. His general theorem
was made more explicit and applicable by Hadamard [43], in 1893. He
used it, together with (31), to prove in [43] that ((s) and &(s) have
infinitely many zeros in the critical strip, and that there exist constants
a, A > 0 such that

(33) Yo =

a , equivalently N(T) < AT'logT,
logn

forn > 2, T > 2. An important consequence is

(e o]

1
(34) Z o < 00 for all ¢ > 1.

n=1

Using (34) Hadamard [43] proved the following product formula similar
to (32), see also [25]:

(35) aﬁzamﬁCFS)

n=1 Pn

In 1895, von Mangoldt [68] used Hadamard’s results (34), (35), to
obtain

(36) 5'(8)22 1 7

s—p

where validity of the termwise differentiation of the product in (35)
follows from the uniform convergence of its logarithmic derivative in
any disk |s| < R, due to (34). He also estimated the vertical density of
the roots p,, of (, for large T' > 0:

(37) N(T+1) - N(T) < > 1< 2logT,
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by noticing that (34), (36) imply

244(T+1) 24+i(T+1)
Im / § Z Im / ds
24+iT 24+iT S — Pn

> Z Im /Q—H(TH) ds > Z arctan <1>
2+iT S—pn) 2)

T<v<T+1 T<v,<T+1

and by showing fi:zTTH) (( )) ds = L1log T+0O(1) via (27) and Stirling’s
formula (6.2) with n = 0, together w1th (21) and the boundedness of the
total variation of arg(¢(2+1it)) on [T, T +1] (see 6.7 or [25], §3.4). With
the help of (34), (36), and (37), von Mangoldt [68] proved the explicit
formula 4.6, cf. [25], §3.2-3.5. See also Remark B.2.

In 1896, based on Hadamard’s results (33)-(35), Hadamard and de
la Vallée-Poussin proved independently lim @ = 1 and the PNT, see
T—00

Appendix A. An important step in both proofs was to show that no
zero of ((s) has real part 1. In 1899 de la Vallée-Poussin made a further
improvement (see A.2) which finally justified Chebyshev’s prediction of
the correct constant in the Legendre prime number formula (cf. §4).
Six years later von Mangoldt proved Riemann’s estimate for the
vertical distribution of the zeros of ¢, see 6.5, strengthening (33), (37):

Theorem 7.5 (von Mangoldt [69], 1905) For T > 2,

T T T
N(T) = 2—1 g<2 )—2+O(logT).
T 7r 7r

A proof is given in Appendix B.

Returning to our historical sketch, let us first make some concluding
comments about Riemann’s 1859 paper. Needless to say, this paper is
written in an extremely terse and difficult style, with huge intuitive leaps
and many proofs omitted. This led to (in retrospect quite unfair) crit-
icism by Landau and Hardy in the early 1900’s, who commented that
Riemann had only made conjectures and had proved almost nothing.
The situation was greatly clarified in 1932 when Siegel [80] published
his paper, representing about two years of scholarly work studying Rie-
mann’s left over mathematical notes at the University of Gottingen, the
so-called Riemann’s Nachlass. From this study it became clear that
Riemann had done an immense amount of work related to [76] that
never appeared in his paper. One conclusion is that many formulae
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that lacked sufficient proof in [76] were in fact proved in these notes. A
second is that the notes contained further discoveries of Riemann that
were never even written up in [76]. One such is what is now called the
Riemann-Siegel formula, which Riemann had written down and Siegel
(with great difficulty) was able to prove, cf. [25] or [53]. This formula
(which we omit) arises from a Hankel integral type expression for £(s),
and gives a refined method to calculate £(1/2 + it), in comparision to
the crude methods of §6.

In his 1859 paper Riemann only mentions RH briefly. To quote him
once more, “Hiervon ware allerdings ein strenger Beweis zu wiinschen;
ich habe indes die Aufsuchung desselben nach einigen fliichtigen verge-
blichen Versuchen vorldaufig bei Seite gelassen, da er fiir den néchsten
Zweck meiner Untersuchung entbehrlich schien” (One would of course
like to have a rigorous proof of this, but I have put aside the search for
such a proof after some fleeting vain attempts because it is not necessary
for the immediate objective of my investigation), cf. Appendix of [76].
However, towards the end of the paper there are some speculations that
a more detailed mathematical analysis (see C.2, or [25], §1.17, 5.5) shows
are indirectly related to RH and the improvement of the remainder term
in PNT. Furthermore, it is not clear from Riemann’s paper that he had
any solid evidence for RH, but it is now known (Riemann’s Nachlass)
that he had calculated at least the first three non-trivial zeros and found
them to lie on the critical line, much as was done in §5 above. As Ivi¢
says [50], Ch. I, Notes, “it is apparent that he knew much more about
((s) than he cared to publish.” It is also important to note that Rie-
mann only lived until 1866, and that his health was very bad during his
final years.

Starting from about 1890, the evidence for RH has rapidly increased.
For example, we will see in Appendix A that the celebrated PNT proved
in 1896 is equivalent to reducing the critical strip from 0 < ¢ < 1 to
0 < o <1, ie. it can be thought of as a very small first step towards
RH.

Hilbert included RH in his list of 23 problems, at his address to
the International Congress in 1900. It is interesting that at the time of
his address, Hilbert did not consider RH to be one of the most impor-
tant problems of his list. However, some years later when asked, if he
could sleep 500 years what his first question would be upon awakening,
Hilbert replied “has the RH been solved?” Generalizations of RH have
taken on equal significance. Starting with the Dirichlet L-functions the
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concept has been further generalized to Artin L-functions and to global
L-functions, which have many similarities to ¢ such as an Euler prod-
uct formula and a functional equation, and are of basic importance in
diverse areas of modern mathematics.

Since 1900 the progress towards solving the RH has been enormous,
nevertheless it is still unsolved and appears on the Clay Institute list
(in 2000) of seven questions for the new millenium. Some highlights of
these developments are now outlined, with no attempt at completeness.
We have already seen in this section that there are infinitely many zeros
of ¢ in the critical strip. Hardy [45] improved this in 1914, showing
that in fact there are infinitely many zeros on the critical line. His col-
laboration with Littlewood and Ramanujan produced other important
advances [47]. Bohr and Landau [8] proved in 1914 that the proportion
of the zeros lying within ¢ from the critical line equals 1, for any € > 0.
Later in the 20th century Selberg [78], Bombieri [9], and Deligne [22]
made very significant contributions. Selberg [78], for example, showed
in 1942 that some positive proportion of the zeros lie on the critical
line, and this was later improved by Levinson [62] to at least 1/3, and
still later by Conrey [16] to at least 2/5. Deligne [22] in 1974 proved
the related Weil Conjecture (an analogue of RH for zeta functions of
general algebraic varieties over finite fields).

Similarly, starting from about 1890, the realization of the signifi-
cance of RH has rapidly increased. One equivalent formulation of RH in
number theory, the estimation of the error in the approximation of m(z)
by Li(z), has already been mentioned in 4.5, see also A.2, A.3. There are
many further significant number theoretical implications of RH. For ex-
ample, Bertrand’s postulate that there exists a prime in [n + 1,2n — 2],
n > 3 (first proved by Chebyshev [13], cf. (14)) was successively im-
proved over ten times (cf. [50], Ch. 12, Notes), e.g. by Montgomery [72]
in 1969 to the existence of a prime in [n,n 4+ n3/5+¢] and by Lou and
Yau [66] in 1992 to the existence of a prime in [n,n 4+ n8/11+¢], for all
e > 0 and n > ng(e). This in turn can be further strengthened us-
ing RH to the existence of a prime in [n,n + cn'/?logn] (Cramér [18],
1920, see also [19], or [50], §12.6), and using Cramér’s conjecture (i.e.

Tim pﬁ)*gl% = 1) even to [n,n + clog®n], cf. [19]. The latter cannot
n—oo n
be strengthened much further, since, due to Westzynthius [98] in 1931,
Tim % = 00. A further example involves, for a given prime p,
n—00 n

estimating the least quadratic non-residue (mod p), written n(p). Here
1
Vinogradov’s classical 1918 result [90], [91] that n(p) < p2ve log? p for
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all sufficiently large p (see also [75]), improved in 1957 by Burgess [11]
to n(p) = O(p®) for any fixed o > 47\1/@ can be strengthened using the
extended RH (i.e. the RH for the Dirichlet L-functions, cf. (9)). In this
way, Ankeny [2] showed in 1952 that n(p) = O(log?p), and Bach [4]
improved this in 1990 to n(p) < 21log? p. This cannot be strengthened
much further, since Graham and Ringrose [41] showed in 1990 that

Tim n(p)

M i Tog logTogp > 0 unconditionally, while Montgomery [73] showed

: : Tm (P
in 1971 using the extended RH that plgglo logplog Iogp

Intriguing (and important) equivalent conjectures abound, suggest-
ing alternative approaches to RH. For an excellent survey of these as well
as of recent progress on the problem cf. Conrey [17] and Bombieri [10]
(his descriptive paper for the Millenium Problems). In a recent pa-
per [77] by two of the authors, as well as in some earlier work of
Spira [82], a slightly different “horizontal” approach to the question
is taken. The functional equation shows that for any non-trivial zero
Q@ := 1/2+ A + it in the critical strip (0 < A < 1/2), one also has
a zero at P := 1/2 — A+ it (as well as at P,Q). In [77] very ac-
curate upper and lower bounds for the ratio |((P)/¢(Q)| are obtained.
In particular, it is shown that [((P)| > |((Q)|. Clearly the inequality
IC(P)] > [<(Q)], 0 < A < 1/2, would imply RH since both could not
then be simultaneously 0.

> 0.

From the point of view of gathering numerical evidence, the early
work of Gram (cf. 6.8) and Backlund [5] was carried further by Hutchin-
son [48] in 1925 to show that the first 138 zeros (in the upper half plane)
lie on the critical line. Once the Riemann-Siegel formula became avail-
able, this was soon improved to the first 1041 zeros by Titchmarsh and
Comrie [86], [87]. Thanks to modern computational power, it is now
known that at least the first 1019 zeros lie on the critical line (a number
that is steadily increasing).

A Appendix: Prime Number Theorem

In this appendix we give a proof, incorporating ideas from the original
proofs, of the celebrated Prime Number Theorem (13), conjectured by
Gauss in 1793, and proved in 1896 by both Hadamard [44] and (inde-
pendently) de la Vallée-Poussin [88] (and also [89]). Alternative proofs
using elementary methods appeared some 50 years later, cf. [26], [79]
(see also [65], [74], and [50], Ch. 12), where “elementary” means, in
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particular, without use of complex analysis, but not necessarily simpler.

A.1 Prime Number Theorem: w(x) ~ Li(x).

While it would be beyond the scope of this paper to furnish complete
details of this proof, we shall fully describe the key step in the proof
(reducing the critical strip from 0 < o < 1to 0 < o < 1), as well as
clearly indicate and discuss the other ingredients of this proof (for full
details excellent sources are [25], [49], [52], [53], [57], [58], and others).

First of all we will use the Riemann-von Mangoldt explicit for-
mula 4.6. Secondly, we will prove the PNT in the equivalent form
stated in §4, namely ¢ (z) ~ x. The proof that these are equivalent
is straightforward and goes back to Chebyshev’s ideas, cf. [25], §4.4. A
third fact we shall use is that, for the non-trivial zeros p of {, > o p% is
absolutely convergent; this is an immediate consequence of Hadamard’s
formula (34).

Let us start the sketch by rewriting the explicit formula 4.6 in the
form

~ xP x—?n
(38)  dl@)=w-) 4D
P n

In 1896, de la Vallée-Poussin [88] showed that the term-by-term inte-
gration of both sides of (38) is a valid operation, and in fact, for = > 1,
it leads to the formula

(39) i) = / " p(tydt

— log(2m) for x > 1.

72 P p2nt1
= — — _ - —— — zxlog(27) + const.

2 Zp: p(p+1) Zn: 2n(2n — 1) (2m)

It is clear that, as © — oo, the last three terms on the right hand side
of (39) are all o(z?).

Our next step is to show ((1+it) # 0, i.e. there are no zeros of {(s)
on the line 0 = 1 (Hadamard showed this in [43], however we will follow
the method of de la Vallée-Poussin in [89]). To see this, let o > 1 and
integrate (11) termwise (the constant of integration is clearly seen to
equal 0 by taking s = o real and letting o — 00), giving

log ((s) = Z Aln) o> 1

2nslogn7
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Taking the real parts,

Re(log ((s)) = Z _Am) cos(tlogn).

— 7 logn

Using the trigonometric identity 3 + 4 cost + cos 2t = 2(1 + cost)? > 0,
it follows that

3Re(log ((0)) + 4Re(log ((o +it)) + Re(log ((o + 2it)) > 0,
and exponentiating this gives
(40) 1C(0)P|¢(o +it)[*¢(o + 2it)| > 1, for o > 1.

As we saw in (10), ¢ has the single pole at s = 1, and it is simple with
residue 1. This is equivalent to lims_,;(s — 1)((s) = 1. Now suppose
that ¢ has a zero of order m > 1 at sg = 1 + itg, then similarly this is
equivalent to limgs_,s,(s — s9)~™((s) = ¢ for some ¢ € C\ {0}. Taking
s =0 +itg,o > 1, we can rewrite (40) as

3 5 1C(o +ito)|* : o —1P°
g =113 22— 20 2%ta)| > — 1
‘C(U)| |U ’ |S—80‘4m |C(U+ t 0)| = ‘8—80|4m
o1 1
- |0-_1’4m - |0_1‘4m71'

Letting o — 17 in this inequality, and taking account of the two limits
above, shows that there is a pole of order > 4m — 3 > 1 at s = 1 + 2ity.
Since this is impossible, the claim ((1+4it) # 0, t € R\{0} is established.

Therefore, if p is a non-trivial zero of {(s ) then Re(p) < 1, and we
have |#°~!| < 1, while the infinite sum e +1) converges absolutely,

cf. (34). This implies that }_ 2~ Y/p(p + 1) converges uniformly in z,
whence

P!

xlgrolo;p(ﬁl) legrolopwrl ZO -

and hence the second term of the right hand side of (39) is also bounded
by o(z?). Therefore, we can conclude 1 (z) ~ %2 In general, if two
functions are asymptotic, one cannot conclude their derivatives are
asymptotic. However, in the situation at hand, one also knows the
derivative ¢ = 9| is a monotone non-decreasing function, and it is then

straightforward (cf. [25], §4.3) to conclude that ¢(z) ~ x. O
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Remark A.2 In 1899, de la Vallée-Poussin [89] made the above argu-
ment more explicit, and he was the first to obtain a zero-free region of
((s) having positive measure:

c
s 0 for Re(s) > 1 — ————,

where ¢ > 0 is a constant. From this, using (34), as well as (39) and an

inequality similar to (40), de la Vallée-Poussin obtained the following

estimation of the error in the PNT:

@) =2+ 0 (eeNVPET) and w(x) = Li(r) + O (we BVOET),

where A, B > 0 are constants, see also [25], §5.3. Due to the asymp-
totic expansion (15) of Li(z), this proves that Li(x) indeed provides a
much better approximation to 7(x) than do @, bgﬁ’ and the Leg-

endre formula, see §4. Littlewood [64] in 1924 improved de la Vallée-
Poussin’s estimation for the zero-free region with the help of Weyl’s
method of evaluating “exponential sums” ZZ:a n~'7% in the Euler-
Maclaurin formula for {(1 + 4t). This was substantially improved by
Chudakov [15] in 1936, based on Vinogradov’s powerful methods [92]
in the 1930s for the estimation of exponential sums, and later by Vino-
gradov (announced [93] in 1942, published [94] in 1958) and Korobov
(1958), cf. [50], Ch. 6, [25], §9.8, or [53], IV. Using the methods of Vino-
gradov and Korobov, Richert slightly improved their estimates (unpub-
lished) to obtain the zero-free region o > 1 — clog=2/3 t(loglogt)~1/3,
t > tg, cf. [95]. These improvements led to corresponding improve-
ments of de la Vallée-Poussin’s estimate of the error term in PNT
(cf. [95]). The best known estimates (obtained by Walfisz [95] from

Richert’s result) are ¢(z) = z+0O (xe_Cng/S x(loglog$)71/5>, and 7(z) =

Li(z) + O (xe_cl log™/® z(log logx)71/5), for constants C, C; > 0.

Remark A.3 As Landau [56] (see also [57], §93-94) showed in 1909,
additional information about the horizontal location of the non-trivial
zeros can provide an improvement of de la Vallée-Poussin’s estimate of
the error in PNT (see A.2), as follows: if for all non-trivial zeros p,, of
¢(s) we have Re(p,) < A, for some fixed 3 < A < 1, then

m(z) = Li(z) + O(z®logx).

In particular, RH (corresponding to A = 1/2) implies that the error in
PNT is O(z'/?logx) [54]. Actually, the converse is also true, cf. [57],
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§93, 201 (see also 4.5 and [25], §5.5). In other words, RH could be
obtained by somehow proving the PNT with a very sharp error term.

B Appendix: Von Mangoldt’s theorem

In this appendix, a proof of von Mangoldt’s Theorem 7.5 is given. This
theorem describes the vertical distribution of the non-trivial zeros of
¢(s). Again, the proof uses the results of Weierstrass (cf. §7). It is based
on Backlund’s ideas (cf. Proposition 6.6), as well as [50], see also [25],
[49], [53], [57].

Theorem B.1 (von Mangoldt [69], 1905) For T > 2,

(41) N(T) = E log <T> T + O(logT).
27 2m 2m
Remark B.2 Earlier, in 1895, von Mangoldt [68] proved an analogue
of (41) with a slightly weaker error term O(log?T). In fact, this was
the first time that the correct main term for N(T') was obtained, and
it turned out to be exactly what Riemann claimed in [76]. Riemann
also predicted the error correctly in [76], however his description was
unclear (he was referring to relative error) and this led to subsequent
misinterpretations in the literature (see also [25], §1.9).

Proof:  Since the set of zeros of ( is discrete, see 3.2, we may assume
no zero of ¢ has imaginary part 7. Due to (25) and (26), it suffices to

/
show Im < / CC ((8)) d8> = O(logT). The latter is equivalent to
c S

. 2 (o +1T) B
I :=Im ( 12 m do | = O(lOgT),

due to (21) and the boundedness of the total variation of arg({(2 + it))
on [0, T}, see Remark 6.7.
From (27) and (36), we have

¢'(s) 1 1 1 1 1T7(%)
< s A AP SFEr Rt Sic)

1
=> ——+0(loglt]), o>-1,|t=>2
) TP
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where the latter estimate follows from (23). Let us denote

Sis) = S S = Y —

)
s — s —
[yn—t|<1 Pr [yn—t|>1 Pn

and show that
(43) Sa(s) = O(log|t]), -1<o<2, [t >2

Using the logarithmic derivative of the Euler product given in (4), as
n (11), it is easily verified that %((22:;)) = O(1). Furthermore, due
o (37),

Iyn—t|<1 n—t|<1

Together with (42), these estimations imply S2(2 + it) = O(log |t|) for
|t| > 2. This in turn gives

O(log|t]) = Re($2+it) = 3 Re——

ot 2T
2 — 1
-2 (2—6)2+ﬁ(1—7)2> 2 44t —m)?
Ivn—t|>1 " " [yn—t|>1 "
for [t > 2. Therefore, with the notation 32" := 37 4,
1 1

1Sa(s) — So(2 +it)| < Z’

s—pn_2+it—pn

’ 2—0' l 3 / 15
= ; < —= < —_—
Z ’S_pn"p_'_n_pn‘ Z (t_7n>2 Z 4+ (t_’Yn)Q

has order O(log |t]|) as —1 < ¢ < 2, |t| > 2. Together with S»(2 + it) =
O(log |t|) from above, this proves (43). From (42) and (43) we have

(44) ¢'(s) _ 3

C(S) |'Yn_t|§1

+ O(log [t]), ~1<0<2, |t|>2.

n

Thus, in order to prove I = O(logT)), it suffices to show

2 o
(45) Z Im (/1/2 a—ksz—pn> = O(logT).

[yn—=T|<1
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By (21), each summand of the left-hand expression equals the net change
of arg(s—pp) on [1/2+4T, 2+iT)], thus its absolute value is < 7. By (37),
the number of summands is < 4log T, for large T'. Thus, the modulus
of the left hand side of (45) is < 4wlogT, for large T'. This, in turn,
implies I = O(logT)). O

C Appendix: Riemann-von Mangoldt formula

In the first part C.1 of this appendix we outline some of the details that
were omitted in the sketch of the reasoning leading to the Riemann—
von Mangoldt explicit formula 4.6. The method is based on [57], §87,
see also [50], §12.2. For an alternative method, which does not use
contour integration, see [25], §3.2-3.5. In the second part C.2 we return
to Riemann’s paper [76] and suggest a few further ideas related to the
explicit formula and RH.

C.1 The main step in the derivation of 4.6 that needs justification is
showing that the integrals on the top, bottom, and left edges of the
closed rectangular contour C with vertices a £iT", —(2n+1) +iT, a > 1
fixed (for convenience, we also assume a < 2), all approach 0 as ' — oo
suitably (see (a) below) and n € N, n > T'logT. To do this, we start
with (37) and (44). Using these one can show

(a) T can be chosen arbitrarily large with |y — T'| > @, for any
zero p = [+ iy of (,
(b) ¢'(s)/¢(s) = O(log?T), s = 0 + 4T, —1 < ¢ < 2 and T chosen as
in (a).
We also need the estimation

(c) C'(s)/<(s) = Olog |s|), & < 1, |s+2j| > § for j € N,

To prove (c) one starts with the logarithmic derivative of the functional
equation (18), namely
¢'(s) T ws T'(1-s) ('(1-5s)

= log(2w)+§cot?—r(1_s) (=8

taking o < —1 so that 1 — o > 2. It is easy to show cot 7’ is bounded
for |s + 27| > %, j € Z, i.e. on the region given in (c). Similarly, the
boundedness of {'(1 — s)/{(1 — s) for 1 — o > 2 is easily shown, e.g.
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using (11). Finally, IV(1 — s)/T'(1 — s) = O(log|1 — s|) = O(log |s|) for
1 —0 > 2, see (23), completing the derivation of (c).

Using (b) it is not hard to show that integral over the portion of the
top and bottom edges of C, where —1 < ¢ < a, tends to 0 as T — oo.
And, using (c), one establishes the same for the left edge of C and the
remaining portions of the horizontal edges. This completes the proof of
the explicit formula 4.6.

C.2 Let us now return to Riemann’s paper [76] and make a few con-
cluding remarks. As mentioned in §4, and as the title of [76] suggests,
Riemann’s main objective was to obtain an explicit formula for 7(z),
which was only proved later [68], see also [57], §88. He used the closely
related function

(46) M) = 3 % -y %w(xl/n).

pm<x n

log z
log 2

m(u) = 0 for u < 2), and this together with (14) easily imply II(z) —
m(z) = $n(z'/?) + O(z1/3) = O(wl/Q), cf. [57], §5. By the method of

logx
Fourier inversion he obtained the explicit formula in the following form?:

Here the number of non-vanishing terms equals N := L J (because

o
d
v —log2,
x

(47 I(x) =li(z) - > L") + /

(22 — 1)z logx

for z > 1, where II is defined as in §2, and li(z) := Iy 15% is defined

as the Cauchy principal value liﬁr)l ( folfe + flm +€>, differing from Li(x)
€

by the constant 1i(2) ~ 1.04516, cf. [25], §1.14-1.16. In his paper II is
denoted f, and 7 (again defined as in §2) denoted F.

9To quote Riemann: “By setting these values in the expression for f(z), one finds

1 dx
22 —1zlogx

f(z) = Li(z) — Z[Li(m(l/QHai) + Li(z2 7] + /°°

@

log £(0),

where the sum )~ is over all positive roots (or all roots with positive real parts) of
the equation £(«) = 0, ordered according to their size”, cf. Appendix of [25].

Here o = (1/2 — p)i, and, in the notation of the present paper, Riemann’s Li(x)
means li(z), while Riemann’s £(u) means £(1/2 + ui). The term log&(0) is in fact
erroneous, see 5.5 and the footnote to 5.3 (e).
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Riemann inverted (46) by means of the M&bius inversion formula to
obtain

0 N
(48)  A(x) =T(x)+ Y ”Ef)ﬁ(xl/n) =T(x)+ ) “El“)ﬁ(xl/n),
n=2 n=2

where p(n) is 0 when n is divisible by a prime square, and otherwise
(—=1)" where r is the number of distinct prime divisors of n. Substi-
tuting (47) into (48) gives an explicit formula for 7(x), cf. [25], §1.17
and §5.4:

n

o w(n) -y ()
(49) 7(z) = Z A li(z/™) — Z Z %li(xp/”) + lesser terms,
n=1 p

n=1

thereby achieving the main goal of [76]. Notice that }, in (49) can
be restricted to a (sufficiently large, depending on z) finite number of
terms, if the right hand side of (49) is replaced by the nearest half integer
to it (since the left hand side is always a half integer).

Having done this, Riemann speculates (on the final page of his paper)
that the main term in (49) is given by the first (finite) sum:

o u(n)
(50) m(x) =~ li(z) + Z MTli(wl/”)
n=2

iz — %11(951/2) - éli(le) - én(x%) + én(gﬂ/ﬁ) +o

and that the estimate 7(z) ~ li(x) has negative error of order O(z'/2).
To quote him once more: “Thus the known approximation F(z) =
Li(z) is correct only to an order of magnitude of z'/2 and gives a
value which is somewhat too large...”. His prediction that li(z) should

overestimate 7(x) is indeed the case for all # within present compu-

tational power. However, Littlewood [63] showed that the difference
m(z) —li(z) changes sign infinitely often, indeed HM% >3
and mm% < —% as ¢ — oo, in particular li(z) will un-
derestimate 7(z) for some sequence x,, — co. Skewes [81] showed that
x1 < 104(3), where 10;(z) = 10%, 102(x) = 10'°1®) and so on. This
bound has been improved to z1 < 1.65 x 1011% by Lehman [61], and af-
terwards further improved by others. It is interesting that, for z < 107,

the estimate (50) is substantially more accurate than 7(z) = li(x), as
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Table IIT in [25], §1.17, shows. However, due to the Littlewood result,
for x large, the “periodic terms” of the (essentially finite, as explained
above) sum ), li(z?/™) in (49) should be also taken into account in
estimating m(x), cf. [25], §5.4. Here the number of “significant” peri-
odic terms is large with x, thus eventually (as x — o0) every periodic
term li(z/™) in (49) becomes as significant as the nonperiodic term
—%li(:vl/ 2.

It is perhaps even more interesting to consider Riemann’s error esti-
mate of O(x'/?) in the above statement, for the approximation m(x) ~
li(z). This is done very carefully in [25], §1.17 and §5.5. It is shown that

each individual periodic term li(z”") in (47) equals pn“g; — + O(lg‘:; -)

2Bn
log z
as usual p, = B, + iy,. If RH were false then 5, > % for some n,
thus the contribution of this term to the error in PNT would grow more
rapidly than O(a;(l/ 2)+5), for some ¢ > 0. Moreover, this would also
apply to the total error in PNT, see 4.5, A.3, or [25], §5.5. Thus, it is
very probable that at this stage (the final page) of his paper, Riemann
assumed the validity of RH. To quote Bombieri [10], “it is quite likely
that he saw how his hypothesis was central to the question of how good
an approximation to m(z) one may get from his formula.”

and would not be less in magnitude than O( ), as © — 00, where
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