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ABSTRACT 
Viral marketing takes advantage of networks of influence among 
customers to inexpensively achieve large changes in behavior. 
Our research seeks to put it on a firmer footing by mining these 
networks from data, building probabilistic models of them, and 
using these models to choose the best viral marketing plan. 
Knowledge-sharing sites, where customers review products and 
advise each other, are a fertile source for this type of data mining. 
In this paper we extend our previous techniques, achieving a large 
reduction in computational cost, and apply them to data from a 
knowledge-sharing site. We optimize the amount of marketing 
funds spent on each customer, rather than just making a binary 
decision on whether to market to him. We take into account the 
fact that knowledge of the network is partial, and that gathering 
that knowledge can itself have a cost. Our results show the ro-
bustness and utility of our approach. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – data 
mining; I.2.6 [Artificial Intelligence]: Learning – induction; I.5.1 
[Pattern Recognition]: Models – statistical; J.4 [Computer Ap-
plications]: Social and Behavioral Sciences 

Keywords 
Probabilistic models, linear models, direct marketing, viral mar-
keting, social networks, knowledge sharing 

1. INTRODUCTION 
Marketing has been one of the major applications of data mining 
since the field emerged. Typically, the decision of whether or not 
to market to a particular person is based solely on their character-
istics (direct marketing), or those of the population segment to 
which they belong (mass marketing). This often leads to sub-
optimal marketing decisions by not taking into account the effect 
that members of a market have on each other’s purchasing deci-
sions. In many markets, customers are strongly influenced by the 
opinions of their peers. Viral marketing takes advantage of this to 
inexpensively promote a product by marketing primarily to those 
with the strongest influence in the market. The use of relation-

ships between people makes viral marketing potentially more 
profitable than direct marketing. 

Data mining techniques have been successfully employed for 
direct marketing [9]. By building models that predict future pur-
chasing behavior from past behavior, marketing can be more tar-
geted and lead to increases in profit [18][22]. In previous work 
[5], we showed that the same could be done for viral marketing. 
By explicitly modeling the market as a social network [24], we 
were able to use the influence between customers to our advan-
tage to significantly increase profits. 

Viral marketing uses the customers in a market to promote a 
product. This “word-of-mouth” advertising can be much more 
cost effective than traditional methods since it leverages the cus-
tomers themselves to carry out most of the promotional effort. 
Further, people typically trust and act on recommendations from 
friends more than from the company selling the product. 

Examples of viral marketing are becoming increasingly common. 
A classic example of this is the Hotmail free email service, which 
grew from zero to 12 million users in 18 months on a miniscule 
advertising budget, thanks to the inclusion of a promotional mes-
sage with the service’s URL in every email sent using it [13]. 
Competitors using conventional marketing fared far less well. 
Many markets, notably those associated with information goods 
(e.g., software, media, telecommunications, etc.) contain strong 
network effects (known in the economics literature as network 
externalities). In these, ignoring the relationships between cus-
tomers can lead to a severely sub-optimal marketing plan. 

In the presence of strong network effects, it is crucial to consider 
not only a customer’s intrinsic value (his value as a customer 
based on the products he is likely to purchase), but also his net-
work value. The network value of a customer is high when he is 
expected to have a very positive influence on others’ probabilities 
of purchasing the product. A customer whose intrinsic value is 
less than the cost of marketing may in fact be worth marketing to 
when his network value is considered. The immediate effect of 
marketing to him may be negative, but the overall effect may be 
positive once his influence on his friends, their influences on their 
friends, and so on is taken into account. Further, a customer who 
looks valuable based on intrinsic value alone may in fact not be 
worth marketing to if he is expected to have an overall negative 
effect on others in the market (e.g., a person who tends to give 
very low product ratings). Ignoring the network value can result in 
incorrect marketing decisions, especially in a market with strong 
network effects. 

To estimate the network value of its customers, a company needs 
to know the relationships between them. One source of such in-
formation is the Internet, with its plethora of chat rooms, discus-
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sion forums, and knowledge-sharing web sites. In these is found a 
wealth of social interaction, often product-related, which a com-
pany could use to gather information on the relationships between 
its customers. Knowledge-sharing sites in particular are often 
product-oriented. On these sites, information about product likes 
and dislikes, ratings of quality, benchmarks, and comparisons are 
exchanged, making them an ideal source for data about customer 
preferences and interactions. 

In this paper, we extend ideas from our earlier work [5] and apply 
them to the domain of knowledge-sharing sites. We show how to 
find optimal viral marketing plans, use continuously valued mar-
keting actions, and reduce computational costs (Sections 2 and 3). 
In Sections 4 and 5, we apply the model to Epinions, a popular 
knowledge-sharing site. In practice, the relationships between 
customers is often unknown, but may be obtained at some cost. 
We introduce a technique for marketing in such a situation and 
show that it performs well even with very limited marketing re-
search funds. We conclude with a discussion of related work and 
future directions. 

2. THE MODEL 
Consider a set of n potential customers, and let Xi be a Boolean 
variable that takes the value 1 if customer i buys the product being 
marketed, and 0 otherwise. Let the neighbors of Xi be the custom-
ers who directly influence Xi: Ni={Xi,1,…,Xi,ni

} ⊆ X-{Xi}, where 

X={X1,…,Xn}. The product is described by a set of attributes 
Y={Y1,…,Ym}. Let Mi be the marketing action that is taken for 
customer i. For example, Mi could be a Boolean variable, with 
Mi=1 if the customer is (say) offered a discount, and Mi=0 other-
wise. Alternatively, Mi could be a continuous variable indicating 
the size of the discount offered, or a nominal variable indicating 
which of several possible actions is taken. Let M={M1,…,Mn} be 
the marketing plan. Then, for all Xi, we will assume that 
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P0( Xi | Y, Mi ) is Xi’s internal probability of purchasing the prod-
uct. PN(Xi | Ni, Y, M ) is the effect that Xi’s neighbors have on 
him. βi is a scalar with 0 ≤ βi ≤ 1 that measures how self-reliant Xi 
is. For many products, such as cellular telephones, multi-player 
computer games, and Internet chat programs, a customer’s prob-
ability of purchasing depends strongly on whether his friends have 
also purchased the product. In previous work [5] we modeled this 
interaction with a non-linear function. In this paper, we employ a 
simple linear model to approximate this effect: 
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where wij represents how much customer i is influenced by his 
neighbor j, with wij ≥ 0 and 1=∑ ∈ iNjX ijw (Note, wij = 0 if 

j ∉Ni). While not exact, we believe it is a reasonable approxima-
tion when the probabilities are all small, as is typically the case 
for marketing domains. Linear models often perform well, espe-
cially when data is sparse [4], and provide significant advantages 
for computation. Note that we are modeling only positive interac-
tions between customers, which we found in our previous work to 
be the most common type. 

Combining Equations 1 and 2, we get 
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For the purposes of this paper, we will be calculating the optimal 
marketing plan for a product that has not yet been introduced to 
the market. In this situation, the state of the neighbors will not be 
known, so we derive a formula for computing P( Xi = 1 | Y, M ). 
We first sum over all possible neighbor states: 
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where C(Ni) is the set of all possible configurations of the 
neighbors of Xi, and hence Ñ is an set of neighbor state assign-
ments. Substituting equation 3, we get: 
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where Ñj is the value of Xj specified by Ñ. P0( Xi | Y, Mi ) is inde-
pendent of Ñ, so the first term simplifies to it. We swap the sum-
mation order in the second term, and note that it is zero whenever 
Ñj is zero. This leads to: 
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Since the inner summation is over all possible values of Ñ when-
ever Ñj=1, it is equivalent to wijP( Xj = 1 | Y, M ), hence: 
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Because Equation 4 expresses the probabilities P( Xi = 1 | Y, M ) 
as a function of themselves, it can be applied iteratively to find 
them, starting from a suitable initial assignment. A natural choice 
for initialization is to use the internal probabilities P0( Xi = 1 | Y, 
Mi ). 

The marketer’s goal is to find the marketing plan that maximizes 
profit. For simplicity, assume that M is a Boolean vector (i.e., 
only one type of marketing action is being considered, such as 
offering the customer a given discount). Let c be the cost of mar-
keting to a customer (assumed constant), r0 be the revenue from 
selling the product to the customer if no marketing action is per-
formed, and r1 be the revenue if marketing is performed. r0 and r1 
will be the same unless the marketing action includes offering a 
discount. Let fi

1(M) be the result of setting Mi to 1 and leaving the 
rest of M unchanged, and similarly for fi

0(M). The expected lift in 
profit from marketing to customer i in isolation (i.e., ignoring his 
effect on other customers) is then [3] 
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We also refer to this as the customer’s intrinsic value. Let M0 be 
the null vector (all zeros). The global lift in profit that results from 
a particular marketing plan M is then 
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where ri=r1 and ci=c if Mi=1, and ri=r0 and ci=0 if Mi=0. 

A customer’s total value is the global lift in profit from marketing 
to him: ELP(Y, fi

1(M)) – ELP(Y, fi
0(M)) . A customer’s network 

value is the difference between his total and intrinsic values. A 
customer with a high network value is one who, when marketed 
to, directly or indirectly influences many others to purchase.  

Our previous work was based on this Boolean marketing case, but 
in this paper we explore continuous valued marketing actions as 
well. The expected lift in profit in the continuous case is a 
straightforward extension of the Boolean one. Let z be a market-
ing action, with 0 ≤ z ≤ 1, and z = 0 when no marketing is per-
formed. Let c(z) be the cost of performing the action (with 
c(0)=0), and r(z) be the revenue obtained if the product is pur-

chased. Let )(Mz
if be the result of setting Mi to z and leaving the 

rest of M unchanged. The expected lift in profit from performing 
marketing action z on customer i in isolation is then 
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The global lift in profit is 

[ ]∑
=

−=−=

=
n

i
iiii McXPrXPMr

ELP

1
0 )(),|1()0(),|1()(

),(

MYMY

MY
 

3. INFERENCE AND SEARCH 
Our goal is to find the M that maximizes ELP(Y, M). In our pre-
vious work, we assumed marketing actions were Boolean, and 
heuristically searched through the vast space of possible market-
ing plans. Because of the linearity of the model presented here 
(see Equation 3), the effect that marketing to a person has on the 
rest of the network (their network effect) is independent of the 
marketing actions to other customers. From a customer’s network 
effect, we can directly compute whether he is worth marketing to. 
Let the ∆i(Y) be the network effect of customer i for a product 
with attributes Y. It is defined as the total increase in probability 
of purchasing in the network (including Xi) that results from a unit 
change in P0(Xi): 
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Since ∆i(Y) is the same for any M, we define it for M = M0. We 
can calculate ∆i(Y) using the following recursive formula (see the 
Appendix for a proof) 
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Intuitively, customer i’s network effect is simply the effect that he 
has on people he influences, times their effect on the network. 

∆i(Y) is initially set to 1 for all i, then recursively re-calculated 
using equation 7 until convergence (note this takes approximately 
linear time in the number of non-zero wij’s). Empirically, we 
found it converged quickly (10-20 iterations).  

Note that while the network value of a customer depends on the 
marketing scenario, the network effect does not. The network ef-
fect simply describes how much influence a customer has on the 
network. The network value depends on the network effect, the 
customer’s responsiveness to marketing, and the costs and reve-
nues associated with the marketing scenario. 

With the network effects in hand, we can calculate the expected 
lift in profit of marketing to each customer. For convenience, we 
define ∆Pi(z,Y) to be the immediate change in customer i’s prob-
ability of purchasing when he is marketed to with marketing ac-
tion z: 
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From Equation 6, and given that ),|1( 0MY=jXP varies line-
arly with ),|1(0 ii MXP Y= , the change in the probability of 
purchasing across the entire network is then 
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Typically, only a small portion of the network will be marketed to. 
Therefore, it is relatively safe to approximate the increase in reve-
nue from the network due to marketing to customer i as his influ-
ence on the network multiplied by r(0). The total lift in profit is 
this increase in revenue on the network, plus the change in reve-
nue from customer i, minus the cost of the marketing action: 
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Notice that this approximation is exact when r(z) is constant, 
which is the case in any marketing scenario that is advertising-
based (i.e., if it does not offer discounts). When this is the case, 
the equation simplifies to: 
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With Equation 8, we can directly estimate customer i’s lift in 
profit for any marketing action z. Typically, we will want to find 
the z that maximizes the lift in profit. To do this, we take the de-
rivative with respect to z and set it equal to zero, resulting in: 
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Assuming ∆Pi(z,Y) is differentiable, this allows us to directly 
calculate the z which maximizes ELPi

z
,total(Y, M) which, because 

our model is linear, is the optimal value for Mi in the M that 



maximizes ELP(Y, M). Hence, from the customers’ network ef-
fects, ∆i(Y), we can directly calculate the optimal marketing plan. 
We now show how this model can be applied to knowledge-
sharing sites. 

4. MINING KNOWLEDGE-SHARING 
SITES 
Internet use has exploded over the past decade. Millions of people 
interact with each other online, and, in many instances, those 
social interactions are recorded in archives that reach back twenty 
years or more1. As a result, there are many online opportunities to 
mine social networks for the purposes of viral marketing. UseNet 
newsgroups, IRC, instant messaging, online forums, and email 
mailing lists are examples of possible sources. 

In this paper, we concentrate on knowledge-sharing sites. On such 
sites, volunteers offer advice, product ratings, or help to other 
users, typically for free. Social interaction on knowledge-sharing 
sites comes in a variety of forms. One feature that is often found is 
some form of explicit trust between users. For example, at many 
sites, users rate reviews according to how helpful or accurate they 
are. On others, users directly rate other users. Without a filtering 
feature such as this, knowledge-sharing sites can quickly become 
mired in inaccurate or inappropriate reviews. 

We have chosen to mine Epinions2, possibly the best known 
knowledge-sharing site. On Epinions, members submit product 
reviews, including a rating (from 0 to 5 stars) for any of over one 
hundred thousand products. As added incentive, reviewers are 
paid each time one of their reviews is read. Epinions users interact 
with each other in both of the ways outlined above, by rating re-
views, and also by listing reviewers that they trust. The network of 
trust relationships between users is called the “web of trust”, and 
is used by Epinions to re-order the product reviews such that a 
user first sees reviews by users that they trust. The trust relation-
ships between users, and thus the entire web of trust, can be ob-
tained by crawling through the pages of the individual users3. 
With over 75k users and 500k edges in its web of trust, and 586k 
reviews over 104k products, Epinions is an ideal source for ex-
periments on social networks and viral marketing. Interestingly, 
we found that the distribution of trust relationships in the web of 
trust is Zipfian [25], as has been found in many social networks 
[24]. This is evidence that the web of trust is a representative 
example of a social network, and thus is a good basis for our 
study. A Zipfian distribution of trust is also indicative of a skewed 
distribution of network values, and therefore of the potential util-
ity of viral marketing. 

To apply our model to Epinions, we needed to estimate some 
parameters, such as the effect that marketing has on a customer’s 
probability of purchasing, the self-reliance factor βi, and the 
amount of influence between customers wij. In practice, the mar-
keting research department of a company, or the maintainers of 
the knowledge-sharing site itself, would typically have the re-
sources and access to customers necessary to experimentally de-

                                                                 
1 See http://groups.google.com/ and http://www.archive.org/. 
2 http://www.epinions.com 
3 Epinions does not provide a list of all of its users, so we seeded 

the crawl with the top reviewers in each product category and 
followed both “trusts” and “trusted-by” links to find other users. 

termine these parameters. For instance, the effect that marketing 
has on a customer could be measured by selecting users at random 
and recording their responses (both when being marketed to and 
not). The parameters could be estimated individually for each 
user, or (requiring far less data) as the same for all users, as was 
done in Chickering and Heckerman [3]. If this is not feasible, they 
could be set using a combination of prior knowledge and any 
demographic information available. 

For Epinions, we made the simplifying assumption that a user is 
more likely to purchase a product if it was reviewed by a person 
he trusts. Though not required by the model, we considered all 
trusted people to have equal influence, as there is no data in Epin-
ions to inform otherwise. Thus, Ni={Xj such that i trusts j} and  
wij=1/|Ni| for  Xj∈Ni. For the product attribute vector Y, we used a 
single attribute: the product category (from one of 25 top-level 
categories defined by Epinions). The model supports more com-
plex attribute vectors. For example, one could imagine using the 
text description of products, possibly augmented by the product 
category and sub-category. We plan to explore their effect in fu-
ture work. All that remained to define was P0( Xi | Y, Mi ), which 
we estimated using a naïve Bayes model[4] for Xi as a function of 
Y and Mi.  
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We used a naïve Bayes model for P0( Xi | Y ). We equated review-
ing a product with purchasing it4, so training the model was sim-
ply a matter of counting. In the case of Epinions, measuring the 
effectiveness of marketing on the users was not possible for us. 
We expected marketing to have a larger effect on a customer who 
was already inclined to purchase the product, so we followed our 
previous work and set P0( Mi | Xi ) so as to obtain (for the Boolean 
marketing scenario): 

}1),0|1(min{)1|1( 00 ===== iiii MXPMXP α  (10) 

where α > 1 is a parameter that specifies the magnitude of the 
marketing effect5. 

5. EXPERIMENTS 
We built the model based on Epinions data, as discussed above, 
and used it to gather empirical results. For all of the experiments, 
we used just one of the 25 product categories, “Kids & Family”, 
as it had the most reviews per product (10.2, on average) and 

                                                                 
4 We expect that more users purchase the product than review it. 

However, purchasers who do not review have no additional ef-
fect on the network, so knowing the ratio of purchasers to re-
viewers would simply scale the results. The results would be af-
fected if we knew, per user, the probability of purchasing vs. 
reviewing, but this information is not available to us. 

5 To fully specify P( Mi | Xi ) we used the additional constraint that 
P( Y, Mi=1 ) = P( Y, Mi=0 ). With the values of α we used it 
was always possible to satisfy Equation 10 and this constraint 
simultaneously. 



reviews per person who submitted at least one review in the cate-
gory (5.8, on average). We first tested the Boolean marketing 
case. We hypothesized a simple advertising situation with α=2, 
r0=1, r1=1, which meant revenues were in units of the number of 
products sold, and a person’s internal probability of purchasing a 
product doubled after being advertised to6. In earlier work, we 
varied α and found that, while it affected the scale of the results, it 
had little effect on the qualitative nature of them. Thus, for this 
paper, we fixed α and instead varied other characteristics of the 
model. We had no data to estimate users’ self-reliance, so we 
simply chose to set βi=0.5 for all customers. To combat data 
sparseness, P0( Xi | Y ) was smoothed using an m-estimate with 
m=2 and the population average as the prior. These parameters 
were all chosen before running any experiments. 

 

Table 1: Profit results for Boolean marketing scenario for 
various costs of marketing. 

 α=2, r0=1, r1=1 

 c = 0.1 c = 0.01 c = 0.001 

No Marketing 37.78 37.78 37.78 

Direct Marketing 37.78 42.71 66.08 

Viral Marketing 47.25 60.54 70.23 

 

5.1 Profits and Network Values 
Viral marketing resulted in a considerable increase in profit over 
direct marketing (see Table 1). Notice that when the cost of mar-
keting is a significant fraction of the revenue, the direct marketer 
will choose to market to no one because the cost of marketing 
exceeds the expected revenue from the customer (since the cus-
tomers’ influences on each other are being ignored). As this sce-
nario illustrates, assuming the model is accurate, viral marketing 
will always perform at least as well as direct marketing, often 
outperforming it by a substantial margin. 

We measured the network value of all of the customers. Figure 1 
shows the 500 highest network values (out of 75888) in decreas-
ing order. The unit of value in this graph is the average revenue 
that would be obtained by marketing to a customer in isolation, 
without costs or discounts. Thus, a network value of 200 for a 
given customer implies that by marketing to him we essentially 
get free marketing to an additional 200 customers. The scale of 
the graph depends on the marketing scenario (e.g., network values 
increase with α), but the shape generally remains the same. The 
figure shows that a few users have very high network value. This 
is the ideal situation for the type of targeted viral marketing we 
propose, since we can effectively market to many people while 
incurring only the expense of marketing to those few.  

A customer with high network value is one who: (1) Is likely to 
purchase the product, and thus is more affected by the marketing, 
and (2) is trusted by many other people in the network, who tend 
 

                                                                 
6 In previous work we varied the value of α and found that, while 

it affected the scale of results, they remained qualitatively simi-
lar. 
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Figure 1: Typical distribution of network value. 

to have low βi, and who also have characteristic 2, and so on re-
cursively. For instance, the customer with the highest network 
value (22,000) influences 784 people, and has a probability of 
purchasing of 0.03, which is 23 times that of the average person. 

5.2 Speed 
The linear model introduced in this paper has tremendous speed 
advantages over a non-linear model such as that introduced in our 
previous work. Because of the independence that linearity pro-
vides, we are able to simultaneously calculate the network value 
for all customers. The network value is independent of the market-
ing actions being performed on others, which allows us to find the 
optimal marketing plan7 without performing a heuristic search 
over plans.  It would take approximately 100 hours to perform the 
single-pass search (the fastest of the heuristic search methods 
introduced in our previous work) with this model, or about 10-15 
minutes if we make approximations in the inference. In contrast, 
the linear model takes 1.05 seconds to find the optimal marketing 
plan. At these speeds, our model could be used to find optimal 
marketing plans for markets involving hundreds of millions of 
customers in just hours. 

5.3 Continuous Marketing Actions 
Continuous-valued marketing actions (Mi∈[0,1]) allow the mar-
keter to better optimize the marketing plan – tailoring the action 
for each person specifically to his characteristics. Our framework 
allows for any function to be used to model P0( Xi | Y, Mi ), as 
long as it is differentiable in Mi. As in the Boolean case, we have 
chosen to model the effect of marketing as a multiplicative factor 
on the internal probability of purchasing: 

)0|()()|( 00 =⋅== iiii MXPzzMXP α  

α(z) could be any differentiable function, and we assume α(0)=1. 
c(z) also could be any differentiable function. We have chosen 
c(z)=c1z such that the cost of marketing is directly proportional to 
the amount of marketing being performed. 

                                                                 
7 The plan is optimal if r0=r1 (or if r(z) is constant in the continu-

ous marketing scenarios). If r1<r0 then the plan overestimates 
the revenues from influence on the network, potentially result-
ing in a sub-optimal marketing plan. In our experience, this 
overestimation ranged from 1% to 10% of the profits. We thus 
believe the resulting plan was still nearly optimal. 
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Figure 2: Marketing effect vs. marketing action. 

 

We believe an exponentially asymptotic function for α(z) is rea-
sonable; it models the phenomenon of diminishing returns (i.e., 
the more money that is spent on marketing, the less improvement 
is derived from it). We also experimented with logarithmic and 
inverse polynomial functions, which gave similar results. The 
function we used was: 

zez λααα −
∞∞ −+= )1()(  

Note that α(0)=1, and α(z)→α∞ as z→∞. The parameter λ affects 
the curvature of the function; α(z) converges to α∞ more quickly 
with a large λ. In the experiments below, we used λ=5, which is 
large enough that α(1) ≈ α∞, yet low enough that α(z) does not 
converge to α∞ too quickly. The resulting curve, for α∞=2, is 
shown in Figure 2. 

From equation 9, we can find the optimal marketing action for 
each customer 
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The second derivative is negative, implying the point is a maxi-
mum. 

We ran the same experiments as in the Boolean case, with α∞=2 
so that marketing fully to a customer will double their internal 
probability of purchasing the product, as before. The results are 
presented in Table 2. In all three scenarios, and for both direct and 
viral marketing, continuous marketing actions resulted in a higher 
lift in profit than Boolean actions, sometimes by a very significant 
amount. Viral marketing also continued to consistently out-
perform direct marketing.  

The increased lift in profit is due to two factors: (1) At low z, the 
α(z) curve provides a more favorable ratio of marketing effect to 
cost, and (2) tailoring the marketing action for each customer 
allows us to optimize the tradeoff between the cost and benefit of 
marketing on a per customer basis. 

Table 2: Profit results for continuous marketing scenario for 
various costs of marketing. 

 α∞=2, r(z)=1,  λ=5 

 c1 = 0.1 c1 = 0.01 c1 = 0.001 

No Marketing 37.78 37.78 37.78 

Direct Marketing 37.84 51.71 68.38 

Viral Marketing 51.14 63.23 71.28 

Lift over Boolean 
Viral Marketing 

3.89 
(41.08%) 

2.69 
(11.82%) 

1.05 
(3.24%) 

 

To verify that factor (1) is not the sole cause of the increase in 
profit, we ran Boolean marketing experiments with α=α(z) and 
c=c(z) for z ranging from 0 to 1. Doing so simulates a company 
which globally optimizes its choice of marketing action, but still 
performs that same (or no) action on each customer. The maxi-
mum realizable profits in this case were 49.90, 61.60, and 70.23 
for a c1 of 0.1, 0.01, and 0.001. These results show that tailoring 
the marketing action for each customer is indeed a significant 
cause of the increase in profits derived from the continuous mar-
keting case. 

One interesting question is what happens if the marketing effect 
function α(z) is linear, α(z)= αz. In this case, continuous-valued 
marketing reduces to Boolean marketing. If it would be profitable 
to market to a customer some (z>0), then the benefit of marketing 
to him must be higher than the cost for any z (since both the cost 
and the benefit are linear), and it would thus advantageous to 
market to him the maximum possible (z=1). 

5.4 Incomplete Network Knowledge 
So far, we have considered only markets where the entire social 
network between customers is known. This is often not the case. 
In fact, most companies today have little or no knowledge of the 
actual relationships between their customers. In such a situation, 
companies may simply choose to use direct marketing, but if they 
do, they will likely lose profit opportunities, as demonstrated in 
earlier sections. In the following sections, we will demonstrate 
that even with little network knowledge, our viral marketing 
methods still outperform direct marketing. In all of the experi-
ments that follow, we used continuous-valued marketing actions, 
with the same parameters as those used for Section 5.3 (Table 2) 
and c1 = 0.1. 

5.4.1 Viral marketing is robust 
We simulated partial knowledge by randomly removing members 
from the neighbor sets, which corresponds to randomly removing 
edges from the social network. This is the situation a company 
would be in if they had only a random sample of the neighbor 
relations between customers. We devised the optimal marketing 
plan on the incomplete network, and then tested this plan on the 
complete network, which simulates the “real-world”. Naturally, 
when no edges are known, viral marketing is equivalent to direct 
marketing.  
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Figure 3: Actual and estimated difference between viral mar-
keting and direct marketing profits with only partial network 

knowledge. 

 

In Figure 3 (“Actual”), we show the difference in profit between 
direct and viral marketing for partially known networks. Surpris-
ingly, the company can achieve 69% of the lift in profit knowing 
only 5% of the edges in the network. Further, the algorithm con-
siderably underestimates the lift in profit that will result (Figure 3, 
“Estimated”), meaning that for a company with only partial net-
work knowledge, not only are viral marketing plans robust but the 
actual results of viral marketing will be significantly better than 
the algorithm estimates. 

We hypothesize that this robustness will occur whenever the 
edges are missing at random (or approximately so), resulting in a 
correlation between the number of people who trust a given per-
son in the partial network and the number who trust him in the 
true network. A customer who appears to have a high network 
value in the partial network is likely to have a high network value 
in the full network, and would thus be chosen to be marketed to. 
We also believe that the algorithm could use an estimate of the 
fraction of edges that are missing to construct an even better viral 
marketing plan; we plan to investigate this in future work. 

5.4.2 Acquiring new network knowledge 
In many instances, a company will have little or no knowledge 
about the relationships between its customers, but may be willing 
to spend marketing research funds to acquire it. More knowledge 
about the influences between customers will allow the company to 
form a marketing plan with a higher lift in profit. If the company 
could compute the value of information [8] of knowing the 
neighbors of each customer, it could then make a decision-
theoretic choice of which, and how many, customers to query. 

The acquisition of neighbor relations could be done in many 
ways. For the purposes of this paper, we assume that it is done by 
selecting a user to query, spending money to persuade him to 
provide a list of the people he trusts, selecting another user to 
query, and so on. We assume the company has a fixed amount of 
money it is willing to spend for this, and that the cost of querying 
a user is constant. The interesting problem is thus not how many 
users to query, but how to select the subset of users to query that 
leads to the most profit. 
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Figure 4: Lift in profit (on the full network) for the viral mar-
keting plan in which the given number of customers has been 

queried for their neighbor information. 

 

A customer with a high network effect has a large influence on the 
network, and is thus one that we wish to influence to purchase the 
product. Apart from directly marketing to the customer, we can 
indirectly influence him by marketing to those that he trusts, 
which we can discover by querying him. One estimate for a cus-
tomer’s network effect on the full network is his network effect on 
the partial network. We thus query the customer with the highest 
network effect on the partial network, recalculate network effects 
with the new information, query the next customer with highest 
network effect, and so on until the marketing funds have been 
spent. 

We performed this experiment, starting with a network containing 
no neighbor information8. Figure 4 shows the resulting lift in 
profit, compared to randomly selecting customers to query. Our 
method performs well, lifting profits an order of magnitude more 
than random choice would when 1000 customers are queried, and 
by almost 3 times the lift achieved by random choice when 10% 
of the customers are queried. 

We must re-calculate the customers’ network effects each time we 
query a user. We can drastically speed this up by querying the 100 
customers with highest network effect at each iteration, with a 
potential loss of accuracy. Interestingly, the lift in profit when 
selecting 100 customers at a time is only (on average) 0.008 less 
than when selecting one at a time, a negligible amount compared 
to the lift in profit itself. Since it takes 1/100th the time to run, this 
approximation could be used to make knowledge acquisition trac-
table for non-linear models, or for markets of tens of millions of 
customers. 

In future work, we would like to find a measure that estimates the 
increase in ELP of querying one more user, thus informing the 
company when to stop acquiring network knowledge. This would 
allow us to optimize the overall profit (lift in profit minus funds 
spent to acquire network knowledge). We believe such a measure 
could be formed from the ELP, an estimate of the number of miss-
ing edges, and other statistics on the partial network. 

                                                                 
8 The first customers to query are therefore chosen at random. 



6. RELATED WORK 
In our previous work [5], we mined a collaborative filtering sys-
tem to demonstrate the advantages of our viral marketing ap-
proach over direct or mass marketing. There, we used a more 
complicated, piecewise linear function over product ratings to 
determine the influences of customers on each other. In this paper, 
we used a model with stronger linearity assumptions to achieve 
greater scalability. A disadvantage of our previous work is that it 
required full knowledge of network structure, and restricted the 
marketer to selecting Boolean marketing actions. Both of these 
limitations were addressed and overcome in this paper. 

Interestingly, the computation of network effect (see Equation 7) 
is very similar to the PageRank[21] algorithm, used by Google[2] 
for determining important web pages. In PageRank, a web page is 
valued highly if many highly valued pages point to it. Similarly, in 
viral marketing a customer is valued highly if he influences many 
highly valued customers. The computation is equivalent to finding 
the primary eigenvector of the matrix W, where Wij=wij (wji for 
PageRank). The network effect of a customer is also proportional 
to the probability that a random walker, who randomly traverses 
the links of influence in the network backwards, is at that cus-
tomer. Also related is the HITS[15] algorithm, which would find 
bipartite “trusts/trusted-by” sub-graphs in the web of trust. Inter-
estingly, social networks, the World-Wide Web, and many natu-
rally occurring networks all exhibit Zipfian, or “scale free” char-
acteristics, and have been the topic of much recent research [17] 
[1]. 

Social networks have been the object of much research. One clas-
sic paper is that by Milgram [20], which estimated that every per-
son in the world is only six acquaintances away from every other. 
Some recent social network research uses the Internet as a source 
of data. For instance, Schwartz and Wood [23] mined social rela-
tionships from email logs, the ReferralWeb project mined a social 
network from a wide variety of publicly-available online informa-
tion [14], and the COBOT project gathered social statistics from 
participant interactions in the LambdaMoo MUD [11]. Our net-
work was mined from a knowledge-sharing site. A good overview 
of Epinions and other sites like it can be found in Frauenfelder 
[6]. 

Several researchers have studied the problem of estimating a cus-
tomer’s lifetime value from data [12], generally focusing on vari-
ables like an individual’s expected tenure as a customer [19] and 
future frequency of purchases [7]. Networks of customers have 
received some attention in the marketing literature [10] but most 
of these studies are purely qualitative, or involve very small data 
sets and overly simplified models. Krackhardt [16] proposes a 
model for optimizing which customers to offer a free sample of a 
product to, but the model only considers the impact on the cus-
tomer’s immediate friends, assumes the relevant probabilities are 
the same for all customers, and is only applied to a made-up net-
work with seven nodes. 

7. FUTURE WORK 
We have developed models for viral marketing on social networks 
mined from real-world data. There are many directions in which 
these models, or their use, could be extended. In this section, we 
describe some of the main ones. 

In this paper, we mined a network from a single source. In gen-
eral, multiple sources of relevant information will be available; 

the ReferralWeb [14] project exemplified their use. Methods for 
combining diverse information into a sound representation of the 
underlying influence patterns are thus an important area for re-
search.  

Here, we considered only constant r(z). In preliminary experi-
ments, a decreasing r(z) caused the algorithm to somewhat overes-
timate the lift in profit that would result from a particular market-
ing plan, therefore likely leading to a sub-optimal marketing plan 
(though it still outperformed direct marketing). In future work, we 
would like to investigate methods for handling variable r(z), 
which may involve, for instance, a correction factor based on the 
expected number of customers that will be marketed to. 

We have introduced methods for developing a marketing plan 
when the structure of the network is unknown or only partially 
known, but there are still many directions in which the methods 
could be extended. In particular, we would like to explore the 
effect of having a biased network sample on the resulting viral 
marketing plan. Knowing how the sample is biased should lead to 
better marketing plans. Also, with more information it may be 
possible to make more intelligent selections about which users to 
query. All information known about a user (e.g., demographic 
characteristics, past purchasing behavior, and partial knowledge 
about “trusts/trusted-by” relations) could be used to estimate the 
value of querying him. We would like to further develop the ap-
plication of the theory of value of information [8] to optimizing 
the tradeoff between the cost and expected benefits of acquiring 
knowledge about the network. 

This paper considered making marketing decisions at a specific 
point in time. A more sophisticated alternative would be to plan a 
marketing strategy by explicitly simulating the sequential adop-
tion of a product by customers given different interventions at 
different times, and adapting the strategy as new data on customer 
response arrives. A further time-dependent aspect of the problem 
is that social networks are not static; they evolve, and particularly 
on the Internet can do so quite rapidly. Some of the largest oppor-
tunities may lie in modeling and taking advantage of this evolu-
tion. If the network evolution is understood, it may be possible to 
affect the structure itself, driving the network toward one which 
has a higher profit potential. 

We would also like to investigate further the algorithmic similari-
ties between viral marketing and web page ranking algorithms 
such as PageRank[21] and HITS[15]. Applying the techniques 
and lessons learned in viral marketing to the web domain, or vice 
versa, could result in new insights into the problems found in 
each. For instance, recent work on mining significant Web sub-
graphs such as bipartite cores, cliques and web rings (e.g., [17]) 
may be applicable to viral marketing. Their techniques could pos-
sibly be used to study network sub-structures and identify those 
with the highest profit potential. 

8. CONCLUSION 
This paper uses data mining to improve viral marketing. We apply 
our techniques to data mined from a real-world knowledge-
sharing site, and show that they scale efficiently to networks of 
hundreds of millions of customers. We extend our techniques to 
handle continuously variable marketing actions and partial net-
work knowledge. Our results show the promise of our approach. 



9. ACKNOWLEDGEMENTS 
This research was partly funded by NSF CAREER and IBM Faculty 
awards to the second author. 

10. REFERENCES 
[1] A. L. Barabási, R. Albert, and H. Jong. Scale-free character-

istics of random networks: The topology of the World Wide 
Web. Physica A, 281:69-77, 2000. 

[2] S. Brin and L. Page. The anatomy of a large-scale hypertex-
tual Web search engine. In Proceedings of the Seventh Inter-
national World Wide Web Conference, Brisbane, Australia, 
1998. Elsevier. 

[3] D. M. Chickering and D. Heckerman. A decision theoretic 
approach to targeted advertising. In Proceedings of the Six-
teenth Annual Conference on Uncertainty in Artificial Intel-
ligence, Stanford, CA, 2000. Morgan Kaufmann. 

[4] P. Domingos and M. Pazanni. On the optimality of the sim-
ple Bayesian classifier under zero-one loss. Machine Learn-
ing, 29:103-130, 1997. 

[5] P. Domingos and M. Richardson. Mining the Network Value 
of Customers. In Proceedings of the Seventh International 
Conference on Knowledge Discovery and Data Mining, 
pages 57-66, San Francisco, CA, 2001. ACM Press. 

[6] M. Frauenfelder. Revenge of the know-it-alls: Inside the 
Web’s free-advice revolution. Wired 8(7):144-158, 2000. 

[7] K. Gelbrich and R. Nakhaeizadeh. Value Miner: A data min-
ing environment for the calculation of the customer lifetime 
value with application to the automotive industry. In Pro-
ceedings of the Eleventh European Conference on Machine 
Learning, pages 154-161, Barcelona, Spain, 2000. Springer. 

[8] R. A. Howard. Information value theory. IEEE Transactions 
on Systems Science and Cybernetics, SSC-2:22-26. 1966 

[9] A. M. Hughes. The Complete Database Marketer: Second-
Generation Strategies and Techniques for Tapping the 
Power of you Customer Database. Irwin, Chicago, IL, 1996. 

[10] D. Iacobucci, editor. Networks in Marketing. Sage, Thousand 
Oaks, CA, 1996. 

[11] C. L. Isbell, Jr., M. Kearns, D. Korman, S. Singh, and P. 
Stone. Cobot in LambdaMOO: A social statistics agent. In 
Proceedings of the Seventeenth National Conference on Arti-
ficial Intelligence, pages 36-41, Austin, TX, 2000. AAAI 
Press. 

[12] D. R. Jackson. Strategic application of customer lifetime 
value in direct marketing. Journal of Targeting, Measure-
ment and Analysis for Marketing, 1:9-17, 1994. 

[13] S. Jurvetson. What exactly is viral marketing? Red Herring, 
78:110-112, 2000. 

[14] H. Kautz, B. Selman, and M. Shah. ReferralWeb: Combining 
social networks and collaborative filtering. Communications 
of the ACM, 40(3):63-66, 1997. 

[15] J. M. Kleinberg. Authoritative sources in a hyperlinked envi-
ronment. In Proceedings of the Ninth Annual ACM-SIAM 
Symposium on Discrete Algorithms, pages 668-677, Balti-
more, MD, 1998. ACM Press. 

[16] D. Krackhardt. Structural leverage in marketing. In D. 
Iacobucci, editor, Networks in Marketing, pages 50-59. Sage, 
Thousand Oaks, CA, 1996. 

[17] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. 
Extracting large-scale knowledge bases from the Web. In 
Proceedings of the Twenty-Fifth International Conference on 
Very Large Databases, pages 639-650, Edinburgh, Scotland, 
1999. Morgan Kaufmann. 

[18] C. X. Ling and C. Li. Data mining for direct marketing: 
Problems and solutions. In Proceedings of the Fourth Inter-
national Conference on Knowledge Discovery and Data 
Mining, pages 73-79, New York, NY, 1998. AAAI Press. 

[19] D. R. Mani, J. Drew, A. Betz, and P. Datta. Statistics and 
data mining techniques for lifetime value modeling. In Pro-
ceedings of the Fifth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 94-
103, New York, NY, 1999. ACM Press. 

[20] S. Milgram. The small world problem. Psychology Today, 
2:60-67, 1967. 

[21] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageR-
ank citation ranking: Bringing order to the web. Technical 
Report, Stanford University, Stanford, CA. 1998. 

[22] G. Piatetsky-Shapiro and B. Masand. Estimating campaign 
benefits and modeling lift. In Proceedings of the Fifth ACM 
SIGKDD International Conference on Knowledge Discovery 
and Data Mining, pages 185-193, San Diego, CA, 1999. 
ACM Press. 

[23] M. F. Schwartz and D. C. M. Wood. Discovering shared 
interests using graph analysis. Communications of the ACM, 
36(8):78-80, 1993. 

[24] S. Wasserman and K. Faust. Social Network Analysis: Meth-
ods and Applications. Cambridge University Press, Cam-
bridge, UK, 1994. 

[25] G. K. Zipf. Human Behavior and the Principle of Least Ef-
fort. Addison-Wesley, Boston, MA, 1949. 

 

11. APPENDIX 
In this appendix, we give a proof for Equation 7: 
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As this is an iterative equation, we identify which iteration we are 
on by a super-script. Let  
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be the nth estimate of customer i’s network effect and probability 
of purchasing, respectively, and let 
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since on the 0th iteration no network effect is taken into account. 
For notational convenience, we also define 
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The iterative update from Equation 4 is: 
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Also note, from Equation 6, we have 
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We first will prove by induction that 
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We first show this is true for the case where n = 2: 
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We now prove Equation 11 is true for n if we assume it is true for 
n-1: 
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This completes the proof of Equation 11. 

 

We will now prove by induction that  
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We first prove that the induction hypothesis is true for the case 
where n = 1: 
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We now prove Equation 12 is true for n if we assume it is true for 
n-1. 
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By “unrolling” the recursion, we obtain 
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renaming a1 as k, aj as aj-1 for 2 ≤ j ≤ n-1, and k as an-1, we obtain: 
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We have shown that ∑ −∆′=∆
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until it reaches a fixed point, the resulting values for ∆n
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This completes the proof of Equation 7. 

 

 


