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Abstract

This paper demonstrates many immediate connections between adaptive control and opti-
mization methods commonly employed in machine learning. Starting from common output error
formulations, similarities in update law modifications are examined. Concepts in stability, per-
formance, and learning, common to both fields are then discussed. Building on the similarities in
update laws and common concepts, new intersections and opportunities for improved algorithm
analysis are provided. In particular, a specific problem related to higher order learning is solved
through insights obtained from these intersections.

1 Introduction

The fields of adaptive control and machine learning have evolved in parallel over the past few
decades, with a significant overlap in goals, problem statements, and tools. Machine learning as a
field has focused on computer based systems that improve through experience [1H6]. Often times
the process of learning is encapsulated in the form of a parameterized model, whose parameters
are learned in order to approximate a function. Optimization methods are commonly employed
to reduce the function approximation error using any and all available data. The field of adaptive
control, on the other hand, has focused on the process of controlling engineering systems in order
to accomplish regulation and tracking of critical variables of interest (e.g. speed in automotive
systems, position and force in robotics, Mach number and altitude in aerospace systems, frequency
and voltage in power systems) in the presence of uncertainties in the underlying system models,
changes in the environment, and unforeseen variations in the overall infrastructure [7HI1]. The
approach used for accomplishing such regulation and tracking in adaptive control is the learning
of underlying parameters through an online estimation algorithm. Stability theory is employed for
enabling guarantees for the safe evolution of the critical variables, and convergence of the regulation
and tracking errors to zero.

Learning parameters of a model in both machine learning and adaptive control occurs through
the use of input-output data. In both cases, the main algorithm used for updating the parameters
is based on a gradient descent-like algorithm [I1]. Related tools of analysis, convergence, and
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robustness in both fields have a tremendous amount of similarity. As the scope of problems in
both fields increases, the associated complexity and challenges increase as well. Therefore it is
highly attractive to understand these similarities and connections so that the two communities can
develop new methods for addressing new challenges. In this paper, we discuss the similarities and
connections in detail between the fields of adaptive control and machine learning. Using these
connections, we state and provide a solution for a new problem in machine learning using methods
developed in adaptive control.

In this paper, the adaptive control perspective will be presented in continuous time with machine
learning material presented in discrete time. The paper organization is as follows. We introduce
the formulation of output errors commonly employed in adaptive control and machine learning with
their associated update laws in Section 2l Numerous connections between the two fields are then
made with respect to the underlying parameter update laws in Section Bland important concepts in
Section @l Examples of intersections between both fields are provided in Section B with concluding
remarks in Section [6l

2 Problem Statements

In this section, we state typical problems that are addressed in the areas of adaptive control and
machine learning. In both cases, we illustrate the role of learning, the input-output data used, and
the overall problem that is desired to be solved.

2.1 Adaptive Control

The main goal in adaptive control is to carry out problems such as estimation or tracking in the
presence of parametric uncertainties. The underlying model that relates inputs, outputs, and the
unknown parameters is assumed to stem from either the underlying physics or from data-driven
approaches. Often these models take the form

y(t) = f(o(t),07) (1)

B(t) = fa(x(t),u(®), 07), y(t) = fa3(x(t), u(t),07) (2)

where u € R™ is an exogenous input, x € R" denotes the state, y € RP corresponds to output
measurements, ¢ € RV corresponds to measured and computed variables, and 6* € RN denotes
the uncertain parameter. In an estimation problem, the goal is to estimate the state = in (2]) and
output y in both (), (2]), alongside the unknown parameter 6* simultaneously, using all available
variables. In a control problem, the goal is to determine a control input u so that the output y in
@) follows a desired output .

A typical approach taken in order to solve the estimation problem in () is to choose an estimator
structure of the form

9(t) = f(o(1),0(2)) 3)

where § € RN denotes the estimate of #* and adjust # so that the estimation error ey =9 —yis
minimized, i.e., choose a function gi(ey, ¢) with

0(t) = g1(ey(t), 6(1)) (4)

so that the estimator has bounded signals, e, (t) converges to zero and 6(t) converges to *. Similarly,
the control problem consists of constructing an output tracking error e, = § — y, where j denotes



Figure 1: Error Models. Left: Regression (), Right: Adaptive Control ().

the desired output that y is required to track. The goal is to then choose functions gz (e, ¢, ) and
g3(ey, ¢,0) so that the control input u and a control parameter estimate § can be chosen as

u(t) = g2(ey(t), o(t), 0(t))
0(t) = ga(ey (1), 6(1), 6(1))

leading to closed-loop signals remaining bounded, e, (t) converging to zero and #(t) converging to
its true value 6*. Denote the corresponding parameter errors as § = 6 — 6*.

In order to derive the function g; for the estimation problem in (Il) and the functions gs and g3
for the control problem in (2]) so as to realize the underlying goals, a stability framework together
with an error model approach is often employed in adaptive control. The error model approach
consists of identifying the basic relationship between the two errors that are commonly present in
these adaptive systems, which are the estimation (or tracking) error e, and the parameter error 6.
While the estimation error is measurable and correlated with the parameter error, the parameter
error is unknown but adjustable through the parameter estimate. In order to determine the update
laws g;, the relationship (error model) that relates these two errors is used as a cue.

Two types of error models frequently occur in adaptive systems, and are presented below (see
Figure [Il). The first corresponds to the case when the relation in () is linear, and the underlying
error model is simply of the form (cf. [I1])

ey(t) = 07 (1)o(t) (6)

and as a result, the function g; in (@) can be determined simply using the gradient rule that
minimizes [|e,||>. The second is of the form (cf. [11])

ey(t) = W(s)[0" (1)o(t)] (7)

where W (s)[¢] denotes a dynamic operator operating on ((¢). It has been shown in the adaptive
control literature [7HIT] that for specific classes of dynamic operators W (s), a stable, gradient-like
rule can be determined for adjusting 6. Most of these results apply uniformly to the case when
u and y are scalars or vectors, with the latter introducing additional technicalities. In this paper
we consider the case where inputs and outputs are scalars for notational simplicity, and to focus
on the core of the learning problem with multi-dimensional regressors ¢ and parameter estimates
f. Often the unknown parameter 6* is assumed to reside in a compact convex set, which we will
denote as O.

(5)

2.2 Machine Learning

Machine learning is a broad field encompassing a wide variety of learning techniques and problems
such as classification and regression. A large portion of machine learning considers supervised
learning problems, where regressors ¢ and outputs y are related to one another in an unknown
algebraic manner [IH6]. A typical approach taken in order to perform classification or regression is
to choose an output estimator ¢ parameterized with adjustable weights 6, as

Uk = [ (b, Ok). (8)



A common form of the estimator as in (8) is that of neural networks, where the parameters 6
represent the adjustable weights in the network [1H5].

Similar to adaptive control, 8 is often adjusted using the output error e, = gr — yr. A loss
function L : © — R of e, ;, is minimized through the adjustable weights. An example loss function
for regression is £, loss (with p € N, p > 0 and even) L(6;) = (1/p)||ey k|[5. For binary classification
(yx € {—1,1}) common loss functions include hinge loss L(6) = max(0,1 — yx k), and logistic loss
L(0r) = In(1 + exp(—yryx)). Additionally, as in empirical risk minimization (ERM) [12], the total
loss function considered for the purpose of a parameter update may be an average of loss functions
over m samples as: (1/m)> ", L;(6x). The above descriptions make it clear that the structure of
the estimation problem in both adaptive control and machine learning are strikingly similar. In
the next section, we examine the nature of the adjustment of 6.

2.3 Common Update Laws

As previously stated, the goal in adaptive control is to design a rule to adjust € in an online
continuous manner using knowledge of ¢ and e, such that e, tends toward zero. Given that the
output errors may be corrupted by noise, an iterative, gradient-like update is usually employed.
To do so for the algebraic error model (@), consider the squared loss cost function: L(0(t)) =
(1/2)62(1&). The gradient of this function with respect to the parameters can be expressed as:
VoL(0(t)) = ¢(t)ey(t). The standard gradient flow update law [7] may be expressed as follows with
user-designed gain parameter v > (0 as

0(t) = —7VoL(B(t)) = —v9(t)ey(t)- (9)

For dynamical error models such as (), a stability approach rather than a gradient based one
is taken using Lyapunov methods, which leads to an adaptive law identical to (@) for a class of
dynamic systems W (s) that are strictly positive real [7,[13].

The common update law for supervised machine learning problems, gradient descen, is akin
to the time varying regression law (@) in discrete time, and of the form

Ok+1 = 0k — 7 VoL(0) (10)

where the “stepsize” i is usually chosen as a decreasing function of time [I5H19], a standard feature
of stochastic gradient algorithms.

3 Connections: Update Law

This section details a variety of connections between adaptive control and the optimization methods
commonly used in machine learning as viewed from the perspective of their common update laws

@, @Q.

3.1 o-Modification, e-Modification, and Regularization

While the update laws in (@) and (I0) are designed primarily to reduce the output error e, there
are several secondary reasons to modify these update laws from robustness considerations due to
perturbations stemming from disturbances, noise, and other unmodeled causes. We outline these
updates in in this section.

"While this is not true of all machine learning as the field is broad, (for example Bayesian methods often use
sampling based techniques such as Markov Chain Monte Carlo), even in the world of probabilistic inference, gradient
based methods can also be used, cf. variational inference [14].



3.1.1 Adaptive Control

Historically the adaptive update law in () has been modified to ensure robustness in the presence
of bounded disturbances as

0(t) = —7 [VoL(8(t)) + oG (8(1), ey(1))] (11)

where o > 0 is a tuneable parameter that scales the extra term G. Common choices for G include
the o-modification G = 0 [20], and the e-modification G = ||e, ||6 [21].

3.1.2 Machine Learning

Regularization is often included in a machine learning optimization problem in order to help cope
with overfitting by including constraints on the parameter, thus resulting in an augmented loss
function [IH5,I6HI8]: L(#) = L(#) + oR() where o > 0 is a tunable parameter, often referred
to as a Lagrange multiplier. The gradient descent update (I0]) for this augmented loss function is
often referred to as the “regularized follow the leader” algorithm in online learning [I7] and may
be expressed as

k1= 0k — k& [VoL(0k) + o VaR(0k)] - (12)

The common choice of ¢, regularization in machine learning of R = (1/p)||0||h with p = 2, (as
in ridge regression), coincides with the o-modification [20], as then VyR = G. Given that the
dimension of the parameter vector may be large, a sparse representation is often obtained with ¢;
regularization (as in lasso), with R = |01 [2H5].

3.2 Deadzone Modification and Early Stopping

This subsection details common modifications of the adaptive law adopted to cease updating the
parameter estimate after sufficient tuning.

3.2.1 Adaptive Control

Another method employed to increase robustness in the presence of bounded disturbances is to
employ a “dead zone” [22], for the update in (@) as

6(t) = {;WeL(e(t))’ §§§z§ z jg :[Z (13)

where dy > 0 is the dead zone width that may correspond to an upper bound on the disturbance,
and € > 0 is a small constant. The function D is a non-negative metric on the output error to
stop adaptation in desired regions of the output space. A common choice is D = ||e,|| such that
adaptation stops after a small output error is achieved above a noise level with upper bound dj.

3.2.2 Machine Learning

The training processes is often stopped in machine learning applications as a method to deal with
overfitting [2H5123]. This may be done by using multiple data sets and stopping the parameter
update process (I0) when the loss computed for a validation data set starts to increase [23]. Early
stopping is often seen to be needed for training neural networks due to their large number of
parameters [2-5] and can act as regularization [24].



3.3 Projection

It is often desirable to define a compact region a priori for the parameters 8, such that during the
learning process the parameters are not allowed to leave that region. In physical systems there are
natural constraints which may aid in the design of that region, and for non physical systems, the
constraints are often engineered by the algorithm designer.

3.3.1 Adaptive Control

A continuous projection algorithm is commonly employed to provide for robustness of the adaptive
update law in the presence of unmodeled dynamics [25H27]. One such implementation is

PI'Oj (02, 4'2) = ei,max_ei,max (14)

02 . —02
ey — (i, 0; € QN0 >0
G otherwise

where Q, 0; max, 92’-7max define a user-specified boundary layer region inside of © (see [26]). The

update law in (@) may then be modified as
(1) = —Proj [0(t), VoL (8(1))]. (15)

3.3.2 Machine Learning

Projected gradient descent methods have a long history in optimization. The following projection
operation finds the point in a convex set which is closest to a specified point, and may be defined
as
g (0) £ argmin||0 — 0| (16)
6co

which may be employed in the update sequence [I5H19]

Op+1 = 0 — v VoL(0y), Op+1 = Ho(Ok11). (17)

3.4 Adaptive Gains and Stepsizes
3.4.1 Adaptive Control

The following parameter update law for the algebraic error mode]@ ([6)) is one example which alters
the gain of the standard update law (@) as a function of the time varying regressors ¢ [7,[10]:

0(t) = —AT(£)VoL(0(t))
T
p(p) = § 100 = FOGEEE @) < P (18)
0, otherwise

where T > 0 is a forgetting factor and N (t) is a normalizing signal, with common choice N (t) =
(1 + up™ (t)¢(t)) for u > 0 chosen appropriately (see for example [I0] for a discussion of the choice
of parameters). It can be seen that the update for I' may be integrated and used in the update for
0 to result in a gain adaptive to the regressor ¢.

2This update law has not been proven stable for the error model in @.



3.4.2 Machine Learning

Adaptive step size methods [28-31] have seen widespread use in machine learning problems due
to their ability to handle sparse and small gradients by adjusting the step size as a function of
features as they are processed online. Define the following: g, = VoL(0y), my = Fix(91,---,9k),
Vie = Fai(91,---,9k) for user defined averaging functions Fi 5, Fo . A common update law for
adaptive step size methods [31] can then be seen to be similar to (IT) as

Ops1 = 0) — ’Ykmk/vkl/zy Ort1 = Mo (Or+1) (19)

where the following parameterizations are common [31]: (i) projected gradient descentf] @, (i)
ADAGRAD [28], and (iii) Apami [30]. It can be noted that the normalization in these update laws
is a function of the gradient, which can be compared to the normalization by the regressor in (IS]).

4 Connections: Tools and Concepts

This section details concepts and tools common to both machine learning and adaptive control.

4.1 Lyapunov Functions and Regret

Stability and convergence tools in adaptive control and online machine learning are analyzed in
this section.

4.1.1 Adaptive Control

Suppose we consider the error model in () where W (s) = c¢(sI — A)~'b, and a corresponding state
space representation of the form [7]

(20)

The term <;~5 is due to exponentially decaying terms in the regressor ¢. That is, b = <;3— ¢ and

é = A for a Hurwitz matrix A € RV*N H Stability is often proven in adaptive control by the use
of a Lyapunov function V', such as

V =~71970 4 ' Pe + a¢’ Po. (21)

It should be noted that the last two terms in V' are not needed for the algebraic error model in (@l).
The time derivative of the Lyapunov function may then be stated using the update law in (@) and
the KYP lemma [7] as

V =—e"Qe — ad? Qo + 2T Poo*T ¢ (22)

SFik =gk, For = L.

4.7—'1,k = gk, Fo,x =€l + diag(Zle gf), where g? =9, gi.

SFik=(1=B1) 5, B gi, For = (1 — Ba)diag(3F | By 'g7). R
5This formulation is common in the design of non-minimal adaptive observers [7]. Tt can be noted that ¢ — ¢

as t — co as A is Hurwitz. Also for é=¢, (20) is the same as (). A Hurwitz matrix A implies the existence of a
positive definite matrix P = PT € R¥*N and 0 < Q = QT € RV*¥ such that: ATP 4+ PA = —Q.



where V < 0 for o > (4] Pb||?]|6*]|?/(min eig(Q) - mineig(Q)). It can be shown [7] that 6(¢) =
2¢T PbO*T ¢ is an exponentially decaying signal with ¢,e € Lo N L. By integrating V' from t( to
T, we obtain

T T T
/ TOedt — [ oty < — / Vdt = V(ty) — V(T). (23)

0 to 0

Given that V <0, V(tg) — V(T) < V(to) < oc.

4.1.2 Machine Learning

In online learning, efficiency of an algorithm is often analyzed using the notion of “regret” as

T T
regrety = Z Cr(0r) — Igéiél Z Cr(0) (24)
k=1 k=1

where regret can be seen to correspond to the sum of the time varying convex costs Cj, associated
with the choice of the time varying parameter estimate 65, minus the cost associated with the best
static parameter estimate choice, over a time horizon of T" steps [IGHI7.[19]. Suppose we consider a
quadratic cost C = engk, Q = QT > 0. A continuous time limit of (24]) leads to an integral as

T T
continuous regret, = / e’ Qedt — S(t)dt (25)

to to

where §(t) is an exponentially decaying signal which is due to nonzero initial conditions in (7)) or
similarly in (IZIDE A strong similarity can thus be seen between (23) and (25]).

It is desired to have regret grow sub-linearly with time, such that average regret, (1/7)regret,
goes to zero in the limit 7" — oo, to provide for an efficient algorithm [17]. Average regret can be
connected to convergence in the case of a constant cost and by applying Jensen’s inequality as [17]

C(fr) —C(") < = > [C(6x) — C(67)] = —7 (26)

1

N~

T
regretp
k=

where Or = (1/T) 25:1 0} is the average parameter estimate. Here sub-linear regret helps show
convergence of the costs in (26]). For adaptive control, convergence of state/output errors is shown
from a similar integral which is akin to constant regret upper bounded by V (tg) in (23]).

4.2 Unmodeled Dynamics and Generalization
This section discusses robustness to unforeseen perturbations such as unmodeled dynamics and
unseen data.

4.2.1 Adaptive Control

Models used to design adaptive controllers, including the examples of (@) and (7)), are linearized
approximations with a certain amount of modeling errors. As such, they may only hold about an
operating point and need to contend with unmodeled dynamics. This implies that any stabilizing
controllers must be designed to not only adapt to parametric uncertainties, but also be robust

"This may be seen by setting 6(¢) = 6* in (@) or @0), thus resulting in an exponentially decreasing e” Qe. Note
that this exponentially decaying term is absent in the time varying regression case ({@).



to unmodeled dynamics. In addition, constraints on the state and input may also be present in
adaptive control problems [32,[33]. Analysis becomes more complicated when considering such
unmodeled dynamics and constraints, resulting in non-global guarantees. Many of the update law
modification in adaptive control from Section [B] were initially derived to ensure robustness in such
cases.

4.2.2 Machine Learning

This same notion of robustness to modeling errors exists in machine learning in which an estimator
1 is constructed from a finite training data set, often with a finite number of tuneable parameters.
It is then desired that this estimator produces a low prediction error based on a test data set
consisting of not just seen data, but unseen data as well. Generalization in machine learning thus
refers to the concept of a designed estimator having low loss when applied to new problems. In
particular it can be seen that in specific cases, generalization pertains to stability, where algorithms
that are stable and train in a small amount of time result in a small generalization error [34.[35].

4.3 Persistence of Excitation and Stochastic Perturbations

This section discusses conditions under which parameter estimates can be guaranteed to converge
to their true values.

4.3.1 Adaptive Control

Persistence of excitation (PE) of the system regressor in adaptive control is a condition that has
been shown to be necessary and sufficient for parameter convergence [36]. It can be shown that if the
regressor ¢ is persistently exciting, then the algebraic error model (@) parameter estimation error
é(t) converges to zero uniformly in time [7]. Similar conditions can be imposed for the dynamical
error model ([7]) and update law (@) [7]. The PE condition essentially corresponds to certain spectral
conditions being satisfied by the regressor [37]18 Parameter convergence can also occur through the
use of “the hybrid algorithm”, “the integral algorithm”, “the algorithm with time-varying adaptive
gains”, and “the algorithm using multiple models” as is discussed in [7]. A detailed exposition of
system identification and parameter convergence in both deterministic and stochastic cases can be
found in [39H43]. Another way to think of the PE condition is that it leads to a perfect test error,
since it provides for convergence of the parameter error to zero, and therefore zero output/state
error once transients decay to zero.

4.3.2 Machine Learning

Many machine learning problems consider the case when stochastic perturbations are present. In
this context, significant improvements may be possible by leveraging well known concepts in system
identification [43]. For example [44] purposely includes a Gaussian random input into a dynamical
system in order to provide for PE by construction. Such stochastic perturbations can guarantee
a PE condition only in the limit, when infinite samples can be obtained. In order to address the
realistic case of finite samples, approaches in machine learning algorithms for system identification
and control have attempted to obtain performance bounds with probability 1 —py for p; € (0, 1)@]
The probability of failure given by the choice of ps allows for error due to the presence of finite
samples.

8In particular, [38] established a condition on spectral lines of signals.
9The performance bound usually scales inversely with py as well.



4.4 Tracking vs Exploration

The concept of exploration can be viewed as the opposite of tracking, with the former often employed
in machine learning while the latter is one of the main control goals.

4.4.1 Adaptive Control

The goal of adaptive control is to adjust the parameter 6 in such a way to minimize the output error
ey in (@) and (7). It can be seen from the error models in (@) and (@) with the update in (@), that
as the output error e, goes to zero, learning becomes less and less, and that it is possible for a large
parameter error to remain even with zero output (or tracking) error. That is, in many adaptive
control applications, stability and tracking are successfully accomplished even without parameter
convergence.

4.4.2 Machine Learning

In many machine learning methods, including reinforcement learning, there exist explicit modifica-
tions to update laws to promote exploration of the parameter space. These modifications include
restarting trajectories with random initial conditions, adding random perturbations to algorithms,
and driving the system towards a non-zero error regions [44H46]. This preference of exploration and
learning over stability is motivated by the desire to find optimal parameters of a system. Stability
is not always crucial as models are often trained with offline data on a computer, allowing for many
iterations without the financial cost of failure present in physical systems (i.e. a nonzero probability
of failure p; is acceptable).

4.5 Convergence Guarantees

Notions of convergence guarantees are of importance in both fields, and are discussed here.

4.5.1 Adaptive Control

Adaptive control problems are often parameterized in a specific way such that e, goes to zero
asymptotically as in (6) and (7). Parameter convergence is shown to occur in these cases with a
persistence of excitation condition (see Section [£.3.1]). The specific parameterizations in the output
space ensure that a global minimum of e, = 0 exists and is unique. In the absence of PE, standard
adaptive control algorithms converge to one of the many local minima in the parameter space (i.e.

6 — 0 but 6 #£ 0) [7].

4.5.2 Machine Learning

Machine learning has rapidly grown in recent years, as demonstrated by highly popular and well
attended conferences such as ICML and NeurIPS, where rigorous proofs of stability are not always
the main focus, instead focusing on empirical performance on large scale problems. A notable excep-
tion is a body of work that is emerging which consists of optimization-centric problem formulations,
and the examination of the loss landscape, where recent results have shown that in certain classes
of problems, local minimums are nearly equivalent to global minimums in terms of performance on
test data [47H49)].

10



4.6 Neural Networks

This section discusses neural networks, a topic common to both fields.

4.6.1 Adaptive Control

Gradient based methods to solve for estimates of unknown parameters via back propagation, in what
would develop into the foundations of neural networks have been used for decades in control, with
early examples consisting of finding optimal trajectories [50] in flight control [51], and resource
allocation problems [52] (see [53] for a brief history). Since then, the use of neural networks in
control systems has expanded to include stabilizing nonlinear dynamical systems [54]. Design
and analysis of stable controllers based on neural networks was taken up by the adaptive control
community due to the the similarities of gradient-like update laws used in neural networks and
adaptive control. The adaptive control community developed a well established literature for the
use of neural networks in nonlinear dynamical systems in the 1990s [54H58].

4.6.2 Machine Learning

The use of neural networks in the machine learning community greatly expanded as of recent
due to the increase in computing power available and an increase in applications [5,59,60]. Re-
current neural networks [61H63], while often similar in structure to nonlinear dynamical systems,
have historically been trained in a manner similar to feed-forward neural networks [64] using back
propagation through time [65] While a theoretical understanding of why deep neural networks
work as well as they do for given problems has been lacking, the machine learning community has
worked to rigorously analyze sub-classes of deep neural network architectures such as deep linear
networks [67,68]. The update laws employed in training deep neural networks often include selec-
tions of modifications of the update laws as discussed in Section Bl For an overview of the history
of neural networks see [69].

4.7 Other Parameterization Schemes

In addition to neural networks as discussed in the previous section, other parameterizations are
often considered in adaptive control and machine learning.

4.7.1 Adaptive Control

Adaptive control schemes often consider the case where an unknown parameter occurs linearly
with respect to a regressor vector ¢ and may be related to an output error e, algebraically (@) or
dynamically (7). Often times the vector ¢ is a nonlinear function of the state of the system or
reference model in order to approximate a more general nonlinear function D as: D(x) = 8*T¢(x)
[70]. Common parameterizations for unknown nonlinearities include Gaussian radial basis functions
[70]. Another class of parameterizations consist of nonlinearly parameterized uncertainty D(6*, ¢)
in dynamical systems, for which there exists stabilizing adaptive control methods [71L[72].

4.7.2 Machine Learning

Parametric methods are common in machine learning as well, and are useful in many regression and
classification based tasks [IH5]. However, Bayesian based approaches are also widespread in areas

10Hebbian learning [66] based approaches have also been considered.

11



such as topic models [73], clustering [74] and graphical models [75]. Additionally, new results in
high dimensional statistics are increasingly being considered in which the model may be of higher
dimension than the sample size [76].

5 Advantageous Combinations of Machine Learning and Adaptive
Control Tools

Given the enormous number of similarities in problem statements, tools, concepts, and algorithms,
it is natural to examine what the benefits are that accrue by combining insights obtained in these
two different communities. Two examples of such an exercise is delineated in this section.

5.1 Higher Order Learning

Many of the update laws addressed thus far were first-order in nature, and made use of gradient-like
quantities for learning. A question of increasing interest in the ML community is when accelerated
learning can occur for higher-order learning methods. Higher order learning methods are commonly
used in machine learning practice [59,60L[77] as they can provide for a guaranteed bound on a
faster rate of convergence. In particular, Nesterov’s accelerated method [78] was able to certify a
convergence rate of O(1/k?) as compared to the standard gradient descent (I0) rate of O(1/k) for
a class of convex functions. A parameterization of Nesterov’s accelerated method may be stated as

Or+1 = U — YV L(Uy)

7
Vg, = O + B(0) — Or—1) @)

where 8 > 0 is a design parameter that weighs the effect of past parameters. Continuous time
problem formulations have been explored in [79,[80], with rate-matching discretizations established
in [§TH83]. Many of these methods however become inadequate for time varying inputs.

Adaptive update laws which include additional levels of integration appeared in the “higher
order tuners” in [841R5], and take the form

d(t) = —AVoL(0(2))
() = —BO() — IE)N)

where NV (t) = (1 + u¢? (t)¢(t)) for a > 0. This update law can be seen to be the standard first
order update (@) passed through a time varying filter normalized by the regressor. It was shown
in [86] that (28]) can provide for rates comparable to accelerated methods in machine learning for
static features [80]. In addition, in contrast to (27]), the update law in (28)) can be shown to be stable
in the presence of time varying regressors as in (@) and as well as in adaptive control applications
with error model as in (7)) [86]. This extension of accelerated methods in machine learning to
include time varying and dynamic error models was only possible by leveraging techniques from
adaptive control [86].

(28)

5.2 Improved Algorithm Performance Bounds

Regret analysis common in online machine learning (see Section [L1.2]) can result in overly con-
servative bounds for the performance of an algorithm. In particular, in online projected gradient
descent ([I7)) for regression ([6]) with squared output error cost C = (1/ 2)63, regret analysis guarantees

12



regret; = O(V/T) (cf. [I7]). For the same regret cost function, one can guarantee regret; = O(1)
(constant regret , using adaptive control methods.

6 Conclusions

This paper explored many immediate connections between adaptive control and machine learning,
both through common update laws as well as common concepts. Adaptive control as a field has
focused on mathematical rigor and guaranteed convergence. The rapid advances in machine learning
on the other hand have brought about a plethora of new techniques and problems for learning. This
paper was written to elucidate the numerous common connections between both fields such that
results from both may be leveraged together to solve new problems.
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