
Chapter 27
Parallel Algorithms

To analyze algorithms, we once laid out a ba-
sic assumption of a sequential execution model
(Cf. Page 20 of the Analysis of Simple Algo-
rithm chapter), i.e., algorithms run on a unipro-
cessor computer, where one instruction exe-
cutes at one time, commonly known as the
von Neumann architecture.

We now move over to a model for parallel al-
gorithms, which can run on a multiprocessor
computer that allows multiple instructions to
execute concurrently.

In particular, we will discuss the dynamic multi-
threaded algorithm model, go through exam-
ples of parallel programming, introduce effi-
ciency measurements, and carry out some sim-
ple algorithm analysis. We will end up with a
parallel version of the merge sort algorithm.

1

Why parallel computers?

As we all know, after the creation of comput-

ers back in the late 1940’s, there has been a

great progress in terms of the computer speed,

indeed a 20 million fold increase during a fifty

year period.

This is done, mainly due to the fact that more

and more transistors have been integrated into

a silicon chip, from a few to tens (SSI), hun-

dreds (MSI), thousands (LSI), and the billions

(VLSI).

What has happened and what’s next?

2

Moore’s law

This dramatic speed-up phenomenon is nicely

summarized via the Moore’s law (1965): The

number of transistors that have been put onto

a chip has been doubling every eighteen months.

For example, Intel 8086, a processor chip made

by Intel in 1978, contained 29,000 transistors,

and ran at 5 MHz; and the Quad-core+GPU

Core i7 Haswell, introduced by Intel in 2014,

contained 1.4 billion transistors, running at the

speed of up to 4.4 GHz.

Thus, during those 36 years, the number of

transistors has gone up by 482,758 times, or

doubled once every 22.9 months.

(36×12)/n = log2 482,758 ⇒ n ≈ 22.9.

The most recent one, 2018, is i9 with up to

18 cores, running 36 threads.

3

Worth how many words?

Such an increase of the transistors on a chip

directly leads to an increase of the computer

speed.

The following chart shows the increase of the

computer speed corresponding to that of the

integration number.

In this case of going from 8086 to i7, the speed

goes up by 880 times during this period, dou-

bled every 44 months.

4

Not just the speed...

Besides processing speed, some of the other

capabilities of many digital devices are also

strongly connected to Moore’s law: memory

capacity, sensor usage, and even the number

and size of pixels in digital cameras.

As a result, all of these technological devel-

opments have also been speeding up at this

stunning, exponential, rates, as well.

Since Moore’s law approximately describes a

driving force of technological, and social, change

in the past thirty or so years, it has been used

to guide long term planning, and to set targets

for research and development.

Check out the reading “The Exponential Na-

ture of Moore’s Law” on the course page.

5

How thin could it be?

Unfortunately, this era of steady and rapid growth
of single-processor performance over 30 years
could not last long.

By “doubling every eighteen months,”, we have
to make the wires

√
2 thinner every eighteen

months. (Cf. Page 25 of Chapter 0) This has
to come to an end at some point since we can’t
make the wires infinitely thin.

Incidentally, Dennard’s scaling law refers to the
property that the reduction of transistor size
comes with a reduction of required power.

When the transistor size has reduced from 65
nanometer to about 10 nanometer (i7 is at 22,
and i9 at 14), the ability to speed up processors
for a constant power cost has stopped.

By the way, a sheet of paper is about 100,000
nanometers thick.

6

How hot could it be?

Although every transistor produces only a tiny

bit of heat, when you put billions of them to

a tiny space, the amount do add up. For this

reason, the clock speed of a processor has been

staying essentially the same, at about 4GHz,

for the last ten years.

Although Moorel’s law still lets us put more

CPU cores on a chip, and let GPU continue

to strengthen its power, it seems to be the

case that transistor size cannot reduce much

further, perhaps two or three more generations

before seeing its end. /

Check out the link on the course page “Moore’s

law is on its way out...” on the course page.

7

What to do?

Fortunately, Moore’s law is not completely out
of the window yet.

This many transistors will no longer be used to
construct a single processor, but will be used to
increase the number of independent processors
(cores) in a single chip.

We will then try to speed up the whole process
of letting those independent processors work
together on the data in parallel, thus saving
time.

In the ancient time, we can only cook one thing
at a time with our old fashioned stove.

8

Could we do this?

Nowadays, using a contemporary stove with
multiple burners, we could cook many different
dishes in parallel, or at the same time, which
should save time.

By the same token, we could cut a big problem
into many smaller ones (Divide and Conquer),
and run them in parallel with multiple proces-
sors.

To speed up problem solving, we certainly should
do it.

The challenge is how to coordinate those pro-
cessors so that they can work together, often
with balanced load, in parallel.

9

Parallel computers

Parallel computers, those with multiple pro-

cessing units, have become increasingly com-

mon, e.g., this desktop has four cores, and

iPhone X has six.

Such an architecture contains a single multi-

core IC chip that contains multiple processing

cores, each a fully functional processor that

can access a common, shared, memory.

Going a bit higher in the hierarchy, there could

be a cluster built from individual computers,

with a dedicated interconnection network.

At the very top, there are the so-called su-

percomputers, consisting of a combination of

custom architectures, connected with an in-

terconnection network, providing top perfor-

mance in terms of MIPS. Examples include

nCube, NASA Pleiades, and IBM Blue Gene.

10

Memory architectures

As we know, from CS 2010 Computing Funda-

mentals and/or CS 2220 Computer Hardware,

the uniprocessor model is naturally connected

with the RAM model in the von Neumann ar-

chitecture. But, parallel computers have yet

to agree on its memory architecture.

Some of them feature the shared memory model,

where each processor can directly access any

location of the memory. Other machines use

distributed memory, where each processor pos-

sesses its own memory, and any message must

be transmitted in between the processors in or-

der for one processor to get data from another

one, through an interconnection network.

With the emerging multi-core architecture, the

trend seems to be in favor of the shared mem-

ory model. We will follow this model in our

discussion.
11

Threads

I am sure that you are familiar with the ideas of

threads. Essentially, when programming with

a multi-core architecture, we split the program

into a bunch of static programming, which pro-

vides an abstraction of “virtual processors”.

Threads, i.e., all these independent, thus in-

dividually executable, units, share the same

memory, each having a program counter, and

a set of associated registers.

Each thread can be assigned to a processing

core to run, and when either it is done, or its

share is used, it is taken off the processor, and

another one will be assigned to the processor.

We will talk a lot about threads, its scheduling

and execution, in CS 4310 Operating Systems.

12

It is challenging....

They all sound good, but it is really challenging

to program a shared-memory computer, using

static threads.

In the cooking example, a good chef knows

that she will not always be able to cook every-

thing at the same time, no matter how many

burners are at her disposal.

To cook the dish of, e.g., Pepper, Onions and

Pork, I would fry the pepper, and the pork,

first, which can be done at the same time;

then fry the onion, which is then mixed with

the partially fried pepper and the pork.

In the multiple lane case (Check out the toll-

booth picture!), although the cars in different

lanes can go forward in parallel, those in the

same lane have to go forward in turn. /
13

MergeSort again....

It is the same idea to do computing in parallel.

You have to figure out what parts can be done

in parallel, and what can’t be.

Take Mergesort as an example.

MERGE-SORT(A, p, r)

1. if (p<r)

2. then q<-(p+r)/2

3. MERGE-SORT(A, p, q)

4. MERGE-SORT(A, q+1, r)

5. MERGE(A, p, q, r)

You cut a list into two halves, and sort them

individually in parallel in Steps 3 and 4.

But, you have to wait for these steps to com-

plete first, then, in Step 5, merge the two sorted

sublists into one, which also has to be done se-

quentially.

14

Registration for courses

Have you signed up your Fall courses yet?

When adding somebody into a class, a program

has to make sure, among other things, that the

total number of students added into a class is

no more than the cap of that class, 25 for

CS 3600 Database.

If we run Course Add sequentially, we essen-

tially do the following:

if the current number < 25

then add this student

Thus, we check the cap before adding in an-

other student.

Is this sequential order necessary?

15

The parallel case

Since the above add operation consists of two

steps: one check and another add, when we

try to add multiple requests at the same time,

we might get into trouble since we don’t know

in what order will the steps get mixed up: No

body knows which process, or thread, the OS

scheduler will pick up first.

For example, if there are 24 students signed

up for this DB course, and two more students

come to add into the course.

What is to happen, if we choose to do these

two steps in parallel?

16

It might not work /

If we do the Course Add in parallel, and it

happens that the arrangement of the two steps

for the two add operations interleave the the

following way, in one out of six
(
= 4!

2!2!

)
ways

(?), i.e., with a probability of 16.7%, we would

end up with the following situation.

Request 1 time Request 2
- ↓ -
Check the number t1 -
(Still 24) ↓ -
- t2 Check the number
- ↓ (Still 24)
Add in student t3 -
(Now 25) ↓ -
- t4 Add in student
- ↓ (Now 26)

Thus, as the above chart shows, we will add

more students than what the cap allows.

17

What’s wrong with it?

A parallel platform is intended to speed up the

process, but it may not lead to a correct result.

/

Indeed, although we can come up with lots of

cheap hardware parts, the challenge lies on the

software part, especially on the communication

and coordination of the participating threads.

Only a small percentage of programmers can

do it now. / ,

We will address lots of such issues in CS4310

Operating Systems.

If there were not parallel issues, we could finish

that course in one week. ,

18

Dynamic multi-threaded
programming

Dynamic multi-threading is one important class
of concurrency platforms. This model allows
programmers to specify parallelism in applica-
tions without concerning about communica-
tion protocols, load balancing and other issues
of multi-threaded programming, which will all
be taken care of by a scheduler.

DM environment is still evolving, but two fea-
tures are guaranteed: nested parallelism and
parallel loops.

Nested parallelism allows a caller to spawn a
subroutine, which is to proceed along with the
caller (fork() in unix, in Lab 19 if you are tak-
ing CS 2470). And Parallel loop allows all the
stuff within the loop body to execute concur-
rently (Could we really? Check out the exam-
ple on Page 50).

19

Why are they important?

These two features form the basis of this model,

where the programmer only needs to specify

the logic parallelism (what?) within a compu-

tation, and a scheduler will taker care of the

scheduling of these threads, balance the load

among those threads and subtasks (how!).

It is quite similar to Window case. Who would

(could) care about the 1,400 threads running

inside the box, how and when they are picked

and run. The scheduler does it all.

We will check out how to write parallel algo-

rithms in terms of this model, and how the

underlying concurrency platform will schedule

computation efficiently.

20

Selling points

The dynamic multi-threading model is a sim-
ple extension of the sequential programming
model with just three additional buzzwords:
parallel, spawn, and sync. If we remove these
three words from an algorithm, we get back a
sequential algorithm for the same problem.

It also provides a clean theoretical way to quan-
tify parallelism based on the notion of “work”
and “span”. (Efficiency issues)

The nested parallelism follows naturally from
the traditional “divide-and-conquer” paradigm,
and we can use recurrence to do the analysis.

This model is adopted by several influential
parallel programming paradigms such as Chik,
Chik++, OpenMP, TPL, TBB, and (Chapel (?))

Check out some of the links on the course
page... .

21

Start with an example

Still remember the Fibonacci sequence? (1, 1,

2, 3, 5, 8, . . .), which can be easily generated

with the following recurrence:

F0 = 0,

F1 = 1,

Fi = Fi−1 + Fi−2, for i ≥ 2.

The following recursive algorithm of a sequen-

tial nature, FIB(n), is thus natural.

1. if n ≤ 1

2. return n

3. else x = FIB(n− 1)

4. y = FIB(n− 2)

5. return x + y

Did I tell you that recursion is not good to the

computers? /

22

It is just a bad move....

Besides the extra cost of a hidden stack, a

recursive procedure, in this case, does lots of

redundant work, as the following chart shows:

It contains 25 computation steps to compute

FIB(6), where each box represents a compu-

tation step: a non-leaf node sums up the works

done by its two children.

Question: How much does it do to compute

FIB(n)?

23

Exponentially....

Let T (n) stand for the time it takes to run

FIB(n), we have

T (n) = T (n− 1) + T (n− 2) + Θ(1),

where Θ(1) represent the addition, condition

testing, etc..

Assume that for all k < n, T (k) ≤ aFk − b, a >

1, b > 0, by inductive assumption,

T (n) ≤ (aFn−1 − b) + (aFn−2 − b) + Θ(1)

= a(Fn−1 + Fn−2)− 2b + Θ(1)

= aFn − b− (b−Θ(1))

≤ aFn − b.

Hence, T (n) = Θ(Fn) = Θ(φn), where

φ =
1 +

√
5

2
.

We once gave a weaker one: T (n) <
(
5
3

)n
. (Cf.

Page 30 of the Math review notes)

24

What to do?

One way to overcome this inefficiency is to

follow a dynamic programming approach: Let

F[0]=0, F[1]=1, and for all i ≥ 2, F[i]=NIL.

FIB(n)

1. if F[n]

2. return F[n]

3. else x = FIB(n− 1)

4. y = FIB(n− 2)

5. F[n] <- x + y

In other words, we trade space with time. To

calculate F(4), we need to get F(3) and F(2).

To get F(3), we need to get F(2) and F(1).

Finally, F(2) is the sum of F[0] and F[1], which

is used to fill F[2].

When calculating F(3), we just use F[2] and

F[1], etc..

25

A parallel version

Another way is to turn the above to a parallel

program, PFIB(n), since these two recursive

calls are independent of each other, thus they

can be called in any order, even in parallel.

Now, we trade resource with time.

1. if n ≤ 1

2. return n

3. else x = spawn PFIB(n− 1)

4. y = PFIB(n− 2)

5. sync

6. return x + y

As mentioned earlier, if we delete these buz-

zwords, we get back the original code.

Thus, the serialization of a multi-threaded al-

gorithm is always the usual serial algorithm to

crack the same problem. This makes part of

the analysis straightforward as we will see.

26

What does spawn do?

Nested parallelism occurs when the keyword

spawn proceeds a procedure call.

It means that the parent procedure instance

that executes that spawn may continue to ex-

ecute in parallel with the spawned child subrou-

tine, instead of waiting for the child to com-

plete first, as what happens in a serial execu-

tion.

In this case, the parent process (thread) may

continue with Line 4, while a child process (thread)

will carry out Line 3. The parent process (?)

has to wait for the child process to finish at

Line 5, then returns the result with Line 6.

We will talk about the fork() mechanism in CS

2470 System Programming, which essentially

does this spawn stuff.

27

How is PFIB(4) played out?

Take the top node for example, to calculate
Fib(4), a process does three things: it spawns
a black node (Line 3) to calculate Fib(3), and
at the same time, proceeds (Line 4), via a grey
node, to find out Fib(2), then wait for their
completion (Line 5), and finally reports the re-
sult in a white node (Line 6).

It has to wait Fib(3) to complete before it is
done, thus the darkened bottleneck.

28

How fast could we do it?

It really depends... . Assume each node, a
strand, takes one time unit, if you have just
one processor, it will definitely takes 17 time
units to complete.

In fact, no matter how many processors do you
use, they all have get this much work done.

It also depends on the nature of the problem.
For a problem of finishing a cake, the more
persons you put in, the faster it gets finished.

Question: Could we get the above Fib(4) cal-
culation done in one unit if we have 17 proces-
sors?

Answer: No, no matter how many processors
you throw in, it takes at least eight units of
span to finish. (?)

We will further explore these measurement is-
sue later on page 38.

29

Could we do this? Maybe...

In such a chart, a horizontal continuation edge

(u, v′) connects u, a black node, and v′, a grey

one, in the same function call (e.g., PFIB(4)),

while a downward edge (u, v) can either con-

nect u, a black node, with a spawned child

v, also black (e.g., the one from PFIB(4) to

PFIB(3)); or indicate the usual subroutine call,

a grey one to a black one, e.g., the one in the

PFIB(4) box, calling PFIB(2).

If v is spawned from u, u also connects to

another strand u′ in the same procedure in-

stance with a continuation edge, and u′ and v

may execute in parallel. For example, PFIB(3)

and PFIB(2) may execute by two processors

in parallel.

It is up to the scheduler to decide whether this

“may” will materialize.

30

The case of Fib(4)

Question: How does the previous discussion

about Fib(4) fall into this general description?

Answer: In this case, while the spawned child

is computing PFIB(3), the parent may con-

tinue to compute PFIB(2) in line 4 in parallel

with the spawned child.

Furthermore, since the PFIB procedure is re-

cursive, these two subroutine calls create nested

parallelism, as do their descendants, thus lead-

ing to a computation tree, with some nodes

executing in parallel.

I feel dizzy....

31

Logic parallelism

Notice that the keyword spawn does not en-
force the parent procedure to run in parallel
with its spawned child. It only says “may”.

Even though the other lane is there, you might
still want to follow a car in the same lane.

Thus, this keyword merely represents a logi-
cal parallelism of the computation, indicating
which part may run in parallel; but may not
in real due to, e.g., a scheduling or a resource
issue. ,

We definitely want them to run in parallel, but
there might not be a processor available at the
moment. /

It is then up to a scheduler to decide, during
the run time, which subprocesses will actually
run in parallel by assigning them to separate
processors. We will not be concerned about
this mess until later... (Page 47 of the notes).

32

What about sync?

A sync statement guarantees that a procedure

must wait for all its spawned children to com-

plete their respective tasks before continuing

to the part after sync, sort of a sequence en-

forcer.

For the PFIB procedure, a sync is needed

(Line 5) so that before x is added to y in Line 6,

we have to make sure that x is returned by the

spawned child, and the value in x is stable.

Besides such explicit sync, every procedure ex-

ecutes an implicit sync before it returns, thus

making sure all its children are completed be-

fore it does.

It is actually a nice practice to add an explicit

sync by the end as we will see.

33

I want to see....

As we just saw, we can demo the process of

multi-threaded computation, a collection of in-

structions executed by processors on behalf

of a multi-threaded program, in terms of a

directed graph G(V, E), called a computation

dag. (We will talk about this dag stuff, stand-

ing for directed acyclic graph, when we get to

the graph part (Page 34 of Chapter 22: Basic

Stuffs of Graph Algorithms.)

The set V stands for a collection of instruc-

tions, and E gives the dependency between the

instructions, in the sense that if (u, v) ∈ E, then

u has to be executed before v can be.

For example, you have to take MA2250 and

CS 2370 before taking CS 3600.

34

A parallel program

Below is the PFIB(n) procedure (Page. 26),

a parallel program implementing the Fibonacci

function.

1. if n ≤ 1

2. return n

3. else x = spawn PFIB(n− 1)

4. y = PFIB(n− 2)

5. sync

6. return x + y

As mentioned earlier, if we delete these buz-

zwords such as spawn, and sync, we get back

the original sequential code FIB(n) (Page. 22).

Thus, the serialization of a multi-threaded al-

gorithm is always the same usual serial algo-

rithm to crack the same problem.

35

Look at PFIB(4) again

If a segment of instructions contains none of
the three keywords, we group them together
into a strand (node), represented as a bub-
ble, which is a basic computing unit. Then,
the parallel relationship between strands can
be represented by the following dag structure:

If a strand has two successors, one of them
must be a spawned child process, and if one
strandhas two predecessors, this strand must
be a sync.

36

An ideal environment

We now make a few assumptions for a platform
to run our parallel programs.

An ideal parallel computer consists of a bunch
of processors and a sequentially consistent shared
memory. Such a memory, although doing lots
of loads and stores at the same time, produces
the same result, as if all the involved instruc-
tions are done in a sequential way. (This is
the ‘I’ piece of the ACID requirement that we
went through in CS 3600 Database)

The deal is that, although the order of the
instructions in each parallel execution might
change, the above linear order as imposed by
the computation structure has to stay the same
to achieve a correct result. Again, correctness
precedes efficiency.

Each processor in such an ideal machine has
the same computing power and it ignores the
above scheduling cost.

37

Measurements

When measuring the time efficiency of parallel

programs, we use two metrics: work and span.

Work refers to the total amount of work done

by all the processors. If we assume each strand

costs a unit of time, once we draw a compu-

tation dag, the work done by the associated

computation is simply the number of strands

in that dag.

Span refers to the longest time to execute

all the strands along any path in such a dag,

namely, the number of nodes along the longest,

or the critical, path in such a dag. Instructions

along such a path can’t be executed in parallel,

even if additional processors are available.

In the previous dag for PFIB(4), it is easy to

see that the work is 17, and the span is 8.

38

Yet another factor

Work tells us we have this much to do, and
span tells us that it takes at least this much
time no matter how many processors you throw
in.

The actual running time also depends on two
other issues: how many processors can you
use, and how the scheduler is to assign them
to the strands. (Logic parallelism vs practical
reality)

We use TP to represent the running time of
a multi-threaded computation with P proces-
sors.

Thus, the work is simply T1, as if we have only
one processor to finish all the strands.

On the other hand, span counts the time when
each strand runs at its own processor, as if we
have as many processors as it wants. Hence,
span turns out to be T∞.

39

Implication

Work and span actually set up lower bounds

for TP .

Sine one processor can complete one strand

at one time unit, P processors, in one unit of

time, can complete at most P strands. Thus

PTP in TP time.

But, we have to get all the work, T1, done,

hence, PTP ≥ T1. This leads to the work law:

TP ≥ T1/P.

On the other hand, a computation with P pro-

cessors cannot run faster than a one with un-

limited processors, thus, the span law:

TP ≥ T∞.

Combined together, TP ≥ max{T1/P, T∞}
40

Speed up

The only reason we kick in more resource is to
get a better result, e.g., to get it done faster.

Thus, we define the speedup of a computation
on P processors by the ratio of T1/TP , i.e.,
how many times faster is the computation on
P processors than on one?

By the work law, we have T1/TP ≤ P . When
this ratio hits linear, i.e., when T1/TP = Θ(P),
this computation shows linear speedup, when
we are pretty happy, and we could not be hap-
pier when T1/TP = P, hitting a perfect linear
speedup.

For example, assume it takes one minute to
go through a toll booth, if we have just one
lane, it takes four cars T1 (= 4) minutes to go
through. With P (= 4) lanes, it would take at
least T4 (= 1) minute. Thus, the speedup is
at most (T1/T4 = 4) in this case.

41

Parallelism

The notion of parallelism is defined as the ratio

of work over span, i.e., T1/T∞, i.e., given a

computation, the ratio of time with just one

processor over that with unlimited resource.

It actually tells the average amount of work

(T1) that can be done in parallel for each step

along the critical path (T∞ is the length of such

a path.).

Because of the span law, TP ≥ T∞, T1/TP ≤
T1/T∞. And by the work law, T1/TP ≤ P, hence

T1/TP ≤ min{P, T1/T∞}.

As a result, once the number of processors ex-

ceeds parallelism, we are simply throwing money

away... . /

42

Why is that?

Let’s assume P > T1/T∞, then

T1

TP
≤ min{P, T1/T∞} =

T1

T∞
< P,

i.e., the speedup is strictly less than P. ,

Moreover, if P is much larger than parallelism,

then the speedup will be much less than P. /

For example, in the P-FIB(4) case, since work

is 17 and span is 8, its associated parallelism

is just 17/8 = 21
8.

Thus, it is impossible to achieve much more

than doubling the speedup, no matter how

many processors are thrown in. /

Homework: Exercises 27.1-2 and 27.1-5.

43

How fast could it be?

The natural expectation for the speedup from

parallelization would be linear: If you put in a

two lane highway, then two cars can do through

the toll both at the same time, and if you put

in a four lane, then four cars can pay tolls in

parallel.

That is why we often put in multiple lanes in

the highway (Check out the DoT construction

project in I-93S near the state border.)

Unfortunately, this does not happen to the par-

allel computing: Very few parallel algorithms

achieve linear speed-up. /

Most of them have a near-linear speed-up for

small number of processing elements, but de-

grades to a constant value for large numbers

of processing elements.

44

Here is the limit

The potential speedup of a parallel algorithm
on a parallel computer is given by Gene Amdahl
in 1960s.

When we cut a big problem to a bunch of
smaller ones, some of them can run in par-
allel, while the others cannot, it is the latter
that will decide overall speed-up available from
parallelization.

Below is the Amdahl’s law:

S =
1

s + 1−s
P

,

where S is the speedup of a parallel program,
s the fraction that has to be run in sequence,
and P is the number of processors.

Question: Where will we have linear speedup?

Answer: s = 0, when everything can be done
in parallel.

45

An example

If we cut the problem into ten pieces, nine of

them can run in parallel, while one piece can’t,

with 10 processors.

We have that s = 10%, and P = 10, then, the

Amdahl’s law tells us that

S =
1

0.1 + 0.9/10
=

1

0.19
= 5.26.

In other words, when 90% of the work can be

done in parallel, with ten processors, we can

speed it up only 5.26 times. Thus, those four

extra processors are definitely wasted. /

This result thus puts an upper limit on the use-

fulness of adding more parallel execution units.

One way to put it: “The bearing of a child

takes nine months, no matter how many peo-

ple are assigned.”

46

Scheduling

As we saw earlier, performance of parallel pro-

gramming depends not only on minimizing works

and spans, but also on a scheduler that maps

strands to processors.

With the multi-threaded model, we rely on a

scheduler to map those dynamically generated

strands to individual processors. Such a sched-

uler has to do its job on line (in real time),

when those strands got created, or spawned

off. Moreover, such a scheduler has to bal-

ance the load among a bunch of processors.

Provably good on-line, load balancing sched-

ulers do exist, but it is hard to analyze them.

We will instead look at a centralized scheduler

kept in a server, which knows a global state of

the computation, i.e., status of all the proces-

sors, at any time.

47

A centralized scheduler

A greedy scheduler (ring a bell?) assigns as

many strands to processors as possible at each

time step. With a computer with P processors,

a step is called a complete step if there are at

least P strands available for assignment at that

step, when a greedy scheduler will select and

assign any P strands to processors.

Where fewer than P strands are ready for exe-

cution at a step, we call it an incomplete step,

where a greedy scheduler will assign each ready

strand to its own processor.

By the Work law and the Span law, we may

conclude (Cf. Page 40) that

TP ≥ min{T1/P, T∞}.

48

“Greedy is good.”

We can prove that a greedy scheduler achieves

the sum of the above two lower bounds as an

upper bound.

Theorem: On an ideal parallel computer (Cf.

Page 37) with P processors, a greedy scheduler

executes a multi-threaded computation with

work T1 and span T∞ in time

TP ≤ T1/P + T∞.

Moreover, a greedy scheduler always performs

well in the sense that it performs as well as an

optimal one within a factor of 2. (Cf. Page 14

of the Greedy algorithm notes.)

Finally, if P is significantly less than the paral-

lelism, then the greedy algorithm could achieve

a linear speedup.

49

Race condition

A multi-threaded algorithm is deterministic if it

always does the same thing on the same input,

no matter how the scheduling is done; other-

wise, we call it non-deterministic. (Cf. Chap-

ter 5 on the non-deterministic Hiring program)

An intended deterministic algorithm often fails

to have this property if it contains a “determi-

nacy race”, since no one knows how a sched-

uler will allocate strands to processors.

Such race condition related bugs actually could

lead to serious consequences.

Homework: What is wrong with MAT-VET-WRONG

as shown in page 791?

50

A concrete example

A determinacy race occurs when two logically
parallel instructions access the same memory
location and at least one of them performs a
write.

The following program contains the third buz-
zword parallel:

1. x = 0
2. parallel for i = 1 to 2
3. x = x + 1
4. print x

Question: What should the sequential version
print out? 2

Question: What would the parallel version
print out?

Answer: It depends on a race between these
two children processes.

51

What is happening here?

When a processor increments a memory loca-

tion x, although this operation is atomic, it is

involved with a sequence of three operations:

1. Read the value of x into a register.

2. Increment the value of that register.

3. Set the value from the register back to the

location.

r1 = x; r2 = x;
r1 + +; r2 + +;
x = r1; x = r2;

Question: With 6!
3!3! (= 20) interleaving pat-

terns, what could happen?

Answer: Who knows?
52

Anything is possible...

For the following “sequential” pattern, running
on two cores

x r1 r2
x=0; 0 0 0

r1 = x; 0 0 0
r1 + +; 0 1 0
x = r1; 1 1 0

r2 = x; 1 1 1
r2 + +; 1 1 2
x = r2; 2 1 2

at the end, x ≡ 2. But, r1 gets lost with the
following one.

x r1 r2
x=0; 0 0 0

r1 = x; 0 0 0
r2 = x; 0 0 0

r1 + +; 0 1 0
r2 + +; 0 1 1

x = r1; 1 1 1
x = r2; 1 1 1

53

Algorithm analysis (again?)

Yet another line to estimate the speedup of a
parallel algorithm is to analyze its parallelism
(Cf. Page 42 of this set of notes), i.e., T1/T∞.
It is relatively easy to count the work, T1. (?)

Span, T∞, is a bit more challenging. Let’s use
the PFIB algorithm as an example. The orig-
inal FIB procedure is essentially the serializa-
tion of PFIB. Thus, by the result shown on
Page 24,

T1(n) = T (n) = Θ(φn).

The span of two parallel computation is simply
the maximum of the two spans (The longer of
the two maximum paths). Thus

T∞(n) = max{T∞(n− 1), T∞(n− 2)}+ Θ(1)

= T∞(n− 1) + Θ(1) = Θ(n).

The parallelism for PFIB(n) is T1(n)/T∞(n)
= Θ(φn/n), which grows very fast as n grows,
which implies a potentially large speedup.

Homework: Exercise 27.1-1.
54

Multi-threaded mergesort

Still remember this piece that we went through

early in the course? Since it is already done

in divide-and-conquer, we can easily convert it

to a parallel version, MERGESORT ′(A, p, r) as

follows;

1. ifp < r

2. q = (p + r)/2

3. spawn MERGESORT ′(A, p, q)

4. MERGESORT ′(A, q + 1, r)

5. sync

6. MERGE(A, p, q, r)

Like its serial counterpart, with the sync, after

two recursive calls, both the first and the sec-

ond halves are sorted, then the same MERGE

wraps it up.

55

A bit analysis

The work of MERGESORT ′ has been done

earlier in the course (Cf. Page 46-48 in the

Chapter 2 notes):

MS′1(n) = 2MS′(n/2) + Θ(n)

= Θ(n lgn).

For the span, since the two sub calls run in

parallel,

MS′∞(n) = MS′∞(n/2) + Θ(n)
?
= Θ(n).

Therefore, its parallelism is Θ(lgn), implying

little speedup for this version of the parallel

mergesort.

When sorting 10 million items, at most, we

can get a speedup of about 20, no matter how

many processors we will throw in. /
56

It could be better....

The bottleneck is certainly the serial merge

procedure, which we can try to reshape into a

parallel procedure. For details, you can look

at §27.3 of the textbook. It is thus important

as how to convert a sequential algorithm into

a parallel one.

Indeed, the parallelism of this improved version

of parallel mergesort is Θ(n/ lg2 n), which is

much better than the original Θ(lgn).

For example, when sorting a million items, the

most speedup we can hope for is thus about

2,500, instead of 20. ,

We have talked a lot /, shall we walk a little?

,

57

An example in Chapel

The following calculates the value of π by find-
ing out the area of half of a circle with radius
being 1.
[zshen@cs4310 sync]$ more syncExec.chpl
const numRect = 10000000;
const width = 2.0 / numRect; // rectangle width
// number of cores the computers processor has
const numThreads = here.maxTaskPar;
var globalSum: real = 0.0;

proc calculateArea(init) {
var partialSum: real = 0.0;
var x: real;
var i: int = init;
do {

x = -1 + (i + 0.5) * width;
partialSum += sqrt(1.0 - x*x) * width;
i += numThreads;

} while (i < numRect-1);

globalSum += partialSum;

writeln("Thread: ", init, " globalSum: ", globalSum);
}

//The following sync will guarantee that this parallel loop will be
//completed first before the last writeln executes. --zs

sync coforall i in 1..numThreads {
begin calculateArea(i);

}

writeln("This code estimates pi as ", globalSum*2);

58

The process and the result

The sixteen threads will start and finish ran-
domly, and it looks like Thread 8 is the one
that will finish last, and gives back the final
answer.

[zshen@cs4310 sync]$ chpl syncExec.chpl
[zshen@cs4310 sync]$./syncExec
Thread: 1 globalSum: 0.0981748
Thread: 16 globalSum: 0.19635
Thread: 2 globalSum: 0.294524
Thread: 3 globalSum: 0.392699
Thread: 12 globalSum: 0.490874
Thread: 6 globalSum: 0.589049
Thread: 5 globalSum: 0.687223
Thread: 13 globalSum: 0.785398
Thread: 7 globalSum: 0.883573
Thread: 10 globalSum: 0.981748
Thread: 11 globalSum: 1.07992
Thread: 15 globalSum: 1.1781
Thread: 4 globalSum: 1.27627
Thread: 14 globalSum: 1.37445
Thread: 9 globalSum: 1.47262
Thread: 8 globalSum: 1.5708
This code estimates pi as 3.14159

There are lots of other stuff here, but we have
to call a break... . ,

59

