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Abstract—BitTorrent-based peer-to-peer networks constitute a
significant share of Internet traffic. Therefore, the IETF working
group on application layer traffic optimization (ALTO) discusses
several approaches for guiding the BitTorrent traffic that aim
at reducing the large amount of inter-ISP traffic costs caused
by these networks. However, performance evaluations of these
approaches are mostly limited to artificial scenarios that do not
take into account the real Internet topology with its inter-ISP re-
lationships and the actual distribution of BitTorrent users across
autonomous systems (AS). In this study, we use measurements
of the distribution of a large number of live BitTorrent networks
and combine them with the AS-level Internet topology provided
by Caida.org. Based on this data, we estimate in which tier of
the Internet hierarchy BitTorrent traffic is mainly located and
how much optimization potential exists for the different types of
ISPs. Therewith, traffic flow and revenue implications of guiding
Internet-wide BitTorrent swarms are analyzed. Our results show
that tier–1 ISPs profit from the un-managed exchange of peer-
to-peer traffic and that these profits significantly decrease when
the other ISPs would apply ALTO solutions.

I. INTRODUCTION

BitTorrent is still responsible for a large portion of Internet

traffic [1], [2]. In particular, BitTorrent networks generate a

lot of inter-ISP traffic, which is often costly for the ISPs.

One approach to optimize the traffic flows, which has recently

received a lot of attention is Application Layer Traffic Opti-

mization (ALTO), i.e., P2P guidance, to increase the efficiency

of BitTorrent and to reduce the amount of inter-ISP traffic and

costs. Evaluations of such approaches have been conducted

mostly in controlled, artificial scenarios. Examples for such

scenarios are simulations with homogeneous peer distributions

across ISPs, the evaluation of simple topologies, like the star

topology with a tier–1 ISP in the center. However, in today’s

Internet the inter-ISP traffic routing is based on a complex

topology defined by inter-ISP relationships, e.g., peering or

customer-to-provider, and ISP classifications such as tier–1,

large and small ISPs, and stub ISPs. Hence, these economic

relations play an important role in the actual Internet traffic

flow. However, this topology of the Internet is not taken into

account by most evaluations of P2P guidance approaches,

which limits the practical relevance of the results. Furthermore,

it is an open question how much BitTorrent traffic is located
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in which region of the Internet. However, this is a prerequisite

in order to estimate the potential of ALTO mechanisms.

To model the BitTorrent traffic flow across ISPs in the

Internet, we use measurements of live BitTorrent swarms and

the actual autonomous system (AS) topology of the Internet

provided by Caida.org. Thus, we estimate BitTorrent traffic

characteristics and the emerging transit costs. The measure-

ments of live BitTorrent swarms contain the location of peers

in the Internet, i.e., AS numbers, for a very large set of swarms

[3]. The dataset from Caida.org contains a full AS graph

derived from RouteViews BGP table snapshots, including the

AS relations. We infer AS paths based on this dataset with

the algorithm published in [4]. We use the inferred AS paths

to calculate the real AS paths between peers in BitTorrent

swarms. In addition, we define three peer selection strategies

that decide which peer in a swarm is connected to which

other peer: (a) The random selection strategy is applied to

peer selection of today’s BitTorrent clients. (b) The locality

aware selection strategy connects to the peers with shortest

AS paths, to reduce AS hops and potentially latencies in

the BitTorrent network. (c) The selfish-ISP selection connects

peers preferentially to peers in the ISPs customer tree in

order to maximize its revenue. The locality aware and selfish-

ISP selection strategies are motivated by the optimization

potential of the BitTorrent overlay network, as in [3], and the

optimization potential of the revenue of ISPs transit services,

respectively.

The contribution of this paper is two-fold. First, our re-

sults show how BitTorrent networks are distributed over the

Internet. We find that almost none of the peers are located

in tier–1 ASes which means that tier–1 ASes are not able

to control BitTorrent swarms by directly accessing the peers.

We analyze the amount of BitTorrent traffic each AS forwards

with BitTorrent random peer selection. From our results we

derive that most traffic is forwarded by tier–1 ASes on a per

AS basis, whereas the BitTorrent traffic aggregated over all

large ISPs is significantly higher. As second contribution, we

analyze the potential to optimize the BitTorrent overlay by

using the shortest AS paths. We find that in about 15% of the

investigated swarms, peers exist who can exchange data locally

in the same AS. Furthermore, the AS path length has a median

of two AS hops for random selection whereas AS paths have

two or less AS hops in 80% with the locality selection strategy.

The inter-AS traffic is reduced especially in tier–1 and in large



ISPs by locality aware peer selection. Finally, we estimate the

potential of ISPs to optimize their revenue. We find that tier–1

ASes loose a lot of revenue if locality or selfish-ISP selection

is used because they are avoided as provider. Small ISPs and

stub ASes have large benefits from using locality because they

can minimize their costs. This implies less revenues at tier–1

and large ISPs. Large ISPs have to use selfish-ISP selection

to have a higher prospect on profit.

The paper is structured as follows. Section II describes

the background of our study and presents related work. The

applied methodology to characterize the BitTorrent traffic

and to estimate transit costs is described in Section III. In

Section IV we describe the results of this study and their

importance for ISPs. We conclude this work in Section V.

II. BACKGROUND AND RELATED WORK

This section describes the background of our study and

presents related work. We start with an overview on measure-

ment studies of live BitTorrent networks and show different

approaches to reduce inter-ISP traffic discussed in the ALTO

working group of the IETF. Finally, we introduce studies that

infer the inter-AS relations based on BGP routing information.

A. Measurements and Models of Live BitTorrent Networks

BitTorrent is a peer-to-peer file-sharing protocol, which is

based on multi-source downloads between the users. All the

users, i.e., peers, sharing the same file belong to a swarm.

To join the swarm, a peer requests addresses of other peers

at an index server called tracker. In the standard BitTorrent

algorithm the tracker uses random peer selection to select a

subset of peers that are in the swarm. Then, the joining peer

tries to establish a neighbor relation to the peers it got from

the tracker and collects all peers which accepted the request

in his neighbor set. The peer signals interest to all neighbors

which have parts of the file it still needs to download. To

which neighbor a peer is willing to upload data is decided by

the choking algorithm, which is explained in [5].

As basis of our methodology for modeling inter-ISP BitTor-

rent traffic, the results in [3] are revisited. In [3] the authors

provide measurements of a large number of live BitTorrent

swarms taken from popular index servers such as The Pirate

Bay, Mininova, and Demonoid. Using the IP addresses of the

peers, the authors associate every peer with its AS and estimate

the potential of ALTO mechanisms based on the differentiation

between local peers (peers in the same AS) and remote peers

located in other ASes. In contrast, we consider the actual

Internet topology in this work, i.e., the inter-ISP relations,

the ISP classification in the Internet hierarchy, and the AS

paths between the peers in order to estimate the optimization

potential of ALTO mechanisms.

The authors of [6] use the peer exchange protocol (PEX) in

order to measure the neighbor set of all peers participating in a

number of live BitTorrent swarms. Based on this information,

they model the graph topology of the swarms and compare the

structure to random graphs. They also investigate clustering of

peers within ASes and countries, but do not focus on inter-AS

relations and AS paths between peers as we do in this work.

In addition, there are measurement studies that examine

and model distinct features of BitTorrent networks. In [7],

a single swarm was measured for five months with a focus

on the download times of the peers. Additional parameters

such as the peer inter-arrival times in the swarm, their upload

capacity and their online time are considered in [8]. The

authors of [9] investigate these parameters also in multi-

swarm scenarios. Finally, [10] measures 4.6million torrents to

provide an overview of the entire BitTorrent ecosystem with

its different communities and index servers. Our study differs

from these works in that it focuses on the location of the peers

in the Internet and the AS paths between the peers.

B. ALTO Mechanisms and Their Performance Evaluation

Various mechanisms to reduce the inter-ISP traffic generated

by BitTorrent and other P2P applications are currently being

investigated. Besides caching of BitTorrent traffic [11]–[13],

which might involve legal issues, changing standard BitTorrent

algorithms is a promising approach. The authors of [14]

propose to use an oracle service provided by the ISP guiding

the peers in their peer selection process. The evaluation uses a

Gnutella network and shows that intra-AS traffic is increased

significantly without a negative impact on the overlay graph.

Similar approaches are proposed for BitTorrent. Bindal et al.

[15] reduce the inter-ISP traffic by modifying the neighbor

set of the BitTorrent peers, which can be done at the tracker

or enforced by the ISPs using deep packet inspection. Their

simulations use a uniform peer distribution over ASes and

show a high optimization potential of this approach. The

authors of [16] propose to use iTrackers to guide the peers and

formulates an optimization problem to find the best neighbor

sets. Finally, Oechsner et al. [17] propose to change the

choke algorithm of BitTorrent to further reduce inter-ISP traffic

and evaluate it via simulations in homogeneous scenarios.

The BitTorrent plugin Ono [18] uses the servers of content

distribution networks (CDN) as landmarks and estimates the

proximity of two peers by the similarity of the CDN re-

direction behavior.

The authors of [19] investigate analytically the capabilities

of a P2P-based content distribution network and the impact of

locality. In contrast to our work, they use traffic characteristics

which arise from software updates and do not consider AS

relationships. A set of evaluations of ALTO mechanisms uses

scenarios inspired by measurements of live BitTorrent swarms

[20]–[22]. The studied scenarios consider heterogeneous peer

distributions where some ASes contain more peers of a specific

swarm than others. Nevertheless, they do not take into account

inter-AS relations and the AS paths between two peers. This is

different in our study. Using the AS affiliation of peers and the

data obtained from Caida.org, we infer the actual paths of the

BitTorrent connections in the Internet. In addition, we focus on

the inter-ISP relations and investigate to which degree selfish

ISPs profit from recommending their peers to preferentially

use connections to peers located in lower tier ASes.



C. Measurements of AS Relations and Topologies

Autonomous systems are individual parts of the Internet,

which are operated by ISPs. On a technical level, the traffic

exchange between the ASes is controlled by the Border

Gateway Protocol (BGP) [23]. However, commercial relations

between ISPs determine the routing policies configured via

BGP. An ISP must buy transit services to access parts of the

Internet it neither owns nor can access by its customers. Hence,

to route traffic between autonomous systems ISPs engage in

business relationships. These business relationships are usually

not open for public but they can be abstracted into three

common types [24]. The relationship between two ASes can

be customer-to-provider (c2p), peer-to-peer (p2p) or sibling-

to-sibling (s2s). A customer-to-provider link is present if the

customer AS pays the provider AS for transit service, i.e., the

provider forwards the traffic of the customer and its customers.

In a peer-to-peer relation the ASes have an agreement that they

exchange each others traffic and the traffic of their customers,

without paying each other. Sibling-to-sibling are links between

ASes of the same organization. These relations are defined in

business agreements and kept secret, but they can be inferred

by analyzing the routing between autonomous systems.

The approach that is most widely used to infer AS relation-

ships is analyzing BGP routing tables. The data set used in this

work is also produced by inferring BGP tables as described in

[25]. Therefore, AS links are extracted from RouteViews BGP

tables. First sibling-to-sibling links are identified by looking up

organizations that own multiple AS numbers. Then customer-

to-provider relationships are inferred by a heuristic that is

based on the idea of relaxing the requirement for a maximal

number of valid paths and using the AS degree information to

detect paths that are invalid. Most challenging is the inference

of peer-to-peer links since paths remain valid if peer-to-peer

links are replaced by a customer-to-provider or provider-to-

customer link. The authors of [25] develop a heuristic which

combines the strengths of previous approaches by [24] and

[26]. The inferred relationships were validated by surveys,

showing that 96.5% customer-to-provider, 82.8% peer-to-

peer, and 90.3% sibling-to-sibling of the inferred relationships

are correct.

III. METHOD FOR MODELING BITTORRENT TRAFFIC

FLOW AND REVENUE OF ISPS

In this section we describe the methodology to estimate

transit costs of ASes. First, we show where we obtain the

AS affiliation of peers. Second, we explain how AS paths

are inferred from AS relations and how to classify the ASes.

Further on we describe different BitTorrent peer selection

strategies determining the connection among peers in the

Internet. Finally we introduce our transit cost model.

A. AS Affiliation of Peers

In order to know where peers are located and where

BitTorrent swarms generate costs for ISPs, we need to know

how the swarms are distributed over the Internet and in

which ASes the peers are located. For that purpose, we use

TABLE I
CLASSIFICATION OF AUTONOMOUS SYSTEMS.

Type Classification #ASes

Tier–1 AS has no providers 11

Large ISP AS customer tree ≥ 50 337

Small ISP AS customer tree < 50 and ≥ 5 1770

Stub AS customer tree < 5 36289

the dataset of BitTorrent movie torrents “Mov.” provided

by the authors of [3]. A snapshot of all available movie

torrents on Mininova.org was taken. The swarm sizes and

peer distributions were recorded by distributed measurements.

The data set consists of files with AS number and number of

peers pairs for each BitTorrent swarm. Hence, they provide

information for each swarm on how many peers are located

in which AS. The measurement took part in April 2009 and

recorded 126,050 swarms. Peers of 8,492 ASes are present in

the swarms.

B. AS Relations, Paths and Classification

To be able to estimate the transit costs produced by peers

exchanging data in BitTorrent swarms, we need to know

the AS paths that connect the peers. Datasets with complete

AS paths would be very large and are not available to our

knowledge. Hence, we infer AS paths from AS relationships.

We use the AS relationship dataset from Caida.org [27]. The

dataset contains AS links annotated with AS relations. Each

file contains a full AS graph derived from RouteViews BGP

table snapshots. For our estimations we use the dataset from

January 2011. The dataset consists of customer-to-provider

and peer-to-peer relations. However, sibling-to-sibling is only

considered by Caida and does not occur in the dataset.

We implemented the algorithm described in [4] in Java

to infer the AS paths between any two peers based on the

AS relationship dataset. The authors developed a breadth first

search algorithm which infers shortest paths conforming to the

AS path constraints. The algorithm has runtime O(N ·M) for
finding all pair valid shortest AS paths of the graph, where N

is the number of AS relations and M is the number of ASes.

The algorithm’s input parameter is the source AS α . For every

destination AS β the algorithm returns a set of paths P(α,β ),
which connect α and β .

Further on, we want to obtain results dependent on the AS

size and type of business. Therefore we classify the ASes into

stub, small ISP, large ISP and tier–1. For that purpose, we

use a dataset from [28], which provides information about the

number of customers and providers for each AS number. This

dataset is from November 2011 and is used to classify the

ASes according to the size of their customer tree. Tab. I lists

the different AS types and their classification. Tier–1 ASes

are the largest ASes building the core of the Internet. Tier–1

ASes do not have providers. In their dataset 11 tier–1 ASes are

identified. If an AS has a customer tree that contains at least

50 nodes, it is classified as a large ISP. An AS is classified as

small ISP if its customer tree has less than 50 but at least 5

nodes. Most ASes are stub ASes, which have a customer tree

that is smaller than 5.



C. BitTorrent Neighbor Set Creation

The BitTorrent neighbor set of a peer defines the data

exchange with other peers in BitTorrent swarms. Neighbors

are the peers in the swarm which are connected to a peer. It

has to be noted that the measurements in [3] do not reveal

the real composition of the neighbor sets of the swarms.

Further on, neighbor sets are randomly generated and differ

for every peer, which makes them hard to capture. Hence, we

estimate the composition of the neighbor sets in three simple

ways, random, locality and selfish-ISP. The number of peers

in the swarm is the swarm size S. The number of neighbors

is denoted as N with N ≤ S− 1. In the standard BitTorrent

implementation a client can connect to up to 40 peers, so we

set the maximum size of the neighbor set to Nmax = 40. Hence,

the neighbor set for each peer in a swarm with size S has size

N = min(Nmax,S−1) . (1)

We add peers to the neighbor set until it contains N neighbors

according to the following algorithms.

1) random: In the random selection strategy we add ran-

dom N peers of the swarm to the neighbor set. In the standard

BitTorrent algorithm the selection of neighbors is also random.

Hence, with this selection strategy we try to estimate the traffic

and costs produced by the standard BitTorrent algorithm.

2) locality: In the locality algorithm we sort the AS paths

connecting two peers by the number of AS hops. Then

we add the peers according to the sorted set of increasing

AS paths until N peers are in the neighbor set. Note, that

first the peers located in the same AS, i.e., zero AS hops,

are added. This selection algorithm is used to optimize the

swarm by minimizing AS hops between peers and thereby

potentially reducing latencies. Hence, the motivation for this

algorithm is to optimize the swarm from the overlay’s point

of view. In practice, such a selection could be realized e.g.

with an iTracker [16], a database which maps IP-addresses to

autonomous system numbers, or other ALTO mechanisms.

3) selfish-ISP: The selfish-ISP selection algorithm tries to

select as many peers from customer ASes as possible. Until

the neighbor set contains N peers it first adds peers from

paths starting with provider-to-customer links, then peers of

the same AS, then paths starting with peering links and finally

customer-to-provider links. This selection algorithm is used

to maximize the revenue of ISPs. This is achieved by the

selfish-ISP strategy by selecting preferentially peers that are

connected by customers and avoiding peers at providers. In

practice an ISP must be able to control the neighbor set.

Hence, ALTO mechanisms for selfish-ISP selection must be

controllable by the ISP. One approach is that the ISP provides

an information service to guide the peer selection, such as an

oracle [14] or an information service [29].

D. Cost Model

To be able to estimate the costs for ASes arising from transit

services, we need to know how much traffic is generated

and how much providers charge customers for forwarding

the traffic. We consider a snapshot and assume instantaneous

traffic rates, i.e., the file-size of the download can be neglected.

For simplicity we make assumptions on how much traffic is

generated in each swarm, depending on the the number and

location of peers.

Assumption 1: The traffic generated by a peer is equally

shared among its neighbors.

Assumption 2: All peers generate traffic at the same rate.

Assumption 3: The traffic between ASes is equally shared

among the paths that connect them.

In practice, traffic rates are allocated by BitTorrent’s choke

algorithm, which takes into account the upload and download

speed of the other peers. Further on, traffic is generally not

shared among different AS paths. But, since we consider the

aggregated traffic of a large number of swarms, we argue that

these assumptions are reasonable and the results do not change

significantly.
1) Traffic Amount: We use the above assumptions to esti-

mate the traffic generated by the BitTorrent swarms. Assump-

tion 1 implies, that the traffic sent by a given peer p1 is equally

distributed among its N neighbors. Hence, the traffic p1 sends

to a neighbor p2 is

T (p1, p2) =
1

N
. (2)

Assumption 2 implies that the traffic originating in a given AS

α is proportional to the number of peers located in this AS.

Let S be the set of all swarms, then the traffic of all swarms

that is sent from AS α to AS β can be calculated by

T (α,β ) = ∑
s∈S

∑
α∈s,
p1∈α

∑
β∈s,
p2∈β

T (p1, p2) . (3)

The set of AS paths connecting AS α with β obtained by

the AS inference algorithm is given by P(α,β ). Assumption 3

implies that the traffic between α and β and later the costs

are shared equally among the paths in P(α,β ). Hence, we can
calculate the traffic on a path P ∈ P(α,β ).

T (P) =
1

|P(α,β )|
·T (α,β ), P ∈ P(α,β ) . (4)

Next we can calculate the link load L(α,β ) on the link

between two directly connected ASes α and β . We use α ↔
β ∈P as notation for a direct link between α and β on the path

P. The link load is the sum of the load on all paths sharing

the link α ↔ β .

L(α,β ) = ∑
P|α↔β∈P

T (P) . (5)

As we consider each AS in a swarm as source AS, the

outgoing AS traffic equals the incoming AS traffic. Therefore,

we only consider the outgoing AS traffic as inter-AS traffic.

The in- and outgoing traffic for AS α is the sum of all loads

on links connecting α .

in(α) = out(α) = ∑
β |∃P,α↔β∈P

L(α,β ) . (6)

In the following we estimate the transit costs. The transit

costs are weighted by the link loads defined in this section.
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2) Transit Costs: The business relationships between ISPs

define the exact transit costs, but they are part of the private

contracts between the ISPs. Hence, we develop a simple model

for the arising transit costs. It is common that peering ASes

exchange their traffic and the traffic of their customers without

charging. Hence, we assume no costs for peering links. The

amount a customer pays a provider for transit for a specific

volume of traffic is unclear, so we set it to one cost unit, i.e., 1.

That is not the case in practice, but as we have a large number

of ASes and swarms, we get a qualitatively good estimation.

The costs of an AS α are increased, if it acts as customer of

an AS β . The costs are increased by one unit weighted by the

amount of traffic on the link connecting α and β , i.e., L(α,β )
from Equ. (5). Let P(α) be the set of providers of α , and let

C(α) be the set of customers of α . Then we can calculate the

costs of AS α emerging in all swarms as follows.

costs(α) = ∑
β∈P(α)

L(α,β ) . (7)

In the same way we can calculate the revenues for all AS links

and swarms, where α acts as provider.

revenues(α) = ∑
β∈C(α)

L(α,β ) . (8)

The balance is the difference between revenues and costs.

balance(α) = revenues(α)− costs(α) . (9)

IV. NUMERICAL RESULTS AND THEIR IMPLICATIONS

In this section we present the numerical results obtained by

applying our methodology to the measurement data and de-

scribe their importance for ISPs. First we show how the peers

are distributed over the different ASes. Then we characterize

the traffic emerged by BitTorrent swarms and investigate the

impact of locality and selfish-ISP peer selection algorithm.

Finally, we estimate the transit costs arising by the BitTorrent

swarms and investigate the potential of ISPs to maximize their

balance by the peer selection algorithms.

A. Distribution of Peers in the Internet Hierarchy

In the following we describe how peers of BitTorrent

swarms are distributed over the Internet. Figure 1 shows the

distribution of peers over the different tiers. The peers of all

torrents are considered. Most of the peers are in large ISP

ASes, where 40% of all peers are located. In small ISP and

stub ASes a similar amount of 29% and 31% of the peers is

located, respectively. Only very few peers are located in tier–1

ASes, which is less than 1% of all peers in all swarms. Hence,

the access to peers by tier–1 ASes is negligible. That means

that tier–1 ASes barely have an impact on ALTO mechanisms

that control only the peers of the own AS.

Figure 2 shows the cumulative distribution function (CDF)

of peers per swarm. We summed up the number of peers being

in the same tier for each swarm and calculated the CDF. The

probability that at least one peer in a small ISP is existing in a

swarm is highest. Only about 2% of the swarms do not contain

any small ISP peer. About 57% of the swarms contain stub

AS peers and more than 60% contain peers from large ISPs.

The probability to find more than one peer of non tier–1 ASes

is about 45% for small ISPs and a bit higher for large ISPs

and stub ASes. There are less than 10% of the swarms which

contain a peer from tier–1. Finding more than one peer of

tier–1 ASes in one swarm is very unlikely. Few swarms have

a very large number of peers, with the maximum of 9,467

peers of one distributed over all large ISPs.

Peers can exchange data locally in the same AS as soon as at

least two of them are in it. This cannot be derived from Fig. 2,

because peers can be located in the same tier, but not in the

same AS. In Fig. 3 we calculated the cumulative probability of

the maximum number of peers in a swarm which are located in

the same AS. As soon as the maximum number of peers in one

AS is at least 2, data can be exchanged by the peers locally.

Figure 3 shows that the probability to exchange traffic locally

is low and that large ISPs have the greatest potential. In about

15% of the large ISPs, peers find neighbors being located in

the same AS. For small ISP and stub ASes the chance to find

peers of the same swarm in the same AS is about 10% and

12% respectively. Hence, considering all ASes the potential

for local neighbor selection is relatively small, intra-AS traffic

is only generated in 15% and less of non tier–1 ASes. But

there are a few swarms with many peers generating a lot of

traffic which have a very high potential for traffic optimization.

The AS with the most peers in one swarm is a large ISP
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Fig. 7. Cumulative probability of transit costs (left) and revenues (right) normalized by the overall revenue for random peer selection grouped by AS size.

containing 3,372 peers of one swarm. The dataset contains 42

swarms with more than 1,000 peers in a single AS. In tier–1

ASes there is barely no chance to connect to a local neighbor.

B. Traffic Characteristics for P2P Guidance Strategies

In this subsection we characterize the traffic produced by

BitTorrent swarms. Further on we investigate the potential of

ALTO techniques to optimize the swarm in terms of load on

the network and AS path length. First we look at the traffic

characteristics of the standard BitTorrent algorithm and in the

following we compare the different selection strategies. The

number of AS hops is the number of ASes on the AS path

connecting two peers without regarding the source AS. The

number of hops are weighted by L(α,β ), i.e. the amount of

traffic and the number of concurring AS paths, see Equ. (5).

Figure 4 shows the amount of traffic on AS paths with length

in AS hops for the different selection strategies. The median is

about 2 AS hops if peers are selected randomly. Most traffic is

on paths with two or three AS hops without selection strategy.

Paths are up to 10 AS hops in the investigated swarms.

If we use the local selection strategy, the probability for

shorter AS paths is higher, compared to random and selfish

selection. If local peer selection is used, about 20% of the

traffic can be exchanged in the same AS, i.e. with no AS hop,

which is twice as much as for the other strategies. Random and

selfish selection have a median of two AS hops, whereas paths

have two or less AS hops in about 80% with local selection

strategy. Selfish selection has no considerable potential to

reduce the AS path length.

Fig. 5 shows the amount of inter-AS traffic produced by

BitTorrent swarms. We estimate the outgoing traffic of each

AS with out(α) in Equ. (6), i.e. the load produced by all peer-

to-peer connections on the links connecting α normalized by

the number of neighbors and the number of paths sharing the

links. The outgoing traffic of each BitTorrent swarm and each

AS is calculated and summed up for the different AS types.

For each AS type Fig. 5 depicts the sum of outgoing traffic

normalized by the overall total outgoing traffic produced by

random selection of all AS types. The peer selection strategy

is coded in the different levels of grey and later line styles.

Independent of the selection strategy, most of the traffic is at

large ISPs. Less than half of large ISP traffic is at small ISPs.

The traffic going out of all the stub ASes is in total a similar

amount as the traffic going out of the 11 tier–1 ASes. Hence,

most traffic is going out of tier–1 ASes on a per AS basis.

We use the outgoing traffic as a measure for the load
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Fig. 8. Total balance of transit costs (left) and total savings over random selection (right) normalized by the overall revenue for random peer selection.

on the network. Figure 5 depicts the outgoing traffic for

the different selection strategies dependent on the AS type.

Locality selection reduces the amount of emerging inter-AS

traffic in every AS type. Especially large ISPs have a high

potential to take load of inter-AS links by selecting local peers.

Selfish peer selection reduces the traffic going out of tier–1

ASes, probably because less customers use them as transit

providers and route their traffic to customers or keep it local.

Apart from that selfish selection does not reduce the load on

the network significantly.

Figure 6 shows the cumulative distribution function of the

outgoing AS traffic grouped by the AS type. The outgoing

traffic is normalized by the overall outgoing AS traffic of the

random peer selection strategy. AS mention before tier–1 ASes

have most outgoing traffic on a per AS basis. Further on we

observe that the outgoing traffic decreases with size of the

AS. Also noticeable is that with the locality peer selection

algorithm we get less outgoing traffic, especially for large

ISPs. The difference is not very big for a single AS, but

the large number of ASes makes a big difference in the total

outgoing AS traffic.

C. Transit Costs

Now we estimate the transit costs emerged by BitTorrent

traffic for the different ISPs and show the potential to save

costs and maximize revenues of the peer selection algorithms.

We use the overall revenues for random selection, i.e., the

sum of total revenues of all AS types, to normalize the values

derived in this section. As the overall total balance is zero,

the overall total revenues equal the overall total costs. As

described in Section III every customer/provider AS α on an

AS path connecting peers is charged by ±L(α,β ).
Figure 7(a) shows the cumulative distribution function of

transit costs, as calculated in Equ. (7), for the ASes grouped

by AS types. Hence, the amount ASes pay providers for transit

services. The costs are normalized by the overall revenues

of random selection. tier–1 ASes do not have providers and

therefore no transit costs. Local peer selection reduces the

transit costs, regarding the overall distribution of costs, for all

non tier–1 AS types. Costs of large ASes, i.e., ASes that have

many customers and forward a lot of traffic, tend be higher.

Figure 7(b) shows the cumulative probability of revenues,

see Equ. (8), of the ASes grouped by AS type. Tier–1 ASes

achieve highest revenues. They have the largest customer tree

which pay for transit services. ASes with a smaller customer

tree get less revenues. The difference between the selection

strategies is small for every single AS, but the large number of

ASes makes a big difference in the total revenues and further

total balance, as we explain in the next paragraph. However,

we observe that stub ASes, small and large ISPs tend to have

lower revenues using locality selection compared to random

selection. In contrast revenues increase with higher probability

for selfish-ISP selection in large intervals, in particular from

10−8 to 10−4 for stub and small ISPs. This was the aim of the

selfish-ISP selection strategy. Tier–1 ISPs are loosing revenues

if selection strategies are used. Hence, peer-to-peer guidance

and selfish-ISP selection are not beneficial for tier–1.

The total balance over all measured BitTorrent swarms is

calculated by subtracting costs from revenues of each AS.

Figure 8(a) depicts the total balance depending on the AS

size. The total balance is normalized by the overall revenues

of random selection. The balance is calculated for the stan-

dard BitTorrent peer selection, the locality-aware and selfish

strategy. For all three strategies, tier–1 and large ISPs have a

positive balance and small ISP and stub ASes have a negative

balance. This corresponds to the expectation, because tier–1

and large ISPs have many customers whereas small ISPs and

stub ASes have many providers. Hence, small ASes have to

pay for the transit provided by large ASes.

To highlight the effect of the peer selection strategies on the

balance of the ASes, we investigate the savings over random

selection. Comparing the local strategy with the standard

strategy, we notice that small ASes save costs by selecting

local neighbors, resulting in less revenues by the large ASes.

Figure 8(b) shows the savings over random selection achieved

by using locality and selfish-ISP selection. The savings are



calculated by subtracting the total balance with selection strat-

egy from the total balance of the random selection strategy.

The savings are normalized by the overall revenues of random

selection. tier–1 ASes loose most revenue when local selection

is used, which is 10% of the overall total revenue. The traffic

is kept locally and less traffic is forwarded by tier–1 ASes to

reach remote destinations. Hence, the transit services of tier–1

ASes are avoided which results in less revenues. Large ISPs

also gain less when local peer selection is used. Small ISPs

and stub ASes gain from local peer selection because they save

costs for transit services by avoiding long AS paths. 10% of

the overall total costs are saved by stub ASes, hence they have

the highest potential to profit from selecting peers by locality.

The only way to increase the prospect on higher profit

for large ISPs is using the selfish strategy. But also small

ISPs have a high potential to maximize their revenues being

selfish. Thus, large and small ISPs are in a win-win situation,

because they can connect to their plenty customers and do

not have to pay for transit services by avoiding connections

to providers. This is where tier–1 ASes loose, because less of

the ISPs use them as provider in the selfish strategy. Thus, a

tier–1 AS cannot be more selfish than in the random selection

strategy. Having only few or no customers, stub ASes have

poor capabilities to be selfish but avoiding providers also gives

them a small advantage over random selection.

V. CONCLUSION

In this study we have investigated where in the Internet

BitTorrent traffic is located and which ISPs benefit from its

optimization. To this end, we used measurements of live

BitTorrent swarms to derive the location of BitTorrent peers

and data provided by Caida.org in order to calculate the actual

AS path between any two peers.

Our results show that the traffic optimization potential

depends heavily on the type of ISP. Different ISPs will pursue

different strategies to increase revenues. Non tier–1 ISPs, i.e.,

stub, small and large ISPs have a high potential to benefit from

biased peer selection strategies. Large ISPs profit most from

selfish-ISP selection. Small and stub ISPs have the largest ben-

efit when peers connect based on shortest AS paths as currently

discussed by the ALTO IETF group. In contrary tier–1 ISPs

loose most from the peer selection strategies. Tier–1 ISPs profit

from the currently uncontrolled data exchange, which brings

high revenues from transit services. Hence, tier–1 providers

will try to avoid peer selection strategies or try to keep the

swarms unstructured by controlling the peer selection.

Finally, our results confirm that selecting peers based on

their locality has a high potential to shorten AS paths between

peers and to optimize the overlay network. In the observed

BitTorrent swarms twice as much traffic can be kept intra-

AS using locality peer selection. Thus, the inter-AS traffic is

almost reduced by 50% in tier–1 and in large ISPs.
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