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Abstract

The number of independent components in the Riemann-Christoffel curvature tensor, being composed of the
metric tensor and its first and second derivatives, varies considerably with the dimension of space. Since
few texts provide an explicit derivation of component number, we present here a simplified method using
only the curvature tensor’s antisymmetry property and the cyclicity condition. For generality and comparison,
the method for computing component number in both Riemannian and non-Riemannian space is presented.

Introduction

For any vector or tensor quantity one can take the difference of its double covariant derivatives to obtain a
derivation of the Riemann-Christoffel curvature tensor Rλ

µαβ
. For example, given the arbitrary covariant vector ξµ

it is easy to show that
ξµ||α||β − ξµ||β ||α = −ξλRλµαβ = −ξ

λRλµαβ (1)

(the double-bar convention of Adler-Bazin-Schiffer is assumed), where

Rλµαβ = Γ
λ
µα|β − Γ

λ
µβ |α + Γ

λ
βνΓ

ν
µα − Γ

λ
ανΓ

ν
µβ

where the Γ λµα quantities are connection coefficients and the single subscripted bar represents ordinary partial
differentiation. Lowering the upper index with the metric tensor gµλ gives us Rµναβ . The indices µ,ν, which are
unconstrained for the time being, contribute n2 terms, while the antisymmetry of the last two indices contributes
n(n−1)/2 terms. Initially, this gives a total of n3(n−1)/2 independent components to the curvature tensor, or 96
in 4-dimensional space.

Riemannian space is characterized by a connection coefficient that is identified with the familiar Christoffel
symbol of differential geometry, or

Γ αµν =
§

α
µν

ª

=
1
2

gαβ
�

gµβ |ν + gβν|µ − gµν|β
�

When this is the case, the covariant derivative of the metric tensor can be shown to vanish identically:

gµν||α = gµν|α − gµλ

§

λ
αν

ª

− gλν

§

λ
αµ

ª

= 0

The vanishing of gµν||λ (called the non-metricity tensor) is usually simply referred to as metricity. When gµν||λ 6= 0,
then the space is called non-Riemannian.

However, there is one other symmetry property of the curvature tensor that applies to both Riemannian and
non-Riemannian spaces. It is called the cyclicity condition, and is given by

Rµναβ + Rµβνα + Rµαβν = 0, (2)

which can easily be verified by inspection upon cyclic permutation of the indices ν,α,β . This symmetry property
signficantly reduces the number of independent components in the curvature tensor, especially in
higher-dimensional spaces. We shall see that the cyclicity condition, along with the antisymmetry of the last two
indices in Rµναβ , completely determines the number of independent components in the curvature tensor for both
the Riemannian and non-Riemannian cases.
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Riemannian Case

As in (1), the difference of the double covariant derivatives of the metric tensor can be written as

gµν||α||β − gµν||β ||α = −gµλRλναβ − gλνR
λ
µαβ

or
gµν||α||β − gµν||β ||α = − (Rµναβ + Rνµαβ ) (3)

For gµν||α = 0 we then have the additional antisymmetry property Rµναβ = −Rνµαβ , and so the initial number of
components in the curvature tensor becomes n2(n− 1)2/4, or 36 for a 4-dimensional space. As for the cyclicity
condition, let us first consider the case where the second and third indices are the same, as in Rµννβ (no
summation on ν). For this case cyclicity gives us

Rµννβ + Rµβνν + Rµνβν = 0

In view of the antisymmetry property noted earlier for the last two indices, this is identically zero for any arbitrary
leading index µ. Consequently, for a fixed initial index with any other two indices being equal, cyclicity is trivial
and provides no reduction in the number of components. This leaves the case ν 6= α 6= β . The cyclicity condition
is then equivalent to the permutation of 3 quantities taken 3 at a time which, for a total of n objects, is given
mathematically by

n!
3!(n− 3)!

=
1
6

n(n− 1)(n− 2)

But this is the number of terms for every leading index µ (which has n terms), so cyclicity reduces the number of
components by a total of n2(n− 1)(n− 2)/6. Therefore, the number of independent terms in the curvature tensor
becomes n2(n− 1)2/4− n2(n− 1)(n− 2)/6= n2(n2 − 1)/12. In a 4-dimensional space, the Riemann-Christoffel
tensor exhibits a total of 20 independent components.

There is yet another symmetry property we can derive for the curvature tensor in Riemannian space, although at
this juncture it is irrelevant. Using the two equivalent cyclicity expressions

Rµναβ + Rµβνα + Rµαβν = 0

and
Rαβµν + Rανβµ + Rαµνβ = 0

we can easily show, by repeated exchange of the antisymmetric index pairs in each, that

Rµαβν + Rαµβν =
�

Rαβµν − Rµναβ
�

+
�

Rµβαν − Rανµβ
�

= 0

For this expression to vanish we must therefore have the index-pair exchange symmetry Rµναβ = Rαβµν. However,
this symmetry provides no further reduction of components in the curvature tensor, as it represents just another
expression of the cyclicity condition itself.

Non-Riemannian Case

When the space is non-Riemannian we have gµν||α 6= 0 and we lose, in accordance with (3), the antisymmetry
property Rµναβ + Rνµαβ = 0. Consequently, the number of independent components in the curvature tensor is
simply n3(n− 1)/2− n2(n− 1)(n− 2)/6, which simplifies to n2(n2 − 1)/3. In four dimensions, this comes out to a
rather whopping 80 terms. Precisely what this large number of components means geometrically or what
additional degrees of freedom it conveys to the curvature tensor in a non-Riemannian space is not known.
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