

Carbon Capture and Storage: Opportunities and Challenges

Abu Dhabi, 7-8 September 2011

Carbon Capture and Storage Unit
International Energy Agency

INTERNATIONAL ENERGY AGENCY (2/18)

- Inter-governmental body founded in 1973, currently 28 Member Countries
- Policy advice and energy security coordination
- Whole energy policy spectrum and all energy technologies
- Flagship publications include WEO and ETP
- Host to more than 40 technology-specific networks ("Implementing Agreements" or "IAs")
 - Operated independently with their own membership and financing
 - Includes GHG IA (often called IEA GHG)
- Active in CCS since 2000; dedicated CCS unit created in 2010
 - Provides policy advice
 - Supports broader IEA cross-technology analysis

GLOBAL CO₂ EMISSIONS DOUBLED (3/18)

- Global energy-related CO₂ emissions have more than doubled in past 40 years, from 14Gt to 30Gt
- Until very recently, emissions are driven by OECD countries
- Since 2005, non-OECD countries emit more than OECD
- Current CO₂ concentration in atmosphere roughly 390ppm

ENERGY DEMAND CONTINUES TO GROW (4/18)

- Energy demand +35% by 2035
- OECD demand stagnates

CARBON CAPTURE AND STORAGE

CO₂ EMISSIONS CONTINUE TO GROW (5/18)

- Energy-related CO₂ emissions 35 Gt by 2035
- Gas-related CO₂ emissions grow fastest (1,3%pa), followed by coal (0,5%pa)
- 650ppm CO₂-eq pathway

TOWARDS SUSTAINABLE FUTURE (6/18)

- Current policies or "reference scenarios" unsustainable
- Scientific evidence and policy ambitions now often target "450ppm scenarios" (50-50 chance to keep temperature increase at ≤2°C)
- Critical period NOW to establish policy and develop technology

Figure 13.2 • World energy-related CO₂ emissions by scenario

CARBON CAPTURE AND STORAGE

CARBON CAPTURE & STORAGE: LIMITED ROLE WITH KNOWN POLICIES... (7/18)

- Steady improvement of average coal plant efficiency
- Share of CCS in coal-fired power remains below 10% in 2035 (and only 3% of total power generation)
- No gas-CCS
- Very limited industry-CCS

... BUT CRITICAL IN "450" SCENARIOS (8/18)

- IEA analysis assigns critical role for CCS in a least-cost pathway to reaching 450ppm scenario
- Role of CCS increases after 2030 → contributes 1/5 of total needed reductions against baseline 2010-2050
- 450ppm achievable without CCS, but at higher cost
- Stronger reliance globally on gas replacing coal is alone not enough to stabilise emissions

THE ROLE OF CCS IN MITIGATING CLIMATE CHANGE (9/18)

- CCS is only one of a portfolio of energy technologies that can be applied to reduce emissions;
- CCS should not be opposed to other low-carbon technologies;
- 3. CCS offers governments and industry flexibility in the way climate targets are met and contributes to their acceptance of stronger targets;
- 4. CCS is a relatively new undertaking in all parts of the world and could provide a basis for cooperation and partnership between developing and developed countries
- 5. CCS is a technology that allows the oil and gas industry to play direct role in reducing emissions by applying industry specific knowledge and tools

CAN THE POTENTIAL OF CCS BE EXPLOITED? (10/18)

- 3000+ projects across the globe
- and across industries: CCS not only about coal-fired power
- 150Gt CO₂ captured and stored

EMISSIONS REDUCTION POTENTIAL FOR CCS (11/18)

- Industry: Potential to reduce CO₂ emissions by up to 4.0 Gt annually by 2050
- Needed: Up to 1800 projects globally by 2050 with an investment of some \$880 Bln (USD) 2010-2050
- Applying CCS in high-purity sectors represents early opportunity
- Power sector: Potential to reduce emissions by 5.5 Gt CO2 annually by 2050
- Needed: 22 GW of power generation with CCS installed in 2020;
- Around 60 GW of power plant will need to be retrofitted with CCS by 2050

PROJECTS ARE NEEDED IN NON-OECD COUNTRIES (12/18)

2020 Roadmap goal is **100 projects—50** in OECD countries, **50** in non-OECD countries

CARBON CAPTURE AND STORAGE

Region	Operating Projects	Projects in Advanced Planning or Construction ¹	Projects in Early-Planning Stages ²
OECD	7 (88%)	28 (90%)	27 (71%)
Non-OECD	1 (13%)	3 (10%)	6 (29%)
Total	8	31	38

¹Defined as those projects in the "Define" or "Execute" stages (GCCSI, 2010)

²Defined as those projects in the "Evaluate" or "Identify" stages (GCCSI, 2010)

Long-term liability

Public acceptance

CHALLENGES REMAIN FOR CCS (13/18)

- Firm decisions to address climate change
- Understanding of CCS and recognition of its role

■ International legal issues e.g.

London Protocol and OSPAR

STATUS OF CCS COSTS (14/18)

CO₂ Capture from power generation (IEA, 2011)

Fuel (capture route)	Coal (similar for all capture routes; relative to a pulverized coal baseline)	Natural gas (post-combustion)
Capital costs	3 800 USD/kW (74% increase)	1 700 USD/kW (82% increase)
Cost of CO ₂ avoided	55 USD/tCO ₂	80 USD/tCO ₂

Notes: Averages figures for OECD countries shown (costs in China estimated to be about half for most cases), capital costs are overnight costs

CO₂ Capture from industrial application (UNIDO, 2010)

Refining sector 28-96 €/tCO₂
Cement plant 36-107 €/tCO₂
Pulp and paper 30-40 €/tCO₂
Iron & Steel 30-40 €/tCO₂ (Kuramochi, 2011)

Engineering-Economic Analysis and Historical Experience Curves suggest significant cost reduction potential over time.

CO₂ transport & storage

Very site-specific; likely additional costs of about 20 USD/tCO₂

ROLE OF UNFCCC IN ADDRESSING CCS CHALLENGES (15/18)

- Strategy, policy and financing challenges
 - Acceptance in CDM is a positive policy signal on its own
 - CCS projects could be incentivized by availability of CDM funding
 - Acceptance could encourage adoption of CCS as NAMAs
- Technical and legal challenges
 - Build consensus on how key issues should be addressed both in CDM and non-CDM projects, such as: CCS site selection criteria; Monitoring, reporting, and verification (MRV); Project boundaries; Risk, safety, and socioeconomic impact assessment; Short-, medium- and longterm liability; Financial assurance, etc.
 - Encourage development of appropriate and consistent national regulations for CCS projects
- Broader deployment
 - Improved understanding and acceptance

CCS in the CDM: positive implications (16/18)

- If CCS is included in the CDM, there would be several positive implications for the future of CCS technologies:
 - The process would legitimise CCS technologies in developing countries;
 - Create incentives for CCS demonstration and deployment for those developing countries that rely heavily on fossil fuels and plan to use CCS as one of their climate mitigation options;
 - Create a set of international rules and principles for CCS projects and provide international oversight for carbon offset-generating CCS projects.

Thank you!

Ellina.levina@iea.org +33 1 40 57 67 03

www.iea.org/ccs

(17/18)

AN EXAMPLE: MANAGING LONG-TERM LIABILITY (18/18)

- Establishing the way in which "global liability" arising from leakage—is monetized:
 - Crediting period: CO₂ seepage is treated as project emissions and can be deducted from the CER
 - Beyond crediting period: new accounting methods will be required
- Establishing who is "on the hook" for these liabilities:
 - PDD needs to provide clarity on entities responsibility across CCS project phases, including whether liability is or can be transferred
- Establishing how these financial liabilities are to be managed:
 - Provisions will be needed to guarantee availability of funds over a period of time longer than that which can be managed by private operators
 - Many jurisdictions have approached the problem by collecting fees from the operator during the project phase through a variety of mechanisms: e.g., a per ton levy on CO₂ injected, or a lump sum payment for the project
 - For CDM projects, an international insurance pool or risk sharing mechanism could be considered; however, the creation of such a mechanism should not be a prerequisite for implementing CCS in CDM.
- Establishing mechanisms for developing country governments to build the necessary capacity to regulate geologic storage
- Establishing a CO₂ storage site database—to ensure transparency of long-term accounting for CO₂ storage sites under the CDM