
Complex Analysis

0. Preliminaries and Notation

For a complex number z = x + iy, we set x = Re z and y = Im z, its real and imaginary
components. Any nonzero complex number z = x + iy can be written uniquely in the
polar form z = reiθ where r = |z| =

√

x2 + y2 and θ = tan−1(y/x). r is called the norm,
modulus, or absolute value of z and θ is called the argument of z, written arg z. Notice
that arg z is well defined only up to multiples of 2π.

Euler’s formulas eiz = cos(z) + i sin(z) and e−iz = cos(z)− i sin(z) give

cos(z) =
eiz + e−iz

2
and sin(z) =

eiz − e−iz

2i
.

Complex numbers can sometimes be used an intermediate step to solve problems which
are given entirely in terms of real numbers. In fact, if this were not true there would be
little reason to define complex numbers.

Example. Let n ≥ 2 be an integer. Show that
∏n−1

k=1 sin(
kπ
n ) = n

2n−1 .

Solution. Set ω := e
2πi
n . Thus ωn/4 = eπi/2 = i and ωn = 1.

sin

(

kπ

n

)

=
ekπi/n − ekπi/n

2i
=

ωk/2 − ω−k/2

2i
=

ωk − 1

2iωk/2

Therefore

n−1
∏

k=1

sin

(

kπ

n

)

=

n−1
∏

k=1

ωk − 1

2iωk/2
=

∏n−1
k=1(ω

k − 1)

2n−1in−1ω(1+2+...+n−1)/2
=

∏n−1
k=1(ω

k − 1)

2n−1in−1ωn(n−1)/4

=

∏n−1
k=1(ω

k − 1)

2n−1in−1(ωn/4)n−1
=

∏n−1
k=1(ω

k − 1)

2n−1in−1in−1
=

∏n−1
k=1(ω

k − 1)

2n−1(−1)n−1

Since (ωk)n = 1 for each k, each factor in the numerator satisfies the equation (z+1)n = 1.
In other words, they satisfy zn + nzn−1 +

(

n
2

)

zn−2 + . . . + nz = 0. Since none are zero,

they satisfy p(z) := zn−1 + nzn−2 +
(

n
2

)

zn−3 + . . . + n = 0. Therefore they are all the
roots of the degree n − 1 polynomial p(z). In the general, the product of all the roots of
a degree d polynomial is (−1)d times the constant term. Thus in this case, the numerator
is (−1)n−1n.
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1. Complex Differentiation

f : C → C.
We shall assume that f is defined on a domain D which is open and path connected

(meaning that any two points in D can be joined by a path within D.) Using real and
imaginary components we can write z = x+ iy and f(z) = u(x, y)+ iv(x, y) for real-valued
functions u and v, and in this way, when convenient, we can regard f as a function f(x, y) =
(

u(x, y), v(x, y)
)

: R2 → R
2. For example, when c = a+bi ∈ C the function z 7→ cz : C → C

corresponds to the function (x, y) 7→ (ax − by, ay + bx) : R2 → R
2 or equivalently, the

function given by
(

x
y

)

7→
(

a −b
b a

)(

x
y

)

.

The (complex) derivative of f is defined by

f ′(z0) := lim
z→z0

f(z)− f(z0)

z − z0
,

if the limit exists.
The assumption that the limit exists implies that the same value is obtained if the

limit is taken as z approaches z0 along any line. Approaching along the x-axis gives

f ′(x0 + iy0) = lim
x→x0

f(x+ iy0)− f(x0 + iy0)

(x+ iy0)− (x0 + iy0)
= (∂xf)(x0, y0) = (∂xu+ i∂xv)(x0, y0). (1)

Similarly approaching along the y-axis gives

f ′(x0 + iy0) =
1

i
(∂yu+ i∂yv)(x0, y0). (2)

Equating real and imaginary parts in (1) and (2) gives

Cauchy-Riemann Equations: ∂xu = ∂yv, ∂xv = −∂yu

Conversely, suppose f : C → C is differentiable when regarded as a function R
2 → R

2

and also satisfies the Cauchy-Riemann Equations. The Jacobian matrix for the derivative
is given by

Df =

(

ux uy

vx vy

)

,

which, upon substitution from the Cauchy-Riemann equations, becomes the matrix corre-
sponding to z 7→ (ux + ivx)z. It follows that f is complex differentiable with derivative
f ′(z) = ux + ivx.

Summing up, we have:

Theorem. Let f : C → C be differentiable when regarded as a function from R
2 → R

2.
Then f is differentiable as a complex function if and only if it satisfies the Cauchy-Riemann
equations.
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A function which is differentiable at every point in a domain D is called holomorphic
on D.

In polar form, the CR-equations are as follows. Set x = r cos θ, y = r sin θ. Then

∂u

∂r
=

∂u

∂x
cos θ +

∂u

∂y
sin θ =

∂v

∂y
cos θ − ∂v

∂x
sin θ =

1

r

∂v

∂θ

and similarly
∂v

∂r
= −1

r

∂u

∂θ
.

Example. Let D = {z ∈ C | Re z > 0}. Recall that arg z is well defined only up to
multiples of 2π. Define f : D → C by f(z) = log(|z|) + i arg(z) where we choose the value
of arg(z) which lies in (−π, π).

∂u

∂x
=

∂ log(r)

∂x
=

1

r

∂r

∂x
=

1

r

x
√

x2 + y2
=

1

r

x

r
=

x

r2

and
∂v

∂x
=

∂θ

∂x
=

∂θ

∂x
=

∂ tan−1(y/x)

∂x
=

(−y/x2)

1 + (y/x)2
=

−y

x2 + y2
=

−y

r2

Similarly we can calculate ∂u
∂y and ∂v

∂y and verify that the Cauchy-Riemmann equations are

satisfied. Therefore f(z) is differentiable.

According to (1), ∂f
∂z = ∂u

∂x + i ∂v∂x and so

df

dz
=

x− iy

r2
=

1

x+ iy
=

1

z

A matrix of the form
(

x
y

)

7→
(

a −b
b a

)(

x
y

)

.

corresponds to the linear transformation consisting of the composition of rotation by
cos−1

(

a/(a2 + b2)
)

and scalar multiplication by a2 + b2. Thus the Jacobian matrix for

Df corresponds to the composition of rotation by arg
(

f ′(z)
)

and multiplication by |f ′(z)|.
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2. Complex Integration

For a differentiable parameterized curve γ(t) = x(t)+ iy(t) : [a, b] → C let γ′(t) ∈ C denote
the derivative γ′(t) := x′(t) + iy′(t). As discussed in MATB42, γ′(t) gives the tangent
vector to the curve γ(t), corresponding to the velocity at time t of a point moving along
curve with position γ(t) at time t. Let f : B → C be continuous where B is a domain
containing the curve γ. (That is, γ([a, b] ⊂ B.) Assume that γ′(t) is a continuous function
of t. Define

∫

γ
f(z) dz by

∫

γ

f(z) dz :=

∫ b

a

f
(

γ(t)
)

γ′(t) dt

where the right hand side is defined by taking integrals of the real and imaginary compo-
nents. In other words,

∫

γ

f(z) dz :=

∫ b

a

Re
(

f
(

γ(t)
)

γ′(t)
)

dt+ i

∫ b

a

Im
(

f
(

γ(t)
)

γ′(t)
)

dt.

More generally, for a piecewise differentiable curve γ, the integral can be defined by adding
the integrals on the subintervals on which γ is differentiable. It is also possible to relax
the condition that f be continuous, although we shall not need to consider such cases.

As in line integrals in MATB42, the sign of the answer depends upon the orientation
of the curve γ which is determined by the given parameterization.

Example. Compute
∫

γ
z dz where γ is the straight line joining 0 to 1 + i/2.

Solution. Parameterize γ by γ(t) = t+ it/2, 0 ≤ t ≤ 1.
∫

γ

z dz =

∫ 1

0

(t+it/2)d(t+it/2) =

∫ 1

0

(t+it/2)(1+i/2) dt = (1+i/2)2
∫ 1

0

t dt =
1

2
(1+i/2)2.

Example. Compute
∫

C
z2 dz where C is the unit circle, oriented counterclockwise.

Solution. Parameterize C by C(t) = cos(t) + i sin(t), 0 ≤ t ≤ 2π.

∫

C

z2 dz =

∫ 2π

0

(

cos(t) + i sin(t)
)2
d
(

cos(t) + i sin(t)
)

dt =

(

cos(t) + i sin(t)
)3

3

∣

∣

∣

t=2π

t=0
= 0.

Example. Compute
∫

C
1
z dz where C is the circle of radius R, oriented counterclockwise.

Solution. Parameterize C by C(t) = R cos(t) + iR sin(t), 0 ≤ t ≤ 2π.
∫

C

1

z
dz =

∫ 2π

0

1

R cos(t) + iR sin(t)

(

−R sin(t) + iR cos(t)
)

dt =

∫ 2π

0

i dt = 2πi.

The calculation could equivalently be expressed by writing C(t) = Reit, 0 ≤ t ≤ 2π, giving
∫

C

1

z
dz =

∫ 2π

0

d(Reit)

Reit
=

∫ 2π

0

i dt = 2πi.

Note in particular that the answer is independent of the radius of C.
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Proposition. For f = u+ iv,

∫

γ

f(z) dz =

∫

γ

(

u(x, y) dx− v(x, y) dy
)

+ i

∫

γ

(

v(x, y) dx+ u(x, y) dy
)

Proof.

∫

γ

f(z) dz =

∫ b

a

(

u
(

x(t), y(t)
)

+ iv
(

x(t), y(t)
)

)

(

x′(t) + iy′(t)
)

dt

=

∫ b

a

(

u
(

x(t), y(t)
)

x′(t)− v
(

x(t), y(t)
)

y′(t)
)

+ i

∫ b

a

(

v(
(

x(t), y(t)
)

x′(t) + u
(

x(t), y(t)
)

y′(t)
)

=

∫

γ

(

u(x, y) dx− v(x, y) dy
)

+ i

∫

γ

(

v(x, y) dx+ u(x, y) dy
)

Recall (MATB42) that a differential form ω is called closed if dω = 0. Given f = u+iv,
let ω = u(x, y) dx − v(x, y) dy + iv(x, y) dx + u(x, y) dy. Then dω =

(

−∂yu − ∂xv +

i(−∂yv + ∂xu)
)

dx ∧ dy. Therefore, if f is holomorphic, the Cauchy-Riemann equations
imply that dω = 0.

Lemma. Suppose |f(z)| ≤ M for z on γ. Then
∣

∣

∣

∫

γ
f(z) dz

∣

∣

∣
≤ M (arc length of γ).

Proof. Let γ(t), a ≤ t ≤ b be a parameterization of γ.

(arc length of γ) =

∫

γ

1 ds =

∫ b

a

‖γ′(t)‖ dt.

Therefore

∣

∣

∣

∣

∫

γ

f(z) dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ b

a

f
(

γ(t)
)

γ′(t) dt

∣

∣

∣

∣

∣

≤
∫ b

a

|f
(

γ(t)
)

γ′(t)| dt ≤
∫ b

a

M |γ′(t)| dt

= M (arc length of γ).

Theorem (Cauchy — Preliminary Version). Let B be a closed region whose bound-
ary ∂B consists of piecewise differentiable curves. Let f(z) be holomorphic in a domain
containing B. Suppose f ′(z) is continuous throughout B. Then

∫

∂B
f(z) dz = 0.

Proof. Given f = u + iv, let ω = u(x, y) dx − v(x, y) dy + iv(x, y) dx + u(x, y) dy. Since
f is holomorphic, dω = 0, as above. Since f ′(z) is continous, the partial derivatives of u
and v are continuous. Therefore using Stokes’ Theorem (MATB42) gives

∫

∂B
f(z) dz =

∫

∂B
ω (Stokes′ Thm.)

=

∫

B
dω = 0.
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Note: The preceding theorem does not require that ∂B be connected. For example, if
B is an annular-shaped region lying between an outer curve C2 and an inner curve C1 (each
oriented in the same direction, say counterclockwise) then the theorem gives

∫

C2
f dz −

∫

C1
f dz = 0 so

∫

C2
f dz =

∫

C1
f dz. (As in Stokes’ Theorem, the signs are determined by

picking an orientation on D and using the induced orientations on C2 and C1.) If f is
holomorphic not only on B but also on the interior of C1 (i.e. the “hole” in the annular
region B) then applying the theorem to that region gives the stronger statement that
∫

C1
f dz = 0 and

∫

C2
f dz = 0. Thus, in particular, if γ is any simple closed curve which

goes once counterclockwise around the origin then the earlier example gives
∫

γ
1
z dz =

∫

C
1
z dz = 2πi.
The preceeding proof used Green’s Theorem (special case of Stokes’ theorem) so re-

quired the hypothesis that f ′(z) be continuous. The proof can be refined to eliminate this
hypothesis.

Theorem (Cauchy-Goursat). Let B be a closed region whose boundary ∂B consists of
piecewise differentiable curves. Let f(z) be holomorphic in a domain containing B. Then
∫

∂B
f(z) dz = 0.

Proof. As in the proof of Green’s Theorem, it suffices to consider the case where B is a
rectangle.

Bisect the sides of the rectangle B to subdivide it into four (conguent) subrectan-
gles B1, B2, B3, B4 whose sidelengths are 1/2 the sidelengths of B. Then

∫

∂B

f(z) dz =

∫

∂B1

f(z) dz +

∫

∂B2

f(z) dz +

∫

∂B3

f(z) dz +

∫

∂B4

f(z) dz,

the integrals over the interior lines cancelling out.

The preceding equation implies that the average value of
∣

∣

∣

∫

∂Bj
f(z) dz

∣

∣

∣
is at least

∣

∣

∫

∂B
f(z) dz

∣

∣ /4, so
∣

∣

∣

∫

∂Bj
f(z) dz

∣

∣

∣
≥
∣

∣

∫

∂B
f(z) dz

∣

∣ /4 for (at least) one j.

Pick B(1) to be B1, B2, B3, or B4 such that
∣

∣

∫

∂B(1) f(z) dz
∣

∣ ≥
∣

∣

∫

∂B
f(z) dz

∣

∣ /4.

Applying the same procedure to B(1), pick B(2) ⊂ B(1) such that the sidelengths of
B(2) are half those of B(1) and

∣

∣

∫

∂B(2) f(z) dz
∣

∣ ≥
∣

∣

∫

∂B(1) f(z) dz
∣

∣ /4.

Continuing, for each n, find B(n) such that

B(n) ⊂ B(n−1) ⊂ . . . ⊂ B(1) ⊂ B

and the sidelengths B(n) are (sidelengths of B/2n) and
∣

∣

∫

∂B(n) f(z) dz
∣

∣ ≥
∣

∣

∫

∂B
f(z) dz

∣

∣ /4n.

Since limn→∞ diam(B(n)) = 0, by the Cantor Intersection Theorem (MATB43), ∩nBn

is a single point.
Let w = ∩nBn. Since f is differentiable at w, given ǫ > 0, there exists δ > 0 such that

∣

∣

∣

∣

f(z)− f(w)

z − w
− f ′(w)

∣

∣

∣

∣

≤ ǫ

whenever 0 < |z − w| < δ.
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Equivalently
|f(z)− f(w)− f ′(w)(z − w)| ≤ ǫ|z − w|

whenever 0 < |z − w| < δ.
Pick n such that diam(Bn) < δ. Then for all z ∈ Bn, |z − w| < δ and so

|f(z)− f(w)− f ′(w)(z − w)| ≤ ǫ diam(Bn) = ǫ diam(B)/2n

for all z ∈ Bn.
Since 1 and z − w are differentiable with continous derivatives, by the prelimary

version of Cauchy’s theorem
∫

∂Bn
f(w) dz = f(w)

∫

Bn
1 dz = 0 and

∫

∂Bn
f ′(w)(z−w) dz =

f ′(w)
∫

Bn
(z − w) dz = 0.

Therefore
∫

∂Bn

f(z) dz =

∫

∂Bn

(

f(z)− f(w)− f ′(w)(z − w)
)

dz.

Thus
∣

∣

∣

∣

∫

∂B

f(z) dz

∣

∣

∣

∣

≤ 4n
∣

∣

∣

∣

∫

∂Bn

(

f(z)− f(w)− f ′(w)(z − w)
)

dz

∣

∣

∣

∣

= 2nǫ diam(B)(Perimiter of Bn)

= 2nǫ diam(B)(Perimiter of B)/2n = ǫ diam(B)(Perimiter of B)

Since this is true for all ǫ > 0,
∫

∂B
f(z) dz = 0.

Theorem (Cauchy Integral Formula). Let f be holomorphic on a domain containing
a simple closed counterclockwise-oriented curve γ together with its interior. Then for any
z0 in the interior of γ,

f(z0) =
1

2πi

∫

γ

f(w)

w − z0
dw.

Proof. By translation (i.e. the change of variable z̃ := z − z0), it suffices to consider the
special case z0 = 0. Let D be the interior of γ. The closure of D is D̄ = D ∪ ∂D = D ∪ γ,
the union of D with its boundary. Set

F (w) :=

{

f(w)−f(0)
w if w 6= 0;

f ′(0) if w = 0.

Since 2πif(0) = f(0)
∫

γ
1
w dw (earlier example) we need to show that

∫

γ
F (w) dw = 0.

It is clear that F is continuous throughout D̄ and differentiable in the interior except
possible at w = 0. (It is actually also differentiable at w = 0 but this is not so obvious
and we do not need it.) Since D̄ is closed and bounded (i.e. compact in the terminology
of MATB43) continuity of F implies (MATB43) that F is bounded on D̄. That is, there
exists M ∈ R such that |F (w)| ≤ M for all w ∈ D̄. Let C be a circle within D centred at 0,
oriented counterclockwise. The preceding theorem implies that

∫

γ
F (w) dw =

∫

C
F (w) dw.
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Parameterize C by C(t) = R cos(t) + iR sin(t), 0 ≤ t ≤ 2π, where R is the radius of C.
Then |C ′(t)| = | −R sin(t) + iR cos(t)| = R, so

∣

∣

∣

∣

∫

γ

F (w) dw

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

C

F (w) dw

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 2π

0

F
(

C(t)
)

C ′(t) dt

∣

∣

∣

∣

≤
∫ 2π

0

|F
(

C(t)
)

C ′(t)| dt

≤
∫ 2π

0

MRdt = 2πMR.

Since this inequality holds for arbitrarily small R,
∫

γ
F (w) dw = 0 as desired.

The special case when f(z) = 1 says that if γ is any simple closed counterclockwise-
oriented curve about z0, then

1
2πi

∫

γ
1

z−z0
dz = 1. more generally, if γ is a closed curve

with z0 6∈ γ, we define the index, or winding number of γ about z0, denoted I(γ, (z0)),
by I(γ, z0) :=

1
2πi

∫

γ
1

z−z0
dz. It is always an integer, and represents the number of times γ

circles around z0, where curves oriented in the clockwise direction are considered to circle
a negative number of times.

By translation, consider the special case z0 = 0 in which case we write simply I(γ)
for I(γ, 0). If we write z = x+ iy, then

1

z
=

z̄

|z|2 =
x− iy

x2 + y2

so by our earlier Proposition,

1

2πi

∫

γ

1

z
dz =

1

2πi

∫

γ

(

x

x2 + y2
dx+

y

x2 + y2
dy

)

+
1

2π

∫

γ

( −y

x2 + y2
dx+

x

x2 + y2

)

dy

=
1

4πi

∫

γ

(

d(log(x2 + y2)
)

+
1

2π

∫

γ

( −y

x2 + y2
dx+

x

x2 + y2

)

dy

= 0 +
1

2π

∫

γ

( −y

x2 + y2
dx+

x

x2 + y2
dy

)

=
1

2π

∫

γ

( −y

x2 + y2
dx+

x

x2 + y2

)

dy

so this agrees with the MATB42 definition of winding number.
Another geometrical interpretation of I(γ) is as follows. Start at some point w0 on γ

and let θ0 = argw0, normalized to lie in [0, 2π). As w moves around the curve γ, arg(w)
changes continuously, returning to θ0 + 2πn when we get back to w0.
Claim: I(γ) = n.
Proof. Paramterize γ by γ(θ) = r(θ)eiθ, 0 ≤ θ ≤ 2πn. Then

1

2πi

∫

γ

1

z
dz =

1

2πi

∫ 2πn

0

1

r(θ)eiθ

(

∂r

∂θ
eiθ + ir(θ)eiθ

)

dθ

=
1

2πi

∫ 2πn

0

1

r(θ)

dr

dθ
dθ +

1

2π

∫ 2πn

0

dθ =
1

2πi
log
(

r(θ)
)

∣

∣

∣

θ=2πn

θ=0
+

1

2π

∫ 2πn

0

dθ = 0 + n = n.
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We noted earlier that for holomorphic f(z), the formula
∫

∂B
f(z) dz = 0 does not

require that ∂B be connected. We can similarly generalize Cauchy’s Integral Formula so
that it applies to cases where ∂B is not a single simple closed curve, but perhaps a disjoint
union of curves.

Corollary. Let B be a closed region whose boundary ∂B consists of piecewise differen-
tiable curves. Let f be holomorphic in a domain containing B. Then for any z0 in B,

f(z0) =
1

2πi

∫

∂B

f(w)

w − z0
dw.

Proof. Pick a simple closed curve γ in B such that z0 lies in the interior of γ and let
B̃ = B − {interior of γ} and orient it in the counterclockwise direction. Then g(w) :=
f(w)/(w − z0) is holomorphic throughout B̃ so

∫

∂B̃
g(w) dw = 0. The boundary of B̃ is

the disjoint union of ∂B and γ, and so, taking orientation into account, we get

∫

∂B

f(w)

w − z0
dw =

∫

γ

f(w)

w − z0
dw = 2πif(z0).

Notice that Cauchy’s Integral Formula implies that for a holomorphic function f the
values of f on γ completely determine the values of f at any point inside γ. In particular,

Corollary. Let f be holomorphic on a domain containing the closed ball B = BR[z0].
Then

f(z0) =
1

2π

∫ 2π

0

f(z0 +Reiθ) dθ.

Proof.

f(z0) =
1

2πi

∫

∂B

f(w)

w − z0
dw =

1

2πi

∫

∂B

f(z0 +Reiθ)

Reiθ
iReiθ dθ =

1

2π

∫ 2π

0

f(z0 +Reiθ) dθ.

In other words, the value of f at the centre of a circle is the average of its values on
the circle.

Corollary (Maximum Modulus Principle). Let f be holomorphic on a domain con-
taining a closed bounded set B. Then the maximum value M of |f | occurs on ∂B and
unless f is constant, |f(z)| < M for all z in the interior of B.

Proof. A continous function on a closed bounded set attains a maximum (MATB43). The
average value of a function can equal its maximum value only if the function is constant.
Therefore if |f(z0)| = M for some z0 in the interior then |f(z)| = M in some neighbourhood
of z0. Since our domains are connected, this implies |f(z)| = M for all z in the domain.
Therefore it suffices to show
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Lemma. If |f(z)| is constant then f(z) is constant.

Proof. Let f = u + iv and suppose |f(z)| = M for all z in the domain. If M = 0 then
f = 0 so suppose M > 0. Differentiating M2 = |f(z)|2 = u2 + v2 gives 2uux + 2vvx = 0
and 2uuy + 2vvy = 0. After substituting from the Cauchy-Riemann equations we get
uux + vuy = 0 and uuy − vux = 0. Therefore u2ux = −uvuy = −v2ux and v2uy =
−uvux = −u2uy. Thus (u2 + v2)ux = (u2 + v2)uy = 0. Since u2 + v2 = M2 6= 0, we get
ux = uy = 0 so u is constant, and similarly v is constant.

Theorem (Cauchy Integral Formula for higher derivatives). Let f be holomorphic
on a domain containing simple closed counterclockwise-oriented curve γ together with its
interior. Suppose that f is holomorphic throughout the interior of γ. Then f is infinitely
differentiable on the interior of γ with and for any z0 in the interior of γ the nth derivative
is given by

f (n)(z0) =
n!

2πi

∫

γ

f(w)

(w − z0)n+1
dw.

Proof. Suppose by induction that the theorem is known for f (n), the case n = 0 being the
preceding theorem. Thus to prove the theorem it suffices to prove the following lemma
which completes the induction.

Lemma. Let f be holomorphic on a domain containing a simple closed counterclockwise-
oriented curve γ. For z in the complement of γ define functions Fn(z) by Fn(z) :=
n!
2πi

∫

γ
f(w)

(w−z)n+1 dw. Then Fn is differentiable on the complement of γ with derivative

equal to Fn+1.

For future reference, notice that the Lemma is stronger than needed in the proof of the
theorem in that the definition of the functions Fn and the proof that they are differentiable
do not require f to be defined throughout the interior of γ and the conclusion also applies
to points outside γ.

Proof. Let z0 lie in the complement of γ.

Fn(z)− Fn(z0)

z − z0
− (n+ 1)!

2πi

∫

γ

f(w)

(w − z0)n+2
dw

=
1

z − z0

(

n!

2πi

∫

γ

f(w)

(w − z)n+1
dw − n!

2πi

∫

γ

f(w)

(w − z0)n+1
dw

)

− (n+ 1)!

2πi

∫

γ

f(w)

(w − z0)n+2
dw

=
n!

2πi

∫

γ

(

f(w)

(w − z)n+1
− f(w)

(w − z0)n+1
− (n+ 1)

f(w)

(w − z0)n+1

)

dw

10



For any a and b, applying (xk+1−yk+1)
x−y =

∑k
j=0 x

jyk−j with x = 1/a and y = 1/b gives

1

b− a

(

1

an+1
− 1

bn+1

)

− (n+ 1)
1

bn+2
=

1

b− a

(

1

a
− 1

b

) n
∑

j=0

1

ajbn−j
− (n+ 1)

1

bn+2

=
1

ab

n
∑

j=0

1

ajbn−j
− (n+ 1)

1

bn+2

=

n
∑

j=0

1

aj+1bn−j+1
− (n+ 1)

1

bn+2

=

n
∑

j=0

(

1

aj+1bn−j+1
− 1

bn+2

)

=

n
∑

j=0

1

bn−j+1

(

1

aj+1
− 1

bj+1

)

=
n
∑

j=0

1

bn−j+1

(

1

a
− 1

b

) j
∑

i=0

1

aibj−i

= (b− a)

n
∑

j=0

j
∑

i=0

1

ai+1bn−i+2

Setting a = w − z and b = w − z0 gives

∫

γ

(

f(w)

(w − z)n+1
− f(w)

(w − z0)n+1
− (n+ 1)

f(w)

(w − z0)n+1

)

dw = (z − z0)

∫

γ

g(z, w) dw

where

g(z) =

n
∑

j=0

j
∑

i=0

f(w)

(w − z)i+1(w − z0)n−i+2
.

Thus

∣

∣

∣

∣

Fn(z)− Fn(z0)

z − z0
− (n+ 1)!

2πi

∫

γ

f(w)

(w − z0)n+2
dw

∣

∣

∣

∣

≤ n! |z − z0|
2πi

∣

∣

∣

∣

∫

γ

g(z, w) dw

∣

∣

∣

∣

Since g(z, w) is continuous on the closed bounded set γ it is bounded (MATB43), and

so
∫

γ
g(z, w) dw is bounded, showing limz→z0 |z − z0|

∣

∣

∣

∫

γ
g(z, w) dw

∣

∣

∣
= 0. Hence

F ′
n(z0)−

(n+ 1)!

2πi

∫

γ

f(w)

(w − z0)n+2
dw = 0.
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Corollary (Liouville). If f is holomorphic throughout C and f is bounded then f is
constant.

Proof. Suppose |f(z)| < M for all z. Then given z0 ∈ C, letting applying the Cauchy
Integral formula for the first derivative to the circle of radius R about z0 gives |f ′(z0)| =
∣

∣

∣

1
2πi

∫

∂B
f(z0+Reiθ)

(Reiθ)2
iReiθ dθ

∣

∣

∣
≤ 1

2π

∫ 2π

0
M
R2Rdθ = M/R. Since R is arbitrary, this implies

f ′(z0) = 0 for all z0 and so f is constant.

The converse to Cauchy’s theorem also holds.

Theorem (Moreira). Let f : D → C be a continuous function such that
∫

γ
f dz = 0 for

any closed curve γ ⊂ D. Then there exists a holomorphic function g(z) on D such that
g′(z) = f(z). In particular, f is holomorphic.

Proof. Let f = u+iv, and set ω1 := u(x, y) dx−v(x, y) dy and ω2 := v(x, y) dx+u(x, y) dy.
Since

∫

γ
f dz =

∫

γ
ω1 + i

∫

γ
ω2, it follows that

∫

γ
ω1 = 0 and

∫

γ
ω2 = 0 for any closed

curve γ ⊂ D. According to a theorem from MATB42, this means that there exists “potential
functions” for ω1 and ω2 in D. That is, there exist functions g1(x, y) and g2(x, y) such that
dg1 = ω1 and dg2 = ω2. In other words, ∂xg1 = u, ∂yg2 = −v, ∂xg2 = v, and ∂yg2 = u.

Set g(z) := g1 + ig2. Since f is continuous, the partial derivatives of the components
of g(z) are continuous, so g is differentiable as a function from R

2 → R
2. Furthermore,

the formulas above show that the Cauchy-Riemann equations are satisfied, so g(z) is
holomorphic in D.

The derivative of g(z) is given by g′(z) = ∂xg1 + i∂xg2 = u + iv = f . Since g(z) is
holomorphic in D, according to the Cauchy Integral Theorem for Derivatives, its derivative
f(z) is also holomorphic in D.

Corollary. If f(z) is holomorphic throughout a simply connected domain D then there
exists a holomorphic g(z) on D such that g′(z) = f(z).

Proof. Since f(z) is holomorphic and D is simply connected, integrals of f(z) over curves
in D are independent of the path. In particular,

∫

γ
f(z) = 0 for any closed curve γ in D.

This implies that a holomorphic function has “local” antiderviatives as follows.

Corollary. If f(z) is holomorphic throughout a domain D then for each z0 ∈ D there
exists and open neighbourhood of z0 throughout which f has an antidervative.

Proof. Since our domains are assumed to be open, there exists an open ball B about z0
within D. Since B is simply connected, applying the previous Corollary shows that f(z)
has an antiderivative in B.

Notice that this does not say that there is a single function g(z) defined throughout
all of the domain of f(z) such that g′(z) = f(z).
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3. Power Series Expansions

Recall the following from MATB43.

1) A sequence of functions fn(z) is said to converge uniformly to f(z) if ∀ ǫ > 0 ∃N
(independent of z) such that ∀ n ≥ N |f(z)− fn(z)| < ǫ for all z in the domain.

2) If fn continuous on D and fn converges uniformly to f then f is continuous on D and
limn→∞

∫

D
fn(z) dz =

∫

D
f(z) dz.

3) To any power series f(z) =
∑∞

n=0 cnz
n there is an associated radius of conver-

gence R ∈ [0,∞] such that f(z) converges (absolutely) for |z| < R and diverges
for |z| > R. Within its radius of convergence, f(z) is differentiable and integrable (on
bounded regions) with f ′(z) =

∑∞
n=0 cnnz

n−1 and anti-derivative
∑∞

n=0
cn
n+1z

n+1 and
the radius of convergence of the differentiated and integrated series are R.

4) A continuous function f(z) on a closed bounded domain has both a minimum and a
maximum. In particular |f(z)| is bounded.

For any curve γ our assumption that γ′(t) is continous implies (by (4)) that it is
bounded. It follows that:

Proposition. If fn(z) converges uniformly to f(z) on a domain including the image
of γ then fn

(

γ(t)
)

γ′(t) converges uniformly to f
(

γ(t)
)

γ′(t) and so applying (1) gives
limn→∞

∫

γ
fn(z) dz =

∫

γ
f(z) dz.

For differentiable functions of a real variable, even if fn(x) converges uniformly to f(x)
in the vicinity of a point a, it need not be true that f(x) is differentiable at a. However
for functions of a complex variable, we can use the fact that corresponding statement for
integration (the preceding proposition) to deduce the result for differentiation.

Theorem. Suppose fn(z) is a sequence of functions which converge uniformly to f(z)
on D. If fn(z) is holomorphic on D for all n, then f(z) is holomorphic on D.

Proof. For evey closed curve γ in D,

∫

γ

f(z) = lim
n→∞

∫

γ

fn(z) = lim
n→∞

0 = 0.

Therefore f(z) is holomorphic in D by Moreira’s theorem,

From (3) we know that a function which is representable by a power series is differen-
tiable within its radius of convergence. For complex differentiable functions we show that
the converse is true.

Observe that 1
a−x = 1

a
1

1−x/a = 1
a

∑∞
n=0

(

x
a

)n
=
∑∞

n=0
xn

an+1 within its radius of con-

vergence |x| < a.

Suppose that f(z) is differentiable on a domain D and let z0 belong to D. Since
D is open, the closed ball Br[z0] := {z ∈ C | |z − z0| ≤ r} is contained in D for
sufficiently small r. Let C be the circle C := ∂Br[z0] := {z ∈ C | |z − z0| = r},
oriented counterclockwise. Cauchy says f(z) =

∫

C
f(w)
w−z dw for all z in the open ball

13



Br(z0) := {z ∈ C | |z − z0| < r}. For simplicity we will use translation to consider
expansions about z0 = 0. Then for z ∈ Br(0) we have |z| < |w| for any w ∈ C and so

f(z) =

∫

C

f(w)

w − z
dw =

∫

C

∞
∑

n=0

f(w)zn

wn+1
dw =

∞
∑

n=0

zn
∫

C

f(w)

wn+1
dw =

∞
∑

n=0

zn
f (n)(0)

n!
.

Thus within C, the Taylor series of f(z) converges to f(z). Since r was arbitrary (subject
to the condition that Br(z0) be contained in D) the Taylor series expansion is valid for
any z whose distance to z0 is less than the distance of z0 to the boundary of D. In
particular, the radius of convergence of the Taylor series of f(z) about z0 is at least as
large as the distance from z0 to the boundary of D.

It is also clear that the power series expansion of f(z) about any point is unique. That
is, if

∑∞
n=0 an(z− z0)

n is any series which converges to f(z0) in some neighbourhood of z0
then by successively differentiating and evaluating at z = z0 we find that an = f (n)(z0)/n!
so the series is the Taylor series of f(z).

A function with the property that at every point in its domain, the Taylor series of
the function converges to the function within some sufficiently small radius of the point
is called analytic. Therefore for complex functions, “differentiable” and “analytic” are
equivalent. This is in contract to functions of a real varable where if f(x) is differentiable:
a) f not need be differentiable more than once so the Taylor series of f might not be

defined.
b) Even if f is infinitely differentiable, the Taylor series of f need not converge to f .

Since the
∑∞

n=0 z
n f(n)(0)

n! converges within C, its radius of convergence is at least r.
Thus within C we can define a function g(z) by the convergent series

g(z) :=
∞
∑

n=0

zn+1 f (n)(0)

(n+ 1)!

and it will have the property that it is differentiable within C with g′(z) = f(z).
In summary, unlike functions of a real variable, complex differentiable functions have

the following properties:

Theorem.
1) f(z) is analytic at every point in its domain
2) f is locally the derivative of some complex function. That is, at every point of the

domain of f there a function g(z) defined in some neighbourhood of that point such
that g′(z) = f(z).

3) If fn(z) is a sequence of differentiable functions which converge uniformly to f(z)
on D then f(z) is differentiable on D.

Notice that (2) does not say that there is a single function g(z) defined throughout
all of the domain of f(z) such that g′(z) = f(z).
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Laurent Series

Consider a function f(z) which is holomorphic throughout an annular region

A := {z ∈ C | R1 < |z − z0| < R2}

where 0 ≤ R1 < R2 ≤ ∞. By translation, assume z0 = 0. Given p ∈ A, choose concentric
circles C1 and C2 about 0 such that R1 < radius of C1 < |p| < radius of C2 < R2 and
orient them in the counterclockwise direction. By the Corollary to Cauchy’s Integral
Formula,

f(z) =
1

2πi

∫

C2

f(w)

w − z
dw − 1

2πi

∫

C1

f(w)

w − z
dw.

Set f1(z) := 1
2πi

∫

C1

f(w)
w−z dw and f2(z) := 1

2πi

∫

C2

f(w)
w−z dw so that f(z) = f2(z) − f1(z).

According to the lemma in the proof of Cauchy’s Integral Formula, the functions f1 and f2
are defined and analytic on the complement of C1 and C2 respectively. Hence f2 is analytic
throughout the interior of C2, and given in this region by the power series expansion

f2(z) =
∑∞

n=0 anz
n where an = f

(n)
2 (0)/n! = 1

2πi

∫

γ
f(w)
wn+1 dw, which holds, in particular,

at the point p.

For the analogous statement concerning the function f1 make the change of variable

ζ := 1/z. That is, set f̃1(ζ) := f1(1/ζ) = 1
2πi

∫

C1

f(w)
w−(1/ζ) dw. Letting C̃1 be the circle

(with counterclockwise orientation) whose radius is the reciprocal of the radius of C1, the
change of variable w := 1/ω gives

f̃1(ζ) =
1

2πi

∫

C̃1

f
(

1
ω

)

(1/w)− (1/ζ)

(

− 1

ω2

)

dω =
1

2πi

∫

C̃1

ζ

ω

f
(

1
ω

)

ω − ζ
dω =

ζ

2πi

∫

C̃1

g(ω)

ω − ζ
dω

where g(ω) =
f( 1

ω )
ω . As with f2, we use the fact that h(ζ) := 1

2πi

∫

C̃1

g(ω)
ω−ζ dω is analytic in

the interior of C̃1 to obtain the expansion h(ζ) =
∑∞

n=0 cnζ
n where cn = 1

2πi

∫

C̃1

g(ω)
ωn+1 dω.

Therefore f̃1(ζ) = ζh(ζ) =
∑∞

n=0 cnζ
n+1 = −∑∞

n=1 bnζ
n where

bn = −cn−1 = − 1

2πi

∫

C̃1

g(ω)

ωn
dω = − 1

2πi

∫

C̃1

f
(

1
ω

)

ωn+1
dω

= − 1

2πi

∫

C1

f(w)wn+1

(

− 1

w2

)

dw =
1

2πi

∫

C1

f(w)wn−1 dw.

The expansion f̃1(ζ) = −
∑∞

n=1 bnζ
n is valid in the interior of C̃1 which contains 1/p.

Therefore f1(z) = f̃1(ζ) = −
∑∞

n=1 bnζ
n = −

∑∞
n=1 bn/z

n holds at p.

Using the Corollary to Cauchy’s theorem, if we choose a curve γ about p which lies
within the annulus and give it the counterclockwise orientation, we can write our coefficents

as an = 1
2πi

∫

γ
f(w)
wn+1 dw and bn = 1

2πi

∫

γ
f(w)wn−1 dw.

To summarize,
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Theorem. Let f(z) be holomorphic in an annular region R1 < |z − z0| < R2 where
0 ≤ R1 < R2 ≤ ∞. Then

f(z) =
∞
∑

n=0

an(z − z0)
n +

∞
∑

n=1

bn
(z − z0)n

where an = 1
2πi

∫

γ
f(w)

(w−z0)n+1 dw and bn = 1
2πi

∫

γ
f(w)(w−z0)

n−1 dw for any curve γ within

the annulus such that p lies in the interior of γ.

This is called the Laurent expansion of f(z) in the region. If f(w) is holomorphic
within the entire ball of radius R2 about z0, then the bn’s are all 0 and the Laurent
expansion of f(z) reduces to its Taylor expansion.

4. Analytic Continuation

Theorem. Suppose that f(z) are g(z) are analytic within a domain D. For any z0 ∈ D,
if there exists a sequence of points zn 6= z0 with zn → z, such f(zn) = g(zn) for all n then
f(z) = g(z) for all z in D.

Note: Recall that our definition of “domain” was an open path connected set.
Proof. By substraction, it suffices to consider the special case where g(z) = 0. Let d be the
distance from z0 to the boundary of D. Let f(z) =

∑∞
k=0 ak(z − z0)

k be the Taylor series
expansion of f(z), which, as noted earlier, converges to f(z) throughout B := Bd(z0).
Since f(z) is differentiable at z0 it is continuous so f(z0) = limn→∞ f(zn) = 0. Therefore
substituting into the power series gives a0 = 0. Write f(z) = (z − z0)h(z) where

h(z) =

{

f(z)/(z − z0) if z 6= z0;
f ′(z0) if z = 0.

The series
∑∞

k=0 ak+1(z − z0)
n converges to h(z) for z 6= z0, so by continuity it also

converges to g(z) = f ′(z0) when z = z0. Since zn 6= z0, h(zn) = f(zn)/(zn − z0) = 0 so
substituting into the power series gives a1 = 0. Proceeding, we inductively conclude that
ak = 0 for all k and therefore f(z) = 0 throughout B.

Now let p be an arbitrary point in D. Let X = {z ∈ D | f(z) = g(z)}. Since we
assumed that D is path connected, there exists a path γ : [0, 1] → D joining z0 to p. Set
t̃ := sup{t ∈ [0, 1] | γ(t) ∈ X}. Since the definition of supremum implies that there is a
sequence of points in X converging to γ(t̃), the preceding shows that X contains an open
ball about γ(t̃). This can happen only if t̃ = 1, and so p lies in X.

An analytic function g which extends an analytic f to a larger domain is called an
analytic continuation of f . That is, if f(z) and g(z) are analytic functions with D :=
(domain of f) ⊂ D̃ := (domain of g) and f(z) = g(z) for all z ∈ D then g is called an
analytic continuation of f to D̃.

The preceding theorem implies that any two analytic continuations g1(z), g2(z) of f(z)
to the same domain D̃ are equal. However this does not imply that analytic continuations
of f(z) to different domains must agree on the intersection of those domains. In other
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words it might be possible that f(z) has analytic continuations g1(z) defined on D1 ⊃ D
and g2(z) defined on D2 ⊃ D for which there exists p ∈ D1 ∩D2 for which g1(p) 6= g2(p).
This can happen only if there is no path in the intersection D1 ∩D2 joining p to a point
in D. Indeed, if D1∩D2 contains a path γ joining p to a point q in D, we can form an open
connected subset D̃ of D1 ∩D2 containing γ. Then D̃ is a domain and since by hypothesis
g1(z) and g2(z) agree in a neighbourhood of q (where both are given by f(z)) applying the
preceding to the domain D̃ shows that g1(z) and g2(z) agree on D̃ and in particular at p.

Example. Let D1 = C−{(x, 0) | x ≤ 0} and D2 = C−{(0, y) | y ≤ 0}. Recall that arg z
is well defined only up to multiples of 2π. Define g1 : D1 → C by g1(z) = log(|z|)+ i arg(z)
where we choose the value of arg(z) which lies in (−π, π). Define g2 : D2 → C by g2(z) =
log(|z|) + i arg(z) where we choose the value of arg(z) which lies in (−π/2, 3π/2). We
showed earlier that g1 and g2 are differentiable with g′1(z) = g′2(z) = 1/z.

Since z = |z|ei arg z by definition, eg1(z) = elog(|z|)ei arg z = z. Similarly eg2(z) = z.
Therefore each of g1 and g2 might deserve the name log(z). They are called “branches” of
the logarithm function. If we let

D = open 1st quadrant = {z ∈ C | Re z > 0 and Im z > 0}
and define f : D → C by f(z) = log(|z|) + i arg(z) where we choose the value of arg(z)
which lies in (0, π/2), then each of g1 and g2 are analytic continuations of f(z). However
although the points in the 3rd quadrant are in D1 ∩D2, the values of g1(z) and g2(z) on
these points differ by 2π.

Proposition. Let R be the radius of convergence of f(z) =
∑∞

n=0 an(z−p)n and suppose
0 < R < ∞. Then there must be at least one point q with |q − p| = R such that f cannot
be analytically continued to any domain containing q.

Proof. Let B = BR(p) be the open ball of radius R about p, and let ∂B be the boundary
circle of B. Suppose that for each point q ∈ ∂B, there exists an analytic continuation gq(z)

of f(z) to a domain Dq containing q. Let D̂ = ∪q∈∂BDq. For any q1, q2 on the boundary,
applying the preceding uniqueness theorem to Dq1∩Dq2 shows that gq1(z) and gq2(z) agree
on Dq1 ∩Dq2 . Therefore the functions {gq(z)}q∈∂B piece together to produce a well defined

function on g(z) on D̂. The function gz is differentiable since in the neighbourhood of each
point of D̂ it equals some differentiable function gq(z). Since D̂ is open and ∂B is closed,

the distance d of ∂B to the boundary of D̂ is positive, which means that the distance R+d
from p to the boundary of D̂ is greater than R. But according to our earlier discussion
(Section 3), the radius of convergence of the Taylor series of g(z) about p (which is the
same as f(z)) is at least as large as the distance of p to the boundary of D̂, contradicting
the definition of R.

Let f(z) be analytic throughout D. At any point p in D we can expand f(z) into a
power series f(z) = an(z − p)n whose radius of convergence R is at least as large as the
distance d from p to the boundary of D (where R and d depend upon p). If there is a
point p in D at which d < R, then we can create an analytic continuation g(z) of f(z)
to D ∪BR(p) by defining

g(z) :=

{

f(z) if z ∈ D;
an(z − p)n if z ∈ BR(p).

.
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By applying this procedure to more points in the extended domain one might be able to
extend the domain still further.

Recall (MATB42):

a) two curves γ0, γ1, from p to q in a subset X of Rn are called homotopic in X, written
γ0 ≃ γ1, if one can be continuously deformed into the other within the subset X.
More precisely, γ0 ≃ γ1 if there exists a continuous function H : [0, 1] × [0, 1] → X
such that H(0, t) = γ0(t), H(1, t) = γ1(t) and H(s, 0) = p for all s and H(s, 1) = q
for all q. In other words, the family of curves defined by γs(t) := H(s, t) interpolates
continuously from γ0 to γ1.

b) a connected subset X is called simply connected if any two curves in X with the same
endpoints are homotopic in X.

For subsets X of R2, this is equivalent to saying that X is simply connected iff for
every closed curve γ lying in X, the interior of γ also lies in X.

Theorem (Monodromy). Let f(z) be analytic on a domain D. Let X be a simply
connected domain containing D. Suppose that for every curve γ ∈ X there is an analytic
continuation of f(z) to some domain containing γ. Then there exists a unique analytic
continuation of f(z) to X.

Proof. If the analytic continuation exists, it is unique by an earlier theorem.

Pick a point p ∈ D. Given q ∈ X, choose a path γ0 joining p to q. By hypothesis,
there exists an analytic continuation g0(z) to some domain D0 containing γ0. We wish
to show that g0(q) is independent of the choices involved. It is clear from the uniqueness
theorem that the same value of g0(q) would be obtained if we choose a different domain
containing γ0, but what happens if we choose a different path from p to q.

Suppose that γ1 is another path joining p to q. Since X is simply connected, there
exists a homotopy H : [0, 1] × [0, 1] → X from γ0 to γ1 and set γs(t) := H(s, t). Let d
be the distance of ImH to the boundary of X. d > 0, since ImH is compact (closed and
bounded) and X is open. Suppose h is some point in H and suppose kh(z) is any analytic
continuation of f(z) to some domain containing h. The straight line joining h to any point
whose distance to h is less than d lies in X, and therefore by hypothesis there is an analytic
continuation of f(z) to some domain containing that line. By the preceding proposition,
this means that the radius of convergence of the Taylor series of kh(z) about h must be at
least d.

Let S={s ∈ [0, 1] | ∃ an analytic continuation of f(z) to some domain containing γs}
and let ŝ = supS. We show that ŝ = 1. Choose s0 ∈ S such that ŝ−s0 < d. Let gs0(z) be an
analytic continuation of f(z) to a domain Ds0 containing γs0 . According to the preceding
discussion, for each h ∈ γs0 , the radius of convergence of the Taylor series of gs0(z) about h
is at least d, so f(z) has an analytic continuation gh(z) to Ds0 ∪Bd(h). According to the
uniqueness theorem, these functions (for various h ∈ γs0) agree whenever their domains
overlap, so they piece together to produce a well defined analytic continuation ĝ(z) on
D̂ := Ds0 ∪

⋃

h∈γs0
Bd(h). Since s0 + d > ŝ, unless ŝ = 1, D̂ contains γs for some s > ŝ,

contradicting the definition of ŝ. Therefore ŝ = 1 and ĝ(z) is an analytic continuation of
f(z) to a domain containing all of H and in particular contains both γ0 and γ1. Therefore
the value g0(q) obtained using the path γ0 equals the value g1(q) obtained using the path γ1.
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The conclusion is that there is a well defined extension of f(z) to a function g(z)
defined on X where for any q ∈ X, g(q) is defined by chosing any path γ from p to q,
and setting g(q) := gγ(q) where gγ(z) is any analytic continuation of f(z) to a domain
containing γ(z). The resulting function g(z) is differentiable at each point q since it equals
some differentiable function in the neighbourhood of q.

Theorem (Schwarz Reflection Principle). Let D be a domain which is symmetrical
about the x-axis. (i.e. z ∈ D if and only if z̄ ∈ D.) Let I = D ∩ x−axis. Let U = {z ∈
D | | Im z > 0} (the upper half of D) and let Û = U ∪ I. Let f : Û → C be a continuous
function such that the restriction f

∣

∣

U
is holomorphic and the restriction f

∣

∣

I
is real-valued.

Then f has a holomorphic extension to D.

Proof. Extend f to D − Û by setting f(z) := f(z̄ for z ∈ D − Û . Since f is continuous
on Û , by symmetry f

∣

∣

D−Û
has a continuous extension to I and since f(p) = f(p) for

p ∈ I, the symmetry in the definition of f implies that this extension agrees with f(I).
Thus f is continous on D. By Moreira’s theorem, it suffices to show that

∫

γ
f(z) = 0 for

any closed curve γ ⊂ D. For a curve which is entirely contained in U , this is clear, since
f(z) is holomorphic on U and for a curve contained entirely in the refection D − Û of U
it is also clear, by symmetry. Therefore consider a curve γ which intersects I. We may
write γ as a union of curves each of which lies entirely in the upper half plane or the lower
half plane so this reduces the problem to showing that

∫

γ
f(z) = 0 for a curve γ which

lies entirely in one the two half-planes. By slightly perturbing the portion of γ running
along the x-axis, such a curve can be approximately as closely as desired by a curve γ̃
which lies entirely within U or D − Û . Since, as noted above,

∫

γ̃
f(z) dz = 0, and we

can choose the γ̃ so as to make the difference |
∫

γ̃
f(z) dz −

∫

γ
f(z) dz| arbitrarily small, it

follows that
∫

γ
f(z) dz = 0.
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5. Residues

Proposition. Let γ be a simple closed counterclockwise-oriented curve about a point p.

Then
∫

γ
(w − p)n dw =

{

2πi if n = −1;
0 otherwise.

Proof. If n ≥ 0, (z − p)n is holomorphic everywhere so the integral is 0 by Cauchy’s
theorem. According to Cauchy’s Integral Formula for higher derivatives,

∫

γ

1

(w − p)m
dw =

2πi

m!
g(m−1)(p),

where g(z) = 1, and applying this with m := −n gives the result when n < 0.

Let f(z) be homorphic in an annular region 0 < |z − p| ≤ R about some point p. Let
B := BR[p] be the closed ball of radius R about p and let B′ = B − {p} be the punctured
ball obtained by removing the point p. Let f(z) =

∑∞
n=0 an(z− p)n +

∑∞
n=1

bn
(z−p)n be the

Laurent expansion of f(z) in B. Then applying the proposition gives

1

2πi

∫

∂B

f(z) dz =
1

2πi

∞
∑

n=−∞
cn

∫

∂B

(z − p)n dz = c−1.

The coefficient c−1 in the Laurent expansion of f(z) about p is called the Residue of
f and p, written Resp f(z).

Notice that if γ is any simple closed counterclockwise-oriented curve about a point p
and f(z) is holomorphic in a domain containing γ together with all of its interior except
possibly p then for any circle C about p contained in γ, applying Cauchy’s Theorem to
the region between γ and C gives 1

2πi

∫

γ
f(z) = 1

2πi

∫

C
f(z), so the answer is again given

by Resp f(z).
Consider now a simple closed counterclockwise-oriented curve γ and a function f(z)

which is holomorphic on a domain containing γ together will all of its interior except
possibly a finite number of points p1, p2, . . ., pk. Carve the interior of γ into subregions
B1, B2, . . ., Bk where Bj contains pj but none of the other p’s. Then, assuming all the

curves are given the counterclockwise orientation,
∫

γ
f(z) dz =

∑k
j=0

∫

∂Bj
f(z) dz, since

the integrals over the extra curves in the RHS introduced by the division into subregions
each appear twice with opposite directions and cancel out. Therefore

1

2πi

∫

γ

f(z) dz =
1

2πi

k
∑

j=0

∫

∂Bj

f(z) dz =
k
∑

j=0

Respj f(z).

Suppose f(z) is a function which is holomorphic in a punctured neighbourhood of a
point p. (That is, there is a ball B = BR(p) about p such that f(z) is holomorphic on
the punctured ball B − {p}.) Then p is called an “isolated singularity” of f . Let f(z) =
∑∞

n=0 an(z − p)n +
∑∞

n=1
bn

(z−p)n be the Laurent expansion of f(z) in the neighbourhood

of an isolated singular p. If bn = 0 for all n then p is called a “removable singularity” of f .
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If there exists an integer N such that bn = 0 for all n > N , then p is called a “pole” of f
of order k, where k is the largest integer for which bk 6= 0. A pole of order 1 is called a
“simple pole”. If p is not a pole of f (i.e. bn 6= 0 for infinitely many n), then p is called
an “essential singularity” of f . If f is holomorphic on a region A everywhere except for
a finite number of islated singularties none of which are essential singularities, then f is
called “meromorphic” on A. Note that the uniqueness theorem in the analytic continuation
section implies that the zeros of a nonconstant meromorphic function are isolated.

Our previous result can be stated as

Residue Theorem. Let γ be a simple closed curve counterclockwise-oriented curve and
let f(z) be holomorphic, aside from isolated singularties, on domain D containing γ and
its interior, with no singularities on γ. Then

1

2πi

∫

γ

f(z) dz =
k
∑

j=0

Respj f(z)

where p1, p2, . . ., pk are the singularities of f within the interior of γ.

Proposition. Let p be an isolated singularity of f(z). Then p is a removable singularity
if and only if any of the following conditions hold (in which case all must hold):
1) f(z) is bounded in a deleted neighbourhood of p.
2) limz→p f(z) exists
3) limz→p(z − p)f(z) = 0

Proof. If p is a removable singularity then in some deleted neighbourhood of p, f(z) =
∑∞

n=0 an(z − p)n. In this case we can extend f(z) to an analytic function in the neigh-
bourhood of p by setting f(p) := a0. It follows that all three conditions are satisfied.
Conversely, if either conditions (1) or (2) holds then obviously so does (3), so it suffices
to show that condition (3) implies that the singularity is removable. Let Cr denote the
circle of radius r around p. bk = 1

2πi

∫

Cr
f(w)(w− p)k−1 dw. Given ǫ > 0, condition 3 says

that there exists r such that |z − p| |f(z)| < ǫ whenever |z − p| ≤ r. In particular, if z lies
on Cr then r|f(z)| < ǫ. Choosing a smaller r if necessary, we may assume r < 1. Therefore
|bk| ≤ 1

2π

∫

Cr
rk−1ǫ/r = 1

2π (2πrr
k−1ǫ/r) = rk−1ǫ ≤ ǫ for every ǫ > 0 and so bk = 0.

Computation of residues can be complicated, but there are some tricks which handle
many common situations. If f(z) has a removable singularity at p then limz→p f(z) = a0
exists and the domain of f can be extended to include p by setting f(p) := a0. Conversely,
it is clear from the Laurent expansion that if limz→p f(z) exists then the singularity must
removable with the limit equalling a0. If the singularity of f at p is a pole of order k then
(z−p)kf(z) has a removable singularity at p. In particular, if k = 1 then limz→p(z−p)f(z)
exists and equals the residue Resp f(z) and conversely if limz→p(z−p)f(z) exists then k = 1
and Resp f(z) = limz→p(z − p)f(z).

As a consequence we have

Proposition. Let f(z) = g(z)/h(z) where g(z) and h(z) are holomorphic at p with h(p) =
0 and h′(p) 6= 0. Then Resp f(z) = g(p)/h′(p).

21



Proof. h′(p) = limz→p
h(z)−h(p)

z−p = limz→p
h(z)
z−p and so limz→p

z−p
h(z) =

1
h′(p) . Thus

lim
z→p

(z − p)f(z) = lim
z→p

g(z)
z − p

h(z)
=

g(p)

h′(p)
.

As above, the existence of the limit shows Resp f(z) = limz→p(z − p)f(z) = g(p)/h′(p).

Corollary.

a) If f has a zero of order k at p, then Resp
(

f ′(z)/f(z)
)

= k.

b) If f has a pole of order k at p, then Resp
(

f ′(z)/f(z)
)

= −k.

Proof. Use the convention that a pole of order k can also be called a zero of order −k.
With this convention, let m be the order of the zero of f at p, where m may be either
positive or negative. In a punctured neighbourhood of p, set g(z) := f ′(z)/(z − p)m−1

and h(z) := f(z)/(z − p)m−1. Since f(z) has a zero of order m at p, f ′(z) has a zero of
order m − 1 at p, and so both g(z) and h(z) have removable singularites at p and thus
have extensions to holomorphic functions at p. Therefore the proposition applies to give

Resp
(

f ′(z)/f(z)
)

= Resp
(

g(z)/h(z)
)

= g(p)/h′(p)

= lim
z→p

f ′(z)/(z − p)m−1

f ′(z)/(z − p)m−1 − (m− 1)f(z)/(z − p)m

= lim
z→p

f ′(z)

f ′(z)− (m− 1)f(z)/(z − p)

= lim
z→p

(z − p)f ′(z)/f(z)

(z − p)f ′(z)/f(z)− (m− 1)

=
m

m− (m− 1)
= m

using that limz−p = (z−p)f ′(z)
f(z) is the order of the zero at p.

Corollary (Argument Principle). Let γ be a simple closed counterclockwise-oriented
curve and let f(z) be meromorphic on a domain containing γ with no zeros or poles on γ.
Then

1

2πi

∫

γ

f ′(z)

f(z)
dz = total number of zeros of f(z) within γ

where the zeros are counted with multiplicity and poles are consider to be zeros of negative
multiplicity.

Since making the change of variable w = f(z) gives
∫

f◦γ
1
w dw =

∫

γ
f ′(z)
f(z) dz the argu-

ment principle can be rewritten in terms of the index I(f ◦ γ) of the curve f ◦ γ about 0
as follows:
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Corollary (Argument Principle). Let γ be a simple closed counterclockwise-oriented
curve and let f(z) be meromorphic on a domain containing γ with no zeros or poles on γ.
Then

I(f ◦ γ) = total number of zeros of f(z) within γ

where the zeros are counted with multiplicity and poles are consider to be zeros of negative
multiplicity.

Example. How many zeros does the function f(z) = z6 + 6z + 10 have in the first
quadrant?

Solution. Let C be the portion of a large circle |z| = R which lies in the first quadrant.
Let γ be the curve consisting of the line segment L1 := [0, R] on the x-axis followed by the
curve C from 0 to R, followed by the line segment L2 := [iR, 0] on the y-axis from iR to 0.

The restriction of f(z) to L1 is f(x) = x6 + 6x + 10 which is a positive real number
for all x and thus arg

(

f(z)
)

remains constant at 0 along L1.

For large R, the value of f(z) is approximately the same as the value of z6 and in
particular, the change in the argument of f(z) along C is the same as the change in the
argument of z6 on C. Over a complete circle, arg(z6) changes from 0 to 12π so on the
quarter circle C it changes from 0 to 3π.

The restriction of f(z) to L2 is f(iy) = (−y6 + 10) + 6iy, from which we see that,
along L2, f(z) begins in the second quadrant, slightly above the x-axis, (arg(f(z) slightly
less than 3π,) moves into the first quadrant as we pass through y = 6

√
10 finishing at (10, 0)

on the x-axis. Thus along L2, arg(z) decreases from approximately 3π to 2π. Putting it
all together, arg

(

f(z)
)

stays at 0 along L1, increases from 0 to slighly less than 3π along C
and then decreases by around π, going from from approximately 3π to 2π along L2.

Hence, for large R, the index I(f ◦γ) is 1 and so f(z) has 1 zero in the first quadrant.

Example. How many zeros does the function f(z) = z3 + 5z2 + 8z + 6 have in the first
quadrant?

Solution. Again let C be the portion of a large circle |z| = R which lies in the first quadrant
and let γ be the curve consisting of the line segment L1 := [0, R] on the x-axis followed by
the curve C from 0 to R, followed by the line segment L2 := [iR, 0] on the y-axis from iR
to 0.

The restriction of f(z) to L1 is f(x) = x3 + 5x2 + 8x + 6 which is a positive real
number for all x and thus arg

(

f(z)
)

remains constant at 0 along L1.

For large R, the value of f(z) is approximately the same as the value of z3 and in
particular, the change in the argument of f(z) along C is the same as the change in the
argument of z3 on C. Over a complete circle, arg(z6) changes from 0 to 6π so on the
quarter circle C it changes from 0 to 3π/2.

The restriction of f(z) to L2 is f(iy) = u(y) + iv(y) where u(y) = −y2 + 6 and
v(y) = −y3 + 8y. Along L2, arg

(

f(z)
)

= tan−1
(

v
u

)

. u(y) > 0 for y <
√

6/5 and u(y) < 0

for y >
√

6/5. v(y) > 0 for 0 < y <
√
8 and v(y) < 0 for y >

√
8. Therefore as

we traverse L2, arg
(

f(z)
)

begins in the third quadrant (at approximately 3π/2), moves
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into the second quadrant as we pass y =
√

6/5, and then into the first quadrant as we

pass y =
√
8, finishing at 0.

Hence, for large R, the index I(f ◦γ) is 0 and so f(z) has no zeros in the first quadrant.

In some cases, determination of the number of zeros can sometimes be done more
easily by comparison with a function whose number of zeros in known, according to the
following corollary of the Argument Principle.

Corollary (Rouché’s Theorem). Let γ be a simple closed counterclockwise-oriented
curve. Let f(z) and g(z) be holomorphic on a domain containing γ and its interior, with
no zeros or poles on γ. Suppose that |f(z)− g(z)| < |f(z)| for all z on γ. Then

total number of zeros of f(z) within γ = total number of zeros of g(z) within γ

where the zeros are counted with multiplicity.

Proof. Set h(z) = g(z)/f(z). The hypothesis implies that |h(z) − 1| < 1 for all z on γ.
Therefore the curve h ◦ γ is contained within the open disk of radius 1 about 1 and in
particular does not contain 0 in its interior. Thus I(h ◦ γ) = 0. Applying the Argument
Principle gives

0 =

∫

γ

h′(z)

h(z)
dz =

∫

γ

f(z)g′(z)− g(z)f ′(z)

(
(

f(z)
)2

f(z)

g(z)
dz =

∫

γ

g′(z)

g(z)
dz −

∫

γ

f ′(z)

f(z)
dz

so another application of the Argument Principle gives that the result

Example. How many zeros does the function k(z) = ez − 4z7 have inside the unit circle?

Solution. Let f(z) = −4z7. Then k(z) − f(z) = ez. If z lies on the unit circle then
|k(z) − f(z)| = |ez| = |eRe(z)| ≤ e. However for z on the unit circle |f(z)| = | − 4z7| =
4|z|7 = 4 > e. Thus |f(z) − k(z)| < |f(z)| for all z on the unit circle. It follows that the
number of zeros within the unit circle of k(z) is the same as that of f(z), which is 7.

Theorem. Let p be a zero of order k of a nonconstant holomorphic function f(z). Then
there exist an open neighbourhood U of p such that f(U) is an open neighbourhood of 0
and every point in f(U) aside from 0 has precisely k-preimages under f .

Proof. Since f(z) is nonconstant, neither f(z) nor f ′(z) is identically zero. Therefore we
can choose a closed ball B in the domain of f(z) containing p but no other zeros of f and
no zeros of f ′ except possibly p. Let M be the minimum value of the restriction of |f(z)|
to ∂B. M > 0 by choice of B. Set U := f−1

(

BM (0)
)

∩ Interior of B.

For q ∈ BM (0) define g(q) by g(q) := 1
2πi

∫

∂B
f ′(z)

f(z)−q dz. The zeros of the function

hq(z) := f(z)− q count, with multiplicity, the number of preimages in B of q under f . By
the argument principle

# of preimages of q =
1

2πi

∫

∂B

h′
q(z)

hq(z)
dz = g(q).
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The function g takes on only integer values, so by continuity g(q) = g(0) = k. If u 6= p lies
in U , then by choice of B, h′

f(u)(u) = f ′(u) 6= 0 and so u is a zero of hf(u) of multiplicity 1.
Since the multiplicity of each preimage of any point q 6= 0 is 1, each such point must have
k pre-images in B. Note also that since every point in BM (0) has preimages in U , so that
f(U) = BM (0) and is, in particular, an open neighbourhood of 0.

Corollary (Complex Inverse Function Theorem). Let f(z) be holomorphic at p
with f ′(p) 6= 0. Then there exists an open neighbourhood U of p such that V := f(U) is
an open neighbourhood of f(p) and the restriction f : U → V is a bijection. The inverse
function f−1 : V → U is also holomorphic with derivative given by 1

f ′(z) .

Proof. Apply the preceding theorem to g(z) := f(z)− f(p). Since g′(p) = f ′(p) 6= 0, the
multiplicity of p as a zero of g is 1. Therefore k = 1, and choosing U as in the theorem,
every point in g(U) (including 0) has precisely one preimage in U . Equivalently, f : U → V
is a bijection.

Let g : V → U be the inverse to f . If γ is any closed curve in V , then making
the change of variable z = f(w) gives

∫

γ
g(z) dz =

∫

g(γ)
wf ′(w) dw = 0 since it is the

integral of the holomorphic function wf ′(w) over the closed curve g(γ). Therefore g is
holomorphic by Moreira’s theorem, and its derivative is determined by applying the chain
rule to z = f ◦ g(z).

Residues can be used to evaluate integrals (MATC34). We will now examine how this
process can sometimes be usefully reversed.

The function sin(πz) has zeros precisely at the integers. We can sometimes make use
of this to compute

∑∞
n=−∞ f(n) in cases where f(n) is the restriction to the integers of

some meromorphic function.

Suppose f(z) is a meromorphic function. Then f(z)
sin(πz) is meromorphic with poles

at the integers in addition to the poles of f(z). The poles at the integers which are not
singularities of f(z) are simple poles, while those at singularities of f(z) have higher order.
If f(n) is not a singularity of f , according to our earlier formula,

Resn

(

f(z)

sin(πz)

)

=
f(n)

d
(

sin(πz)
)

/dz|z=n

=
f(n)

π cos(πn)
= (−1)n

f(n)

π

This is sometimes useful in evaluating alternating series, but for series of positive terms
it is more useful to replace sinπz in the preceding discussion by tanπz and consider the

function π f(z)
tan(πz) = π cot(πz)f(z). Since d

(

tan(πz)
)

/dz|z=n = π sec2(πn) = 1, repeating

the preceding calculation gives

Resn π cot(πz)f(z) = f(n).

To apply the method we will need to assume that zf(z) is bounded as |z| → ∞. That
is, there exists R and M such |zf(z)| ≤ M for all |z| ≥ R.
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Consider a large square γN centred at the origin and having side length 2N + 1 for a
large integer N . Then

∫

γN

π cot(πz)f(z) dz =
∑

all residues inside γN of π cot(πz)f(z)

=

N
∑

n=−N

{f(n) | n is not a singularity of f} (∗)

+
∑

residues of π cot(πz)f(z) at singularities of f(z) inside γN

We will show that our boundedness assumptions on f(z) imply that

lim
N→∞

∫

γN

π cot(πz)f(z) dz = 0

so that we might get a formula for
∑∞

n=−∞ f(n).

Lemma. Let f(z) be a meromorphic function such that zf(z) is bounded as z → ∞.
Then

lim
N→∞

∫

γN

cot(πz)f(z) dz = 0

where γN is the square of side length 2N + 1 centred at the origin.

Proof. Euler’s formulas eiz = cos(z) + i sin(z) and e−iz = cos(z) − i sin(z) give cos(z) =
eiz+e−iz

2 and sin(z) = eiz−e−iz

2i . Therefore cot(z) = eiz+e−iz

eiz−e−iz = e2iz+1
e2iz−1 .

On the vertical sides of γN , z = ±(2N + 1)/2 + iy so

| cot(πz)| =
∣

∣

∣

∣

e±2πiNe±iπe−2πy + 1

e±2πiNe±iπe−2πy − 1

∣

∣

∣

∣

=

∣

∣

∣

∣

1(−1)e−2πy + 1

1(−1)e−2πy − 1

∣

∣

∣

∣

=

∣

∣

∣

∣

−e−2πy + 1

−e−2πy − 1

∣

∣

∣

∣

=

∣

∣

∣

∣

1− e−2πy

1 + e−2πy

∣

∣

∣

∣

≤ 1

On the horizontal sides of γN , z = x± i(2N + 1)/2 so

| cot(πz)| =
∣

∣

∣

∣

e2πixe−±π(2N+1) + 1

e2πixe−±π(2N+1) − 1

∣

∣

∣

∣

=

∣

∣

∣

∣

e2πix + e±π(2N+1)

e2πix − e±π(2N+1)

∣

∣

∣

∣

The right hand side is a continuous periodic function of x so it is bounded. (A continuous
function on a closed bounded set is bounded (MATB43) and in the case of a periodic
function we may restrict attention to one period, which is a bounded set.) In fact, it
represents the ratio of the distances of some point on the unit circle to the points w and
to −w for some fixed w and is bounded, for example, by 2. Thus 2 is an upper bound for
| cot(πz)| on γN .

Our assumption on f(z) is that there exists R and M such that |zf(z)| ≤ M for
all |z| ≥ R. Let w = 1/z. Set g(w) := zf(z) for 0 < |w| ≤ 1/R or equivalently |z|/geR.
Since g(w) is bounded on 0 < |w| < 1/R, its singularity at 0 is removable so it extends
to a holomorphic function on |w| < 1/R. Let g(w) = a0 + a1w + a2w

2 + a3w
3 . . . be the

Taylor series of g(w) about 0.
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SubLemma. z2
(

f(z)− a0

z

)

is bounded as z → ∞.

Proof. Since limw→0
g(w)−a0

w = g′(0) exists, g(w)−a0

w has a removable singularity at 0 so
it represents an analytic, thus continuous, function on |w| ≤ 1/R. Therefore (MATB43)

it has a bound on any closed set in its domain. Let K be a bound for
∣

∣

∣

g(w)−a0

w

∣

∣

∣
on

|w| ≤ 1/(2R). If |z| ≥ 2R then w ≤ 1/(2R) and so

∣

∣

∣
z2
(

f(z)− a0
z

)∣

∣

∣
= |z(zf(z)− a0)| =

∣

∣

∣

∣

g(w)− a0
w

∣

∣

∣

∣

≤ K

for |z| ≥ 2R.

Proof of Lemma (cont.). If 2N + 1 > 2R,

∣

∣

∣

∣

∫

γN

cot(πz)
(

f(z)− a0
z

)

dz

∣

∣

∣

∣

≤
∫

γN

| cot(πz)|
∣

∣

∣

∣

∣

z2
(

f(z)− a0/z
)

z2

∣

∣

∣

∣

∣

dz ≤
∫

γN

∣

∣

∣

∣

2K

z2

∣

∣

∣

∣

dz

≤
∫

γN

2K

(2N + 1)2
dz ≤ 4(2N + 1)2K

(2N + 1)2
=

8K

2N + 1

Therefore

lim
N→∞

∫

γN

cot(πz)f(z) dz = lim
N→∞

∫

γN

a0
cot(πz)

z
dz = a0

∑

Residues of
cot(πz)

z
inside γN

We noted earlier if that f(z) does not have a zero at n then Resn cot(πz)f(z) = f(n)/π.

Applying this in the case f(z) = 1/z shows Resn
cot(πz)

z = 1/(πn). Therefore, in the above
sum, for n 6= 0, the residues at n and −n cancel out leaving

lim
N→∞

∫

γN

cot(πz)f(z) dz = a0 Res0

(

cot(πz)

z

)

= 0

since the pole of cot(πz)
z at 0 has order 2.

Substituting this into equation (*) and taking the limit as N → ∞ gives

Theorem. Let f(z) be a meromorphic function such that zf(z) is bounded as z → ∞.
Then

N
∑

n=−N

{f(n) | n is not a singularity of f}

= −
∑

residues of π cot(πz)f(z) at singularities of f(z)

Note: limN→∞
∑N

n=−N f(n) is not exactly the same as
∑∞

n=−∞ f(n) since the former
might exist in cases where the latter does not converge. For example, if f(z) is some
function for which f(n) = 1/n for n 6= 0 then, because of the cancellation, the limit on the
left exists and equals f(0), but the series on the right does not converge.
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Example. Let f(z) = 1/z2. Then zf(z) = 1/z is bounded as z → ∞. The only singularity

of f(z) is at 0. Therefore limN→∞
∑−N

n=−1
1
n2 +

∑N
n=1

1
n2 = −Res0

(

π cot(πz)
z2

)

. In this case

we know that the two series on the left converge individually and are equal by symmetry.
Thus we get

∞
∑

n=1

1

n2
= −π

2
Res0

(

cot(πz)

z2

)

= −π

2
Res0

(

1− (πz)2/2 + . . .

z2(πz − (πz)3/6 + . . .

)

= −π

2
Res0

(

(1− π2z2/2 + . . .)(1 + π2z2/6 + . . .

πz3

)

= −π

2
Res0

(

1− π2z2/3 . . .

πz3

)

= −π

2

(−π

3

)

=
π2

6

Example. Suppose p is not an integer and let f(z) = 1/(z − p). Then zf(z) = z/(z − p)
is bounded as z → ∞. The only singularity of f(z) is at p. Therefore

lim
N→∞

N
∑

n=−N

1

n− p
= −Resp

(

π
cot(πz)

z − p

)

= −π cot(πp).

In other words, for every point in the domain of cot(πz) we have the identity

π cot(πz) = − lim
N→∞

N
∑

n=−N

1

n− z
= lim

N→∞

N
∑

n=−N

1

z − n

=
1

z
+ lim

N→∞

(

N
∑

n=1

1

z + n
+

N
∑

n=1

1

z − n

)

=
1

z
+ lim

N→∞

(

N
∑

n=1

1

z + n
+

1

z − n

)

=
1

z
+ lim

N→∞

(

N
∑

n=1

z − n+ z + n

z2 − n2

)

=
1

z
+ lim

N→∞

(

N
∑

n=1

2z

z2 − n2

)

=
1

z
+

∞
∑

n=1

2z

z2 − n2

Notice that series in the final answer converges for each z, but it would not have been
correct to write π cot(πz) = −∑∞

n=−∞
1

n−z since the right hand side does not converge.
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6. Harmonic Functions

A real-valued function h : Rn → R is called harmonic if it satisfies Laplace’s equation
∇2h = 0, where ∇2h, the Laplacian of h, is defined by ∇2h =

∑n
k=0 ∂

2h/∂x2
i . The

notation is suggested by the fact that ∇2h = ∇ · (∇h), where ∇h is the gradient of h and
∇ · V denotes the divergence of a vector field V . When n = 2, we will see that there is a
very close connection between harmonic functions and holomorphic functions.

Let f = u+iv be holomorphic throughout a domain D. A consequence of the Cauchy-
Riemann equations is that ∇u is always perpendicular to ∇v. This means that the family
of curves u = C (the solutions to the differential equation ∇u = 0) are the othogonal
trajectories (MATB44) of the family v = C̃. Also

∂2u

∂x2
=

∂

∂x

∂u

∂x
=

∂

∂x

∂v

∂y
=

∂

∂y

∂v

∂x
= − ∂

∂y

∂u

∂y
= −∂2u

∂y2

and so u (and similarly v) is harmonic. Thus a holomorphic function on D determines a
harmonic function u on D.

To what extent can this process be reversed? Let u be a harmonic function on a
domain D. Can we find a v such that u+ iv is holomorphic? We reformulate the question
in terms of differential forms. Recall (MATB42) that a differential k-form ω is called closed
if dω = 0 and called exact if there exists an (k−1)-form η such that dη = ω. The fact that
exact implies closed is a trivial consequence of the formula d2 = 0. We know from MATB42
that for differential forms defined throughout simply connected regions, the converse also
holds: if ω is defined and closed throughout a simply connected region D then there exists
η defined throughout D such that dη = ω.

Given harmonic u, we wish to find a function v such that ∇v = (−uy, vx) so that the
Cauchy-Riemann equations will be satisfied. Define a 1-form ω by ω := −uy dx + ux dy.
Then

dω = −uyy dy ∧ dx+ uxx dx ∧ dy = (uxx + uyy) dx ∧ dy = 0,

since u is harmonic. Therefore in any simply connected region (for example a ball about
any point in domain) there exists a 0-form (i.e. a function) v such that dv = ω, which is
equivalent to saying that ∇v = (−uy, vx). The solution is (locally) unique up to a constant,
since if ṽ also satisfies dṽ = ω then d(v − ṽ) = 0 so v − ṽ is constant. To summarize,

Theorem. Given a harmonic function u(x, y), in any simply connected neighbourhood N
of any point in the domain of u, there exists a harmonic function v, unique up to a constant,
such that the function f(z) = u+ iv is homolomorphic throughout N .

Thus, locally, a harmonic function u determines, uniquely up to a constant, a holomor-
phic function whose real part is u. Similarly a holomorphic function is uniquely determined
up to a constant by its imaginary part. Therefore the study of the local properties of holo-
morphic functions is equivalent to the study of the local properties of harmonic functions.
Note again that the preceding does not say that given harmonic u on D we can necesarily
find a holomorphic function throughout D whose real part is u (unless D happens to be
simply connected). For example, if u(x, y) = log(x2 + y2) = log(|z|), then u is harmonic
on the domain R

2−{0}, and, although we have branches of the function log(z) whose real
part is locally u(x, y), there is no holomorphic function defined on all of R2 − {0} whose
real part is u.
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Example. Let u(x, y) = x2

2 + xy − y2

2 . Observe that u is harmonic. In this case the
domain is u is all of R2 which is simply connected so there exists a holomorphic function
f(z) (unique up to a constant) whose real part is u. To find such an f we could proceed as
follows. Since differentiation shows that u = C is the solution of the differential equation
(x + y) dx + (x − y) dy = 0. we wish to find a solution v of the differential equation
(y− x) dx+ (x+ y) dy = 0. Equivalently, we need to solve dv = ω where ω = (y− x) dx+
(x+ y) dy = 0. This equation is equivalent to

∂v

∂x
= y − x (1)

∂v

∂y
= x+ y (2)

(1) implies v =
∫

(y−x) dx+h(y) = xy−x2/2+h(y) for some function h(y). Differentiate
to get ∂v

∂y = x + dh
dy which, upon comparison with (2) yields dh

dy = y and so h = y2/2 + C

for some contant C. Therefore v = xy − x2/2 + h(y) = xy − x2/2 + y2/2 + C. Choosing
C = 0 gives the solution f(x, y) = u+ iv = x2/2+xy− y2/2+ i(xy−x2/2+ y2/2), which,
by inspection can be written equivalently as f(z) = z2/2.

Proposition. Let u(z) be harmonic and let f(z) be holomorphic. Then u◦f is harmonic.

Proof. Find a holomorphic function g(z) such that Re g = u. Then g ◦ f is holomorphic
and its real part is u ◦ f . (Of course, this Proposition can also be proved directly by
differentiating the composition.)

Let u be a harmonic function on a domain containing a disk B. Since the disk is simply
connected, there is a holomorphic function f(z) = u+ iv defined a domain containing B.
Since the values of f in the interior of B are determined according to Cauchy’s integral
formula by the values of f on the boundary circle of B, the values of u on the interior
of B must also be determined by the values of u on the boundary of B. The formula for
harmonic functions corresponding to the Cauchy Integral Formula in this case is called the
“Poisson Integral Formula”. By translation, we might as well consider the case where the
ball B is centred at the origin.

Theorem (Poisson Integral Formula). Let u(x, y) be harmonic on a domain contain-
ing the closed ball B = BR(0) of radius R about 0. Then for any z0 in the interior
of B,

u(z0) =
1

2π

∫ 2π

0

u(Reiθ)
R2 − |z0|2
|Reiθ − z0|2

dθ.

Proof. Consider first the special case where z0 = 0. According to the preceding discussion,
there is a function v(x, y) such that f(z) := u + iv is holomorphic on B. Applying the
Cauchy Integral Formula to f on the circle C = ∂B of radius R about 0, gives

f(0) =
1

2πi

∫

C

f(w)

w
dw =

1

2πi

∫ 2π

0

f(Reiθ)

Reiθ
iReiθ dθ =

1

2π

∫ 2π

0

f(Reiθ) dθ.
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Taking the real part yields

u(0) =
1

2π

∫ 2π

0

u(Reiθ) dθ.

which is the Poisson formula in the case z0 = 0.
Given arbitrary z0 in the interior of B, define g(z) by g(z) := z+z0

R2+z0z
R2 and set

ũ := u ◦ g. The inverse of g is given by h(z) = z−z0
R2−z0z

R2 and so u = ũ ◦ h. Observe that

ũ(0) = u
(

g(0)
)

= u(z0). We can check that g(C) = C as follows. Suppose |z| = R. Then

|g(z)|2 =

(

z + z0
R2 + z0z

)(

z̄ + z0
R2 + z0z̄

)

R4 =

( |z|2 + z0z̄ + z0z + |z0|2
R4 +R2z0z̄ +R2z0z + |z0|2|z|2

)

R4

=

(

R2 + z0z̄ + z0z + |z0|2
R4 +R2z0z̄ +R2z0z + |z0|2R2

)

R4 = R2.

Notice that since u is harmonic and g is holomorphic, the real valued function ũ
is harmonic, since it is the real part of the holomorphic function f ◦ g, where f is a
holomorphic function whose real part is u. Applying the special case the formula to the
harmonic function ũ gives

u(z0) = ũ(0) =
1

2π

∫ 2π

0

ũ(Reiθ) dθ =
1

2π

∫ 2π

0

u
(

g(Reiθ)
)

dθ

=
1

2πi

∫ 2π

0

u
(

g(Reiθ)
) iReiθ

Reiθ
dθ =

1

2πi

∫

C

u
(

g(w)
)

w
dw.

Since

h′(z) =
(R2 − z0z)(1)− (z − z0)(−z0)

(R2 − z0z)2
R2 =

R2 − z0z + zz0 − |z0|2
(R2 − z0z)2

R2 =
R2 − |z0|2
(R2 − z0z)2

R2,

making the change of variable w = h(ζ) gives

1

2πi

∫

C

u
(

g(w)
)

w
dw =

1

2πi

∫

C

u(ζ)

h(ζ)
h′(ζ) dζ

=
1

2πi

∫

C

u(ζ)
(

(ζ − z0)/(R2 − z0ζ)
)

R2

(R2 − |z0|2)R2

(R2 − z0ζ)2
dζ

=
1

2πi

∫

C

u(ζ)

(ζ − z0)

(R2 − |z0|2)
(R2 − z0ζ)

dζ

=
1

2πi

∫ 2π

0

u(Reit)

(Reit − z0)

(R2 − |z0|2)
(R2 − z0Reit)

iReit dt

=
1

2π

∫ 2π

0

u(Reit)

(Reit − z0)

(R2 − |z0|2)
(Re−it − z0)

dt

=
1

2π

∫ 2π

0

u(Reit)
(R2 − |z0|2)
|Reit − z0|2

dt

as desired.
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We note in particular the special case where z0 is the centre of the circle where the
formula reads

u(z0) =
1

2π

∫ 2π

0

u(z0 +Reiθ) dθ.

indicating that as in the case of holomorphic functions, for harmonic functions the value of
u at the centre of a circle is the average of its values on the circle. And as we holomorphic
functions we have

Corollary (Maximum Modulus Principle). Let u be harmonic on a domain contain-
ing a closed bounded set B. Then the maximum value M of |u| occurs on ∂B and unless
u is constant, |u(z)| < M for all z in the interior of B.

7. Conformal Maps

Many important problems lead to differential equations whose solutions are bounded har-
monic functions. For example consider the flow of heat in a region B. Let u(z, t) the
temperature at the point z at time t. The total thermal energy

∫

B
c1u dV (where c1 is a

constant depending on the units or measurement) changes only as heat enters or leaves
through the boundary. Heat “flows” from hot to cold and in particular at any point it flows
in the direction of most rapid decrease of the temperature function, which (MATB41) is
the direction of −∇u. At any time, the rate of change of heat loss through the bound-
ary is given by

∫

∂B
c2∇u · n dS. Therefore, d

dt

∫

B
c1u dV =

∫

∂B
c2∇u · n dS. By Gauss’

(Divergence) Theorem (MATB42),
∫

∂B
c2∇u · n dS =

∫

B
c2∇ · (∇u) dV . Therefore u is a

bounded function satisfying the “heat equation” ∇2u = kut, where ∇2u =
∑n

j=1 uxjxj and
k is a constant. If the temperature of the surroundings (i.e. the boundary) do not change
with time, then the value of u(z, t) at any point z will stabilize over time and the function
u(z, t) will approach a “steady-state solution” u(z) which is independent of t. Since in
steady state, ut = 0, the steady-state solution is a bounded harmonic function and thus
determined by its values at the boundary. For example, if the temperature at the boundary
is a constant C, then the steady-state solution will be u = C. (e.g. in the absence of other
influences, a hot object will eventually cool to the temperature of its surroundings.) It
should be noted that in recent years the study of the heat equation has played a central
role in the emerging field of financial mathematics, since it has been discovered that in
addition to providing a mathematical model for the flow of heat, it also provides a good
model for the “flow” of money. Because of applications to the heat equation and others,
an important problem in mathematics is:

Dirichlet Problem. Given a real-valued function u on the boundary of a region B, find
the harmonic function on B (if there is one) which extends the given function to the
interior.

The preceding discussion applies in any number of dimensions, but the methods are
complex analysis are particularly suited to handle the case n = 2.

Example. A large (effectively infinite) sheet of metal occupies the right half-plane x ≥
0. The upper y-axis is maintained at room temperature (20◦) but ice placed along the
negative y-axis keeps the temperature at 0◦ there. Suppose that the interior of the sheet
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is insulated above and below, so that heat can flow only in the xy-plane. Find the steady-
state temperature at the point (x, y).

Solution. Let u(x, y) be the steady-state temperature at (x, y). Then u(x, y) is the bounded
harmonic function for which

u(0, y) =

{

20 if y > 0;
0 if y < 0.

The temperature would not actually jump discontinuously from 0 to 20 at the origin, but
would change very quickly so that our model would be a good approximation except in
the immediate vicinity of the origin.

Let f(z) be the branch of log z defined on C− {(x, y) | x ≤ 0} by

f(z) = log(|z|) + i arg(z)

with arg(z) chosen in the range (−π, π). Then the imaginary part of f is

{

π/2 if y > 0;
−π/2 if y < 0.

Therefore if we set g(z) := 20
π

(

−if(z)+π/2
)

then u(z) = Re g(z) is the solution. Explicitly,

u(x, y) =
20

π

(

arg(z) + π/2
)

=
20

π
tan−1(y/x) + 10

where we are using the branch of tan−1( ) which takes values in [−π/2, π/2].

If u(z) is harmonic and f(z) is holomorphic then u ◦ f is harmonic. If we know how
to solve the Dirichlet problem on some region B then one way to solve it for some other
region B′ would be to find a holomorphic function f whose domain U contains B and
which has the property that f is a bijection from U to V := f(U) taking B to B′. The
inverse function f−1 : V → U will then also be holomorphc (with derivative 1

f ′(z) ) and

u ◦ f−1 solves the Dirichlet problem on B′.
A holomorphic bijection f : U → V is called a conformal mapping from U to V . We

say that U and V are conformally equivalent if there exists a conformal map between them.
The derivative of a bijection must be nowhere zero, and conversely, we showed early that
given a holomorphic function f(z) for which f ′(p) 6= 0 there exists open neighbourhoods
U of p and V of f(p) such that f : U → V is conformal.

The word “conformal” means “angle-preserving”. As we noted earlier, the Jacobian
matrix for f ′(z) corresponds to rotation by arg

(

f ′(z)
)

followed by multiplication by |f ′(z)|.
Therefore the angle at which two curves cross (defined as the angle between their tangent
vectors) is preserved under the application of any holomorphic function with nonzero
derivative. Thus conformal mappings are indeed angle-preserving.

Example. A large (effectively infinite) sheet of metal, insulated above and below, occupies
the first quadrant. The y-axis is maintained at room temperature (20◦) but ice placed
along x-axis keeps the temperature at 0◦ there. Find the steady-state temperature at the
point (x, y).

Solution. Let Q be the first quadrant and let H be the right half plane. The function

f(z) = z2

i is a conformal mapping from Q − {0} to H − {0} taking the upper y-axis (as
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a unit, not point-by-point) to itself and taking the x-axis to the lower y-axis. Therefore
the solution is given by u ◦ f where u solves the corresponding problem in the right half
plane. Since that solution was found earlier to be u(x, y) = 20

π arg(z) + 10, the solution to
the present problem is

h(x, y) =
20

π
arg(z2/i) + 10 =

20

π

(

arg(z2)− π/2
)

+ 10 =
20

π
arg(z2)

=
20

π
arg(x2 − y2 + 2ixy) =

20

π
tan−1

(

2xy

x2 − y2

)

.

Example. A sheet of metal, insulated above and below, occupies the unit disk. The upper
arc of the boundary circle is maintained at room temperature (20◦) but ice placed along
the lower arc keeps the temperature at 0◦ there. Find the steady-state temperature at the
point (x, y).

Solution. Let B be the unit disk. The function f(z) = 1+z
1−z is a conformal mapping from

B − {1} to the right half plane taking the boundary circle ∂B to the y-axis. Therefore
the solution is given by u ◦ f where u solves the corresponding problem in the right half
plane. Since that solution was found earlier to be u(x, y) = 20

π arg(z) + 10, the solution to
the present problem is

h(x, y) =
20

π
arg

(

1 + z

1− z

)

+ 10 =
20

π
arg

(

1 + x+ iy

1− x− iy

)

+ 10

=
20

π
arg

(

(1 + x+ iy)(1− x+ iy)

(1− x)2 + y2

)

+ 10 =
20

π
arg

(

1− x2 − y2 + 2iy

(1− x)2 + y2

)

+ 10

=
20

π
tan−1

(

2y

1− x2 − y2

)

+ 10

Using the identity

tan−1(v) + tan−1(1/v) =

{

π/2 if v > 0;
−π/2 if v < 0,

the final answer can also be written as h(x, y) = 20
π tan−1

(

1−x2−y2

−2y

)

using the branch

of tan−1( ) which takes values in [0, π].

The Poisson Integral Formula gives a solution to the Dirichlet problem in the case
where the region B is a closed disk, although even in this case one might hope for a more
explicit formula for the solution (as in the preceding example) rather than the integral,
which might be hard to compute. More precisely:

Solution to Dirichlet Problem on a disk. Let u(z) be a continuous function on the
boundary circle of the closed ball BR[p] of radius R about p. The function defined by

h(z) =

{

1
2π

∫ 2π

0
u(p+Reiθ) R2−|z|2

|Reiθ−z|2 dθ if z lies in interior B;

u(z) if z lies on ∂B.
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solves the Dirichlet problem on B.

It is clear from Poisson’s formula that if the problem has any solution then this is it,
but there are two technical points which need to be resolved.
(1) Does the resulting function h(z) satisfy ∇2h = 0 throughout the interior of B?
(2) Is h continuous?

It is not so hard to demonstrate that h satisfies (1), but showing that the limit as we
approach the boundary is the original function u(z) is not so easy. We shall not go into
the details except to observe that this a place where the properties of harmonic functions
differ from the analogous properties of holomorphic functions.

Example. Let B be the unit disk B1[0]. Let g : ∂B → C be given by g(z) = 1/z. Define
f : B → C by

f(z) =

{

1
2πi

∫

∂B
g(w)
w−z dw if z lies in interior B;

g(z) if z lies on ∂B.

For z in the interior of B, f(z) = 1
2πi

∫

∂B
1

w(w−z) dw. The function h(w) = 1
w(w−z) is

meromorphic on B with simple poles at 0 and z. Therefore

f(z) = Res0 h(w) + Resz h(w)

=

(

1

w − z

∣

∣

∣

w=0

)(

Res0
1

w

)

+

(

1

w

∣

∣

∣

w=z

)(

Resz
1

w − z

)

=
−1

z
+

1

z
= 0.

But f
∣

∣

∂B
6= 0, so f is not continuous.

The examples above suggest the following questions:
1) Given regions B and B′, how can we tell if there exists a conformal mapping between B

and B′?
2) If f is conformal, how does it behave as we approach the boundary of its domain?
3) Assuming a conformal mapping f : B → B′ exists, how do we find it?

For simply connected regions, we can give a complete answer to question (1):

Riemann Mapping Theorem. Let U be a simply connected domain such that U 6= C.
Then there exists a conformal map f : U → D where D = {z | |z| < 1} is the unit disk.
Furthermore, given any p ∈ U and q ∈ D, there exists a unique such f such that f(p) = q
and f ′(p) is a positive real number.

The proof is difficult and we shall not go into it. The Riemann Mapping Theorem tells
us that, aside from C itself any two simply connected domains are conformally equivalent
since both are conformally equivalent toD. Notice that C is not conformally equivlent toD
since D is bounded and therefore by Liouville’s Theorem there cannot exist a holomorphic
function f : C → D whose image contains more than one point. It follows that C is not
conformally equivalent to any other domain, since any conformal image of C would be
simply connected and thus conformally equivalent to D. Determining whether or not two
non-simply-connected domains are conformally equivalent is not easy in general.

For bounded simply connected regions, information about behaviour as we approach
the boundary is given by:
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Theorem (Osgood-Caratheodory). Let U1 and U2 be the interiors of simple closed
curves γ1 and γ2 and set B1 := U1 ∪ γ1 and B2 := U2 ∪ γ2. Let f : U1 → U2 be conformal.
(Such f exists by the Riemann Mapping Theorem.) Then f extends to a continuous
bijection from B1 to B2 (which must, in particular, restrict to a continuous bijection from
between the boundaries γ1 and γ2).

The proof of this theorem is also difficult and we shall not go into it.

Fractional Linear Transformations.

To assist in finding conformal maps from a region B to another region B′ we begin by
looking at the special case where B and B′ are the unit disk D = {z | |z| < 1}.

For any p ∈ D and any ω with |ω| = 1, define φp,ω : C− {1/p̄} → C by

φp,ω(z) :=
ω(z − p)

1− p̄z
.

Proposition.

1) For any p ∈ D and ω with |ω| = 1, φp,ω(D) ⊂ D and φp,ω

∣

∣

∣

D
is a conformal self-map

of D taking p to 0.
2) Any conformal self-map of D is φp,ω for some p ∈ D and ω with |ω| = 1.

Proof.
1) The domain of φp,ω includes D̄ = {z | |z| ≤ 1} since p ∈ D implying that |1/p̄| > 1.

Let C = {z | |z| = 1} be the boundary circle of D̄. For z ∈ C,

|φp,ω(z)|2 =

∣

∣

∣

∣

ω(z − p)

1− p̄z

∣

∣

∣

∣

2

=

∣

∣

∣

∣

(z − p)(z̄ − p̄)

(1− p̄z)(1− pz̄)

∣

∣

∣

∣

=

∣

∣

∣

∣

|z|2 − pz̄ − p̄z + |p|2
1− pz̄ − p̄z + |p|2|z|2

∣

∣

∣

∣

=

∣

∣

∣

∣

1− pz̄ − p̄z + |p|2
1− pz̄ − p̄z + |p|2

∣

∣

∣

∣

= 1

using |z|2 = 1, since z ∈ C. Thus φp,ω(C) ⊂ C. Since φp,ω is continuous, the image
if each of the two connected components of C− C is connected so the either φp,ω(D)
is entirely contained in D or it is contained in the outside of C. Since φ(p) = 0, we
must have φp,ω(D) ⊂ D and similarly the image of the outside of C is contained in
the outside of C. It is clear that φp,ω is differentiable and it is invertible with inverse
given by g(z) = z−p

ω(1−|p|2)(zp̄−1) .

2) Let f : D → D be conformal. Find p such that f(p) = 0. The derivative φ′
p,1(p) is

given by

φ′
p,1(p) =

(1− p̄z)1− (z − p)(−p̄)

(1− p̄z)2

∣

∣

∣

z=p
=

1− |p|2
(1− |p|2)2 =

1

1− |p|2

so it is a positive real number. Write f ′(p)/φ′
p,1(p) = reiθ, for some r and θ and set

ω := eiθ. The functions f/ω and φp,1 are each conformal self-maps of D taking p
to 0 with positive real derivatives at p. Therefore according to the Riemann Mapping
Theorem, f(z)/ω = φp,1(z) and so f(z) = ωφp,1(z) = φp,ω(z).
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Given a 2 × 2 matrix M =

(

a b
c d

)

of complex numbers with det(M) 6= 0, define a

function F(M) by

F(M)(z) =
az + b

cz + d
.

Regard F(M) as a function on C ∪ {∞} with

F(M)(−d

c
) := ∞

F(M)(∞) := lim
z→∞

az + b

cz + d
=

a

c
.

A function f : C ∪ ∞ → C ∪ ∞ of the form f(z) = az+b
cz+d with ad − bc 6= 0 is called

a fractional linear transformation. We saw above that every conformal self-map of D is a
fractional linear transformation.

Proposition. Under the association M 7→ F(M), matrix multiplication corresponds to
composition of functions. i.e. F(MN) = F(M) ◦ F(N).

Proof. Let M =

(

a b
c d

)

, N =

(

a′ b′

c′ d′

)

. Hence MN =

(

aa′ + bc′ ab′ + bd′

ca′ + dc′ + dc′ cb′ + dd′

)

.

F(M) ◦ F(N)(z) = F(M) =
a
(

a′z+b′

c′z+d′

)

+ b

c
(

a′z+b′

c′z+d′

)

+ d
=

a(a′z + b′) + b(c′z + d′)

c(a′z + b′) + d(c′z + d′)

=
(aa′ + bc′)z + ab′ + bd′

(ca′ + dc′)z + cb′ + dd′
= F(MN)(z)

Corollary.
1) The product of two fractional linear transformations is a fractional linear transforma-

tion.
1) The inverse of a fractional linear transformations is a fractional linear transformation.

Proof. They correspond to the product and inverse of matrices.

In the language of group theory (MATC01), F : GL2(C) → Self-maps of (C ∪∞), is
a group homomorphism where for a field F ,

GLn(F ) ≡ {n× n matrices with entries in F and nonzero determininant}.

The homomorphism is not injective since F(kM) = F(M).
The fractional linear transformation I(z) := −1

z̄ is called inversion (or reflection) in
the unit circle. In polar coordinates, I(r, θ) = (1/r, θ).

I interchanges points P and Q on the same radial spoke if |OP | = 1/|OQ| where O is
the origin. Points on the unit circle C = {z | |z| = 1} are fixed.

Consider the image of a line L under I.
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Let A be the intersection of the perpenticular from 0 with L. Let A′ = I(A). Draw
the circle D with diameter OA′.
Claim: D = I(L).
Proof. Let P be any point on L. To show I(P ) lies on D:

Let Q be the intersection of D with OP . Since OA′ is a diameter of D and Q is on

the circumference, 6 OQA′ − π/2. Therefore △OAP ≈ △OQA′. Thus |OA|
|OQ| =

|OP |
|OA′| and

so |OP | |OQ| = |OA| |OA′| = 1. Hence Q = I(P ).

We have just seen that for any line L, the image I(L) is a circle passing through the
origin. Conversely, I takes circles passing through the origin to lines.

What about circle not passing through the origin?
Let C̃ be a circle with centre Õ. As before C denotes the unit circle with centre

O = origin. Let A, B the intersections with C̃ of the line joining the centres O, Õ. Let M
be some other line through O, intersection C̃ at points Q and P .

Set A := |OA| b := |OB|.
Let δ : C → C be the dilation (expansion/contraction) δ(z) = z/ab.
Set A′ := δ(B) B′ := δ(A) P ′ := δ(Q) Q′ := δ(P )
|OA′| = |OB|/(ab) = b/(ab) = 1/a so A′ = I(A). Similary B′ = I(B).
|OA′|
|OB| = 1

ab = |OP ′

|OQ|
Therefore △OA′P ′ ≈ △OBQ.
Also 6 ABQ = 6 APQ (they are angles at the circumference opposite the chord AQ).
Thus △OBQ ≈ △OPA.

Therefore |OA′|
|OP | = |OP ′

|OA| which implies

|OP ′| |OP | = |OA′| |OA| = (1/a)a = 1

and so P ′ = I(P ). Similarly Q′ = I(Q).
Since A, B, P , Q lie on circle C̃, their images B′, A′, Q′, P ′ under I lie on the

circle δ(C̃). i.e. I(C̃) is the same as the circle δ(C̃).
Thus, I takes circles not passing through the origin to circles not passing through the

origin.

Theorem. Let (z) be a fractional linear transformation. If S is either a line or circle then
so is f(S).

Note: As in the special case of inversion, f(line) might be either a circle of a line. Similarly
f(circle) might be either a circle of a line. We refer to a set which is either a circle or a
line as a “circline”.

Proof. Write f(z) = az+b
cz+d with a, b, c, d ∈ C, ad − bc 6= 0. Set M :=

(

a b
c d

)

. Find

k ∈ C such that k2 = detM . Then detM/k = 1. Since multiplication by k has the desired
property, it suffices to consider the special case where detM = 1.

Set τr :=

(

1 r
0 1

)

, σ :=

(

0 −1
1 0

)

. Then F(τr)(z) = z + r and F(σ) = −1
z so

τr corresponds to translation by r and σ corresponds to the composition of inversion
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(reflection) in the unit circle followed by reflection about the y-axis. Therefore τr and σ
each have the desired property.

στr =

(

0 −1
1 0

)(

1 r
0 1

)

=

(

0 −1
1 r

)

στsστr =

(

0 −1
1 s

)(

0 −1
1 r

)

=

(

−1 −r
s rs− 1

)

στtστsστr =

(

0 −1
1 t

)(

−1 −r
s rs− 1

)

=

(

−s 1− rs
st− 1 rst− r − t

)

If we can choose r, s, t so that στtστsστr =

(

a b
c d

)

then we will know that F(M) is the

composite F(σ)F(τt)F(σ)F(τs)F(σ)F(τr) of functions each having the desired property
which demonstates that F(M) has it as well.

If a 6= 0:

Set s := −a r :=
b− 1

a
t :=

−1− c

a

Then

−s = a
√

1− rs = 1−
(

b− a

a

)

(−a) = b
√

st− 1 = (−a)

(−1− c

a

)

− 1 = c
√

rst− r − t =

(

b− 1

a

)

(−a)

(−1− c

a

)

− b− 1

a
− −1− c

a

=
b− 1 + bc− c− b+ 1 + 1 + c

a
=

1 + bc

a
=

ad

a
= d

√

using ad− bc = 1.
If a = 0 then c 6= 0 (since ad− bc = 1) so consider

σM =

(

0 −1
1 0

)(

a b
c d

)

=

(

−c −d
a b

)

By the above calculation, F(σM) preserves circlines so F(M) = F(σ)−1F(σM) does as
well.

Example. Find a conformal map from the unit disk D to the upper half plane H.

Solution.
Plan:

Step 1: Translate D so that its boundary passes through the origin.
Step 2: Apply z 7→ 1/z to convert the boundary circle to a line.
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Step 3: Translate the line so that it passes through the origin
Step 4: Rotate so that the boundary line becomes the x-axis with the region on the

correct side.

1) Let g(z) = z − 1. Then Im D is the disk D′ of radius 1 centred at (−1, 0).
2) Let h(z) = 1/z, which is the composition of inversion in the unit circle followed by

reflection in the x-axis. Then h(∂D′) is a line L. To determine L we need to know
two points on it. Since points on unit circle are fixed by inversion, h reflects the unit
circle in the x-axis. In particular, the two intersection points of ∂D and ∂D′ lie on
the unit circle ∂D, so are reflected by h(z), and lie on ∂D′ so their images lie on L.
These two intersection points lie on the line x = −1/2 so L is its reflection in the
x-axis, which is again the line x = −1/2.

3) Let k(z) = z + 1/2, which translates the line x = 1/2 to the y-axis. Let

q(z) = k ◦ h ◦ g(z) = 1

z − 1
+

1

2
=

2 + z − 1

2(z − 1)

1

2

(

z + 1

z − 1

)

Then q(∂D) is the y-axis and since q(0) = −1/2 we see that q(D) is the left half plane.
4 ) Rotate clockwise by π/2 (i.e. multiply by −i) to rotate the left half plane to H. We

can also drop the factor of 1/2 which is only a rescaling taking H to itself. Therefore

a solution is given by f(z) = −i
(

z+1
z−1

)

.

The solution found above is called the Cayley transformation.

Theorem (Schwarz Reflection Principle for a circle). Let D be a domain which
equals its inversion in the unit circle C. (i.e. z ∈ D if and only if −1/z̄ ∈ D.) Let
I = D ∩ C. Let U = {z ∈ D | |z| < 1} and let Û = U ∪ I. Let f : Û → C be a continuous
function such that the restriction f

∣

∣

U
is holomorphic and the restriction f

∣

∣

I
is real-valued.

Then f has a holomorphic extension to D.

Proof. Let C(z) be the Cayley transformation. Apply the Schwarz Reflection Principle to
(f ◦ C−1)(z) to get an extension g(z) of (f ◦ C−1)(z). Then f̄ := (C ◦ g)(z) is the desired
extension of f .

Example. Show that there does not exist a conformal map from the annulus A = {z |
1 < |z| ≤ 2} to the punctured disk D′ = {z | 0 < |z| ≤ 2}
Solution. Assume that there exists a conformal map f from A to D′. Let (wn) be a
sequence in A which converges to some point w on the circle C = {z | |z| = 1}. The set
of images {f(wn)} is an infinite set so it has an accumulation point L (MATB43) lying
in the closure D̄ = {z | 0 ≤ |z| ≤ 1} of D′. If L lay in D′ then f−1(L) would be an
accumulation point of {wn} in A. But {wn} has no accumulation points in A since (wn)
converges to a point outside A. Therefore L does not lie in D′ so L = 0. It follows that
if we extend f to the closure Ā = {z | 1 ≤ |z ≤ 2} of A by setting f(z) := 0 for z ∈ C,
the resulting extension is continuous. Therefore by the Schwartz Reflection for a circle, we
can further extend f to a holomorphic function f̄ on {z | 1/2 < |z| < 2}. But f̄ is zero
on C which contains a convergent sequence. By our first theorem on analytic continuation
(uniqueness) this implies that f̄(z) = 0 for all z, contradicting the fact that the origin f
was a bijection from A to D′. Thus there is no conformal map from A to D′.
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Leaving aside now the difficult question of which regions are conformally equivalent,
there remains the question of how to find a formula for a conformal map in cases where
one exists. Fractional linear transformations are very useful for producing conformal maps
(e.g. the Cayley transformation discussed earlier), so we consider their properties in greater
detail.

Theorem. Given any 3 distinct point p, q, r ∈ C∪{∞} and any other 3 distinct points p′,
q′, r′ ∈ C ∪ {∞}, ∃ a fractional linear transformation f(z) such that f(p) = p′, f(q) = q′,
f(r) = r′.

Proof. It suffices to consider the special case where p = 0, q = 1, r = ∞ since if we can solve
this special case then there exists a fractional linear transformation g(z) sending (0, 1,∞)
to (p, q, r) and and a fractional linear transformation h(z) sending (0, 1,∞) to (p′, q′, r′)
so we can set f := h ◦ g−1.

Want

p′ = f(0) = b/d (1)

q′ = f(1) = (a+ b)/(c+ d) (2)

p′ = f(∞) = a/c (3)

(1) ⇒ b = p′d
(3) ⇒ a = r′c

Therefore (2) ⇒ q′ = r′c+p′d
c+d ⇒ q′c+ q′d = r′c+ p′d ⇒ (q′ − r′)c = (q′ − p′)d

If r′ 6= ∞,

Choose c := 1 d :=
q′ − r′

q′ − p′
a := r′ b :=

p′(q′ − r′)

q′ − p′
.

using that the denominators are nonzero since p′, q′, r′ are distinct. Notice that

ad− bc =
r′(q′ − r′)

q′ − r′
− p′(q′ − r′)

p′ − q′
=

(r′ − p′)(q′ − p′)

q′ − p′
6= 0

since r′ 6= p′ and r′ 6= q′.
Of ′ = ∞,

Choose c := 0 a := 1 d :=
1

q′ − p′
b :=

p′

q′ − p′
.

In this case ad− bc = 1
q′−p′

6= 0.

Lemma. Let f(z) be a fractional linear transformation. If f(0) = 0, f(1) = 1 and
f(∞) = ∞ then f = identity.

Proof. Write f(z) = (az + b)/(cz + d).

0 = f(0) = b/d (1)

1 = f(1) = (a+ b)/(c+ d) (2)

∞ = f(∞) = a/c (3)

(1) ⇒ b = 0
(3) ⇒ c = 0
Therefore (2) ⇒ 1 = a/d ⇒ d = a. Thus f(z) = az/a = z. i.e. f = identity.
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Corollary. If a fractional linear transformation has 3 fixed points it is the identity.

Proof. Suppose p, q, r are fixed points of f . By previous theorem, ∃ a fractional linear
transformation g such that g(0) = p, g(1) = q, g(∞) = r. Then g−1fg fixes 0, 1, and ∞.
Therefore g−1fg = identity. Thus f = gg−1fgg−1 = g ◦ identity ◦ g−1 = identity.

Corollary. A fractional linear transformation is determined by its values on any 3 points.

Proof. Suppose f and g are fractional linear transformations with f(p) = q(p), f(q = g(q),
f(r) = g(r). The p, q, r are fized points of g−1 ◦ f . Thus g−1 ◦ f is the identity, so f = g.

Cross Ratio

We know that for any points p, q, r, p′, q′, r′ there exists a unique fractional linear
transformation f such that f(p) = p′, f(q) = q′, f(r) = r′. Would like a convenient way
of finding f .

Notation: Given a, b, c, d ∈ C ∪∞ (with at least three distinct), set

(a, b; c, d) :=
(a− c)/(a− d)

(b− c)/(b− d)
=

(

a− c

b− c

)(

b− d

a− d

)

,

called the cross-ratio of a, b, c, d. If any of the elements is ∞, define it by limt→∞. e.g.

(∞, b; c, d) = limt→∞
(

t−c
b−c

)(

b−d
t−d

)

= limt→∞
(1−c/t)(b−d)
(1−d/t)(b−c) =

b−d
b−c .

For a variable z,

T (z) = (z, a; b, c) =
(z − b)/(z − c)

(a− b)/(a− c)
=

(z − b)(a− c)

(z − c)(a− b)

is a fractional linear transformation. Notice that T (a) =
(

a−b
a−c

)(

a−c
a−b

)

= 1, T (b) = 0,

and T (c) = ∞.

Example. Find the fractional linear transformation f such that f(1) = 1, f(−i) = 0,
f(−1) = ∞.

Solution. f(z) = (z, 1;−i,−1) =
(

z+i
z+1

)(

1+1
1+i

)

= 2z+2i
(z+1)(1+i) .

Example. Find the fractional linear transformation f such that f(i) = i, f(∞) = 3,
f(0) = −1/3.

Solution1. f = h−1 ◦ g where g(i) = 1, g(0) = 0, g(∞) = ∞ and h(i) = i, h(−1/3) = 0,
h(3) = ∞.

g(z) = (z, i; 0,∞) =
z − 0

i− 0
=

z

i
= −iz = F

(

−i 0
0 1

)

h(z) = (z, i;−1/3, 3) =

(

z + 1/3

z − 3

)(

i+ 1/3

i− 3

)

=
(z + 1/3)(i− 3)

(z − 3)(i+ 1/3)
=

(3z + 1)(i− 3)

(z − 3)(3i+ 1)

=
3(i− 3)z + i− 3

(3i+ 1)z − 3(3i+ 1)
= F

(

3(i− 3) i− 3
3i+ 1 −3(3i+ 1)

)
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Inverting the matrix gives h−1(z) = F
(

−3(3i+ 1) 3− i
−3i− 1 3(i− 3)

)

. Therefore

f(z) = (h−1 ◦ g)(z) = F
(

(

−3(3i+ 1) 3− i
−3i− 1 3(i− 3)

)(

i 0
0 1

)

)

= F
(

3i(3i+ 1) 3− i
i(3i+ 1) 3(i− 3)

)

= F
(

−3(3− i) 3− i
−(3− i) −3(3− i)

)

= F
(

3 −1
1 3

)

=
3z − 1

z + 3

Proposition. The fractional linear transformation f(z) such that f(a) = a′, f(b) = b′,
f(c) = c′ is given by the solution of (z, a; b, c) =

(

f(z), a; b′c′
)

. i.e.

(z − b)/(z − c)

(a− b)/(a− c)
=

(

f(z)− b′
)

/
(

f(z)− c′
)

(a′ − b′)/(a′ − c′)

Proof. The fractional linear transformations on the left and right take on the same values
at 0, 1, and ∞ if and only if f takes on the specified values.

Solution2 to previous example. Set w = f(z).

(z, i;∞, 0) = (w, i; 3,−1/3).

Therefore

i

z
=

(w − 3)(i+ 1/3)

(w + 1/3)(i− 3)
=

(w − 3)(3i+ 1)

(3w + 1)(i− 3)

i(3wi− 3 + i− 9w) = z(3iw − pi− 3 + w)

−3w − 3i− 1 = 9wi = 3izw − piz − 3z + zw

−3w − 9wi− 3izw − zw = −9iz − 3 + 3i+ 1

w =
(−3− 9i)z + (1 + 3i)

(−1− 3i)z − (3 + 9i)
=

−3(1 + 3i)z + (1 + 3i)

−(1 + 3i)z − 3(1 + 3i)
=

3z − 1

z + 3
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8. Infinite Product Decompositions

In this section, let log(z) denote a branch of the logarithm function defined on the do-
main C− {(x, 0) | x ≤ 0}.

Suppose |an| < 1 for all n. We write
∏∞

k=1(1+ak) for limn→∞
∏n

k=1(1+ak) provided
the limit exists and is greater than 0. The product is called divergent if either the limit
does not exist or if it exists but equals 0. The motivation behind this convention is that
we want L =

∏∞
k=1(1 + ak) if and only if logL =

∑∞
k=1 log(1 + ak) and the latter would

not converge if L = 0. The fact that this holds with our actual definition is an immediate
consequence of the continuity of log(z).

Lemma.

1) If
∏∞

k=1(1 + |ak|) converges then
∏∞

k=1(1 + ak) converges.

2)
∏∞

k=1(1 + |ak|) converges if and only if
∑∞

k=1 |ak| converges.

Proof.

1) If
∏∞

k=1(1 + |ak|) converges then
∑∞

k=1 log(1 + |ak|) converges which implies by com-
parison that

∑∞
k=1 log(1 + ak) converges and so

∏∞
k=1(1 + ak) converges.

2) Unless limn→∞ |an| = 0 both sides diverge, so assume limn→∞ |an| = 0. Since

limx→0
log(1+x)

x = 1, for any constant ǫ > 0, we have 1 < log(1+x)
x < 1 + ǫ for all

sufficiently small x > 0. Then x < log(1 + x) < (1 + ǫ)x for all sufficiently small x,
so by the Comparison Theorem,

∑∞
k=1 log(1+ |ak|) converges if and only if

∑∞
k=1 |ak|

converges.

A holomorphic function whose domain is the entire complex plane is called entire.
Clearly composition of entire functions gives an entire function. If g(z) is an entire function,
it is clear that eg(z) is an entire function with no zeros. Conversely

Theorem. Let f(z) be an entire function with no zeros. Then f(z) = eg(z) for some
entire function g(z).

Proof. Since f has no zeros, f ′/f is holomorphic. Let f ′(z)
f(z) = a0 + a1z + a2z

2 + . . . be

the Taylor series of f ′/f . Its radius of convergence is ∞ since f ′/f is entire. Therefore
(MATB43) the radius of the integrated series g̃(z) := a0z+a1z

2/2+a2z
3/3+ . . . is also ∞.

Thus g̃(z) is an entire function with g̃′(z) = f ′(z)
f(z) . Set h(z) := eg̃(z). Differentiating shows

h′(z)
h(z) = g̃′(z). Since f has no zeros, h(z)/f(z) is entire and, since h′(z)

h(z) = f ′(z)
f(z) , differentiat-

ing gives (h/f)′(z) = 0 for all z. Hence kf(z) = h(z) = eg̃(z) for some constant k. Setting
z = 0 shows k 6= 0 so k = ec for some c. Therefore f(z) = eg(z) where g(z) = g̃ + c.

Given a sequence of (an) of nonzero complex numbers, none occurring more than
finitely many times, the Weierstrass Problem is to find an entire function (if one exists)
whose zeros are pricely at the points {an} with the order of the zero at an equal to the

number of times an occurs in the sequence. One might think of
∏∞

n=1

(

1− z
an

)

, but this

will usually not converge so we modify it slightly. We will need a condition on the an’s
which will guarantee that their size increases quickly enough.
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Lemma. Suppose
∑∞

n=1
1

|an|2 < ∞. Then f(z) =
∏∞

n=1

[(

1− z
an

)

ez/an

]

solves the

Weierstrass Problem for the sequence (an).

Remark. In general, convergence of a series depends not only on its elements but also
upon the order. In this case, since the convergence condition is given in terms of the
absolute value, the order is irrelevant. Of course, since the function f(z) determines only
the set of its zeros and not the order in which we placed them in the sequence, for the
answer to converge to f(z) the right hand side must be independent of the numbering of
the roots.

Remark. A function having the form of f(z) is called a canonical product.

Proof. Set fn(z) =
∏n

k=1

(

1− z
ak

)

ez/ak . Since fn(z) is differentiable for all n, from the

power series section, we know that to show that f is differentiable it suffices that each
point has a neighbourhood in which fn(z) converges uniformly to f(z). In particular,
since every point in contained in a sufficiently large ball, it suffices to show that fn(z)
converges uniformly to f(z) on the closed ball BR[0] for every R.

SubLemma. If |b| < 1 then |(1− b)eb − 1| ≤ |b|2
1−|b| .

Proof.

(1− b)eb = (1 + b+
b2

2!
+

b3

3!
+

b4

4! . . .
)− (b+ b2 +

b3

2!
+

b4

3!
+ . . .)

= 1 +

∞
∑

n=2

(

bn

n!
− bn

(n− 1)!

)

= 1 +

∞
∑

n=2

−bn
(

1

(n− 1)!

)(

1− 1

n

)

Therefore

|(1− b)eb − 1| =
∣

∣

∣

∣

∣

∞
∑

n=2

−bn
(

1

(n− 1)!

)(

1− 1

n

)

∣

∣

∣

∣

∣

≤
∞
∑

n=2

|b|n = |b|2
∞
∑

n=0

|b|n = |b|2 1

1− |b|

where the final step makes use of |b| < 1.

Proof of Lemma (cont.). Since
∑∞

n=1
1

|an|2 converges, there exists N such that |an| > 2R

for n ≥ N . If |z| ∈ BR[0] and n ≥ N then |z/an| < 1 and so from the SubLemma

∣

∣

∣

∣

(

1− z

an

)

ez/an − 1

∣

∣

∣

∣

≤ |z/an|2
1− |z/an|

=
|z|2

(1− |z/an|)
1

|an|2
≤ R2

(1− 1/2)

1

|an|2
= 2R2 1

|an|2

Therefore
∑n

k=1

(

1− z
ak

)

ez/ak − 1 converges uniformly to
∑∞

k=1

(

1− z
ak

)

ez/ak − 1 and

so it follows from the previous Lemma that fn(z) converges uniformly to f(z).

If f1(z) and f2(z) both solve the same Weierstrass Problem then f1/f2 has removable
singularities, so extends to an entire function without zeros, and thus f1/f2 = eg(z) for
some entire function g(z). If we wish to include a zero of order k at the origin in our
function we can just multiply the preceding function by zk. Summing up, we have
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Theorem. Suppose
∑∞

n=1
1

|an|2 < ∞. Then for any entire function g(z), the function

f(z) = eg(z)zk
∏∞

n=1

(

1− z
an

)

ez/an is an entire function which has a zero of order k at

the origin and a zero at each an (where some an’s might be repeated resulting in a zero of
higher order) but no other zeros. Conversely every function with these properties has this
form for some entire function g(z).

Example. Show that sin(z) = z
∏∞

n=1

(

1− z2

π2n2

)

Solution. The zeros of sin z are at πk where k is an integer and
∑

(k 6=0)∈Z

1

π2k2
converges so

the theorem applies to give

sin(z) = eg(z)z
∏

nonzero roots an of sin z

(

1− z

an

)

ez/an

for some entire function g(z). As noted earlier, the absolute convergence of the series
means that the ordering of the roots does not affect the answer, so we will choose the
order (π,−π, 2π,−2π, 3π,−3π, . . .). Therefore

sin(z) = eg(z)z
∞
∏

n=1

[

(

1− z

nπ

)

ez/(πn)
(

1− z

−πn

)

ez/(−πn)

]

= eg(z)z
∞
∏

n=1

[(

1− z

πn

)(

1 +
z

πn

)]

= eg(z)z
∞
∏

n=1

(

1− z2

π2n2

)

so it remains to show that g(z) = 1. Logarithmic differentiation gives

cot(z) =
d log

(

sin(z)
)

dz
=

d
(

g(z) + log(z) +
∑∞

n=1 log(1− z2

π2n2 )
)

dz

= g′(z) +
1

z
+

∞
∑

n=1

−2z/(π2n2)

1− z2/(π2n2)
= g′(z) +

1

z
+

∞
∑

n=1

−2z

π2n2 − z2

= g′(z) +
1

z
+

∞
∑

n=1

2z

z2 − π2n2

(Note: There is no branch of the logarithm which is defined everywhere, but the method
above can be used in the vicinity of any particular point z using a branch defined at cot z.
Alternatively, one could regard the preceding calculation as only providing intuition and
verify the above formula for cot(z) = sin(z)′/ sin(z) by the more laborious process of
(non-logarithmic) differentiation followed by division.)

Comparing with our earlier formula for cot(z), we get g′(z) = 0 so g = c for some

constant c. Therefore sin(z)
z = C

∏∞
n=1

(

1− z2

π2n2

)

with C = ec. Taking the limit z → 0

gives C = 1.
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9. Gamma Function

Since
∑∞

n=1
1

|(−n)|2 converges, the canonical G(z) :=
∏∞

n=1

(

1 + z
n

)

e−z/n defines a holo-

morphic function with zeros at the negative integers. Our earlier example shows that
sin(z) = πzG(z)G(−z).

Set H(z) := G(z − 1). Then the zeros of H(z) are the same as those of zG(z) so we
get H(z) = eg(z)zG(z) for some entire function g(z). Therefore

d log
(

H(z)
)

dz
= g′(z) +

1

z
+

∞
∑

n=1

(

1/n

1 + z/n
− 1

n

)

= g′(z) +
1

z
+

∞
∑

n=1

(

1

n+ z
− 1

n

)

However the definition of H(z) gives

d log
(

H(z)
)

dz
=

d log
(

G(z − 1)
)

dz
=

∞
∑

n=1

(

1/n

1 + (z − 1)/n
− 1

n

)

=
∞
∑

n=1

(

1

n+ z − 1
− 1

n

)

=
1

z
− 1 +

∞
∑

n=2

(

1

n+ z − 1
− 1

n

)

=
1

z
− 1 +

∞
∑

n=1

(

1

n+ z
− 1

n+ 1

)

Therefore comparing gives

g′(z) = −1 +
∞
∑

n=1

(

1

n
− 1

n+ 1

)

= −1 +

(

1− 1

2

)

+

(

1

2
− 1

3

)

+

(

1

3
− 1

4

)

+ . . . = 0

Thus g′(z) is a constant γ, known as “Euler’s constant”, and we get G(z − 1) = zeγG(z).
To evaluate γ, set z := 1 yielding

e−γ = G(1)/G(0) = G(1) =
∞
∏

n=1

[(

1 +
1

n

)

e−1/n

]

=
∞
∏

n=1

[(

n+ 1

n

)

e−1/n

]

= lim
k→∞

[(

2

1

)(

3

2

)(

4

3

)

· · ·
(

k + 1

k

)

e−1−1/2−1/3−1/4−...−1/k

]

= lim
k→∞

[

(k + 1)e−1−1/2−1/3−1/4−...−1/k
]

= lim
k→∞

(

ke−1−1/2−1/3−1/4−...−1/k
)

+ lim
k→∞

(

e−1−1/2−1/3−1/4−...−1/k
)

= lim
k→∞

(

ke−1−1/2−1/3−1/4−...−1/k
)

since limk→∞
(

e−1−1/2−1/3−1/4−...−1/k
)

= 0 due to the fact that
∑∞

k=1
−1
k diverges to −∞.

Therefore taking log( ) and solving for γ gives

γ = lim
k→∞

(

1 +
1

2
+

1

3
+ . . .+

1

k
− log(k)

)

≈ 0.577216

Define the Gamma function by

Γ(z) :=
(

zeγzG(z)
)−1

=

(

zeγz
∞
∏

n=1

[(

1 +
z

n

)

e−z/n
]

)−1
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It is a meromorphic function with simple poles at 0 and the negative integers.
Since G(z − 1) = zeγG(z),

Γ(z) =
1

zeγzG(z)
=

zeγ

zeγzG(z − 1)
=

1

eγ(z−1)G(z − 1)
= (z − 1)Γ(z − 1)

By definition of γ, 1 = G(0) = eγG(1) = 1
Γ(1) . Therefore Γ(1) = 1 and inductively

Γ(n) = (n− 1)! for integer n ≥ 1.

Γ(1− z)Γ(z) = (−z)Γ(−z)Γ(z) =
1

ze−γzG(−z)eγzG(z)
=

1

zG(−z)G(z)
=

π

sin(πz)

It follows that Γ(z) 6= 0 for any z in its domain.
It is clear from the definition of Γ(z) that if x is real then Γ(x) is real. Furthermore,

since Γ(x) has no zeros in its domain, which includes the positive x-axis, its restriction to
the positive x-axis does not change sign and so Γ(x) > 0 for all x ≥ 0.

The formula Γ(1 − z)Γ(z) = π
sin(πz) shows that Γ(1/2)2 = π. Since Γ(1/2) > 0 this

implies Γ(1/2) =
√
π.

Theorem (Euler).

Γ(z) = lim
n→∞

n!nz

z(z + 1) · · · (z + n)
=

1

z

∞
∏

n=1

(

(

1 +
1

n

)z
(

1 +
z

n

)−1
)

Proof.

1

Γ(z)
= z

(

lim
n→∞

e(1+1/2+...+1/n−logn)z
)

(

lim
n→∞

n
∏

k=1

[(

1 +
z

k

)

e−z/k
]

)

= z lim
n→∞

(

e(1+1/2+...+1/n−log n)z

[

n
∏

k=1

(

1 +
z

k

)

e−z/k

])

= z lim
n→∞

(

n
∏

k=1

ez/ke−(logn)z

[

n
∏

k=1

(

1 +
z

k

)

e−z/k

])

= z lim
n→∞

(

n−z
n
∏

k=1

(

1 +
z

k

)

)

= z lim
n→∞

(

1

nzn!

n
∏

k=1

(k + z)

)

= lim
n→∞

(

z(1 + z) · · · (k + z)

nzn!

)

which gives the first identity. Also n =
(

2
1

) (

3
2

)

· · ·
(

n
n−1

)

=
∏n−1

k=1

(

k+1
k

)

=
∏n−1

k=1

(

1 + 1
k

)

so

1

Γ(z)
= z lim

n→∞

(

n−z
n
∏

k=1

(

1 +
z

k

)

)

= z lim
n→∞





(

n−1
∏

k=1

(

1 +
1

k

)

)−z n
∏

k=1

(

1 +
z

k

)





= z lim
n→∞





(

1 +
1

n

)−z
(

n
∏

k=1

(

1 +
1

k

)

)−z n
∏

k=1

(

1 +
z

k

)





= z lim
n→∞





(

n
∏

k=1

(

1 +
1

k

)

)−z n
∏

k=1

(

1 +
z

k

)




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since limn→∞(1 + 1
n )

−z = 1. The second identity follows.

Theorem (Gauss). For any integer n ≥ 2,

Γ(z)Γ

(

z +
1

n

)

· · ·Γ
(

z +
n− 1

n

)

= (2π)(n−1)/2n(1/2)−nzΓ(nz)

Proof. Set f(z) :=
nnzΓ(z)Γ(z+ 1

n )···Γ(z+
n−1
n )

nΓ(nz) . The theorem claims that f(z) is the con-

stant (2π)(n−1)/2n−(1/2). We first show that f(z) is constant.

Γ(z) = lim
m→∞

m!mz

z(z + 1) · · · (z +m)
=

(

lim
m→∞

(m− 1)!mz

z(z + 1) · · · (z +m− 1)

)(

lim
m→∞

m

z +m

)

= lim
m→∞

(m− 1)!mz

z(z + 1) · · · (z +m− 1)

When taking a limit as m → ∞, we can if we wish, consider only the values of a sub-
sequence. For example, we could choose some integer n and look only at terms indexed
by multiples of n: in any convergent sequence g(m), limm→∞ g(m) = limm→∞ g(mn).
Applying this gives

Γ(z) = lim
m→∞

(mn− 1)!(mn)z

z(z + 1) · · · (z +mn− 1)

Then applying this rewritten form of Euler’s Theorem to the denominator of f(z) and
the standard form to the numerator gives

f(z) =
nnz−1

∏n−1
k=0 limm→∞

(m−1)!mz+k/n

(z+ k
n )(z+

k
n+1)···(z+ k

n+m−1)

limm→∞
(mn−1)!(mn)nz

nz(nz+1)···(nz+nm−1)

= lim
m→∞





nnz−1(m− 1)!n
∏n−1

k=0 m
z+k/n

(mn− 1)!(mn)nz
nz(nz + 1) · · · (nz + nm− 1)

∏n−1
k=0

(

(

z + k
n

) (

z + k
n + 1

)

· · ·
(

z + k
n +m− 1

)

)





= lim
m→∞













n−1(m− 1)!n
∏n−1

k=0 m
k/n

(mn− 1)!n−mn

nz(nz + 1) · · · (nz + nm− 1)
n−1
∏

k=0

(

(nz + k)(nz + k + n) · · ·
(

nz + k + n(m− 1)
)

)













= lim
m→∞













n−1(m− 1)!nm(n−1)/2

(mn− 1)!n−mn

nz(nz + 1) · · · (nz + nm− 1)
n−1
∏

k=0

(

(nz + k)(nz + k + n) · · ·
(

nz + k + n(m− 1)
)

)













= lim
m→∞

nmn−1(m− 1)!nm(n−1)/2

(mn− 1)!
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since both the numerator and the denominator in the second factor consist of the product of
the same nm numbers, beginning with nz and increasing by increments of 1 to nz+nm−1.
Thus f(z) is a constant. To evaluate the constant:

Notice that since f(z) is a constant, f(0) := limz→0 f(z) exists and by the definition
of f is given by:

f(0) = Γ

(

1

n

)

Γ

(

2

n

)

· · ·Γ
(

n− 1

n

)

Therefore, rearranging the order of multiplication,

f(0)2 = Γ

(

1

n

)

Γ

(

n− 1

n

)

Γ

(

2

n

)

Γ

(

n− 2

n

)

· · ·Γ
(

n− 1

n

)

Γ

(

1

n

)

=

n−1
∏

k=1

Γ

(

k

n

)

Γ

(

1− k

n

)

=

n−1
∏

k=1

π

sin(πk/n)
=

πn−12n−1

n
=

(2π)n−1

n

using our earlier formulas for Γ(z)Γ(1−z) and for the product of the sin( ) terms. Therefore,
since f(0) > 0 we get f(0) = (2π)(n−1)/2/

√
n, as desired.

The Gamma function is often defined instead by means of an improper integral.

Theorem (Euler). Γ(z) =
∫∞
0

tz−1e−t dt

Proof. By uniqueness of analytic continuation, it suffices to check that the integral agrees
with Γ(z) when z is real and greater than 1. Set

fn(x) :=

{

tx−1(1− t/n)n if 0 ≤ t ≤ n;
0 if n < t < ∞.

Then f1(x) ≤ f2(x) ≤ . . . ≤ fn(x) ≤ tx−1e−t with limn→∞ fn(x) = tx−1e−t. According to
the Lebesgue Monotone Convergence Theorem (MATC37), these conditions imply

∫ ∞

0

tx−1e−t dt = lim
n→∞

∫ n

0

fn(t) dt
(t := nτ)

=
lim

n→∞

∫ 1

0

(1− τ)n(nτ)x−1ndτ

= lim
n→∞

nx

∫ 1

0

(1− τ)nτx−1 dτ

(parts)

=
lim

n→∞
nx

[

(1− τ)nτx/x
∣

∣

∣

1

0
+

n

x

∫ 1

0

(1− τ)n−1τx dτ

]

= lim
n→∞

nxn

x

∫ 1

0

(1− τ)n−1τx dτ

(parts)

=
lim

n→∞
nxn(n− 1)

x(x+ 1)

∫ 1

0

(1− τ)n−2τx+1 dτ = . . .

= lim
n→∞

nx n!

x(x+ 1) · · · (x+ n− 1)

∫ 1

0

τx+n−1 dτ

= lim
n→∞

nx n!

x(x+ 1) · · · (x+ n)
= Γ(x)
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Example. Making the change of variable u = x2 gives

∫ ∞

−∞
e−x2

dx = 2

∫ ∞

0

e−x2

dx =

∫ ∞

0

e−u

√
u
du = Γ(1/2) =

√
π

Remark. This integral, which figures prominently in STAB52, can also be calculated by
the techniques of MATB42.

10. Laplace and Fourier Transforms

The Laplace Transform is studied in MATC46. We begin with a summary of its definition
and basic properties.

Definition. Let f : [0,∞) → C. The Laplace transform of f , denoted L(f) (or some-

times f̂ when the context makes the meaning clear,) is the function

L(f) (z) ≡
∫ ∞

0

e−ztf(t) dt.

The domain of L(f) is the set of z for which the integral converges.

This slightly generalizes the situation studied in MATC46 where only real values of z
were considered.

Theorem. If L(f) (z0) converges, then L(f) (z) converges for all z such that Re z > Re z0.

Definition. Given α, a continuous function f : [0,∞) → R is said to have exponential
order α if there exists a constant C such that |f(x)| ≤ Ceαx for sufficiently large x. More
precisely, f has exponential order if there exist constants C and b such that |f(x)| ≤ Ceαx

for x > b.

We write f ∈ ξα to mean that f is real-valued and has exponential order α.

Theorem. If f ∈ ξα, then L(f) (z) is defined for all z such that Re z > α.

Theorem. Properties of Laplace transforms:
1. L(af + bg) = aL(f) + bL(g)
2. L(f ′) (z) = zL(f)− f(0),

L(f ′′) (z) = zL(f ′)− f ′(0) = z2L(f)− zf(0)− f ′(0),

...

L
(

f (n)
)

(z) = znL(f)− zn−1f(0)− zn−2f ′(0)− · · · − f (n−1)(0)

3. If f and g are continuous on [0,∞) and L(f) = L(g), then f = g.

4. L(eaxf(x)) (z) = f̂(z − a)
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5. a) f̂ is differentiable and L(xnf(x)) (z) = (−1)nf̂ (n)(z).

b) f̂ is integrable and L(f(x)/x) (z) = −
∫ z

0
f̂(u) du.

6. limRe z→∞ f̂(z) = 0

7. L(f ∗ g) = L(f)L(g), where the convolution f ∗g of f and g is defined by (f ∗g)(x) :=
∫ x

0
f(x− t)g(t) dt.

A few basic Laplace Transforms are given in the following table.

f(x) L(f) (z)
xn Γ(n+1)

zn+1

eax 1
z−a

cos(ax) z
z2+a2 , Re z > 0

sin(ax) a
z2+a2

x cos(ax) z2−a2

(z2+a2)2

x sin(ax) 2az
(z2+a2)2

Note: z/
(

z2 + a2
)

is, of course, defined for z 6= ±ia, but it equals
∫∞
0

e−zx cos(x) dx only
when Re z > 0. (The latter does not converge for Re z ≤ 0.)

Example. Solve y′ − 4y = ex with y(0) = 1.

Solution.
L(y′ − 4y) = L(ex)

L(y′)− 4L(y) = 1

z − 1
1

z − 1
= zL(y)− y(0)− 4L(y) = (z − 4)L(y)− 1

(z − 4)L(y) = 1

z − 1
+ 1 =

z

z − 1

L(y) = z

(z − 1) (z − 4)
=

4

3

1

z − 4
− 1

3

1

z − 1

y =
4

3
e4x − 1

3
ex.

A related transformation is the Fourier Transform.

Definition. Let f : [0,∞) → C. The Fourier transform of f , denoted F(f) (or some-

times f̂ when the context makes the meaning clear,) is the function

F(f) (z) ≡
∫ ∞

−∞
e−iztf(t) dt.
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The domain of F(f) is the set of z for which the integral converges.

The domain of F(f) will, in general, be somewhat different from that of L(f). In par-
ticular, for real z the function e−izt is periodic rather than approaching 0 as z increases.
Hence for real-valued f(t), unless f(t) → 0 as t → 0 the integral has no chance to con-
verge. Like the Laplace Transform, it has the property of converting differentiation into
multiplication.

Theorem. Let f(z) be meromorphic on C with no singularities on the x-axis. Suppose
|f(z)| → 0 as |z| → ∞. Let H := {z ∈ C | Im z ≥ 0} be the upper half plane and
L := {z ∈ C | Im z ≤ 0} be the lower half plane. Then for real t < 0

F(f) (t) = 2πi
∑

residues of e−itzf(z) at its singularities in H

and for real t > 0

F(f) (t) = −2πi
∑

residues of e−itzf(z) at its singularities in L

Proof. Let s = −t. Consider case the case t < 0 so that s > 0. Let B be the rectangle
[−T, U ] × [0, S] where S, T , and U are chosen to be large enough so that B contains all
the singularities of f(z) in H. By the residue theorem

∫

∂B

eiszf(z) dz = 2πi
∑

residues of eiszf(z) at its singularities in H

∫

∂B
eiszf(z) dz =

∫ U

−T
eiszf(z) + I1 + I2 + I3 where

I1 =

∫ S

0

eis(U+iy)f(U + iy)i dy,

I2 =

∫ −T

U

eis(x+iS)f(x+ iS) dx,

and I3 =

∫ 0

S

eis(−T+iy)f(−T + iy)i dy.

Given ǫ > 0 find R such that |f(z)| < ǫ for |z| ≥ R. We may assume that S, T , and U ,
are chosen so that S > T > R and S > U > R and e−sS(T + U) < ǫ. Let

M1 = max{|f(U + iy)| | 0 ≤ y ≤ S} < ǫ

M2 = max{|f(x+ iS)| | −T ≤ x ≤ U} < ǫ

M3 = max{|f(−T + iy)| | 0 ≤ y ≤ S} < ǫ

using the choices of T , U , S, and R. Then

|I1| ≤
∫ S

0

e−sy|f(U + iy)| dy ≤ M1

∫ S

0

e−sy dy = M1
e−sy

s

∣

∣

∣

S

0
=

M1

s
(1− e−sS) ≤ M1

s
<

ǫ

s
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and similarly |I3| ≤ ǫ
s . Also |I2| ≤

∫ U

−T
e−sS |f(x + iS)| dx ≤ M2e

−sS(T + U) < ǫ2. Since
this is true for all ǫ > 0, taking the limit as T → ∞ and U → ∞ gives

2πi
∑

residues of e−iztf(z) at its singularities in H = F(f) (z).

If t > 0 then we consider instead a rectangle in L. The argument is the same, but the
counter-clockwise orientation of the boundary curve results in the portion along the x-axis
running backwards resulting in the minus sign.

Example. Let f(z) = 1
z2+a2 , where a > 0. Then

∫ ∞

0

cosx

x2 + a2
dx =

1

2

∫ ∞

−∞

cosx

x2 + a2
dx =

1

2
Re
(

F(f) (−1)
)

= Re
(

πi
∑

residues of eiz

z2+a2 at its singularities in H
)

= Re

(

πiResia
eiz

z2 + a2

)

= Re

(

πi
eiz|z=ia

2z|z=ia

)

= Re

(

πi
e−a

2ia

)

=
πe−a

2a

using Resp
g(z)
h(z) =

g(p)
h′(z) when g(z) is holomorphic at p and h(z) has a simple pole at p.

We return now to the Laplace transform. While property (3) of the earlier theorem
says that a function is uniquely determined by its Laplace Transform, there remains the
question of how to compute inverse Laplace Transforms. In simple cases one can find the
inverse Laplace Transform by inspecting a table a table of Laplace Transforms. Our goal
is to derive a general formula for the inverse Laplace Transform.

Given F (z) we wish to find f(x) such that L(f) = F . According to property (6) of
the theorem, there is no chance unless limRe z→∞ F (z) = 0. We will need to assume the
stronger condition that there exist positive constants M , β, and R such that |F (z)| ≤
M/|z|β whenever |z| > R. For example, if F (z) = P (z)/Q(z) where P (z) and Q(z) are
polynomials with degQ > degP , then the condition is satisfied.

Theorem. Let F (z) be a meromorphic function such that there exist positive constants
M , β, and R such that |F (z)| ≤ M/|z|β whenever |z| > R. Let σ be the maximum of the
real parts of the singularities of F (z). Then the inverse Laplace transform of F (z) on the
domain Re z > σ is given by

L−1(F ) (t) =
∑

residues of eztF (z) at its singularities =
1

2π

∫ ∞

−∞
e(α+iy)tF (α+ iy) dy

for any real α > σ.

Proof. Suppose α > σ and consider the domain Re z > α. The bound on |F (z)| implies, in
particular, that lim|z|→∞ |F (z)| = 0, so given ǫ > 0 by choosing a larger R, we may assume
that |F (z)| < ǫ whenever |z| ≥ R. Let ρ > max{R, |z|} be arbitrary. Let B1 and B2 be
the rectangles B1 := [α, S] × [T, U ], B2 := [−S, α] × [T, U ] where S, T , and U are chosen
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to be large enough so that B2 contains all the singularities of F (z) and B1 ∪ B2 contains
the ball Bρ[0]. Set γ1 := ∂B1 and γ2 := ∂B2 be the boundaries with the counterclockwise
orientation.

Set

f(t) :=
∑

residues of eztF (z) at its singularities.

We wish to show that L(f) = F .
By the residue theorem, 2πif(t) =

∫

γ2
eztF (z) dz. Therefore by definition

2πiL(f) (z) = lim
r→∞

∫ r

0

e−zt2πif(t) dt = lim
r→∞

∫ r

0

e−zt

∫

γ2

ewtF (w) dw dt

= lim
r→∞

∫ r

0

∫

γ2

e(w−z)tF (w) dw dt

This is a surface integral over the sides of the cube of height r over the base γ2. Changing
the order of integration gives

2πiL(f) (z) = lim
r→∞

∫

γ2

∫ r

0

e(w−z)tF (w) dt dw = lim
r→∞

∫

γ2

e(w−z)tF (w)

w − z

∣

∣

∣

t=r

t=0
dw

= lim
r→∞

∫

γ2

e(w−z)rF (w)

w − z
dw −

∫

γ2

F (w)

w − z
dw

=

∫

γ2

lim
r→∞

e(w−z)rF (w)

w − z
dw −

∫

γ2

F (w)

w − z
dw

,

where we used that it is a proper integral to move the limit inside. Since Re z > α and
Rew ≤ α for w in the region of integration, e(w−z)r → 0 as r → ∞, so the first term is 0
and we get

2πiL(f) (z) = −
∫

γ2

F (w)

w − z
dw =

∫

γ1

F (w)

w − z
dw −

∫

∂(B1∪B2)

F (w)

w − z
dw.

Since all the singularties of F (z) lie to the left of Re z = α, F (z) is holomorphic through-

out B1 and so
∫

γ1

F (w)
w−z dw = 2πF (z). Using the fact that F (z) is holomorphic outside

of B1∪B2 gives
∫

∂(B1∪B2)
F (w)
w−z dw =

∫

∂Bρ[0]
F (w)
w−z dw. However on Bρ[0], |F (z)| ≤ M/|z|β ,

and so
∣

∣

∣

∣

∣

∫

∂Bρ[0]

F (w)

w − z
dw

∣

∣

∣

∣

∣

≤
∫

∂Bρ[0]

∣

∣

∣

∣

F (w)

w − z

∣

∣

∣

∣

dw ≤
∫

∂Bρ[0]

M

|z|β |w − z| dw

≤
∫

∂Bρ[0]

M

ρβ(ρ− |z|) dw ≤ 2πMρ

ρβ(ρ− |z|) .

Since ρ is arbitrary, this implies the second term is 0 and so L(f) (z) = F (z), which is the
first equality in the theorem.
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For the restatement given by the second equality

1

2π

∫ ∞

−∞
e(α+iy)tF (α+ iy) dy =

1

2π

∫ ∞

−∞
eiyteαtF (α+ iy) dy =

1

2π
F(G) (−t)

where G(z) = eαtF (α+ iz). Since t > 0, the earlier theorem gives

1

2π
F(G) (−t) =

1

2π
2πi

∑

residues of eiztG(z) at its singularities in H

= i
∑

residues of eiztG(z) at its singularities in H

p is a singularity of eztF (z) if and only if q := p−α
i = i(α− p) is a singularity of eiztG(z).

The condition i(α−p) ∈ H is equivalent to the condition Re p < α which is satisfied by all
singularities of eztF (z). Thus all singularities of eiztG(z) lie inH. Also, if a = Resp e

ztF (z)
then the Laurent expansion of eztF (z) at p contains the term a

z−p . Making the change of

variable z := α + iw gives that the Laurent expansion of eα+iwF (α + iw) = ewtG(w) at
the corresponding point q = i(α− p) contains the term a

α+iw−p = −ia
w−q . Therefore

1

2π

∫ ∞

−∞
e(α+iy)tF (α+ iy) dy = i

∑

residues of eiztG(z) at its singularities in H

= i(−i)
∑

residues of eztF (z) at its singularities

=
∑

residues of eztF (z) at its singularities = f(t)

Therefore the equalities stated in the theorem hold in the domain Re z > α. Since α was
arbitrary (aside from the condition α > σ), they hold in the domain Re z > σ.

Example. Let F (z) = 1
3z−6 . The conditions of the preceding theorem are satisfied so

there is a function f(t) such that L(f) (z) = F (z) and it is given by

f(t) =
∑

residues of ezt

3z−6 at its singularities = Res2
ezt

3z − 6
=

ezt|z=2

(3z − 6)′|z=2
=

e2t

3
.

In this simple case, obviously one could just look up the answer in the table instead.
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11. Stirling’s Formula

Letting τ := zt in the integral Γ(z + 1) =
∫∞
0

τze−τ dτ gives

Γ(z + 1) =

∫ ∞

0

(zt)ze−ztz dt = zz+1

∫ ∞

0

ez log(t)e−ztdt = zz+1

∫ ∞

0

ezh(t) dt

where h(t) = log(t)− t.
We consider the case where z is real. Notice that h′(t) = 1/t− 1, so h(t) has a global

maximum at t = 1, with h(1) = −1. We will show that the portion of the integral around
t = 1 dominates the rest of the integral. Some approximate values of h(t) are:

h(1/2) ≈ −1.19

h(1) = −1

h(2) = −1.31

Choose constants c ∈ h(1/2,−1) and ǫ > 0 such that h(t) < c − ǫ for all t 6∈ [1/2, 2]. For
example, let c = −1.1 and ǫ = 0.05. Since c < −1, h(t) = c has two solution, say a and b,
with 1/2 < a < 1 < b < 2. Then h(t) ≥ c for t ∈ [a, b].

Γ(x+ 1)/xx+1 =

∫ ∞

0

exh(t) dt =

∫ 1/2

0

exh(t) dt+

∫ 2

1/2

exh(t) dt+

∫ ∞

2

exh(t) dt.

Using the definitions of c and ǫ:

∫ 1/2

0

exh(t) dt+

∫ ∞

2

exh(t) dt =

∫ 1/2

0

eh(t)e(x−1)h(t) dt+

∫ ∞

2

eh(t)e(x−1)h(t) dt

≤ e|x−1|(c−ǫ)

(

∫ 1/2

0

eh(t) dt+

∫ ∞

2

eh(t) dt

)

= Me|x−1|(c−ǫ)

where M =
(

∫ 1/2

0
eh(t) dt+

∫∞
2

eh(t) dt
)

is a constant, noting that the integrals defining M

converge since they are bounded by Γ(2). Similarly

∫ 2

1/2

exh(t) dt ≥
∫ b

a

exh(t) dt =

∫ b

a

eh(t)e(x−1)h(t) dt ≥ e|x−1|c
∫ b

a

eh(t) dt = M ′e|x−1|c

where M ′ is a constant. Therefore

∫ 1/2

0

exh(t) dt+

∫ ∞

2

exh(t) dt ≤ e−ǫ|x−1| M

M ′

∫ 2

1/2

exh(t) dt

We now consider the term
∫ 2

1/2
exh(t) dt in detail.
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The function −
(

h(t)+1
)

= t−1−log(t) is always non-negative, with a global minimum
of 0 at t = 1 where its tangent line is the x-axis. Define

w(t) :=

{

−
√

−h(t)− 1 if t ≤ 1
√

−h(t)− 1 if t > 1.

Then w(t) is monotonically increasing so it is invertible. Let t = v(w) be the inverse
function to w and let v = 1 + a1w + a2w

2 + . . . be its Taylor expansion about 0, noting
that the constant term is 1 since w(1) = 0 and thus v(0) = 1.

∫ 2

1/2

exh(t) dt =

∫ 2

1/2

e−xex
(

h(t)+1
)

dt = e−x

∫ 2

1/2

e−xw(t)2 dt

Make change of variable y :=
√
xw(t), t = v(y/

√
x). Then dt/dy = v′(w)/

√
x and so

e−x

∫ 2

1/2

e−xw(t)2 dt =
e−x

√
x

∫ q
√
x

p
√
x

e−y2

v′(w) dy

where p = w(1/2) and q = w(2). Notice that the definition of w implies that p < 0 and
q > 0.

∫ q
√
x

p
√
x

e−y2

v′(w) dy =

∫ q
√
x

p
√
x

e−y2
∞
∑

k=0

(k + 1)ak+1w
k dy

=

∫ q
√
x

p
√
x

e−y2
∞
∑

k=0

(k + 1)ak+1

(

y√
x

)k

dy

=

∫ q
√
x

p
√
x

a1e
−y2

dy +

∫ q
√
x

p
√
x

e−y2
∞
∑

k=1

(k + 1)ak+1

(

y√
x

)k

dy

For the second term, write
∑∞

k=1(k + 1)ak+1

(

y√
x

)k

=
(

y√
x

)

B(x, y) where

B(x, y) = 2a2 + 3a3

(

y√
x

)

+ . . . =
v′(w)− v′(0)

w

∣

∣

∣

w=y/
√
x

Since v′(w)−v′(0)
w is continuous (singularity at 0 is removable) there is a bound B for its

values over the finite interval [p, q] which is thus a uniform bound on B(x, y) in the range
of integration. Hence

∫ q
√
x

p
√
x

e−y2
∞
∑

k=1

(k + 1)ak+1

(

y√
x

)k

dy ≤
∫ q

√
x

p
√
x

B
|y|√
x
e−y2 dy ≤ B√

x

∫ ∞

−∞
|y|e−y2 dy =

2B√
x
.

∫ q
√
x

p
√
x

e−y2

dy =

∫ ∞

−∞
e−y2

dy −
∫ p

√
x

−∞
e−y2

dy −
∫ ∞

q
√
x

e−y2

dy
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Lemma. There exists a constant K such that
∫∞
r

e−y2 ≤ K
r for all sufficiently large r.

(In fact, the statement is true for every K > 0.)

Proof. Choose K > 0. Since limy→∞ y2e−y2

= 0, ∃Y such that e−y2

< K/y2 for all y ≥ Y .
Then for r > Y ,

∫ ∞

r

e−y2 ≤
∫ ∞

r

K

y2
dy = K

−1

y

∣

∣

∣

∞

r
=

K

r

The Lemma shows that
∫∞
q
√
x
e−y2

dy < K
q
√
x

for sufficiently large x and similarly
∫ p

√
x

−∞ e−y2

dy < K
p
√
x
for sufficiently large x.

The Lemma’s show that

∣

∣

∣

∣

∣

∫ q
√
x

p
√
x

e−y2

dy −
∫ ∞

−∞
e−y2

dy

∣

∣

∣

∣

∣

<
L√
x

for all sufficiently large x, where L = K/q +K/p.

Putting it all together, we showed

∣

∣

∣

∣

∣

∫ 2

1/2

exh(t) dt− e−x

√
x

∫ ∞

−∞
a1e

−y2

dy

∣

∣

∣

∣

∣

≤ e−x

√
x

(

2B√
x
+

a1L√
x

)

(1)

and

∣

∣

∣

∣

Γ(x+ 1)

xx+1
− e−x

√
x

∫ ∞

−∞
a1e

−y2

dy

∣

∣

∣

∣

≤ e−ǫ|x−1| M

M ′

∫ 2

1/2

exh(t) dt+
e−x

√
x

(

2B√
x
+

a1L√
x

)

(2)

Since (1) shows that for large x,
∫ 2

1/2
exh(t) dt ≤ C e−x

√
x

for some constant C, and

e−ǫ(x−1) < 1/
√
x for large x, equation (2) can be rewritten as

∣

∣

∣

∣

Γ(x+ 1)

xx+1
− e−x

√
x

∫ ∞

−∞
a1e

−y2

dy

∣

∣

∣

∣

≤ e−x

√
x

(

CM/M ′
√
x

+
2B√
x
+

a1L√
x

)

In other words, for large x, Γ(x+1)
xx+1 is approximately equal to e−x

√
x

∫∞
−∞ a1e

−y2

dy and the

error in the approximation is sufficiently small that even when multiplied by
√
xex it still

approaches 0 as x → ∞.

To complete the calculation, we need to find a1 and e−x
√
x

∫∞
−∞ a1e

−y2

dy.

In an earlier example, we showed:

Lemma.
∫∞
−∞ e−y2

dy =
√
π.
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a1 = v′(0). Since w(1) = 0, v′(0) = 1/w′(1). By definition w2(t) = −h(t) − 1.
Therefore 2w(t)w′(t) = −h′(t). Substituting t = 1 at this point does not help, since

w(1) = 0, so differentiate again to get 2
(

w′(t)
)2

+ w(t)w′′(t) = −h′′(t). Thus

2
(

w′(1)
)2

+ 0 = −h′′(1) =
(

t− log(t)
)′′|t=1 = 1

which gives w′(1) = 1/
√
2, taking the positive square root since w(t) is monotonically

increasing. Hence a1 =
√
2.

Stirling′s Formula : Γ(x+ 1) ≈ xx+1e−x
√
2
√
π/

√
x =

√
2πxx+1/2e−x

Still better approximations could be obtained by taking more terms in the Taylor
expansion of v(w).

The formula is still valid when z is not real, but in the proof, instead of looking
at the fixed interval [1/2, 2] one concentrates on a small interval about 1 determined by
Im z where the interval is chosen so that the deviation of ei Im zh(t) from ei Im zh(1) is small
throughout the interval. Details omitted.

12. Riemann Zeta Function

In this section, the symbol p will indicate a prime.
The Riemann-zeta function is defined for Re z > 1 by the convergent series ζ(z) :=

∑∞
n=1 n

z.

Theorem. For Re z > 1, the infinite product
∏

p

(

1− 1
pz

)

converges and equals 1
ζ(z) .

Proof. Since
∑

p
1
pz ≤∑∞

n=1
1
nz converges for Re z > 1 so does

∏

p

(

1− 1
pz

)

.

Given z with Re z > 1, for ǫ > 0, ∃N such that
∑∞

n=N+1
1
nz < ǫ.

Collecting the terms with denominators divisible by 2 we get.

ζ(z) = 1+
1

2z
+

1

3z
+

1

4z
+

1

5z
+ . . . =

1

2z

(

1 +
1

2z
+

1

3z
+

1

4z
+

1

5z
+ . . .

)

+1+
1

3z
+

1

5z
+ . . .

so
(

1− 1
2z

)

ζ(z) = 1 + 1
3z + 1

5z + . . .. Repeating the procedure with the prime 3 gives
(

1− 1
3z

) (

1− 1
2z

)

ζ(z) = 1+ 1
5z + 1

7z + . . .. Continuing, if pk denotes the kth prime, we get
(

1− 1

(pN )
z

)

· · ·
(

1− 1

3z

)(

1− 1

2z

)

ζ(z) = 1 +
1

(pN+1)
z + . . . .

Therefore, by choice N ,
∣

∣

∣

∣

(

1− 1

(pN )
z

)

· · ·
(

1− 1

3z

)(

1− 1

2z

)

ζ(z)− 1

∣

∣

∣

∣

< ǫ

. Since this is true for all ǫ,
(

1− 1

(pN )
z

)

· · ·
(

1− 1

3z

)(

1− 1

2z

)

ζ(z) = 1.

60



Theorem.

ζ(z) =
1

Γ(z)

∫ ∞

0

tz−1e−t

1− e−t
dt

Proof. For any positive integer n,

n−z

∫ ∞

0

τz−1e−τ dτ
(τ = nt)

=

∫ ∞

0

tz−1e−nt dt

and so n−z = 1
Γ(z)

∫∞
0

tz−1e−nt dt. Therefore

∞
∑

n=1

n−z =
1

Γ(z)

∞
∑

n=1

∫ ∞

0

tz−1e−nt dt =
1

Γ(z)

∫ ∞

0

∞
∑

n=1

tz−1(e−t)n dt =
1

Γ(z)

∫ ∞

0

tz−1e−t

1− e−t
dt

where the interchange of the integration and summation is justified by the Lebesgue Mono-
tone Convergence Theorem (MATC37).

For ǫ and δ, let Cǫ,δ be the boundary (with counter-clockwise orientation) of the
thermometer-shaped region consisting of the union of the ball Bǫ[0] and the strip [0,∞]×
[−δ, δ]. Cǫ,δ is called a “Hankel contour”. The Hankel functions are defined by H(z) :=
∫

Cǫ,δ
u(w, z) dw where u(w, z) = (−w)z−1e−w

1−e−w . Here we are using the branch of the logarithm

defined except on the portion (0,∞) of the x-axis to define (−w)z−1 := e(z−1) log(−w). The
answer is independent of ǫ and δ since, for ǫ′ < ǫ and δ′ < δ, the region between Cǫ′,δ′

and Cǫ,δ contains no poles of u, all whose poles (as a function of w) lie on the x-axis.

Theorem.

ζ(z) =
−H(z)

2i sin(πz)Γ(z)

if Re(z) > 1.

Proof. Let (ǫ̃, δ) and (ǫ̃,−δ) be the intersection points of the boundary of the strip with the
boundary circle of the disk. In polar coodinates these points become (ǫ, δ̃) and (ǫ, 2π − δ̃)
for some angle δ̃. (Explicitly, ǫ̃ =

√
ǫ2 − δ2 and δ̃ = sin−1( δǫ ).)

Hǫ(z) = I1 + I2 + I3 where

I1 =

∫ ǫ̃

∞

e(z−1) log(−(t+iδ))e−(t+iδ)

1− e−(t+iδ)
dt,

I2 =

∫ ∞

ǫ̃

e(z−1) log(−(t−iδ))e−(t−iδ)

1− e−(t−iδ)
dt,

I3 =

∫ 2π−δ̃

δ̃

(−ǫeiθ)z−1e−ǫeiθ

1− e−ǫeiθ
iǫeiθ dθ

For small ǫ, |1− eǫe
iθ | ≥ |1− e−ǫ| ≥ ǫ/2 and so

|I3| ≤ 2πǫmax
θ

|(−ǫeiθ)z−1| |e−ǫeiθ |
ǫ/2

≤ 4πǫRe z−1e2π| Im z|eǫ
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which implies that I3 → 0 as ǫ → 0.

I1 + I2 =
∫ ǫ̃

∞
e
(z−1)[log(

√
t2+δ2)+i(−π+δ′)]e−t−iδ

1−e−t−iδ dt +
∫∞
ǫ̃

e
(z−1)[log(

√
t2+δ2)+i(π−δ′)]e−t+iδ

1−e−t−iδ dt

where δ′t is chosen so that −π + δ′t = Im log
(

−(t + iδ)
)

and δ′′t similarly. Letting δ → 0
gives

H(z) =

∫ ǫ̃

∞

e(z−1)[log(t)−iπ]e−t

1− e−t
dt+

∫ ∞

ǫ̃

e(z−1)[log(t)+iπ]e−t

1− e−t
dt

= −(eiπz − e−iπz)

∫ ∞

ǫ̃

tz−1e−t

1− e−t
dt = −2i sin(πz)

∫ ∞

ǫ̃

tz−1e−t

1− e−t
dt

so taking the limit as ǫ → 0 and applying the previous theorem gives the result.

Corollary. ζ(z) has an analytic continuation to C− {1}.
For b > 1 let Cǫ,δ,b be the portion of Cǫ,δ for which δ ≤ b. Since for proper integrals we

can interchange the order of differentiation and integration, we can deduce that for each
b > 0 the integral Hb(z) :=

∫

Cǫ,δ,b
u(w, z) dw defines an entire function. Using that b > 1

implies, |u(b, z)| ≤ 2bRe z−1e−b we can deduce that in the neighbourhood of any point z,
these functions converge uniformly to H(z) := limb→1 Hb(z), so we conclude that H(z) is

an entire function. Thus, since Γ(z) has no zeros, −H(z)
2i sin(πz)Γ(z) is an analytic continuation

of ζ(z) to C − {zeros of sin(πz)} = C − Z. We already know that ζ(z) is holomorphic at
n > 1, and the simple poles of Γ(z) at the integers n ≤ 0 cancel those zeros of sin(πz),
meaning that those singularities are removable. Therefore we have produced an analytic
continuation of ζ(z) to C− {1}.
Theorem. ζ(z) has a simple pole at z = 1 with Res1 ζ(z) = 1.

Proof. Let I1, I2, and I3 be as in the proof of the previous theorem. As before, I1 + I2 =
−2i sin(πz), so I1 + I2 = 0 when z = 1. Our previous proof that I3 = 0 depended upon
Re z > 1. For z = 1 we get instead

H(z) = I3 =

∫ 2π

0

e−ǫeiθ

1− e−ǫeiθ
iǫeiθ dθ =

∫ 2π

0

iǫeiθ

eǫeiθ − 1
dθ

Letting v := ǫeiθ, we have v → 0 as ǫ → 0. Therefore

I3 = lim
v→0

∫ 2π

0

iv

ev − 1
dθ =

∫ 2π

0

lim
v→0

iv

ev − 1
dθ =

∫ 2π

0

i dθ = 2πi

Therefore

lim
z→1

(z − 1)ζ(z) = lim
z→1

−H(z)

Γ(z)

(z − 1)

2i sin(πz)
=

−2πi

1

1

−2πi
= 1

and so ζ(z) has a simple pole with residue 1 at z = 1.
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13. Prime Number Theorem

In this section, the symbol p will indicate a prime.
Let π(n) = number of primes which are less than or equal to n. We wish to show that

π(n) ≈ n/ log(n). More precisely, the claim is that limn→∞
π(n)

n/ log(n) = 1.

Set V (x) :=
∑

p≤x log(p).

Lemma. V (x) ≈ x implies π(x) ≈ x/ log(x).

Proof. Suppose that we know V (x) ≈ x.

V (x) =
∑

p≤x log(p) ≤ ∑

p≤x log(x) = π(x) log(x). Therefore π(x) log(x)
x ≥ V (x)

x so

limx→∞
π(x) log(x)

x ≥ 1, giving a lower bound for the limit.
However for all ǫ > 0,

V (x) =
∑

p≤x

log(p) ≥
∑

x1−ǫ≤p≤x

log(p) ≥
∑

x1−ǫ≤p≤x

log(x1−ǫ) =
∑

x1−ǫ≤p≤x

(1− ǫ) log(x)

= (1− ǫ) log(x)
∑

x1−ǫ≤p≤x

1

= (1− ǫ) log(x)
(

π(x)− π(x1−ǫ)
)

Therefore, noting that π(y) ≤ y for any y we have

(1− ǫ) log(x)(π(x))

x
≤ V (x)

x
+

(1− ǫ) log(x)π(x1−ǫ)

x
≤ V (x)

x
+

(1− ǫ) log(x)x1−ǫ

x

=
V (x)

x
+

(1− ǫ) log(x)

xǫ

Since limx→∞
log(x)
xǫ = 0, this gives

(1− ǫ) lim
x→∞

log(x)(π(x))

x
≤ lim

x→∞
V (x)

x
= 1.

Since this is true for every ǫ > 0, limx→∞
log(x)(π(x))

x ≤ 1.

Lemma. If
∫∞
1

V (t)−t
t2 dt converges then V (x) ≈ x.

Proof. Suppose
∫∞
1

V (t)−t
t2 dt converges to L. Then for any λ,

lim
x→∞

∫ λx

x

V (t)− t

t2
dt = lim

x→∞

∫ λx

1

V (t)− t

t2
dt− lim

x→∞

∫ x

1

V (t)− t

t2
dt = L− L = 0.

If V (x) 6≈ x then either there exists λ > 1 such that V (x)
x > λ for infinitely many x,

or there exists λ < 1 such that V (x)
x < λ for infinitely many x.

Assume there exists λ > 1 such that V (x)
x > λ for infinitely many x. For any such x,

∫ λx

x

V (t)− t

t2
dt ≥

∫ λx

x

λx− t

t2
dt =

∫ λ

1

x− t

t2
dt
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so limx→∞
∫∞
x

V (t)−t
t2 dt ≥

∫ λ

1
x−t
t2 dt > 0, a contradiction.

Assume there exists λ > 1 such that V (x)
x < λ for infinitely many x. For any such x,

∫ x

λx

V (t)− t

t2
dt ≤

∫ x

λx

λx− t

t2
dt = −

∫ λ

1

x− t

t2
dt

so limx→∞
∫∞
x

V (t)−t
t2 dt ≤

∫ λ

1
x−t
t2 dt < 0, a contradiction.

Since V (x) 6≈ x, leads to a contradiction in both cases, we conclude V (x) ≈ x.

Lemma. There exists a constant K such that V (x) ≤ Kx for all x ≥ 1.

Proof. Let N be a positive integer. If N < p ≤ 2N then p divides (2N)!
(N !)2 =

(

2N
N

)

and thus

V (2N)− V (N) =
∑

N<p≤2N

log(p) = log





∏

N<p≤2N

p



 ≤ log

[(

2N

N

)]

.

However

22N = (1 + 1)2N =

2N
∑

k=0

(

2N

k

)

≥
(

2N

N

)

and so V (2N)− V (N) ≤ log(22N ) = 2N log 2. Thus for any k ≥ 2,

V (2k) = (V 2k − V 2k−1

) + (V 2k−1 − V 2k−2

) + . . .+
(

V (4)− V (2)
)

+
(

V (2)− V (1)
)

≤ (2 + 4 + 8 + . . .+ 2k−1) log(2) < 2k log(2)

Given x ≥ 2, find k such that 2k−1 ≤ x ≤ 2k. Then V (x) ≤ V (2k) ≤ log(2)2k ≤ log(2)2x
so let K = 2 log(2).

Lemma. The function defined for Re z > 1 by ζ(z)− 1
z−1 has an analytic continuation to

the domain Re z > 0.

Proof. Set q(z) := ζ(z)− 1
z−1 .

ζ(z)− 1

z − 1
=

∞
∑

n=1

1

nz
−
∫ ∞

1

1

tz
dt =

∞
∑

n=1

∫ n+1

n

(

1

nz
− 1

tz

)

dt

For any z,

∣

∣

∣

∣

∫ n+1

n

(

1

nz
− 1

tz

)

dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ n+1

n

∫ t

n

z

uz+1
du dt

∣

∣

∣

∣

≤ M(Area of B)

where the region of integration B is the triangle forming half of the square [n, n + 1] ×
[n, n + 1] and M is the maximum value of | z

uz+1 | on B. The area of B is 1/2 and in the
region of integration u ≥ n, so M = | z

nz+1 |. For any real a,

|az| = |ez log(a)| = |ex log(a) |eiy log(a)| = |ex log(a)| = aRe z
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so we conclude
∣

∣

∣

∣

∫ n+1

n

(

1

nz
− 1

tz

)

dt

∣

∣

∣

∣

≤ |z|
2nRe z+1

.

Thus for every c > 0, the partial sums of the series
∑∞

n=1

∫ n+1

n

(

1
nz − 1

tz

)

dt converge uni-
formly in a ball around z providing an analytic continuation of q(z) to the domain Re z > c.
Since this is true for every c > 0, q(z) has an analytic continuation to the domain Re z > 0.

Set Φ(z) :=
∑

p p
−z log(p). For any c > 0, log(p) < pc for sufficiently large p, so

|p−z log(p)| ≤ |p−z+c| = |p−Re z+c| and hence
∑

p p
−z log(p) converges and defines a holo-

morphic function in the domain Re z > 1 + c. This is true for all c > 0 and so Φ(z) is a
holomorphic function in the domain Re z > 1.

ζ(z) =
∏

p
1

1− 1
pz

so logarithmic differentiation shows

ζ ′(z)

ζ(z)
= −

∑

p

d(1− p−z)/dz

1− p−z
= −

∑

p

p−z log(p)

1− p−z
= −

∑

p

log(p)

pz − 1
= −

∑

p

log(p)pz

pz(pz − 1)

= −
∑

p

log(p)(1 + pz − 1)

pz(pz − 1)
= −

∑

p

log(p)

pz(pz − 1)
−
∑

p

log(p)

pz

= −
∑

p

log(p)

pz(pz − 1)
− Φ(z)

Since for any z with Re z > 1/2, −∑p
log(p)

pz(pz−1) converges uniformly, it defines a holomor-

phic function in the domain Re z > 1/2, and therefore Φ(z) extends to a meromorphic

function in the domain Re z > 1/2 with simple poles at the poles of ζ′(z)
ζ(z) , which consist of

z = 1 together with the zeros of ζ(z).

Suppose Re a > 1/2. Then
∑

p
log(p)

pz(pz−1) is holomorphic in the neighbourhood of a, so

Resa Φ(z) = Resa

(

− ζ′(z)
ζ(z)

)

. In particular, Res1 Φ(z) = −(−1) = 1, since ζ(z) has a pole

of order 1 at 1. (Recall, if f has a pole of order k at a then Resa
(

f ′(z)/f(z)
)

= −k.)
Equivalently, limz→1(z − 1)Φ(z) = 1 so Φ(z) − 1

z−1 is holomorphic in the neighbourhood
of 1.

Theorem. ζ(z) 6= 0 if z = 1 + iα with α 6= 0 ∈ R.

Proof. Let the order of the zeros of ζ(z) at 1 + iα and 1 + 2iα be µ and ν respectively,
where we use the convention that a zero of order 0 means a place where the function is
nonzero. Notice that ζ(z̄) = ζ(z), so the order of the zeros of η at 1− iα and 1− 2iα are
also µ and ν.

As above, for Re a > 1/2, Resa Φ(z) = Resa − ζ′(z)
ζ(z) and so

lim
z→1±α

(z ± α)Φ(z) = −µ and lim
z→2±α

(z ± α)Φ(z) = −ν.
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Equivalent, letting ǫ := z − a,

lim
ǫ→0

ǫΦ(1 + ǫ± iα) = −µ and lim
ǫ→0

ǫΦ(1 + ǫ± 2iα) = −ν.

piα/2 + p−iα/2 is real and by definition

∑

p

log(p)

p1+ǫ

(

piα/2 + p−iα/2
)4

= Φ(1 + ǫ− 2iα) + 4Φ(1 + ǫ− iα) + 6Φ(1 + ǫ) + 4Φ(1 + ǫ+ iα) + Φ(1 + ǫ+ 2iα)

Since the left hand side is always positive, multiplying by ǫ > 0 and taking the limit at
ǫ → 0 gives

0 ≤ −ν − 4µ+ 6− 4µ− ν = 6− 8µ− 2ν.

Since µ is a non-negative integer, this implies µ = 0.

Since we showed earlier that on Re z > 1/2 the poles of Φ(z) occur at the zeros of ζ(z),
we get

Corollary. Φ(z)− 1
1−z is holomorphic on a domain containing Re z ≥ 1.

Lemma.

Φ(z) = z

∫ ∞

0

e−ztV (et) dt

Proof. Letting u := et,

z

∫ ∞

0

e−ztV (et) dt = z

∫ ∞

1

V (u)

uz

1

u
du = z

∫ ∞

1

∑

p≤u log(p)

uz+1
du =

∑

p

z

∫ ∞

p

log(p)

uz+1
du

=
∑

p

log(p)

pz
= Φ(z)

Recall that to prove the prime number theorem, it suffices to show that
∫∞
1

V (u)−u
u2 du

converges. Making the change of variable u := et,

∫ ∞

1

V (u)− u

u2
du =

∫ ∞

0

V (et)− et

e2t
et dt =

∫ ∞

0

(

e−tV (et)− 1
)

dt

Set f(t) := e−tV (t) − 1. Then the prime number theorem follows from the following
Lemma.
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Lemma.
∫∞
0

f(t) dt converges.

Proof. Let g(z) =
∫∞
0

e−ztf(t) dt.
We want to show that g(0) converges. From the previous Lemma,

1

z + 1
Φ(z + 1) =

∫ ∞

0

e−(z+1)tV (et) dt =

∫ ∞

0

e−zte−tV (et) dt

=

∫ ∞

0

e−ztf(t) dt+

∫ ∞

0

e−zt =

∫ ∞

0

e−ztf(t) dt+
1

z

and so g(z) = 1
z+1Φ(z + 1)− 1

z is holomorphic on a domain D containing Re z ≥ 0, since

we showed earlier that Φ(z)− 1
z−1 is holomorphic on a domain containing Re z ≥ 1.

For T > 0, let gT (z) =
∫ T

0
e−ztf(t) dt. Since the interval is bounded, we can differen-

tiate under the integral sign to conclude that gT (z) is holomorphic for all z. To prove the
Lemma, we show that limT→∞ gT (0) = g(0).

Pick a large R. The open set D contains the closed interval 0 × [−R,R] along the
y-axis so we can choose a small δ > 0 such that all points whose distance to 0× [−R,R] is
less than δ lie in D. Let C be the boundary of the region B := {z ∈ C | |z| ≤ R and Re z ≥
−δ}. Then g(z) is holomorphic on B by choice of δ.

Set hT (z) :=
(

g(z)−gT (z)
)

ezT
(

1 + z2

R2

)

. Since g(z) and gT (z) are holomorphic on B,

so is h(z). Notice that h(0) = g(0)− gT (0). Applying the Cauchy integral theorem to h(z)
and the curve C gives

g(0)− gT (0) =
1

2πi

∫

C

h(z)

z
dz.

We showed earlier that there exists a postive constantK such V (x) ≤ Kx for all x ≥ 1.
Therefore there exists M > 0 such that |f(t)| ≤ M for all t ≥ 0.

On the semicircle C+ := C ∩ {z ∈ C | Re z > 0},

|g(z)− gT (0)| =
∣

∣

∣

∣

∫ ∞

T

f(t)e−zt dt

∣

∣

∣

∣

≤ M

∫ ∞

T

|e−zt| dt = Me−(Re z)T

Re z

and
∣

∣

∣

∣

ezT
(

1 +
z2

R2

)

1

z

∣

∣

∣

∣

= eT Re z

∣

∣

∣

∣

(

1 +
z2

R2

)

1

z

∣

∣

∣

∣

= eT Re z

∣

∣

∣

∣

R2 + z2

R2

1

z

∣

∣

∣

∣

= eT Re z 1

R

∣

∣

∣

∣

(Re z)2 + (Im z)2 + z2

R2

∣

∣

∣

∣

= eT Re z 1

R

∣

∣

∣

∣

(Re z)2 + (Re z)2 + 2(Re z)(Im z)

R2

∣

∣

∣

∣

≤ eT Re z 1

R

∣

∣

∣

∣

(Re z)R+ (Re z)R+ 2(Re z)R

R2

∣

∣

∣

∣

≤ eT Re z 4Re z

R2
.
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Therefore
∣

∣

∣

∣

∣

∫

C+

h(z)

z
dz

∣

∣

∣

∣

∣

≤
∫

C+

4M

R2
dz =

4πM

R
.

Next look at C− := C ∩ {z ∈ C | Re z < 0} where we will consider g(z) and gT (z)
separately.

First consider gT (z). Let C ′
− be the semicircle C ′

− = {z ∈ C | |z| = R andRe z < 0}
Since gT (z) is entire,

∫

C− gT e
zT
(

1 + z2

R2

)

1
z dz =

∫

C′

−

gT e
zT
(

1 + z2

R2

)

1
z dz.

|gT (z)| =
∣

∣

∣

∣

∣

∫ T

0

f(t)e−zt dt

∣

∣

∣

∣

∣

≤ M

∫ T

−∞
|e−zt| dt = Me−T Re z

|Re z|

and so
∣

∣

∣

∫

C′

−

gT e
zT
(

1 + z2

R2

)

1
z dz

∣

∣

∣
≤ 4πM

R as before.

Now consider g(z). Since Re z < 0 on C−,
For every ǫ > 0, in the region |z| ≤ −ǫ, ezT converges uniformly to 0 as T → ∞, while

the other factor is independent of T . Letting Cǫ,− = C ∩ {z ∈ C | Re z ≤ −ǫ}, this shows
that

∣

∣

∣

∫

Cǫ,−
g(z)ezT

(

1 + z2

R2

)

1
z dz

∣

∣

∣
goes to 0 as T → ∞. Since C− = ∪ǫCǫ,−, this implies

that limT→∞
∫

C−

g(z)ezT
(

1 + z2

R2

)

1
z dz = 0.

Combining the previous estimates shows that

lim
T→∞

|g(0)− gT (0)| = lim
T→∞

∣

∣

∣

∣

1

2πi

∫

C

h(z)

z
dz

∣

∣

∣

∣

≤ 1

2π

(

4πM

R
+

4πM

R
+ 0

)

=
4M

R
.

Since this is true for all R,
∫∞
0

f(t) dt = g(0) = limT→∞ gT converges.

This concludes the proof of

Prime Number Theorem.
π(n) ≈ n

log(n)
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