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A Proof of Expression in Equation (6)

In this section, we restate the results provided in [3, 16]
in order to obtain eq.(6). We follow the well-known
Lagrangian duality approach as in Appendix A in [14].

The following result is provided in [3, 16]. Let ⌦(µ,⌃)
be the family of all distributions with mean µ and
covariance ⌃. For a fixed weight vector a and constant
b, we have:
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1

1 + d2

where d2 = inf
a

T
z�b

(z� µ)T⌃�1(z� µ)

Let a = �w and b = 0. We have:

sup
Z2⌦(µ,⌃)

P
z⇠Z [w

Tz  0] =
1

1 + d2

where d2 = inf
w

T
z0

(z� µ)T⌃�1(z� µ)

Note that ifwTµ  0, then we can just take z = µ and
obtain d2 = 0, which is certainly the optimum because
d2 � 0 due to positive definiteness of ⌃. In what
follows, we assume wTµ > 0, as required in eq.(6).

We are interested in the value of d2. That is, we seek
for a closed-form solution of the primal problem:

min
w

T
z0

(z� µ)T⌃�1(z� µ) (36)

which has the following Lagrangian:

L(z,�) = (z� µ)T⌃�1(z� µ) + �wTz

By optimality arguments (i.e. @L/@z = 0), we have
that L is minimized at z⇤ = ��

2

⌃w + µ. Therefore,
the Lagrange dual function is given by:

g(�) = inf
z

L(z,�)

= L(z⇤,�)

= ��2

4
wT⌃w + �wTµ

Consequently, the dual problem of eq.(36) is:

max
��0

g(�)

Again, by optimality arguments (i.e. @g/@� = 0), we

have that g is maximized at �⇤ = 2 w

Tµ
w

T
⌃w

. Note that
�⇤ � 0 since wTµ > 0. Finally:
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��0

g(�)

= g(�⇤)
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wT⌃w
⌘ F(w|µ,⌃)

B Moment Generating Function of

the Square of a Sub-Gaussian

Variable

Let s be a sub-Gaussian variable with parameter �s

and mean µs = E[s]. By sub-Gaussianity, we know
that the moment generating function is bounded as
follows:

(8t 2 R) E[et(s�µs)]  e
1
2 t

2�2
s

Our goal is to find a similar bound for the moment
generating function of the sub-exponential variable
v = s2. Let �(r) be the Gamma function, the mo-
ments of the sub-Gaussian variable s are bounded as
follows:

(8r � 0) E[|s|r]  r2
r/2�r

s�(r/2)

Let µv = E[v]. By power series expansion and since
�(r) = (r � 1)! for an integer r, we have:

E[et(v�µv)] = 1 + tE[v � µv] +
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By making |t|  1/(4�2
s), we have 1/(1 � 2t�2

s)  2. Fi-
nally, since (8↵) 1 + ↵  e↵, we have that for a sub-
Gaussian variable s with parameter �s:

(8|t|  1/(4�2
s)) E[et(s

2�E[s2])]  e16t
2�4

s (37)

Thus, we obtained a bound for the moment generat-
ing function of the sub-exponential variable s2, that
is similar to that of sub-Gaussian variables but holds
only for a small range of t.


