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%> whoami
henrik_linusson

%> pwd
/sweden/universities/borås

%> groups
msc phdstudent csl@bs copa

%> git clone http://github.com/donlnz/nonconformist
Cloning into 'nonconformist'

%> mail -s ”COPA tutorial confusion” henrik.linusson@hb.se
Thanks for the conformal prediction tutorial at COPA!
I have some questions...
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a motivating example



motivating example

How good is your prediction?

You want to estimate the risk of cancer recurrence in patient xk+1

To your disposal, you have:

1. A set of historical observations (x1, y1), . . . , (xk, yk)
∙ xi describes a patient by age, tumor size, etc
∙ yi is a measurement of cancer recurrence in patient xi

2. Some machine learning (classification or regression) algorithm
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motivating example

import pandas as pd

breast_cancer = pd.read_csv('./data/breast-cancer.csv')

# (x_1, y_1), ...., (x_k, y_k)
x_train = breast_cancer.values[:-1, :-1]
y_train = breast_cancer.values[:-1, -1]

# (x_k+1, y_k+1)
x_test = breast_cancer.values[-1, :-1]
y_test = breast_cancer.values[-1, -1]
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motivating example

from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(x_train, y_train)

print(knn.predict(x_test))
print(knn.predict_proba(x_test))

['no-recurrence-events']
[[ 0.8 0.2 ]]
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motivating example

How good is your prediction, really?

∙ Your classifier the patient will have no recurrence events.
Is it right?

∙ Your probability estimator says it’s 80% likely that the patient won’t have a
recurrence event.
How good is the estimate?

∙ Your regression model says the patient should have 0.4 recurrence events in the
future.
How close is that to the true value?

Will you trust your model?
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motivating example

The simple answer:

We expect past performance to indicate future performance.

∙ The model is 71% accurate on the test data,
so we assume it’s accurate for 71% of production data.

∙ The model has an AUC of 0.65 on the test data,
so we assume it has an AUC of 0.65 on production data.

∙ The model has an RMSE of 0.8 on the test data,
so we assume it has an RMSE of 0.8 on production data.

But...

How good are these estimates? Do we have any guarantees? Specifically, what about
patient xk+1? What performance should we expect from the model for this particular
instance?
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motivating example

Conformal Prediction

∙ Provides error bounds on a per-instance basis (unlike PAC theory).
∙ Probabilities are well-calibrated (80% means 80%).

∙ No need to know prior probabilities (unlike Bayesian learning).

∙ Only requires that data is exchangeable (i.i.d. → exchangeability).

∙ Can be used with any machine learning algorithm.
∙ Can be applied online, offline or semi-offline.
∙ The framework is rigorously proven, and simple to implement.

∙ Developed by Vladimir Vovk, Alex Gammerman & Glenn Shafer.1

1V. Vovk, A. Gammerman, and G. Shafer, Algorithmic learning in a random world. Springer, 2005
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conformal prediction at a glance



conformal prediction: intuition

Some intuition

Assume we have

∙ Some distribution Z : X× Y generating examples
∙ Some function f(z) → R
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conformal prediction: intuition

Some intuition

∙ Apply f(z) to some, say 4, examples from Z
∙ Call the resulting scores α1, α2, α3, α4.

∙ For simplicity, α1 ≤ α2 ≤ α3 ≤ α4

α1 α2 α3 α4
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conformal prediction: intuition

Some intuition

If we draw new examples from Z, and apply f(z) to them

∙ Given that all examples are exchangeable,
∙ we can estimate distribution of scores, relative to α1, ..., α4

20ҍ 20ҍ 20ҍ 20ҍ 20ҍ
α1 α2 α3 α4

P [f(z) ≤ α3] = 0.6
P [f(z) ≤ α4] = 0.8
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conformal prediction: intuition

For any distribution Q

Let X1, . . . , Xk ∼ Q, where Xi ≤ Xi+1

Let W ∼ Q

P[W ≤ Xi] = i
k+1

Equal-depth binning made simple!
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conformal prediction: intuition

Some intuition

Let f(zi) = |yi − h(xi)|

where h is a regression model trained on the domain of Z.

20ҍ 20ҍ 20ҍ 20ҍ 20ҍ
α1 α2 α3 α4

P [|yi − h(xi)| ≤ α3] = 0.6
P [|yi − h(xi)| ≤ α4] = 0.8
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conformal prediction: intuition

Some intuition

We know (xi, yi) for all examples that generated α1, ..., α4,
i.e., we can obtain values for α1, ..., α4.

20ҍ 20ҍ 20ҍ 20ҍ 20ҍ
0.03 0.07 0.11 0.13

P [|yi − h(xi)| ≤ 0.11] = 0.6
P [|yi − h(xi)| ≤ 0.13] = 0.8
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conformal prediction: intuition

Some intuition

For a novel example, where we know xi but not yi, we still know that

P [|yi − h(xi)| ≤ 0.11] = 0.6
P [|yi − h(xi)| ≤ 0.13] = 0.8

and can obtain h(xi) from our regression model, e.g. h(xi) = 0.3.

20ҍ 20ҍ 20ҍ 20ҍ 20ҍ
0.03 0.07 0.11 0.13

P [|yi − 0.3| ≤ 0.11] = 0.6
P [|yi − 0.3| ≤ 0.13] = 0.8

P [yi ∈ 0.3± 0.11] = 0.6
P [yi ∈ 0.3± 0.13] = 0.8
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conformal prediction at a glance

When does conformal prediction work?

We already noted a few things:

∙ Training data and test data belong to the same distribution (they are identically
distributed)

∙ Choice of f(z) is irrelevant (w.r.t. validity), as long as it is symmetric (training patterns
and test patterns are treated equally)

What else might we need?

∙ statistical independence
∙ exchangeability (order of observations is irrelevant)
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exchangeability?

Identically, independently and exchangeably distributed sampling (iid)

∙ Draw random numbers (with replacement) according to Z ∼ U[0, 3]
∙ P{1, 2, 3} = P{2, 1, 3} = P{1, 1, 1}

Identically, non-independently and exchangeably distributed sampling

∙ Draw random numbers (without replacement) according to Z ∼ U[0, 3]
∙ P{1, 2, 3} = P{2, 1, 3} ̸= P{1, 1, 1}

Identically, non-independently and non-exchangeably distributed sampling

∙ Draw random numbers (without replacement) according to Z ∼ U[0, 3], but skip any
number smaller than its predecessor

∙ P{1, 2, 3} ̸= P{2, 1, 3}
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conformal prediction at a glance

Conformal predictors output multi-valued prediction regions

∙ Sets of labels or real-valued intervals

Given

∙ a test pattern xi, and
∙ a significance level ϵ

A conformal predictor outputs

∙ A prediction region Γϵi that contains yi with probability 1− ϵ
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conformal prediction at a glance

Yc = {iris_setosa, iris_versicolor, iris_virginica}
Yr = R
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conformal prediction at a glance

Point predictions

hc(xk+1) = iris_setosa
hc(xk+2) = iris_versicolor
hc(xk+3) = iris_virginica

hr(xk+1) = 0.3
hr(xk+2) = 0.2
hr(xk+3) = 0.6

P[yi = hc(xi)] = ?

∆[yi,hr(xi)] = ?
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conformal prediction at a glance

Prediction regions

hc(xk+1) = {iris_setosa}
hc(xk+2) = {iris_setosa, iris_versicolor}
hc(xk+3) = {iris_setosa, iris_versicolor, iris_virginica}

hr(xk+1) = [0.2, 0.4]
hr(xk+2) = [0, 0.5]
hr(xk+3) = [0.5, 0.7]

P[yi ∈ hc(xi)] = 1− ϵ

P[yi ∈ hr(xi)] = 1− ϵ
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conformal prediction at a glance
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conformal prediction at a glance

To perform conformal prediction, we need

∙ A function f(z) → R

∙ A set of training examples, Zk ⊂ Z : Xn × Y
∙ A statistical test

Overall rationale

1. Apply f(z) to training examples in Zk, estimate distribution of f(z) ∼ Q
2. For every possible output ỹ ∈ Y, apply f(z) to (xk+1, ỹ)
3. Reject ỹ if it appears unlikely that f[(xk+1, ỹ)] ∼ Q
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conformal prediction at a glance

The function f(z)

We call this the nonconformity function

∙ A function that measures the “strangeness” of a pattern (xi, yi)
∙ Any function f(z) → R works (produces valid predictions)

Properties of a good nonconformity function (that produces small prediction sets)

∙ Give low scores to patterns (xi, yi)
∙ Give large scores to patterns (xi,¬yi)

Common choice: f(z) = ∆[h(xi), yi]

∙ h is called the underlying model
∙ ”Our random forest misclassified this example, it must be weird!”
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conformal prediction at a glance
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nonconformity functions

Probability estimate for correct class

If the probability estimate for an example’s correct class is low, the example is strange.

Margin of a probability estimating model

If an example’s true class is not clearly separable from other classes, it is strange.

Distance to neighbors with same class (or distance to neighbors with different classes)

If an example is not surrounded by examples that share its label, it is strange.

Absolute error of a regression model

If the prediction is far from the true value, the example is strange.

rand(0, 1)

Even if it’s not useful, it’s still valid.
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conformal prediction at a glance

Conformal prediction process

1. Define a nonconformity function.
2. Measure the nonconformity of labeled examples (x1, y1), ..., (xk, yk).
3. For a new pattern xi, test all possible outputs ỹ ∈ Y:

3.1 Measure the nonconformity of (xi, ỹ).
3.2 Is (xi, ỹ) particularly nonconforming compared to the training examples? Then ỹ is

probably an incorrect classification. Otherwise, include it in the prediction region.
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conformal prediction: formal definition

To determine whether an example is “too nonconforming”, we use a statistical test.

pỹ
i =

∣∣∣{zj ∈ Z : αj > αỹ
i

}∣∣∣
k+ 1 + θ

∣∣∣{zj ∈ Z : αj = αỹ
i

}∣∣∣+ 1
k+ 1 , θ ∼ U [0, 1]

(Portion of examples at least as nonconforming as the tentatively labeled test example)

Prediction region

Γϵi =
{
ỹ ∈ Y : pỹ

i > ϵ
}

∙ Classification — known αỹ
i , find pỹ

i

∙ Regression — known pỹ
i , find αỹ

i
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i , find αỹ
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types of conformal predictors

Transductive conformal prediction (TCP) — f(z, Z)

Original conformal prediction approach

∙ Requires retraining model for each new test example
∙ For regression problems, only certain models (e.g. kNN) can be used as of yet

Inductive conformal prediction (ICP) — f(z)

Revised approach

∙ Requires model to be trained only once
∙ Requires that some data is set aside for calibration

∙ To avoid violating exchangeability assumption

30



conformal classification



inductive conformal classification

Divide the training set Z into two disjoint subsets

A proper training set Zt
A calibration set Zc where |Zc| = q

Fit a model h using Zt

This is the underlying model

Choose an f(z), e.g. f(zi) = 1− P̂h(yi | xi)

This is the nonconformity function

Apply f(Z) to ∀zi ∈ Zc

Save these calibration scores
We denote these α1, ..., αq
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inductive conformal classification

Apply f(z) to Zc, and obtain a set of calibration scores α1, ..., αq
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inductive conformal classification

For each ỹ ∈ Y

Let αỹ
i = f [(xi, ỹ)]

Calculate

pỹ
i =

∣∣∣{zj ∈ Zc : αj > αỹ
i

}∣∣∣
q+ 1 + θ

∣∣∣{zj ∈ Zc : αj = αỹ
i

}∣∣∣+ 1
q+ 1 , θ ∼ U [0, 1]

Fix a significance level ϵ ∈ (0, 1)

Prediction region

Γϵi =
{
ỹ ∈ Y : pỹ

i > ϵ
}
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inductive conformal classification

Choose a significance level ϵ
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inductive conformal classification

Obtain αi using f(z) for each possible class (xi, ỹ1), (xi, ỹ2), (x1, ỹ3), ..., resulting in
αỹ1
i , α

ỹ2
i , α

ỹ3
i , ...
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inductive conformal classification

Reject/include based on the p-value statistic, and the chosen ϵ
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inductive conformal classification

Iris, Random Forest
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conformal regression



inductive conformal regression

Divide the training set Z into two disjoint subsets

A proper training set Zt
A calibration set Zc where |Zc| = q

Fit a model h using Zt

This is the underlying model

Let f(zi) = |yi − h(xi)|

This is the nonconformity function

Apply f(z) to ∀zi ∈ Zc

Save these calibration scores, sorted in descending order
We denote these α1, ..., αq
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This is the nonconformity function

Apply f(z) to ∀zi ∈ Zc

Save these calibration scores, sorted in descending order
We denote these α1, ..., αq
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inductive conformal regression

Fix a significance level ϵ ∈ (0, 1)

Let s = ⌊ϵ(q+ 1)⌋.

This is the index of the (1− ϵ)-percentile nonconformity score, αs.
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inductive conformal regression

The prediction for a new example is Γϵi = h(xi)± αs

The interval contains yi with probability 1− ϵ

Note

For regression, we can’t enumerate each ỹ ∈ Y, instead we work backwards, i.e., fix the
p-value and then find an appropriate αỹ

i .

∙ Hence, our nonconformity function must be (partially) invertible for quick
calculation of intervals
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inductive conformal regression

Boston Housing, Random Forest, ϵ = 0.1
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inductive conformal regression

Static prediction interval size

Using f(zi) = |yi − h(xi)| and Γϵi = h(xi)± αs

means each prediction interval has the same size (αs).

But we want individual bounds for each xi...

Normalized nonconformity functions

Normalized nonconformity functions utilize an additional term σi.

f(zi) =
|yi − h(xi)|

σi

σi is an estimate of the difficulty of predicting yi
A common practice is to let σ be predicted by a model, e.g., σi = ∆̂[yi,h(xi)]

The normalized prediction for a new example is Γϵi = h(xi)± αsσi
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inductive conformal regression

Divide the training set Z into two disjoint subsets

A proper training set Zt
A calibration set Zc

Fit a model h using Zt

In addition

∙ Let Et be the residual errors of h (i.e. the errors that h makes on Zt)
∙ Fit a model g using Xt × Et

f(zi) =
|yi − h(xi)|
g(xi) + β

β is a sensitivity parameter that determines the impact of normalization

Apply f(z) to ∀zi ∈ Zc

Save these calibration scores, sorted in descending order
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inductive conformal regression

Fix a significance level ϵ ∈ (0, 1)

Let s = ⌊ϵ(q+ 1)⌋
This is the index of the (1− ϵ)-percentile nonconformity score, αs.

Prediction region

The prediction for a new example is Γϵi = h(xi)± αs(g(xi) + β)

Interval contains yi with probability 1− ϵ
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inductive conformal regression

Boston Housing, Random Forest, normalized nonconformity function, ϵ = 0.1
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motivating example revisited

How good is your prediction?

You want to estimate the risk of cancer recurrence in patient xk+1

To your disposal, you have:

1. A set of historical observations (x1, y1), . . . , (xk, yk)
∙ xi describes a patient by age, tumor size, etc
∙ yi is a measurement of cancer recurrence in patient xi

2. Some machine learning (classification or regression) algorithm
3. Conformal prediction
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motivating example revisited

import pandas as pd

breast_cancer = pd.read_csv('./data/breast-cancer.csv')

# proper training set
x_train = breast_cancer.values[:-100, :-1]
y_train = breast_cancer.values[:-100, -1]

# calibration set
x_cal = breast_cancer.values[-100:-1, :-1]
y_cal = breast_cancer.values[-100:-1, -1]

# (x_k+1, y_k+1)
x_test = breast_cancer.values[-1, :-1]
y_test = breast_cancer.values[-1, -1]

# Omitted: convert y_train, y_cal, y_test to numeric
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motivating example revisited

import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from nonconformist.icp import IcpClassifier
from nonconformist.nc import NcFactory

knn = KNeighborsClassifier(n_neighbors=5)
nc = NcFactory.create_nc(knn)
icp = IcpClassifier(nc)

icp.fit(x_train, y_train)
icp.calibrate(x_cal, y_cal)

print(icp.predict(np.array([x_test]), significance=0.05))

[[ True False ]]
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nonconformist

Installation options:

∙ git clone http://github.com/donlnz/nonconformist
∙ pip install nonconformist

Nonconformist supports:

∙ Conformal classification (inductive)
∙ Conformal regression (inductive)
∙ Mondrian (e.g., class-conditional) models
∙ Normalization
∙ Aggregated conformal predictors (≈ icp ensembles)
∙ Out-of-bag calibration
∙ Plug-and-play using sklearn
∙ User extensions
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validity and efficiency

Conformal predictors are subject to two desiderata

Validity — coherence between ϵ and error rate
Efficiency — size of prediction regions (i.e. informativeness)

Conformal predictors are automatically valid
Efficiency depends on the nonconformity function (and thus the underlying model)

Confidence-efficiency trade-off

The more confidence we require in a prediction, the larger it will (likely) be
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validity and efficiency

ϵ errors size
0.01 0.006 38.31
0.05 0.040 16.90
0.10 0.089 11.46
0.20 0.191 7.562

Table: Boston 10x10 RF CV

ϵ errors size
0.01 0.011 2.347
0.05 0.055 1.052
0.10 0.100 0.930
0.20 0.202 0.804

Table: Iris 10x10 RF CV
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validity and efficiency

Digits, Random Forest, 10x10 CV
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validity and efficiency

Diabetes, Random Forest, 10x10 CV
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validity and efficiency

Empirical validity is measured by observing the error rate of a conformal predictor.

Efficiency can be measured in many different ways.2

Examples — regression

∙ Average size of prediction interval

Examples — classification

∙ Average number of classes per prediction (AvgC)
∙ Rate of predictions containing a single class (OneC)
∙ Average p-value

2V. Vovk, V. Fedorova, I. Nouretdinov, and A. Gammerman, “Criteria of efficiency for conformal prediction,” 2014
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conditional conformal prediction

Conformal predictors are, by default, unconditional

Their guaranteed error rate applies to the entire test set, on average.

∙ Difficult patterns (e.g. minority class) may see a greater error rate than expected
∙ Easy patterns (e.g. majority class) may see a smaller error rate than expected

Example — Iris data set

∙ One linearly separable class (easy)
∙ Two linearly non-separable classes (difficult)
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conditional conformal prediction
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conditional conformal prediction

Conditional conformal predictors3 help solve this by

Dividing the problem space into several disjoint subspaces

∙ e.g. let each class represent a subspace, or
∙ define subspace based on some input variable(s) (age, gender, etc.)

Guaranteeing an error rate at most ϵ for each subspace

3V. Vovk, “Conditional validity of inductive conformal predictors,” Journal of Machine Learning Research -
Proceedings Track, vol. 25, pp. 475–490, 2012
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conditional conformal prediction

Define a mapping function K(zi) = κi

Examples

K(zi) = yi (1)

K(zi) =


1 if xi,1 < 50
2 if 50 ≤ xi,1 < 100
3 otherwise

(2)

Conditional p-value

pỹ
i =

|{zj ∈ Zc : αj > αỹ
i } ∧ K(zi) = K(zj)|

|K(zi) = K(zj)|+ 1 + θ
|{zj ∈ Zc : αj = αỹ

i } ∧ K(zi) = K(zj)|
|K(zi) = K(zj)|+ 1 , θ ∼ U[0, 1]
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conditional conformal prediction
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choosing a calibration set size

The calibration set

Inductive conformal predictors need some data set aside for calibration? — How much?

25% ∼ 33% are common choices, and provide a good balance between underlying model
performance and calibration accuracy.4

Alternatives

Bagged ensembles can use out-of-bag examples for calibration.5 6

4H. Linusson, U. Johansson, H. Boström, and T. Löfström, “Efficiency comparison of unstable transductive and
inductive conformal classifiers,” in Artificial Intelligence Applications and Innovations. Springer, 2014, pp.
261–270

5U. Johansson, H. Boström, T. Löfström, and H. Linusson, “Regression conformal prediction with random
forests,” Machine Learning, vol. 97, no. 1-2, pp. 155–176, 2014

6H. Boström, H. Linusson, T. Löfström, and U. Johansson, “Accelerating difficulty estimation for conformal
regression forests,” Annals of Mathematics and Artificial Intelligence, pp. 1–20, 2017
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choosing a calibration set size

The calibration set cont.

For an inductive conformal predictor to be exactly valid, it requires exactly kϵ−1 − 1
calibration instances.

∙ Otherwise, discretization errors come into play
∙ (Rendering the conformal predictor conservatively valid)

∙ Of particular importance when calibration set is small
∙ e.g. when using conditional conformal prediction

Alternatives

Interpolation of p-values can alleviate this problem.7 8

7L. Carlsson, E. Ahlberg, H. Boström, U. Johansson, and H. Linusson, “Modifications to p-values of conformal
predictors,” in Statistical Learning and Data Sciences. Springer, 2015, pp. 251–259

8U. Johansson, E. Ahlberg, H. Boström, L. Carlsson, H. Linusson, and C. Sönströd, “Handling small calibration
sets in mondrian inductive conformal regressors,” in Statistical Learning and Data Sciences. Springer, 2015, pp.
271–280
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other scenarios

Other scenarios for conformal prediction

∙ Anomaly detection with guaranteed maximum false positive rates.9

∙ Concept drift detection / i.i.d. checking with maximum false positive rates.10

∙ Rule exctraction with guaranteed fidelity.11

∙ Semi-supervised learning.12

9R. Laxhammar and G. Falkman, “Conformal prediction for distribution-independent anomaly detection in
streaming vessel data,” in Proceedings of the First International Workshop on Novel Data Stream Pattern Mining
Techniques. ACM, 2010, pp. 47–55

10V. Fedorova, A. Gammerman, I. Nouretdinov, and V. Vovk, “Plug-in martingales for testing exchangeability
on-line,” in 29th International Conference on Machine Learning, 2012

11U. Johansson, R. König, H. Linusson, T. Löfström, and H. Boström, “Rule extraction with guaranteed fidelity,” in
Artificial Intelligence Applications and Innovations. Springer, 2014, pp. 281–290

12X. Zhu, F.-M. Schleif, and B. Hammer, “Semi-supervised vector quantization for proximity data,” in Proc. of
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN
2013), Louvain-La-Neuve, Belgium, 2013, pp. 89–94
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research topics

Nonconformity functions and underlying models

∙ H. Papadopoulos, V. Vovk, and A. Gammerman, “Regression conformal prediction with
nearest neighbours,” Journal of Artificial Intelligence Research, vol. 40, no. 1, pp.
815–840, 2011

∙ U. Johansson, H. Boström, and T. Löfström, “Conformal prediction using decision
trees,” in International Conference Data Mining (ICDM). IEEE, 2013

∙ H. Papadopoulos, “Inductive conformal prediction: Theory and application to neural
networks,” Tools in Artificial Intelligence, vol. 18, pp. 315–330, 2008

∙ U. Johansson, H. Boström, T. Löfström, and H. Linusson, “Regression conformal
prediction with random forests,” Machine Learning, vol. 97, no. 1-2, pp. 155–176, 2014
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research topics

Combined conformal predictors

∙ V. Vovk, “Cross-conformal predictors,” Annals of Mathematics and Artificial
Intelligence, pp. 1–20, 2013

∙ L. Carlsson, M. Eklund, and U. Norinder, “Aggregated conformal prediction,” in
Artificial Intelligence Applications and Innovations. Springer, 2014, pp. 231–240

∙ H. Papadopoulos, “Cross-conformal prediction with ridge regression,” in Statistical
Learning and Data Sciences. Springer, 2015, pp. 260–270

Not (yet) proven valid

But seems to be working well in practice.
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research topics

Application domains

∙ A. Lambrou, H. Papadopoulos, E. Kyriacou, C. S. Pattichis, M. S. Pattichis,
A. Gammerman, and A. Nicolaides, “Assessment of stroke risk based on
morphological ultrasound image analysis with conformal prediction,” in Artificial
Intelligence Applications and Innovations. Springer, 2010, pp. 146–153

∙ D. Devetyarov, I. Nouretdinov, B. Burford, S. Camuzeaux, A. Gentry-Maharaj, A. Tiss,
C. Smith, Z. Luo, A. Chervonenkis, R. Hallett et al., “Conformal predictors in early
diagnostics of ovarian and breast cancers,” Progress in Artificial Intelligence, vol. 1,
no. 3, pp. 245–257, 2012

∙ M. Eklund, U. Norinder, S. Boyer, and L. Carlsson, “The application of conformal
prediction to the drug discovery process,” Annals of Mathematics and Artificial
Intelligence, vol. 74, no. 1-2, pp. 117–132, 2015
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research topics

Application domains

∙ I. Nouretdinov, S. G. Costafreda, A. Gammerman, A. Chervonenkis, V. Vovk, V. Vapnik,
and C. H. Fu, “Machine learning classification with confidence: application of
transductive conformal predictors to mri-based diagnostic and prognostic markers
in depression,” Neuroimage, vol. 56, no. 2, pp. 809–813, 2011

∙ J. Vega, A. Murari, S. Dormido-Canto, R. Moreno, A. Pereira, A. Acero, and J.-E.
Contributors, “Adaptive high learning rate probabilistic disruption predictors from
scratch for the next generation of tokamaks,” Nuclear Fusion, vol. 54, no. 12, p. 123001,
2014
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suggested reading

Suggested reading

∙ V. Vovk, A. Gammerman, and G. Shafer, Algorithmic learning in a random world.
Springer, 2005

∙ www.alrw.net
∙ G. Shafer and V. Vovk, “A tutorial on conformal prediction,” The Journal of Machine
Learning Research, vol. 9, pp. 371–421, 2008

∙ A. Gammerman, V. Vovk, and V. Vapnik, “Learning by transduction,” in Proceedings of
the Fourteenth conference on Uncertainty in artificial intelligence. Morgan
Kaufmann Publishers Inc., 1998, pp. 148–155

∙ A. Gammerman and V. Vovk, “Hedging predictions in machine learning the second
computer journal lecture,” The Computer Journal, vol. 50, no. 2, pp. 151–163, 2007
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suggested reading

Suggested reading cont.

∙ H. Papadopoulos, K. Proedrou, V. Vovk, and A. Gammerman, “Inductive confidence
machines for regression,” in Machine Learning: ECML 2002. Springer, 2002, pp.
345–356

∙ H. Papadopoulos and H. Haralambous, “Reliable prediction intervals with regression
neural networks,” Neural Networks, vol. 24, no. 8, pp. 842–851, 2011

∙ U. Johansson, H. Boström, T. Löfström, and H. Linusson, “Regression conformal
prediction with random forests,” Machine Learning, vol. 97, no. 1-2, pp. 155–176, 2014
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nonconformist

Nonconformist - conformal prediction in Python

Repository: https://github.com/donlnz/nonconformist
Docs: http://donlnz.github.io/nonconformist/

Available on PyPi

% pip install nonconformist

Questions, suggestions, feedback, contributions, etc.?

henrik.linusson@hb.se
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