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S
uppose that x is a discrete-time signal of length N that can be expressed with
only m digital frequencies where m � N:

x[t ] = 1√
N

m∑

k=1

ake2π iωkt/N, t = 0, 1, 2, . . . , N − 1.

We study the problem of identifying the unknown frequencies ω1, . . . , ωm that partici-
pate and their coefficients a1, . . . , am. Conceptually, the easiest way is to perform an N-
point discrete Fourier transform (DFT):
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X [ω] = 1√
N

N−1∑
t=0

x[t ]e−2π iωt/N, ω = 0, 1, 2, . . . , N − 1.

Having obtained all N Fourier coefficients, it is straightfor-
ward to locate the m nonzero frequencies and their coeffi-
cients. Although you can compute the DFT efficiently by
means of the fast Fourier transform (FFT), the fact remains
that you must compute a very large number of zero coeffi-
cients when the signal involves few frequencies. This
approach seems rather inefficient.

The discrete uncertainty principle [8] suggests that it
might be possible to use fewer samples from the signal.
Indeed, if the spectrum of a length-N discrete-time signal
contains only m nonzero frequencies, then the time domain
has at least N/m nonzero positions. As a result, even if we
sample the signal at relatively few points in time, the sam-
ples should carry significant information about the spec-
trum of the signal.

This article describes a computational method, called the
Fourier sampling algorithm, that exploits this insight [10].
The algorithm takes a small number of (correlated) random
samples from a signal and processes them efficiently to pro-
duce an approximation of the DFT of the signal. The algo-
rithm offers provable guarantees on the number of samples,
the running time, and the amount of storage. As we will see,
these requirements are exponentially better than the FFT for
some cases of interest.

This article describes in detail how to implement a version of
Fourier sampling, it presents some evidence of its empirical per-
formance, and it explains the theoretical ideas that underlie the
analysis. Our hope is that this tutorial will allow engineers to
apply Fourier sampling to their own problems. We also hope
that it will stimulate further research on practical implementa-
tions and extensions of the algorithm.

THE FOURIER SAMPLING ALGORITHM

A SUMMARY
We begin with a discussion of performance guarantees, so
it is clear what the Fourier sampling algorithm can accom-
plish and what it cannot. The algorithm requires random
access to the time domain of a signal x of length N . The
input parameter m is the number of frequencies sought. As
output, the algorithm produces a signal y that approxi-
mates x with only m frequencies:

y [t ] = 1√
N

∑m

k=1
ake2π iωkt/N. (1)

This approximation is represented by the set {(ωk, ak) :
k = 1, 2, . . . , m} of frequency/coefficient pairs. In a moment,
we will see that the approximation error is comparable with the
minimal error possible using a signal of the form (1).

The algorithm also involves several design parameters.
The number ε > 0 determines the quality of the computed

approximation in comparison with the best approximation.
The number δ > 0 is the probability that the algorithm fails
with respect to the random choices it makes during its exe-
cution. Both these quantities can be controlled by taking
additional samples from the signal. The following theorem
shows how all the factors interact.

THEOREM 1 [10]
Let x be an arbitrary signal of length N. The Fourier sampling
algorithm takes m poly (ε−1, log(δ−1), log(N )) random sam-
ples of the signal. (The term poly(·) indicates an unspecified
polynomial in its arguments.) With probability at least 1 − δ,
the algorithm returns an approximation y of the form (1) that
satisfies the error bound

‖x − y‖2 ≤ (1 + ε)‖x − xopt‖2 + ε

where xopt is the best approximation to x of the form (1). It pro-
duces this approximation using time and storage m poly
(ε−1, log(δ−1), log(N )).

Let us elaborate on the statement of this theorem. When
m � N, the algorithm takes far fewer samples than the total
length of the signal. We emphasize that the sample set depends
on random choices, but it does not depend on the signal or the
progress of the algorithm. Therefore, the sample locations can
be established before execution. Moreover, the run time and
storage requirements of the algorithm are roughly proportional
to the number of frequencies it outputs, rather than the signal
length. All the resource requirements are logarithmic in N, the
signal length, so Fourier sampling has the potential to be expo-
nentially faster than the FFT.

Second, let us discuss how to interpret the approximation
guarantee. When the signal is well approximated by a set of m
frequencies, the right-hand side of the error bound is small,
so the algorithm produces an approximation that is competi-
tive with the optimal m-frequency approximation. In contrast,
when it takes many frequencies to approximate the signal, the
algorithm will return a poor result. In this setting, Fourier
sampling is not an appropriate tool.

Even if the true signal consists of m frequencies contami-
nated with heavy noise, the algorithm may not return the m
ideal frequencies. Indeed, the theorem only promises that the
error in the output approximation is comparable to the
amount of noise. Nevertheless, a careful analysis shows that
the energy of the noise must be substantial compared with
the signal energy before the algorithm delivers frequencies
different from the ground truth.

A more familiar way to analyze the quality of the approxima-
tion y is to compute its reconstruction signal-to-noise ratio
(SNR). Suppose that our signal x consists of m frequencies plus
an orthogonal noise vector ν. Then

SNR = 10 log10

( ‖x‖2

‖x − y‖2

)
≥ 10 log10

( ‖x‖2

(1 + ε)‖ν‖2

)
.



Consequently, the SNR of the reconstructed signal is smaller than
optimal by an additive term. We can reduce this loss by decreas-
ing the design parameter ε, although this revision results in addi-
tional samples of the signal and increased computation time.

RISING TO THE CHALLENGE
The fundamental challenge for the Fourier sampling algo-
rithm is to divine information about the frequency spectrum
of a signal under severe constraints on the number of samples
and arithmetic operations. To do so, the algorithm makes ran-
dom choices to avoid worst-case scenarios. This means that
the procedure has access to random bits separate from and in
addition to its input. In its execution, the algorithm uses those
random bits to guide its behavior. For each input, it succeeds
with high probability with respect to the source of random-
ness. This idea is substantially different from the use of statis-
tical signal models, so practitioners of signal processing may
be less familiar with it. Here are the key observations:

1) Random time samples of a signal allows us to estimate cer-
tain characteristics, such as its zero-frequency coefficient and
its energy.
2) Random permutation of the spectrum allows us to separate
significant tones into different frequency bands. The tones
can then be isolated with bandpass filters.

The algorithm also exploits many standard methods from the
DSP toolbox:

1) Sampling in time corresponds to summing modulated
Fourier coefficients.
2) Dilation in time corresponds to dilation of the spectrum.
3) Modulation in time corresponds to translation of the
spectrum.
4) The FFT can be used to apply a filter bank, which
multiplies the spectrum of the signal by a
collection of transfer functions.
5) (Nonuniform) FFTs allow fast evaluation of
exponential polynomials at multiple points.

The algorithm combines these ideas in a way that is
complicated and—perhaps—unusual. Later on in
this article, we provide more detailed information
about how these methods allow us to approximate
the spectrum of an unknown signal.

BACKGROUND
AND RELATED WORK
The Fourier sampling algorithm differs from tra-
ditional spectral estimation techniques in a vari-
ety of ways. First, unlike Prony’s method [6] and
its more stable variations [17], the algorithm is
not predicated upon evenly spaced samples—just
the opposite. Second, the reconstruction algo-
rithm uses the samples in a nonlinear fashion,
unlike the procedures of [12]. It does not form a
linear combination of the sample values. Third,
the algorithm and its analysis are inherently dis-
crete. The samples are drawn from a discrete-

time signal (rather than an underlying continuous-time sig-
nal) and the output of the algorithm is an approximation to
the discrete spectrum.

The Fourier sampling algorithm is related to the compres-
sive sampling paradigm, but the two approaches focus on dif-
ferent resource constraints. Let us consider the case where
signals of interest have few significant frequencies in com-
parison with their length. The primary concern of compres-
sive sampling is to reconstruct the spectrum of the signal
from as few samples as possible with extremely strong guar-
antees on the probability of success. Researchers have estab-
lished that several different randomized sampling schemes
are compatible with this goal [5], [4]. Most of the literature
concentrates on reconstruction algorithms such as convex
programming, but other methods are available [3], [11]. The
Fourier sampling algorithm is closest in spirit to the algo-
rithms in [14] and [15].

EMPIRICAL PERFORMANCE
The Fourier sampling algorithm has been implemented and
tested in a variety of settings to assess its empirical perform-
ance. We discuss one particular implementation [13], the Ann
Arbor fast Fourier transform (AAFFT), and we provide evidence
that it is both powerful and resource efficient.

First, we consider a problem inspired by communication
devices that use frequency-hopping modulation schemes.
Suppose we wish to recover a synthetic signal consisting of
two tones that change at regular intervals. These signals are
contaminated with white Gaussian noise so the SNR is −17
dB. We apply the AAFFT implementation to identify the loca-
tion of the two tones. Figure 1 exhibits the output using a
sparsogram, which is a time-frequency plot that displays only

[FIG1] The sparsogram for a synthetic frequency-hopping signal consisting of
two tones in noise, as computed by the AAFFT.
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the dominant frequencies in the signal. As a benchmark, we
also computed the sparsogram with fastest Fourier transform
in the west (FFTW), a highly optimized implementation of
the FFT. Both AAFFT and FFTW obtain the correct result in
the same amount of time, but AAFFT samples only 3% of the
signal—a factor 33× undersampling.

This first experiment provides evidence that AAFFT uses far
fewer samples than FFTW. The AAFFT implementation is also
substantially faster than FFTW for long signals. To prove this
point, we constructed (noiseless) signals of different lengths by
selecting 60 frequencies at random and assigning them unit
coefficients. We compared the running time for AAFFT to
identify these 60 frequencies with the running time for FFTW
using a log-log scale. The result appears in Figure 2. Notice

that the execution time of FFTW grows dramatically while the
speed of the AAFFT remains virtually constant as the signal
length varies across several orders of magnitude.

At the beginning of the tutorial, we mentioned that the
algorithm may fail completely to approximate the signal. The
failure probability can be controlled by increasing the num-
ber of samples of the signal that we take. We constructed sig-
nals of length N = 222 (about 4 million) containing one tone
in additive white Gaussian noise, and we attempted to locate
the frequency with AAFFT. For each sampling rate, we per-
formed 1,000 trials and computed the fraction of those trials
in which the tone was successfully identified. Figure 3 is a
phase transition chart that indicates the probability of recov-
ering a single frequency in heavy noise. We see, for example,
that AAFFT can recover the tone 90% of the time at an SNR
of −15 dB with 100× undersampling. This rate is fully two
orders of magnitude below Nyquist.

We also studied the number of samples necessary to recover a
larger number of frequencies. We fixed the signal length at
N = 222 and measured the number of samples necessary to recov-
er m tones at least 99% of the time. Figure 4 displays the results.
For example, if we sample 10% of the signal, the AAFFT imple-
mentation can recover 1,000 tones over 99% of the time. If an
application can tolerate a higher failure probability, then AAFFT
can recover more tones with the same level of undersampling.

IMPLEMENTATION
This section gives an overview of a simplified version of the
AAFFT implementation, including explicit pseudocode (see
“Algorithm 1”). This version assumes that N is a power of two,
and it removes some failure-control mechanisms. The complete
AAFFT algorithm is somewhat more complicated than the code
here, but this basic implementation still works quite well.

Let us note that the upcoming description
of the algorithm interleaves the sampling of
the signal with the other actions of the algo-
rithm. We have elected this description to
make it clear precisely where samples are
required. Nevertheless, we emphasize that
the samples used by the algorithm are totally
nonadaptive. In particular, it is possible to
select the sample points and draw the sam-
ples from the signal prior to runtime.

The algorithm iteratively constructs an approxi-
mation y to the input signal. As it runs, the algo-
rithm represents the approximation as a list � of at
most K frequency/coefficient pairs:
� = {(ωk, ak) : k = 1, 2, . . . , K}. The approxima-
tion y is implicitly determined via (1). The approxi-
mation also induces a residual signal r = x − y.
The most critical parameter in the algorithm is the
size K of frequency list. In the pseudocode, we have
chosen K = 8m. Increasing the factor eight
improves accuracy at the cost of additional samples
and arithmetic.

[FIG3] Phase transition diagram for recovering one frequency in noise.  The plot
uses shades of gray to indicate the probability of successful recovery as a function
of the SNR and the percentage of the signal that is sampled.  The undersampling
rate is the reciprocal of the sampling percentage.
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[FIG2] The execution time of FFTW and AAFFT for recovering 60
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The algorithm often needs to determine the value of the resid-
ual signal at designated sampling locations. Since the approxima-
tion has the form (1), the SAMPLE-RESIDUAL subroutine is able to

perform this computation efficiently with a nonuniform FFT. The
literature describes several approaches to computing nonuniform
FFTs, including [2], [1]. Explicit pseudocode is also available [7,

IEEE SIGNAL PROCESSING MAGAZINE [61] MARCH 2008

ALGORITHM 1: SIMPLIFIED FOURIER SAMPLING ALGORITHM

Fourier Sampling (x, m)

Input: Input signal x of lengthN = 2α and number m of frequencies to find
Output: Set � = {(ω, aω)} containing O(m) frequency/coefficient pairs

K ← 8m and � ← ∅
for j = 1 to 5

� ← Identification (x,�, K ) {Identify K frequencies in the residual}
c ← Estimation (x,�,�) {Estimate Fourier coefficients}
for each frequency ω ∈ � and corresponding coefficient cω

if (ω, aω) ∈ � for some aω then replace the pair with (ω, aω + cω)

else add the new pair (ω, cω) to �
Retain K pairs from � whose coefficients have greatest magnitude 

Retain m pairs from � whose coefficients have greatest magnitude

Sample-Residual (x, �, t, σ, K )

for k = 1 to K
uk ← x [t + σ(k − 1) mod N ] {Arithmetic progression from signal}
vk ← ∑

(ω,aω)∈�(aωe2π iωt/N) e2π i(ωσ/N)(k−1) {In parallel, via nonuniform FFT}
return (u − v) {Residual is signal minus approximation}

Identification (x, �, K)

reps ← 5 and ωk ← 0 for k = 1, 2, . . . , K
Draw σ ∼ Uniform {1, 3, 5, . . . , N − 1} {Random shattering parameter}
for b = 0 to log2(N/2) {Loop from LSB to MSB}

votek ← 0 for k = 1, 2, . . . , K
for j = 1 to reps

Draw t ∼ Uniform {0, 1, 2, . . . , N − 1} {Random sample point}
u ← Sample-Shattering (t) {Samples correlated for testing bth bit}
v ← Sample-Shattering (t + N/2b+1)

for k = 1 to K
E0 ← uk + e−π iωk/2b

vk {Apply bit-test filters to demodulated signal}
E1 ← uk − e−π iωk/2b

vk

if |E1| ≥ |E0| then votek ← votek + 1 {Vote when bit is one}
for k = 1 to K

if votek > reps/2 then ωk ← ωk + 2b {Majority vote for bit value}
return Unique(ω1, ω2, . . . , ωK) {Remove duplicates}

Sample-Shattering (p)

z ← Sample-Residual (x,�, p, σ, K) {Get arithmetic progression of samples}
z ← FFT(z) {Apply sub-band decomposition filter bank}
return z

Estimation (x, �, �)

reps ← 5
for j = 1 to reps

Draw σ ∼ Uniform {1, 3, 5, . . . , N − 1} and t ∼ Uniform {0, 1, 2, . . . , N − 1}
u ← Sample-Residual (x,�, t, σ, K)

for {� = 1 to |�|
c�(j) ← ∑K

k=1 uk e2π i(ω�σ/N)(k−1) {In parallel, via nonuniform FFT}
c�(j) ← (N/K) e−2π iω�t/Nc�(j) {Demodulate and scale estimates }

c� ← Median{c�(j ) : j = 1, 2, . . . , reps} for � = 1, 2, . . . , |�| {Do real, imaginary separately}
return c1, c2, . . . , c|�|



Alg. 1]. Alternatively, the exponential sums can be evaluated
directly at somewhat higher cost.

At the highest level, the algorithm proceeds as follows.
First, the approximation is set to zero, so the residual signal
equals the input signal. The algorithm iteratively refines the
approximation, as described in the next paragraph. After the
iteration is complete, the algorithm reduces the list � by pick-
ing m frequencies with the largest
coefficients.

The main loop consists of the
three steps. First, the identifica-
tion stage constructs a list � con-
taining K frequencies that are
likely to carry a significant amount
of the energy from the residual.
Second, the estimation stage finds
estimates of the coefficients of the
frequencies in �. Third, the algo-
rithm adds the new approximation
to the previous approximation to
get a total of 2K terms (or fewer).
Frequencies with small coefficients are likely to be spurious, so
the list is reduced to K terms (or fewer) by retaining only the
frequencies with the largest coefficients. Our experience sug-
gests that the main loop should be repeated about five times.

The IDENTIFICATION subroutine employs a randomized fil-
tering process to find up to K significant frequencies from
the residual signal. Beginning with the least-significant bit, it
determines each bit from all K frequencies in parallel. In the
inner loop, the subroutine performs several repetitions to
drive down the failure probability. Our experience suggests
that three to five repetitions are adequate.

The ESTIMATION subroutine uses a related randomized filtering
process to estimate simultaneously the coefficients of K given
frequencies in the residual signal. This calculation involves the
adjoint of the nonuniform FFT. Explicit pseudocode appears in
[7, Alg. 2]. The sums can also be evaluated directly at higher cost.

The subroutine takes the median of several copies of the estima-
tor to improve robustness. In practice, three to five copies suffice.

THE CONCEPTS BEHIND THE CODE
The Fourier sampling algorithm must perform computations
on the frequency spectrum of a signal under severe con-
straints on the number of samples and arithmetic operations.

It is possible to achieve an econo-
my of scale by attempting to find
all the significant frequencies at
once. The central design princi-
ple in the algorithm is to exploit
this economy whenever possible
by means of filter banks, nonuni-
form FFTs, and random sam-
pling. This section describes the
intuitions behind the key steps in
the algorithm. In the sequel, we
assume that the signal length N
is a power of two, that the signal

takes complex values, and that all arithmetic on the indices is
performed modulo N. 

THE ROLE OF RANDOMNESS
In contrast with the field of statistical signal processing, we do
not make any assumptions about the input signal. Instead, the
algorithm makes random choices during its execution to
enable it to succeed with high probability for any given input
signal. In this section, we attempt to share the flavor of these
techniques.

RANDOM SAMPLING
Random sampling is a very efficient method for estimating some
key characteristics of a signal. Let x be a signal of length N, and
let T be the random variable that takes each value from
{0, 1, 2, . . . , N − 1} with equal probability.

First, the squared magnitude of a random time sample gives
a good estimate for the signal energy because
‖x‖2 = N E |x [T ]|2 . Owing to Markov’s inequality, it is
unlikely that a random sample, suitably normalized, has mag-
nitude much greater than the norm of the signal.

Second, consider a signal containing one large frequen-
cy plus noise: x [t ] = ae2π iωt/N/

√
N + v [t ] . A short argu-

ment involving the triangle inequality and Jensen's
inequality yields

|a | − ‖v‖2 ≤
√

N E|x [T ]|.

That is, we can approximate the magnitude of the tone by
random sampling. Therefore, we can find the location of a
tone that dominates a signal.

Finally, the scaled expectation of a random sample equals
the zero-frequency component of a signal. This point follows
from the simple fact X[0] = √

N Ex [T ]. The algorithm uses
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THE FUNDAMENTAL CHALLENGE
FOR THE FOURIER SAMPLING

ALGORITHM IS TO DIVINE
INFORMATION ABOUT THE

FREQUENCY SPECTRUM OF A
SIGNAL UNDER SEVERE

CONSTRAINTS ON THE NUMBER
OF SAMPLES AND ARITHMETIC

OPERATIONS.

[FIG4] The proportion of the signal that AAFFT samples to
recover a fixed number of tones in a signal of length N = 222 at
least 99% of the time.
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this fact to estimate the coefficient of a
specified frequency.

RANDOM SPECTRAL PERMUTATION
A major difficulty is that significant
tones in the spectrum of a signal can be
clustered together or spread out. One
of the central innovations in the algo-
rithm is a randomized technique for
isolating significant tones from each
other so we can perform spectral analy-
sis using bandpass filters.

To explain, we need some basic
number theory. Two numbers are rela-
tively prime if they have no common
integer factor except ±1. Since N is a
power of two, the numbers relatively
prime to N are precisely the odd inte-
gers. Given an odd number σ , the
Euclidean division algorithm furnishes
a number σ−1, called its multiplicative
inverse, that satisfies σ · σ−1 ≡ 1(mod N ).

Le t  σ be  odd ,  and  cons ider  the  d i l a t ion
dσ : t �→ σ t mod N . It is not hard to see that this map is
a permutation on the set {0, 1, 2, . . . , N − 1} and that its
inverse is the map dσ−1 . In discrete Fourier analysis,
these observations lead directly to the identity

y[t ] = x[σ t ] for all t ⇐⇒ Y[ω] = X [σ−1ω] for all ω.

Succinctly, time dilations generate frequency permutations. See
Figure 5 for an illustration.

The key idea is to choose σ at random from the set
{1, 3, 5, . . . , N − 1} of invertible numbers. Applying the
dilation dσ to the signal, we produce a random permuta-
tion of its spectrum. It is unlikely that a given pair of fre-
quencies is mapped to the same part of the spectrum.
Roughly speaking, random permuta-
tion of the spectrum isolates signifi-
cant frequencies from each other.

IDENTIFICATION
The first stage in the Fourier sam-
pling algorithm is to identify a collec-
tion of frequencies whose coefficients
are large relative to the signal energy.
The identification process consists of
two conceptual steps, shattering and
bit testing. Shattering generates a
collection of signals, many of which
have a single dominant frequency.
Then bit tests are applied to each sig-
nal to find the location of the domi-
nant frequency, one bit at a time.

SHATTERING
A shattering of a signal x is a collection {x0, x1, . . . , xK−1} of
signals that are formed by a three-step filtering process. First,
we randomly permute the spectrum of the signal to isolate
significant frequencies from each other. Second, we apply a
sub-band decomposition filter bank to create K signals that
each carry a chunk of the permuted spectrum. Each signifi-
cant tone in the original signal is likely to dominate one sig-
nal in the shattering. Finally, we invert the dilation to restore
the frequencies to their original places in the spectrum.
Figure 6 exhibits a block diagram, and Figure 7 illustrates the
effects of shattering on a signal.

The design of the subband decomposition filter bank is sim-
ple. Let h be a low-pass filter with K taps whose cutoff frequen-
cy is about π/K rad. The filter bank consists of K frequency
translates of this filter, spaced 2π/K rad apart. In the time
domain, this amounts to convolution with hk [t ] =

[FIG6] A conceptual block diagram for the shattering process.  A shattering of x contains
K elements x0, x1, . . . , xK−1.
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[FIG5] The impact of dilations on the spectrum of a frequency-sparse signal.  The top-right
panel is generated by the time dilation t �→ 11t mod N (equivalently, by a frequency
dilation ω �→ 3ω mod N); the bottom-right panel by t �→ 9t mod N (or ω �→ 9ω mod N).
Note that the zero frequency always remains fixed.
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e−2π ikt/K h [t ] for each k = 0, 1, . . . , K − 1.The analysis in [10]
suggests that the ideal filter has minimal energy among all nor-
malized filters with K taps. This observation recommends the
boxcar filter h[ j] = √

N/K for j = 0, 1, . . . , K − 1. It is possi-
ble that more sophisticated low-pass filters or windows will
sometimes yield better results [16, Ch. 7].

Let us emphasize that the algorithm never forms a
shattering explicitly. Instead, the filter bank is con-
structed so we can take one time sample from each ele-
ment of the shattering by processing K samples from
the input signal. If σ is the parameter of the random
dilation, the kth signal in the shattering satisfies

xk [t ] =
∑K−1

j=0
h[ j ] x [t − σ j ] e−2π i jk/K.

Given a point t, we can simultaneously calculate x0[t ], x1[t ],
. . . , xK−1[t ] by extracting an arithmetic progression from the

input signal, multiplying it with the filter, and applying an FFT.
The subroutine SAMPLE-SHATTERING performs these actions.

BIT TESTING
Shattering generates a collection of signals, some of which
contain a single dominant frequency. The bit-test process is
designed to locate the dominant frequency in such a signal.
(The bit tests are likely to return spurious frequencies for
other elements of the shattering.)

Suppose that x is a length-N signal in which a single fre-
quency carries most of the energy. We find the bits of the fre-
quency sequentially, beginning with the least significant bit
b = 0. Assuming we alreday know the least-significant (b − 1)

bits, we can demodulate the signal so that the binary expan-
sion of the dominant frequency ends in 10 . . . 0 or in 00 . . . 0.
We apply the frequency mask filters

geven
b = 1

2
(δ0 + δN/2b+1) and godd

b = 1
2
(δ0 − δN/2b+1).

The filter geven
b passes the even fre-

quencies and zeros the odd frequen-
cies (mod 2b). In a similar fashion, the
filter godd

b passes the odd frequencies
and zeros the even ones (mod 2b). If
E0 is a random sample from the out-
put of the even filter and E1 is a ran-
dom sample from the odd filter, then
the inequality |E1 | ≥ |E0 | is evidence
that the least-significant bit is one.

Therefore, the bit test compares
the magnitude of a random sample
from each of the two filtered signals.
It repeats the comparison several
times, and it takes a majority vote to
reduce the failure probability. See
Figure 8 for a block diagram of the
bth bit test. Note that bit testing is
computationally efficient since each
filter has only two taps.

IMPLEMENTATION
We separate the concepts of shatter-
ing and bit testing, but the code must
intertwine them for efficiency. Recall
that we can simultaneously compute
one sample from each of the K ele-
ments in the shattering. To exploit
this fact, we simultaneously test the
bth bit of the dominant frequency in
each element of the shattering using
two correlated samples, demodulated
by the first (b − 1) bits of that fre-
quency. Details appear in the
IDENTIFICATION subroutine.

[FIG7] A signal consisting of two tones in noise, along with three elements from a
shattering.  In (b), both the tones are attenuated so neither is recoverable. In (c) and (d)
elements are shown where one tone is preserved and the other is attenuated. In each plot,
the transfer function is traced in black.
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A Frequency-Sparse Signal in Noise

Three Signals from the Shattering with K = 8, σ = 43, and N = 128
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ESTIMATION OF FOURIER
COEFFICIENTS
The identification phase of the algo-
rithm returns a list of K or fewer fre-
quencies, but it does not provide
sufficient information about their coeffi-
cients. The next stage of the algorithm
estimates the coefficients using a ran-
domized filtering technique.

Suppose we want to estimate the
coefficient of a significant frequency ω
in a signal x. First, we demodulate the
signal by ω so we can estimate the
zero frequency instead. Next, we ran-
domly dilate the signal. This operation
fixes the zero frequency and shuffles
the other signif icant frequencies
around (probably away from zero). Third, we apply a filter
to pass the zero frequency and attenuate the rest of the
spectrum. Then, we invert the dilation. At this point, the
zero frequency is likely to dominate the signal. We estimate
its coefficient by taking a random sample and scaling appro-
priately. See Figure 9 for a block diagram.

As in shattering, we cannot afford to use a filter with more than
K taps. It turns out that the boxcar filter h[k ] = √

N/K for
k = 0, 1, 2, . . . , K − 1 remains a good choice in this setting.

We can write down the cumulative effect of this random
filtering process. Let σ be the parameter of the random dila-
tion, and let t be the sample location. Then the coefficient
estimate cω is

cω =
√

Ne−2π iωt/N
K−1∑

j=0

h [ j ] s [t − σ j ] e−2π i(ωσ K/N ) j/K.

One should view this expression as the DFT of a sequence
of length K ,  evaluated at the nonintegral frequency
2πωσ K/N radians ,  then demodulated and scaled .
Therefore, we can simultaneously estimate the coefficients
of a collection of K frequencies (or fewer) using the
adjoint nonuniform FFT. Afterward, we can demodulate

each coefficient individually. Finally, we make each coeffi-
cient estimator more robust by taking the median of sev-
eral copies. (The medians of the real and imaginary parts
are performed separately.)

ITERATION
The recoverable energy in a signal is the energy carried by
the largest m frequencies. It is impossible to collect more
since our approximation contains only m frequencies. By
performing identification and estimation once, the algo-
rithm finds a constant proportion of the recoverable energy
in the residual. Therefore, after a constant number of itera-
tions, the algorithm can find a fixed proportion of the recov-
erable energy in the original signal.

EXTENSIONS AND IMPROVEMENTS
Although the Fourier sampling algorithm is designed for
discrete-time signals, we can use it in certain analog set-
tings with some modifications. We can acquire a few ran-
dom structured samples of a wide-band, continuous-time
signal that has a few significant tones and recover quickly
those tones present. To build a practical system, we must
analyze carefully the required minimum sample spacing
as it is costly to acquire signal samples close in time. We

[FIG8] A conceptual block diagram for the b th bit test.  The test yields a 0/1 bit value ε
and a demodulated copy of the input signal for the next bit test.
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[FIG9] A conceptual block diagram for the coefficient estimator. The system returns an estimate for the coefficient cω of the frequency
ω in the signal x.  Note that the estimate must also be scaled by 

√
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must also increase the flexibility of the output representa-
tion so as to improve the reconstruction SNR; instead of
returning exactly m, we return
a (tunable) multiple of m. All of
these modifications are possible
while still preserving the struc-
ture and quality guarantees of
the  a lgor i thm.  We must  be
realistic, however, in assessing
the quality of our output. The
algor i thm returns  a  com-
pressed or approximate repre-
sentation of the discrete spectrum of an inherently analog
signal. It only approximates the significant portions of the
discrete spectrum, which, itself, is an approximation to
the true spectrum.
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THE FOURIER SAMPLING
ALGORITHM IS RELATED TO

THE COMPRESSIVE SAMPLING
PARADIGM, BUT THE TWO

APPROACHES FOCUS ON DIFFERENT
RESOURCE CONSTRAINTS.


