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Linear regression (reminder)

* Linear regression is an approach for modelling dependent
variable(y) and one or more explanatory variables (x).

y=Ppo+ p1x+e¢
Assumptions:
e~N(0,0%) —iid ( independently identically distributed)

A v Fo+ha

Uyix, = Bo + BiXy Lo E ---

lu’YI,r.l = [30 + ﬁ]xl -------- E-__
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Checking linear Assumptions

Tamnear Relatiom=hig
Fredicted &

Ndentived Resiuals
H
t

iid- residual plot (¢ vs y) can be inspect to check that
assumptions are met.

 Constant variance- Scattering is a constant magnitude

 Normal data- few outliers, systematic spared above and
below the axis

* Liner relationship- No curve in the residual plot
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Residual plot in SPSS
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Residual plots in SPSS
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Linear vs non linear

h £ A

Linear Non-Linear Nor-Linear

Linear

* Linear scatter plot

* No curves in residual plot
* Correlation between variable is significant

Non-linear

 Curves in scatter plot
* Curves in residual plot
* No significant correlation between variables
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Non linear regression

Non linear regression arises when predictors and
response follows particular function form.

y=f(Bx)+e

Examples
y = f?x + & -nonlinear y=pBx%+¢ -linear
y = %x+e - non linear y=ﬁ%+g - linear

y = eP*+¢ -nonlinear y=pfInx + ¢ -linear

1
1+Bx

y = + & -nonlinear
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Transformation

* Some nonlinear regression problems can be moved to a linear
domain by a suitable transformation of the model formulation.

 Four common transformations to induce linearity are:
logarithmic transformation, square root transformation, inverse
transformation and the square transformation

Examples

¢ y=¢f* ey Iny=pfx ify=>0

1 1 :
" Y= T — ;—1—,8x ify #0
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Curve Estimation

Curve fitting is the process of constructing a curve, or mathematical
function, that has the best {it to a series of data points.

Example —Viral growth model

 An internet service provider (ISP) is determining the effects of a
virus on its networks. As part of this effort, they have tracked the
(approximate) percentage of e-mail traffic on its networks over time,
from the moment of discovery until the threat was contained.

Proportion of infected messages

T
40
Hours since detection
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Curve Estimation- Cont.
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Output

Scatter plot

Muodel Summary and Parameter Estimates

Dependent Variable: Proportion of infected messages

Model Summary Parameter Estimates
Equation | R Square F df1 2 Sig. Constant b1 h2 b3
Linear .066 2.844 1 40 100 377 -.004
Cubic 783 ~\¢5.?36 3 38 000 \I 23 .0g8 -004 | 4.399E-5

The independent variable is Hoyrs since detection.

Proportion of infected messages

60

® Ohserved
— Linear
— Cubic

Higher the
R? better
the model fit

T
30 40 50

Hours since detection

P value< 0.05
means model is
significant
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Segmentation

We can split the graph in to segments and fit a segmented
model.

Example - Viral growth model

Proportion of infected messages

Hours since detection

We can fit a logistic equation for the first 19 hours and an
asymptotic regression for the remaining hours should provide
a good fit and interpretability over the entire time period.
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Logistic model and choosing starting values

B
1+ ﬁze_'g3x

y

Starting values

-
=

* [;- upper value of growth (0.65)

* [,- ratio upper value and lowest
value (0.65/0.13=5)

E
1
L]

Proportion of infected messages
5'7'

* [3;- estimated slop between
points in plot. e "
(0.6-0.12/19-3)=0.03 ‘

Hours since detection

Research in Pharmacoepidemiology (RIPE) @ National School of Pharmacy, University of Otago



Asymptotic regression model

y =6, + 0,e%*

Starting values

. 6,- lowest value (0) ee

* 0,- difference upper value and .’? | )
lowest value (0.6) £° T .

* [33- estimated slop between 0 “?
points in plot. T, " BN
(0.6-0.1/20-40)=-0.025 ~ ©

Hours since detection
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Output

Parameter Estimates

95% Confidence Interval
Parameter | Estimate | Std.Error | Lower Bound | Upper Bound
b1 g3 JA27 ATT 091
b2 7.428 1.375 4.638 10217
h3 184 040 03 265
al 091 030 .030 153
a2 661 044 572 750
aj -.150 027 -.205 -.095
ANOVA®
Sum of Mean

Source Squares if Squares

Regression 4,884 6 814

Residual 082 36 002

Uncorrected Total 4.966 42

Corrected Total 1.212 a1

Dependent variable: Proportion of infected messages

a. R squared = 1 - (Residual Sum of Squares) / (Corrected Sum
of Squares) = .933.
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Output
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