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Time dynamics of isolated many-body quantum systems has bbeen an elusive subject. Very recently,
however, meaningful experimental studies of the problewe fimally become possiblel[L, 2], stimulating the-
oretical interest as well[3] 4, 5, 16, 7]. Progress in thigifislperhaps most urgently needed in the foundations
of quantum statistical mechanics. This is so because inrigeiselated systems, one expects|[8, 9] nonequi-
librium dynamics on its own to result in thermalization: as@tion to states where the values of macroscopic
guantities are stationary, universal with respect to widéfering initial conditions, and predictable througteth
time-tested recipe of statistical mechanics. Howeves, iitgit obvious what feature of many-body quantum me-
chanics makes quantum thermalization possible, in a ser@egous to that in which dynamical chaos makes
classical thermalization possible [10]. For example, dyical chaos itself cannot occur in an isolated quantum
system, where time evolution is linear and the spectrumsderdie|[11]. Underscoring that new rules could
apply in this case, some recent studies even suggesteddtiatical mechanics may give wrong predictions
for the outcomes of relaxation in such systems [4, 5]. Herelermonstrate that an isolated generic quantum
many-body system does in fact relax to a state well-desthilpehe standard statistical mechanical prescription.
Moreover, we show that time evolution itself plays a merelyibary role in relaxation and that thermalization
happens instead at the level of individual eigenstatesrstpfioposed by J. M. Deutsch [12] and M. Srednicki
[13]. A striking consequence of theégenstate thermalization scenario, confirmed below for our system, is that
the knowledge of @ingle many-body eigenstate suffices to compute thermal averageg-eigenstate in the
microcanonical energy window will do, as they all give thensaresult.

If we pierce an inflated balloon inside a vacuum chamberthe same mean energies but different mean square-energies.
very soon we find the released air uniformly filling the en- For nondegenerate Hamiltonians a maximal set of constants
closure and the air molecules attaining the Maxwell velocit of motion with functionally independent expectation valige
distribution whose width depends only on their total numberas large as the dimension of the Hilbert space; examples in-
and energy. Different balloon shapes, placements, oripgrc clude the projectorg, = |¥,)(¥,| to the energy eigenstates
points all lead to the same spatial and velocity distrimgio [14] and the integer powers of the Hamiltoniah [5].

Classical physics explains thisermodynamical universality The current numerical and analytic evidence from inte-
as follows [10]: almost all particle trajectories quicklgdgin  grable systems suggests that there exists a minimal set of in
looking alike, even if their initial points are very diffete be-  dependent constraints whose size is much smaller than-the di
cause nonlinear equations drive them to explore ergogicallmension of the Hilbert space but may still be much greater
the constant-energy manifold, covering it uniformly with r  than one. In our previous workl[3] (with V. Yurovsky) we
spect to precisely the microcanonical measure. However, howed that an integrable isolated one-dimensional system
the system possesses further conserved quarititiesonally  |attice hard-core bosons relaxes to an equilibrium charact
independent from the Hamiltonian and each other, then time jzed not by the usual but bygeneralized Gibbs ensemble. In-
evolution is confined to a highly restricted hypersurfacthef  stead of just the energy, the Gibbs exponent containedarline
energy manifold. Hence, microcanonical predictions fad a combination of conserved quantities—the occupations ®f th
the system does not thermalize. eigenstates of the corresponding Jordan-Wigner fermions—
_.whose number was still only a tiny fraction of the dimension

on the other hand, in isolated qua_ntum_syste_ms not onl_y 3t the Hilbert space. Yet this ensemble works, while the lsua
dy”am'ca?' chaos absent due to the Ilnea_rlt.y of ime evatutio one does not, for a wide variety of initial conditions|[15] as
and the discreteness of spectra [11], but it is also not clear well as for a fermionic systeni [16]; it also explains a re-
der what conditions conserved quantities provide independ cent experimental result, the absence of thermalizatidhen
constraints on relaxation dynamics. To begin with, any aper 1, < Girardeau gasl[1]. Thus, while at least some comstrai
tor _com_muting_with a generic and th‘_*s,”on‘_jeger_‘erate Ham"beyond the conservation of energy must be kept, it turns out
tonian 1s fgncﬂonally de_pendent onlt [14], implying thh_Et one needs only a relatively limited number of additional-con
conservation of energy is the only independent constram. Oserved quantities with functionally independent expéatat
the other hand, even when operators are functionally deper\‘/hlues; adding still further ones is redundant.
dent, their expectation values—considered as functioofals

) Since it is not clear which sets of conserved quantities—
states—generally are not: for example, two states may have . . .
and some are always present—constrain relaxation and which

do not, it becomes even more urgent to determine whether

isolated generic quantum systems relax to the usual thermal
“Published in Naturel52, 854-858 (17 April 2008); 10.1038/nature06g3g. State. The theoretical attention to this question has i fac
http://www.nature.com/nature/journal/v452/n7189/abiire06838.htm| been increasing recently, because of the high levels of iso-
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tary Discussion); the relaxation dynamics begins when the
confinement is lifted. Expanding the initial state wave-
function in the eigenstate basis of the final Hamiltonidn

as |¢(0)) = >, Cal¥,), the many-body wavefunction
evolves asy(t)) = e #Hy(0)) = 3, Che Eeal|T,),
where theE,’s are the eigenstate energies. Thus obtaining
numerically-exact results for all times required the ful d
agonalization of the 20,349-dimensional Hamiltonian. The
guantum-mechanical mean of any observabkvolves as

Lor i (A@) = WOIA[(E) = Y CaCre' PP Ags, (1)
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Note that if the system relaxes at all, it must be to this value
We find it convenient to think of Eq.[12) as stating the pre-
diction of a “diagonal ensemble|’,,|? corresponding to the
weight |¥,) has in the ensemble. In fact, this ensemble is
precisely the generalized Gibbs ensemble introduced in Ref
. [3] if as integrals of motion one takes all the projectioni@pe

0 1 2 tors P, = |¥,)(¥,|. Using these as constraints on relaxation
k [2r/(L d)] dynamics, the theory gives = exp (— P )\aﬁa), with

FIG. 1: Relaxation dynamics a, Two-dimensional lattice on which Ao = —In(|C, |2) andD the dimension of the Hilbert space
five hard-core bosons propagate in time. The bosons arelipiti ol '

prepared in the ground state of the sub-lattice in the lavggt cor- (Notice, howeve_r, that _for the integrable system treate_Riah .
ner and released through the indicated lirtk. The corresponding  [3]: the generalized Gibbs ensemble was defined using a dif-
relaxation dynamics of the marginal momentum distribuenter ~ ferent,minimal set of independent integrals of motion, whose
[n(k. = 0)] compared with the predictions of the three ensemblesnumber was equal to the number of lattice sites< D.)

In the microcanonical case, we averaged over all eigersstgtese Now if the quantum-mechanical mean of an observable be-
energies lie within a narrow window (see Supplementary Bson)  hayes thermally it should settle to the prediction of an appr
[Eo — AE, Eo + AE], whereEy = (p(0)[H|¢(0)) = =5.06J,  priate statistical-mechanical ensemble. For our numigica
AE = 0.1/, and.J is the hopping parameter. The canonical en- o iments we chose to monitor the marginal momentum dis-

semble temperature g7 = 1.87J, wherekg is the Boltzmann o . . .
constant, so that the ensemble prediction for the enerfy.is, Full tribution along the horizontal axis(k, ) and its central com-

momentum distribution function in the initial state, aftetaxation, ~Ponentn(k, = 0) (see Supplementary Discussion). Figures

and in the different ensembles. Hefds the lattice constant and [Ib and’lc demonstrate that both relax to their microcanbnica

L, = 5 the lattice width. predictions. The diagonal ensemble predictions are iimdist
from these, but the canonical ones, although quite close, ar
not. This is an indication of the relevance of finite size efffe

lation [1,2,[17] and control [18. 19] possible in experingent Wich may be the origin of some of the apparent deviations

with ultracold quantum gases. However, despite numerou@om thermodynamics seen in the recent numerical studies of

studies of specific models there is not yet consensus on ho@efs' [4] and([5]. ) . )
or even if relaxation to the usual thermal values occurs for 1he statementthat the diagonal and microcanonical ensem-

nonintegrable systems [7]. Common wisdom says that it doe&€S 9ive the same predictions for the relaxed value ofads
[8, 9], but some recent numerical results suggest otherwise )
either under certain conditions [4] or in general [5]. Z|Ca| Aaa = (A)microcan(Eo)
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In order to study relaxation of an isolated quantum sys- def. 1
tems, we considered the time evolution of five hard-core = Nooap Z Asas (3)
bosons with additional weak nearest-neighbor repulsions, O Be—FL<AE
a 21-site two-dimensional lattice, initially confined to arp
tion of the lattice and prepared in their ground state therewhere E, is the mean energy of the initial statAF is the
Figure[1a shows the exact geometry (see also Supplemehalf-width of an appropriately chosen (see Supplementary
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‘ EIGENSTATE THERMALIZATION ‘

FIG. 2: Thermalization in classical vs quantum mechanicsa, In
classical mechanics, time evolution constructs the thiestage from
an initial state that generally bears no resemblance todhadr.

b, In quantum mechanics, according to the eigenstate thizanal

tion hypothesis, every eigenstate of the Hamiltonian asnayplic-

itly contains a thermal state. The coherence between tleasigtes

initially hides it, but time dynamics reveals it through teping.
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observabled in an eigenstate of the Hamiltoniai,, ),

with energy E,, of a large interacting many-body
system equals the thermal (microcanonical in our case)
averag€ A)microcan( E« ) Of A at the mean energl,,:

<‘IJa|A\|\I/a> = <A>microcan.(Ea)- (4)

The ETH suggests that classical and quantum thermal states
have very different natures, as depicted in Elg. 2. While at
present there are no general theoretical arguments simgport
the ETH, some results do exist for restricted classes of sys-
tems. To begin with, Deutsch [12] showed that the ETH holds
in the case of an integrable Hamiltonian weakly perturbed
by a single matrix taken from a random Gaussian ensemble.
Next, nuclear shell model calculations have shown that indi
vidual wavefunctions reproduce thermodynamic prediction
[20]. Then there are rigorous proofs that some particular
guantum systems, whose classical counterparts are chaotic
satisfy the ETH in the semiclassical limit [21,]22, 23] 24].
More generally, for low density billiards in the semiclasgi
regime, the ETH follows from Berry’s conjecture [13,| 25],
which in turn is believed to hold in semiclassical clasdical
chaotic systems [26]. Finally, at the other end of the chaos-

Discussion) energy window centered/, and the normal-  integrability continuum, in systems solvable by Bethe &msa
ization Vg, ar is the number of energy eigenstates with en-observables are smooth functions of the integrals of motion
ergies in the windowE, — AE, Ey + AE]. Thermodynam-  This allows the construction of single energy eigenstdtas t
ical universality is evident in this equality: while thetéand ~ reproduce thermal predictions [27].

side depends on the details of the initial conditions throug  In Figs.[3a-c we demonstrate that the ET$4n fact the

the set of coefficient§’,, the right hand side depends only on mechanism responsible for thermal behavior in our noninte-
the total energy, which is the same for many different ihitia grable system. Fid.]3c additionally shows that scenar)o (ii
conditions. Three mechanisms suggest themselves as posgientioned above plays no role, because the fluctuationgin th
ble explanations of this universality (assuming the ihittate ~ €igenstate occupation numbées, |* are large. Thermal be-

is sufficiently narrow in energy, as is normally the case—seéavior also requires that both the diagonal and the chosen th

Supplementary Discussion):

mal ensemble have sufficiently narrow energy distributions

(i) Even for eigenstates close in energy, there are large(£) [ = probability distributionx the density of states], so

eigenstate-to-eigenstate fluctuations of both the eigémek-

that in the energy region where the energy distributie(Ts)

pectation values,, and of the eigenstate occupation num-are appreciable, the derivative of the curve eigenstatectap
bers|C,|2. However, for physically interesting initial condi- tion valueA.. vs the energy (here(k, = 0) vs the energy)

tions, the fluctuations in the two quantities are uncoreelat

does not change much; see Supplementary Discussion. As

A given initial state then performs an unbiased sampling oshown in FigLBb, this holds for the microcanonical and diago

the distribution of the eigenstate expectation valdgs, re-

sulting in Eq. [B).
(ii) For physically interesting initial conditions, thegein-

nal ensembles but not for the canonical ensemble, exptainin
the failure of the latter to describe the relaxation in [Fi. 1
Note that the fluctuations of the eigenstate occupation num-

state occupation numbels,, |2 practically do not fluctuate at  bers|Ca|? in Fig.[3b are lowered by the averaging involved
all between eigenstates that are close in energy. Again, Ed) the computation of the density of states (compare with Fig

(3) immediately follows.
(iif) The eigenstate expectation valuds,, practically do

c).

To strengthen the case for the ETH, we tested another ob-

not fluctuate at all between eigenstates that are close iggne Servable. We chose it with the following consideration in
In that case Eq[{3) holds for literalbil initial states narrow ~Mind: in our system interactions are local in space, and mo-

in energy.

mentum distribution is a global, approximately spatialiigia

J. M. Deutsch and M. Srednicki have independently prodive property. Thus one might wonder if the ETH for momen-

posed the scenario (iii), dubbed the

Eigenstate thermalization hypothesis (ETH)
[Deutsch[12] (1991), Srednicki[13] (1994)].
The expectation valug¥,|A|¥,) of a few-body

tum distribution arises through some spatial averagingmmec
anism (we thank the anonymous referee 2 for bringing this
pointto our attention). It does not: for our final test of tHEHE

we chose an observable that is manifestly local in space, the
expectation value of the occupation of the central site ef th
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lattice. We again found that the ETH holds true (3% relativethen link to one of the ends of an adjoining (empty) 13-site
standard deviation of eigenstate-to-eigenstate fluctong}i chain to trigger relaxation dynamics. As Hig. 3e shom(g; )

On the other hand, Figs[] 3d-f show how the ETdils  as a function of energy is a broad cloud of points, meaning
for an isolated one-dimensioniaitegrable system. The lat- that the ETH is not valid; Fid.]3f shows that scenario (ii) sloe
ter consists of five hard-core bosons initially preparedheirt  not hold either.
ground state in an 8-site chain, one of the ends of which we
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FIG. 3: Eigenstate thermalization hypothesisa, In our nonintegrable system, the momentum distributioh, ) for two typical eigenstates
with energies close td, is identical to the microcanonical result, in accordancehwhie ETH.b, Upper panel:n(k, = 0) eigenstate
expectation values as a function of the eigenstate enesgymele a smooth curve. Lower panel: the energy distribyi{dn) of the three
ensembles considered in this wodk Detailed view ofn (k.. = 0) (left labels) andC.,, |? (right labels) for 20 eigenstates arouRd. d, In the
integrable syster (k.) for two eigenstates with energies closeHg and for the microcanonical and diagonal ensembles are Vieyant
from each other, i.e., the ETH fails, Upper paneln(k, = 0) eigenstate expectation value considered as a functioredigenstate energy
gives a thick cloud of points rather than resembling a smoatkie. Lower panel: energy distributions in the integradylstem are similar to
the nonintegrable ones depicteddnf, Correlation between(k, = 0) and|C,|? for 20 eigenstates arouni. It explains why ind the
microcanonical prediction fat(k, = 0) is larger than the diagonal one.

Nevertheless, one may still wonder if in this case scenarigrable and that enter thgeneralized Gibbs ensemble, which
(i) might hold—if the averages over the diagonal and thewas introduced in Refl.[3] as appropriate for formulatirey st
microcanonical energy distributions shown in Hi§j. 3e mighttistical mechanics of isolated integrable systems. In e n
agree. Figurgl3d shows that this does not happen. This is sotegrable case shown in Figl 3e(k, = 0) is so narrowly
because, as shown in Flg. 3f, the values:¢f, = 0) for  distributed that it does not matter whether or not it is corre
the most-occupied states in the diagonal ensemble (thestarg lated with |C,,|? (we have in fact seen no correlations in the
values of eigenstate occupation numbgrs|?) are always nonintegrable case).
smaller than the microcanonical prediction, and those ef th
least-occupied states, always larger. Hence, the usuah#the The thermalization mechanism outlined thus far explains
predictions fail because the correlations between theegalu why long-time averages converge to their thermal predistio
of n(k, = 0) and|C,|? preclude unbiased sampling of the A striking aspect of Fig[11b, however, is that the time fluc-
latter by the former. These correlations have their origin i tuations are so small that after relaxation the thermalipred
the nontrivial integrals of motion that make the system-inte tion works well at every instant of time. Looking at Ef (1),

one might think this is so because the contribution of the off
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A B ations relative to the thermal mean value is of course partic
[n(k,=0)lgsq, ° T elax. dyn. — lar to small systems; however, the dominance of the quantum
20 2571 2A 7 fluctuations over the temporal fluctuations of quantum expec
15 2| g tation values is not and is actually expected for generie sys

0; 31.5 Pt b Attt tems in the thermodynamic limit [29].
5 = i 1 We have demonstrated that, in contrast to the integrable
case, the nonequilibrium dynamics of a generic isolatediqua
. 05 7 tum system does lead to standard thermalization. We verified
0 ' ' ' that this happens through the eigenstate thermalizatiahme
0 50 100 150200 anism, a scenario J. M. Deutsch [12] demonstrated for thee cas

of an integrable quantum Hamiltonian weakly perturbed by a

single matrix taken from a random Gaussian ensemble and M.
FIG. 4: Temporal vs quantum fluctuations a, Matrix elements of  Srednicki [18] compellingly defended for the case of rackfie
the observable of interesi(k. = 0), as a function of state indices; ¢omiclassical quantum billiards, and which both authors co

the eigenstates of the Hamiltonian are indexed in the orddingin- ‘actured to be valid in aeneral. Our results. when combined
ishing overlap with the initial state. The dominance of thegdnal J 9 . :

matrix elements is apparetit, The same time evolution as in Fig. 1b With the others we mentioned [12./13, 20 21,122,123, 24, 25,
with the error bars showing the quantum fluctuatiefs, = 0)+A  126,127], constitute strong evidence that eigenstate theraa
with A = [(72(k. = 0)) — (A(k. = 0))2]*/2, which are clearly tion indeed generally underlies thermal relaxation inased
much larger than the temporal fluctuationsgf,, = 0). guantum systems. Therefore, to understand the existence of
universal thermal time-asymptotic states, one shouldystud
operator expectation values in individual eigenstatess Eh
diagonal terms gets attenuated by temporal dephasinghwhic problem that is linear, time-independent, and concelgtual
results from the generic incommensurability of the frequen far simpler than any arising in the research—currently domi
cies of the oscillating exponentials. However, this atiimn  nating the field—on the nonlinear dynamics of semiclassical
only scales as the root of the number of dephasing terms, angstems. Among the fundamental open problems of statistica
is exactly compensated by their larger number: if the numbemechanics that could benefit from the linear time-indepande
of eigenstates that have a significant overlap with theahiti perspective are the nature of irreversibility, the exiseeaf a
state iSNstates then typicalC, ~ 1/v/Nstates and the sum  KAM-like threshold [30] in quantum systems, and the role of
over off-diagonal terms in Ed.](1) finally does not scale downconserved quantities in the approach to equilibrium. Fnal
with Nitates having a clear conceptual picture for the origins of theinaal
. tion may make it possible to engineer new, “unthermaliZable
Z et (Fa—Ep)t AoV Niates qWpical | gopical 5y states of matter [12], with further applications in quantnm
Newtes " Netates  ** af formation and precision measurement.
a#p We thank A. C. Cassidy, K. Jacobs, A. P. Young, and E.
) ) ) J. Heller for helpful comments. We acknowledge financial
Hence, were the magnitude of the diagonal and off-diagona,pnort from the National Science Foundation and the Office

terms comparable, their contributions would be comparablef Naval Research. We are grateful to the USC HPCC center
as well, and time fluctuations of the average would be of thg,ere our numerical computations were performed.
order of the average. However, this is not the case and thus

typical ical
Asg’ga < At&’gca. (6) SUPPLEMENTARY DISCUSSION
a#B
Figure[4a confirms this inequality for the matrix elements of 1. The Hamiltonian and the numerical calculations.

the momentum distribution in our system. We should mention
that there is am priori argument—admittedly in part depen-  In a system of units where = 1 the Hamiltonian reads
dent on certain hypotheses about chaos in quantum biliards R L
in support of this inequality for the case when the mean value H=-J Z (bjbj + h.C.) +U Z it )
of A in an energy eigenstate is comparable to the quantum (i.9) (4,4)
fluctuation ofA in that statel[28]. o

On the other hand, the thermalization we see appears t§n€re (i.j) indicates that the sums run over all nearest-
be working a bittoo well: in a system as small as ours, one N€ighbor pairs of sites/ is the hopping parameter, arid
would expect measurement-to-measurement fluctuatiores to i€ nearest-neighbor repulsion parameter that we alwdys se
much larger than what Fi§] 1b suggests. Indeed, as we shoW 0.1J. The hard-core boson crean&rU a}nd anr)lhllatlon
in Figuredb, the fluctuations that one would actually measur (b;) Operators commute on different sit¢'s, b;] = [b;;b)] =
would be dominated by the quantum fluctuations of the time{b!,b'] = 0 for all i andj # 4, while the hard-core condi-
dependent state. The rather large size of the quantum flucttion imposes the canonical anticommutation relations @n th
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same site{b,, b} = 1, and(b,)2 = (b!)2 = 0 forall i. Here  within a narrow window [E, — AE, Ey + AE], with
f; = blb, is the density operator. Eo = ((0)|H|y(0)) = (w(t)|H|p(t)) = —5.06.J. Since
An exact study of the nonequilibrium dynamics édkrtime ~ our systems are small there is generally no meaning to the
scales requires a full diagonalization of the many-body tam limit AE — 0, because small enough windows may fail
tonian [T). We are able to fully diagonalize—essentially toto contain even a single eigenstate. Instead, one should
machine precision—matrices of dimensibn~ 20,000, and  show that the microcanonical predictions are robust with
so we conside’N = 5 hard-core bosons onfax 5 lattice  respect to the choice of the width of the energy window. In
with four sites missing ) = 20, 349); see Fig[b. All the Fig.[8 we demonstrate this robustness in a neighborhood of
eigenstates of the Hamiltonian are used for the time evmiuti AE = 0.1.J, a value that seems to be an appropriate choice
given the data presented in the inset of the same figure.
9p(t)) = exp [—iH1]|1(0)) = ZCQ exp [—iEat]|Ps), There we show the dependence A of the predictions
o for n(k, = 0) given by the “left-averaged” and the “right-

) . . L averaged” microcanonical ensembles, by which we mean that
wherely(t)) is the time-evolving statey (0)) the initial state,  1ha microcanonical windows are chosen[& — AE, Ey|

|¥,) the eigenstates of the Hamiltonian with the enerdigs and[E,, Eo+ AE], respectively. We see that forE < 0.1.7,

andC,, = (Vo |¢(0)). Ourinitial state is the ground state of the two microcanonical predictions are almost independent

the five bosons when they are confined to the lower part of thg¢ 1ha value ofAE. The main panel in Fig]6 shows that the
lattice (the colored part in Fig] 5. The time evolution begin microcanonical values ofi(k,) for AE = 0.05.J and for
with the opening of the link shown in Figl 5, which allows the AFE — o

) - = 0.1J are indistinguishable.
bosons to expand over the whole lattice. The position of the
missing sites was chosen so that we only open a single link

to start the relaxation dynamics. The motivation for thidl wi ——T - T T
. — — - AE=0.05J
become apparent in the last paragraph below. 1.5F — .. AE=0.1] = N _
\
® O ~ 1L A7 e e\ |
N AlGS:I-I.Eu<EO _' \
O P T I S S S N
1 a "0 .,
" / [Vl Bl g ~
\\\‘ 05 = " S~ ] -1
A 1.55[ N
O—O— AW
l-gol.A.élnnoll llllnll
U Initial 0 . L L i ,
O -2 -1 0 1 2
K [2rv(L d)]
O o Y FIG. 6: Microcanonical ensemble Microcanonical momentum

distribution function for two different values cAE. Inset: Mi-
FIG. 5: The lattice for the dynamics Two-dimensional lattice on ~ crocanonical predictions fon(k, = 0) calculated using the left
which the particles propagate in time. The initial statéhisground  ([Eo—AE, Eo]) and the right[Eo, Eo+AFE]) averages as functions
state of 5 hard-core bosons confined to the sub-lattice irotlhier of AE.
right-hand corner, and the time evolution starts after ghening of
the link indicated by the door symbol.

As_the principal obs_er\_/abl_es of interest we chose the 3. Eigenstate thermalization and the width of the energy
marginal momentum distribution along the horizontal axis distribution.
n(ky) = >y, n(ke,ky) and in particular its central com-

ponentn(k, = 0), quantities readily measurable in actual Tne ejgenstate thermalization alone is not sufficient to en-
experiments with ultracold quantum gases| [19]. Here theyre an agreement between the predictions of the diagonal
full two-dimensional momentum distribution ig(k., k) =  and thermal ensembles. As discussed in Ref. [13], it is also
/L3, €_i2”k(ri_”)/L<bij>. whereL = L, = L, =5  necessary that both distributions be sufficiently narrowré
are the linear sizes of the lattice. The positipr= (i, d,i,d)  specifically, one must require for both ensembles
involves the lattice constant

(AE)*|A"(E)/A(E)| < 1, (8)

2. The microcanonical ensemble in a small system. where AFE is the width of the energy distribution in the en-
semble, andi(F) is the dependence of the expectation value
To compute the microcanonical ensemble predictionspfthe observablel,., = (\IJQ|E|\IJQ> on the energy,, of the
we have averaged over all eigenstates whose energies ligamiltonian-operator eigensta®,). Note that because of



eigenstate thermalizatiod(E) is a smooth function of en-

from the above by a finite number that does not scale with the

ergy. For the thermodynamical ensembles the condifibrs(8) isystem size. The mean squaref/chan be written as

always satisfied in the thermodynamic limit. We now show
that it is also satisfied for the diagonal ensemble in the-ther (‘Ifo|W2|\I/o)

modynamic limit.

If one considers an observahighat is the intensive coun-
terpart of A, all conclusions obtained far can be extended
to the original observabld via trivial rescaling. For exam-
ple, for our principal observable of interest k. ), the corre-
sponding intensive variable is the momentum den&ity,)
normalized asfdp, £(p,) = 1. Notice that in this case
£(pz) = n(ky)Lad/(2TN).

For a, the condition in[(B) reduces to

(Ae)*|a”(e)/ale)| < 1, (9)

wheree = E/N. For sufficiently large systems the depen-
dence ofa on e is independent of the system size. Hence, in

order to justify the validity of[(R) it is sufficient to provéat
the width of the distribution of the energy per particle i th

diagonal ensemble converges to zero for large linear dizes

of the system:

L—oo

Ae — 0. (10)

(o[ W] W)
+ > (ol (1) (j2)[Wo)
Ji1,j2€0

— (Wolw(j1)[Wo)(Yol|w(j2)|Wo)] -

In the absence of long-range correlations the expression in
brackets tends to zero for large distances betweend j,.
Therefore, the whole second term on the right-hand-side of
(17) scales a&’-, whered,, is the dimensionality of the sub-
latticeo and L is the linear size of the lattice. The variance of
W scales the same way:

(11)

)2 L—oo Ld" .

(AW
Retracing our steps, we arrive at the conclusion that theggne
width Ae indeed tends to zero in the thermodynamic limit:

L—oo 1

Ae Tdi—d. 2"

whered;, > d, is the dimensionality of the whole lattice.
Note that for the two-dimensional lattice considered is thi

Suppose that initially our system is prepared in an eigenpaper the role ofV is played by the hopping energy of the

state|W,) of a HamiltonianH, and that at time = 0 the
Hamiltonian is suddenly changedm

ﬁoﬁﬁ:ﬁo+w7

tonians. Within this scenario, the energy width

2
AE = | > E2|Cqf? - (Z Ea|Ca|2>

“door” link. An analysis similar to the one above shows that
increasing the number of “door” links will lead to an increas
in the widthAe, proportional to the square root of the number
of “door” links. This is why in our 2D experiment, we have

. ) . chosen the position of the missing sites to be the one il Fig. 5
whereWV is the difference between the new and the old Hamil-

so that only a single link is opened during the time evolution
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