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C
onventional approaches to sampling signals or images follow Shannon’s cel-
ebrated theorem: the sampling rate must be at least twice the maximum fre-
quency present in the signal (the so-called Nyquist rate). In fact, this
principle underlies nearly all signal acquisition protocols used in consumer
audio and visual electronics, medical imaging devices, radio receivers, and

so on. (For some signals, such as images that are not naturally bandlimited, the sam-
pling rate is dictated not by the Shannon theorem but by the desired temporal or spatial
resolution. However, it is common in such systems to use an antialiasing low-pass filter
to bandlimit the signal before sampling, and so the Shannon theorem plays an implicit
role.) In the field of data conversion, for example, standard analog-to-digital converter
(ADC) technology implements the usual quantized Shannon representation: the signal is
uniformly sampled at or above the Nyquist rate.

[Emmanuel J. Candès 

and Michael B. Wakin]

An Introduction To
Compressive Sampling

[A  sensing/sampling paradigm that goes against 
the common knowledge in data acquisition]

1053-5888/08/$25.00©2008IEEE IEEE SIGNAL PROCESSING MAGAZINE [21] MARCH 2008



This article surveys the theory of compressive sampling, also
known as compressed sensing or CS, a novel sensing/sampling
paradigm that goes against the common wisdom in data acquisi-
tion. CS theory asserts that one can recover certain signals and
images from far fewer samples or measurements than tradition-
al methods use. To make this possible, CS relies on two princi-
ples: sparsity, which pertains to the signals of interest, and
incoherence, which pertains to the sensing modality.

■ Sparsity expresses the idea that the “information
rate” of a continuous time signal may be much smaller
than suggested by its bandwidth, or that a discrete-time
signal depends on a number of degrees of freedom
which is comparably much smaller than its (finite)
length. More precisely, CS exploits the fact that many
natural signals are sparse or compressible in the sense
that they have concise rep-
resentations when expressed
in the proper basis � .
■ Incoherence extends the
duality between time and fre-
quency and expresses the idea
that objects having a sparse
representation in � must be
spread out in the domain in
which they are acquired, just as a Dirac or a spike in the
time domain is spread out in the frequency domain. Put
differently, incoherence says that unlike the signal of
interest, the sampling/sensing waveforms have an
extremely dense representation in � .
The crucial observation is that one can design efficient

sensing or sampling protocols that capture the useful infor-
mation content embedded in a sparse signal and condense it
into a small amount of data. These protocols are nonadaptive
and simply require correlating the signal with a small num-
ber of fixed waveforms that are incoherent with the sparsify-
ing basis. What is most remarkable about these sampling
protocols is that they allow a sensor to very efficiently cap-
ture the information in a sparse signal without trying to
comprehend that signal. Further, there is a way to use
numerical optimization to reconstruct the full-length signal
from the small amount of collected data. In other words, CS
is a very simple and efficient signal acquisition protocol
which samples—in a signal independent fashion—at a low
rate and later uses computational power for reconstruction
from what appears to be an incomplete set of measurements.

Our intent in this article is to overview the basic CS theory
that emerged in the works [1]–[3], present the key mathemat-
ical ideas underlying this theory, and survey a couple of
important results in the field. Our goal is to explain CS as
plainly as possible, and so our article is mainly of a tutorial
nature. One of the charms of this theory is that it draws from
various subdisciplines within the applied mathematical sci-
ences, most notably probability theory. In this review, we have
decided to highlight this aspect and especially the fact that
randomness can—perhaps surprisingly—lead to very effective

sensing mechanisms. We will also discuss significant implica-
tions, explain why CS is a concrete protocol for sensing and
compressing data simultaneously (thus the name), and con-
clude our tour by reviewing important applications.

THE SENSING PROBLEM
In this article, we discuss sensing mechanisms in which infor-
mation about a signal f (t) is obtained by linear functionals
recording the values

yk = 〈 f, ϕk〉, k = 1, . . . , m. (1)

That is, we simply correlate the object we wish to acquire
with the waveforms ϕk(t). This is a standard setup. If the
sensing waveforms are Dirac delta functions (spikes), for

example, then y is a vector of
sampled values of f in the time
or space domain. If the sensing
waveforms are indicator func-
tions of pixels,  then y is  the
image data typically collected by
sensors in a digital camera. If the
sensing waveforms are sinusoids,
then y is a vector of Fourier coef-

ficients; this is the sensing modality used in magnetic reso-
nance imaging (MRI). Other examples abound.

Although one could develop a CS theory of continuous
time/space signals, we restrict our attention to discrete sig-
nals f ∈ Rn. The reason is essentially twofold: first, this is
conceptually simpler and second, the available discrete CS
theory is far more developed (yet clearly paves the way for a
continuous theory—see also “Applications”). Having said
this, we are then interested in undersampled situations in
which the number m of available measurements is much
smaller than the dimension n of the signal f . Such problems
are extremely common for a variety of reasons. For instance,
the number of sensors may be limited. Or the measurements
may be extremely expensive as in certain imaging processes
via neutron scattering. Or the sensing process may be slow
so that one can only measure the object a few times as in
MRI. And so on.

These circumstances raise important questions. Is
accurate reconstruction possible from m � n measure-
ments only? Is it possible to design m � n sensing wave-
forms to capture almost all the information about f ? And
how can one approximate f from this  information?
Admittedly, this state of affairs looks rather daunting, as
one would need to solve an underdetermined linear system
of equations. Letting A denote the m × n sensing matrix
with the vectors ϕ∗

1 , . . . , ϕ∗
m as rows (a∗ is the complex

transpose of a), the process of recovering f ∈ Rn from
y = Af ∈ Rm is ill-posed in general when m < n: there are
infinitely many candidate signals f̃ for which Af̃ = y. But
one could perhaps imagine a way out by relying on realis-
tic models of objects f which naturally exist. The Shannon
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theory tells us that, if f(t) actually has very low band-
width, then a small number of (uniform) samples will suf-
fice for recovery. As we will see in the remainder of this
article, signal recovery can actually be made possible for a
much broader class of signal models.

INCOHERENCE AND THE SENSING OF SPARSE SIGNALS
This section presents the two fundamental premises underlying
CS: sparsity and incoherence.

SPARSITY
Many natural signals have concise representations when
expressed in a convenient basis. Consider, for example, the
image in Figure 1(a) and its wavelet transform in (b).
Although nearly all the image pixels have nonzero values, the
wavelet coefficients offer a concise summary: most coeffi-
cients are small, and the relatively few large coefficients cap-
ture most of the information.

Mathematically speaking, we have a vector f ∈ Rn (such as
the n-pixel image in Figure 1) which we expand in an orthonor-
mal basis (such as a wavelet basis) � = [ψ1ψ2 · · ·ψn] as follows:

f(t) =
n∑

i=1

xi ψi(t), (2)

where x is the coefficient sequence of f , xi = 〈 f, ψi〉. It will be
convenient to express f as �x (where � is the n × n matrix
with ψ1, . . . , ψn as columns). The implication of sparsity is
now clear: when a signal has a sparse expansion, one can dis-
card the small coefficients without much perceptual loss.
Formally, consider fS(t) obtained by keeping only the terms
corresponding to the S largest values of (xi) in the expansion
(2). By definition, fS := �xS, where here and below, xS is the
vector of coefficients (xi) with all but the largest S set to zero.
This vector is sparse in a strict sense since all but a few of its
entries are zero; we will call S-sparse
such objects with at most S nonzero
entries. Since � is an orthonormal
basis (or “orthobasis”), we have
‖ f − fS‖�2 = ‖x − xS‖�2 , and if x is
sparse or compressible in the sense
that the sorted magnitudes of the (xi)

decay quickly, then x is well approxi-
mated by xS and, therefore, the error
‖ f − fS‖�2 is small. In plain terms,
one can “throw away” a large fraction
of the coefficients without much loss.
Figure 1(c) shows an example where
the perceptual loss is hardly noticeable
from a megapixel image to its approxi-
mation obtained by throwing away
97.5% of the coefficients.

This principle is, of course, what
underlies most modern lossy coders
such as JPEG-2000 [4] and many

others, since a simple method for data compression would be to
compute x from f and then (adaptively) encode the locations
and values of the S significant coefficients. Such a process
requires knowledge of all the n coefficients x, as the locations
of the significant pieces of information may not be known in
advance (they are signal dependent); in our example, they tend
to be clustered around edges in the image. More generally,
sparsity is a fundamental modeling tool which permits efficient
fundamental signal processing; e.g., accurate statistical estima-
tion and classification, efficient data compression, and so on.
This article is about a more surprising and far-reaching impli-
cation, however, which is that sparsity has significant bearings
on the acquisition process itself. Sparsity determines how effi-
ciently one can acquire signals nonadaptively.

INCOHERENT SAMPLING
Suppose we are given a pair (�,�) of orthobases of Rn. The first
basis � is used for sensing the object f as in (1) and the second is
used to represent f . The restriction to pairs of orthobases is not
essential and will merely simplify our treatment.

DEFINITION 1
The coherence between the sensing basis � and the representa-
tion basis � is

μ(�,�) = √
n · max

1≤k, j≤n
|〈ϕk, ψ j〉|. (3)

In plain English, the coherence measures the largest correlation
between any two elements of � and �; see also [5]. If � and �
contain correlated elements, the coherence is large. Otherwise,
it is small. As for how large and how small, it follows from linear
algebra that μ(�,�) ∈ [1,

√
n].

Compressive sampling is mainly concerned with low coher-
ence pairs, and we now give examples of such pairs. In our first
example, � is the canonical or spike basis ϕk(t) = δ(t − k ) and

[FIG1] (a) Original megapixel image with pixel values in the range [0,255] and (b) its
wavelet transform coefficients (arranged in random order for enhanced visibility).
Relatively few wavelet coefficients capture most of the signal energy; many such images
are highly compressible. (c) The reconstruction obtained by zeroing out all the coefficients
in the wavelet expansion but the 25,000 largest (pixel values are thresholded to the range
[0,255]). The difference with the original picture is hardly noticeable. As we describe in
“Undersampling and Sparse Signal Recovery,” this image can be perfectly recovered from
just 96,000 incoherent measurements.
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� is the Fourier basis, ψ j (t) = n−1/ 2 e i 2π jt/n. Since � is the
sensing matrix, this corresponds to the classical sampling scheme
in time or space. The time-frequency pair obeys μ(�,�) = 1
and, therefore, we have maximal
incoherence. Further, spikes and
sinusoids are maximally incoherent
not just in one dimension but in
any dimension, (in two dimensions,
three dimensions, etc.)

Our second example takes
wavelets bases for � and noiselets
[6] for �. The coherence between
noiselets and Haar wavelets is 

√
2 and that between noiselets and

Daubechies D4 and D8 wavelets is, respectively, about 2.2 and 2.9
across a wide range of sample sizes n. This extends to higher
dimensions as well. (Noiselets are also maximally incoherent with
spikes and incoherent with the Fourier basis.) Our interest in
noiselets comes from the fact that 1) they are incoherent with sys-
tems providing sparse representations of image data and other
types of data, and 2) they come with very fast algorithms; the
noiselet transform runs in O(n) time, and just like the Fourier
transform, the noiselet matrix does not need to be stored to be
applied to a vector. This is of crucial practical importance for
numerically efficient CS implementations.

Finally, random matrices are largely incoherent with any
fixed basis � . Select an orthobasis � uniformly at random,
which can be done by orthonormalizing n vectors sampled
independently and uniformly on the unit sphere. Then with
high probability, the coherence between � and � is about√

2 log n. By extension, random waveforms (ϕk (t)) with inde-
pendent identically distributed (i.i.d.) entries, e.g., Gaussian
or ±1 binary entries, will also exhibit a very low coherence
with any fixed representation �. Note the rather strange
implication here; if sensing with incoherent systems is good,
then efficient mechanisms ought to acquire correlations with
random waveforms, e.g., white noise!

UNDERSAMPLING AND SPARSE SIGNAL RECOVERY
Ideally, we would like to measure all the n coefficients of f , but
we only get to observe a subset of these and collect the data

yk = 〈 f, ϕk〉, k ∈ M, (4)

where M ⊂ {1, . . . , n} is a subset of cardinality m < n. With
this information, we decide to recover the signal by �1-norm
minimization; the proposed reconstruction f � is given by
f � = �x�, where x� is the solution to the convex optimization
program (‖x‖�1 := ∑

i |xi|)

min
x̃∈Rn

‖x̃‖�1 subject to yk = 〈ϕk,� x̃ 〉, ∀ k ∈ M. (5)

That is, among all objects f̃ = � x̃ consistent with the data, we
pick that whose coefficient sequence has minimal �1 norm. (As
is well known, minimizing �1 subject to linear equality con-

straints can easily be recast as a linear program making avail-
able a host of ever more efficient solution algorithms.)

The use of the �1 norm as a sparsity-promoting function
traces back several decades. A
leading early application was
reflection seismology, in which a
sparse reflection function (indi-
cating meaningful  changes
between subsurface layers) was
sought from bandlimited data
[7], [8]. However, �1-minimiza-
tion is  not the only way to

recover sparse solutions; other methods, such as greedy
algorithms [9], have also been proposed.

Our first result asserts that when f is sufficiently sparse, the
recovery via �1-minimization is provably exact.

THEOREM 1 [10]
Fix f ∈ Rn and suppose that the coefficient sequence x of f in
the basis � is S-sparse. Select m measurements in the �
domain uniformly at random. Then if 

m ≥ C · μ2(�,�) · S · log n (6)

for some positive constant C, the solution to (5) is exact with
overwhelming probability. (It is shown that the probability of
success exceeds 1 − δ if m ≥ C · μ2(�,�) · S · log(n/δ) . In
addition, the  result is only guaranteed for nearly all sign
sequences x with a fixed support, see [10] for details.)

We wish to make three comments: 
1) The role of the coherence is completely transparent;
the smaller the coherence, the fewer samples are needed,
hence our emphasis on low coherence systems in the
previous section.
2) One suffers no information loss by measuring just
about any set of m coefficients which may be far less than
the signal size apparently demands. If μ(�,�) is equal or
close to one, then on the order of S log n samples suffice
instead of n. 
3) The signal f can be exactly recovered from our con-
densed data set by minimizing a convex functional which
does not assume any knowledge about the number of
nonzero coordinates of x, their locations, or their ampli-
tudes which we assume are all completely unknown a pri-
ori. We just run the algorithm and if the signal happens to
be sufficiently sparse, exact recovery occurs.
The theorem indeed suggests a very concrete acquisition

protocol: sample nonadaptively in an incoherent domain and
invoke linear programming after the acquisition step. Following
this protocol would essentially acquire the signal in a com-
pressed form. All that is needed is a decoder to “decompress”
this data; this is the role of �1 minimization.

In truth, this random incoherent sampling theorem extends
an earlier result about the sampling of spectrally sparse signals
[1], which showed that randomness 1) can be a very effective

MANY NATURAL SIGNALS ARE
SPARSE OR COMPRESSIBLE IN THE
SENSE THAT THEY HAVE CONCISE

REPRESENTATIONS WHEN
EXPRESSED IN THE PROPER BASIS.
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sensing mechanism and 2) is amenable to rigorous proofs, and
thus perhaps triggered the many CS developments we have wit-
nessed and continue to witness today. Suppose that we are
interested in sampling ultra-wideband but spectrally sparse sig-
nals of the form f(t) = ∑n−1

j=0 xj e i 2 π j t/ n, t = 0, . . . , n − 1,

where n is very large but where the number of nonzero compo-
nents xj is less than or equal to S (which we should think of as
comparably small). We do not know which frequencies are
active nor do we know the amplitudes on this active set.
Because the active set is not necessarily a subset of consecutive
integers, the Nyquist/Shannon theory is mostly unhelpful
(since one cannot restrict the bandwidth a priori, one may be
led to believe that all n time samples are needed). In this special
instance, Theorem 1 claims that one can reconstruct a signal
with arbitrary and unknown frequency support of size S from
on the order of S log n time samples, see [1]. What is more,
these samples do not have to be carefully chosen; almost any
sample set of this size will work. An illustrative example is pro-
vided in Figure 2. For other types of theoretical results in this
direction using completely different ideas see [11]–[13].

It is now time to discuss the role played by probability in all
of this. The key point is that to get useful and powerful results,
one needs to resort to a probabilistic statement since one can-
not hope for comparable results holding for all measurement
sets of size m. Here is why. There are special sparse signals
that vanish nearly everywhere in the � domain. In other
words, one can find sparse signals f and very large subsets of
size almost n (e.g.,  n − S ) for which yk = 〈 f, ϕk〉 = 0 for all
k ∈ M. The interested reader may want to check the example
of the Dirac comb discussed in [14] and [1]. On the one hand,
given such subsets, one would get to see a stream of zeros and
no algorithm whatsoever would of course be able reconstruct
the signal. On the other hand, the theorem guarantees that the
fraction of sets for which exact recovery does not occur is truly
negligible (a large negative power of n). Thus, we only have to
tolerate a probability of failure that is extremely small. For
practical purposes, the probability of failure is zero provided
that the sampling size is sufficiently large.

Interestingly, the study of special sparse signals discussed
above also shows that one needs at least on the order of
μ2 · S · log n samples as well. (We are well aware that there
exist subsets of cardinality 2S in the time domain which can
reconstruct any S-sparse signal in the frequency domain.
Simply take 2S consecutive time points, see “What Is
Comprehensive Sampling?” and [11] and [12], for example.
But this is not what our claim is about. We want that most
sets of a certain size provide exact reconstruction.) With fewer
samples, the probability that information may be lost is just
too high and reconstruction by any method, no matter how
intractable, is impossible. In summary, when the coherence is
one, say, we do not need more than S log n samples but we
cannot do with fewer either.

We conclude this section with an incoherent sampling exam-
ple, and consider the sparse image in Figure 1(c), which as we
recall has only 25,000 nonzero wavelet coefficients. We then

[FIG2] (a) A sparse real valued signal and (b) its reconstruction
from 60 (complex valued) Fourier coefficients by �1
minimization. The reconstruction is exact. (c) The minimum
energy reconstruction obtained by substituting the �1 norm
with the �2 norm; �1 and �2 give wildly different answers. The
�2 solution does not provide a reasonable approximation to
the original signal.
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acquire information by taking 96,000 incoherent measurements
(see [10] for the particulars of these measurements) and solve (5).
The minimum-�1 recovery is per-
fect; that is, f � = f . This example
shows that a number of samples
just about 4× the sparsity level suf-
fices. Many researchers have
reported on similar empirical suc-
cesses. There is de facto a known
four-to-one practical rule which
says that for exact recovery, one
needs about four incoherent sam-
ples per unknown nonzero term.

ROBUST COMPRESSIVE SAMPLING
We have shown that one could recover sparse signals from just a
few measurements but in order to be really powerful, CS needs
to be able to deal with both nearly sparse signals and with noise.
First, general objects of interest are not exactly sparse but
approximately sparse. The issue here is whether or not it is pos-
sible to obtain accurate reconstructions of such objects from
highly undersampled measurements. Second, in any real appli-
cation measured data will invariably be corrupted by at least a
small amount of noise as sensing devices do not have infinite
precision. It is therefore imperative that CS be robust vis a vis
such nonidealities. At the very least, small perturbations in the
data should cause small perturbations in the reconstruction.

This section examines these two issues simultaneously.
Before we begin, however, it will ease the exposition to consider
the abstract problem of recovering a vector x ∈ Rn from data

y = Ax + z, (7)

where A is an m × n “sensing matrix” giving us information about
x, and z is a stochastic or deterministic unknown error term. The
setup of the last section is of this form since with f = �x and
y = R�f (R is the m × n matrix extracting the sampled coordi-
nates in M), one can write y = Ax, where A = R��. Hence, one
can work with the abstract model (7) bearing in mind that x may
be the coefficient sequence of the object in a proper basis.

RESTRICTED ISOMETRIES
In this section, we introduce a key notion that has proved to be
very useful to study the general robustness of CS; the so-called
restricted isometry property (RIP) [15].

DEFINITION 2
For each integer S = 1, 2, . . . , define the isometry constant δS

of a matrix A as the smallest number such that

(1 − δS)‖x‖2
�2

≤ ‖Ax‖2
�2

≤ (1 + δS)‖x‖2
�2

(8)

holds for all S-sparse vectors x.
We will loosely say that a matrix A obeys the RIP of order S if

δS is not too close to one. When this property holds, A approxi-

mately preserves the Euclidean length of S-sparse signals, which
in turn implies that S-sparse vectors cannot be in the null space

of A. (This is useful as otherwise
there would be no hope of recon-
structing these vectors.) An equiv-
alent description of the RIP is to
say that all subsets of S columns
taken from A are in fact nearly
orthogonal (the columns of A can-
not be exactly orthogonal since we
have more columns than rows).

To see the connection between
the RIP and CS, imagine we wish
to acquire S-sparse signals with

A. Suppose that δ2S is sufficiently less than one. This implies
that all pairwise distances between S-sparse signals must be
well preserved in the measurement space. That is,
(1 − δ2S)‖x1 − x2‖2

�2
≤ ‖Ax1 − Ax2‖2

�2
≤ (1 + δ2S)‖x1− x2 |2�2

holds for all S-sparse vectors x1, x2. As demonstrated in the
next section, this encouraging fact guarantees the existence
of efficient and robust algorithms for discriminating S-sparse
signals based on their compressive measurements.

GENERAL SIGNAL RECOVERY
FROM UNDERSAMPLED DATA
If the RIP holds, then the following linear program gives an
accurate reconstruction:

min
x̃∈Rn

‖x̃‖�1 subject to Ax̃ = y (= Ax). (9)

THEOREM 2 [16]
Assume that δ2S <

√
2 − 1. Then the solution x� to (9) obeys

‖x� − x‖�2 ≤ C0 · ‖x − xS‖�1/
√

S and

‖x� − x‖�1 ≤ C0 · ‖x − xS‖�1 (10)

for some constant C0, where xS is the vector x with all but
the largest S components set to 0. (As stated, this result is
due to the first author [17] and yet unpublished, see also [16]
and [18].)

The conclusions of Theorem 2 are stronger than those of
Theorem 1. If x is S-sparse, then x = xS and, thus, the recov-
ery is exact. But this new theorem deals with all signals. If x
is not S-sparse, then (10) asserts that the quality of the
recovered signal is as good as if one knew ahead of time the
location of the S largest values of x and decided to measure
those directly. In other words, the reconstruction is nearly as
good as that provided by an oracle which, with full and per-
fect knowledge about x, extracts the S most significant pieces
of information for us.

Another striking difference with our earlier result is that it
is deterministic; it involves no probability. If we are fortunate
enough to hold a sensing matrix A obeying the hypothesis of

WHAT IS MOST REMARKABLE
ABOUT THESE SAMPLING

PROTOCOLS IS THAT THEY ALLOW
A SENSOR TO VERY EFFICIENTLY

CAPTURE THE INFORMATION IN A
SPARSE SIGNAL WITHOUT TRYING
TO COMPREHEND THAT SIGNAL.
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the theorem, we may apply it, and we are then guaranteed to
recover all sparse S-vectors exactly, and essentially the S-
largest entries of all vectors otherwise; i.e., there is no proba-
bility of failure.

What is missing at this point is the relationship between S
(the number of components one can effectively recover) obey-
ing the hypothesis and m the number of measurements or
rows of the matrix. To derive powerful results, we would like
to find matrices obeying the RIP with values of S close to m.
Can one design such matrices? In the next section, we will
show that this is possible, but first we examine the robustness
of CS vis a vis data corruption.

ROBUST SIGNAL RECOVERY FROM NOISY DATA
We are given noisy data as in (7) and use �1 minimization with
relaxed constraints for reconstruction:

min ‖x̃‖�1 subject to ‖Ax̃ − y‖�2 ≤ ε, (11)

where ε bounds the amount of noise in the data. (One could
also consider recovery programs such as the Dantzig selector
[19] or a combinatorial optimization program proposed by
Haupt and Nowak [20]; both algorithms have provable results
in the case where the noise is Gaussian with bounded vari-
ance.) Problem (11) is often called the LASSO after [21]; see
also [22]. To the best of our knowledge, it was first proposed in
[8]. This is again a convex problem (a second-order cone pro-
gram) and can be solved efficiently.

THEOREM 3 [16]
Assume that δ2S <

√
2 − 1. Then the solution x� to (11) obeys

‖x� − x‖�2 ≤ C0 · ‖x − xS‖�1/
√

S + C1 · ε (12)

for some constants C0 and C1. (Again, this theorem is unpub-
lished as stated and is a variation on the result found in [16].)

This can hardly be simpler. The reconstruction error is
bounded by the sum of two terms. The first is the error which
would occur if one had noiseless data. The second is just propor-
tional to the noise level. Further, the constants C0 and C1 are
typically small. With δ2S = 1/4 for example, C0 ≤ 5.5 and
C1 ≤ 6. Figure 3 shows a reconstruction from noisy data.

This last result establishes CS as a practical and robust
sensing mechanism. It works with all kinds of not necessarily
sparse signals, and it handles noise gracefully. What remains
to be done is to design efficient sensing matrices obeying the
RIP. This is the subject of the next section.

RANDOM SENSING
Returning to the RIP, we would like to find sensing matri-
ces with the property that column vectors taken from arbi-
trary subsets are nearly orthogonal. The larger these
subsets, the better.

This is where randomness re-enters the picture. Consider
the following sensing matrices: i) form A by sampling n col-

umn vectors uniformly at random on the unit sphere of Rm;
ii) form A by sampling i.i.d. entries from the normal distri-
bution with mean 0 and variance 1/m; iii) form A by sam-
pling a random projection P as in “Incoherent Sampling”
and normalize: A = √

n/m P ; and iv) form A by sampling
i.i.d. entries from a symmetric Bernoulli distribution
(P(Ai, j = ±1/

√
m) = 1/2) or other sub-gaussian distribu-

tion. With overwhelming probability, all these matrices obey
the RIP (i.e. the condition of our theorem) provided that

m ≥ C · S log(n/S), (13)

where C is some constant depending on each instance. The
claims for i)–iii) use fairly standard results in probability theory;
arguments for iv) are more subtle; see [23] and the work of Pajor
and his coworkers, e.g., [24]. In all these examples, the probabili-
ty of sampling a matrix not obeying the RIP when (13) holds is
exponentially small in m. Interestingly, there are no measure-
ment matrices and no reconstruction algorithm whatsoever
which can give the conclusions of Theorem 2 with substantially
fewer samples than the left-hand side of (13) [2], [3]. In that
sense, using randomized matrices together with �1 minimization
is a near-optimal sensing strategy.

One can also establish the RIP for pairs of orthobases as in
“Incoherence and the Sensing of Sparse Signals.” With
A = R�� where R extracts m coordinates uniformly at ran-
dom, it is sufficient to have

m ≥ C · S (log n)4, (14)

for the property to hold with large probability; see [25] and [2].
If one wants a probability of failure no larger than O(n−β) for
some β > 0, then the best known exponent in (14) is five
instead of four (it is believed that (14) holds with just log n).

[FIG3] A signal x (horizontal axis) and its reconstruction x�

(vertical axis) obtained via (11). In this example, n = 512 and
m = 256. The signal is 64-sparse. In the model (7), the sensing
matrix has i.i.d. N(0, 1/m) entries and z is a Gaussian white
noise vector adjusted so that ‖Ax‖�2/‖z‖�2 = 5. Here,
‖x� − x‖�2 ≈ 1.3 · ε.
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This proves that one can stably and accurately reconstruct
nearly sparse signals from dramatically undersampled data in
an incoherent domain.

Finally, the RIP can also hold for sensing matrices A = ��,
where � is an arbitrary orthobasis and � is an m × n measure-
ment matrix drawn randomly from a suitable distribution. If one
fixes � and populates � as in i)–iv), then with overwhelming prob-
ability, the matrix A = �� obeys
the RIP provided that (13) is satis-
fied, where again C is some con-
stant depending on each instance.
These random measurement matri-
ces � are in a sense universal [23];
the sparsity basis need not even be
known when designing the meas-
urement system!

WHAT IS COMPRESSIVE SAMPLING?
Data acquisition typically works as follows: massive amounts of
data are collected only to be—in large part—discarded at the
compression stage to facilitate storage and transmission. In the
language of this article, one acquires a high-resolution pixel array
f , computes the complete set of transform coefficients, encode
the largest coefficients and discard all the others, essentially end-
ing up with fS. This process of massive data acquisition followed
by compression is extremely wasteful (one can think about a digi-
tal camera which has millions of imaging sensors, the pixels, but
eventually encodes the picture in just a few hundred kilobytes).

CS operates very differently, and performs as “if it were possi-
ble to directly acquire just the important information about the
object of interest.” By taking about O(S log(n/S)) random projec-
tions as in “Random Sensing,” one has enough information to
reconstruct the signal with accuracy at least as good as that pro-
vided by fS, the best S-term approximation—the best compressed
representation—of the object. In other words, CS measurement
protocols essentially translate analog data into an already com-
pressed digital form so that one can—at least in principle—obtain
super-resolved signals from just a few sensors. All that is needed
after the acquisition step is to “decompress” the measured data.

There are some superficial similarities between CS and
ideas in coding theory and more precisely with the theory and
practice of Reed-Solomon (RS) codes [26]. In a nutshell and
in the context of this article, it is well known that one can
adapt ideas from coding theory to establish the following: one
can uniquely reconstruct any S-sparse signal from the data of
its first 2S Fourier coefficients, yk = ∑n−1

t=0 xt e−i 2π kt/n,

k = 0, 1, 2, . . . , 2S − 1, or from any set of 2S consecutive fre-
quencies for that matter (the computational cost for the
recovery is essentially that of solving an S × S Toeplitz system
and of taking an n-point fast Fourier transform). Does this
mean that one can use this technique to sense compressible
signals? The answer is negative and there are two main rea-
sons for this. First, the problem is that RS decoding is an
algebraic technique, which cannot deal with nonsparse sig-
nals (the decoding finds the support by rooting a polynomial);

second, the problem of finding the support of a signal—even
when the signal is exactly sparse—from its first 2S Fourier
coefficients is extraordinarily ill posed (the problem is the
same as that of extrapolating a high degree polynomial from a
small number of highly clustered values). Tiny perturbations
of these coefficients will give completely different answers so
that with finite precision data, reliable estimation of the sup-

port is practically impossible.
Whereas purely algebraic meth-
ods ignore the conditioning of
information operators, having
well-conditioned matrices, which
are crucial for accurate estima-
tion, is a central concern in CS as
evidenced by the role played by
the RIP.

APPLICATIONS
The fact that a compressible signal can be captured effi-
ciently using a number of incoherent measurements that is
proportional to its information level S � n has implications
that are far reaching and concern a number of possible
applications:

■ Data compression. In some situations, the sparse basis �
may be unknown at the encoder or impractical to implement
for data compression. As we discussed in “Random Sensing,”
however, a randomly designed � can be considered a universal
encoding strategy, as it need not be designed with regards to
the structure of �. (The knowledge and ability to implement
� are required only for the decoding or recovery of f .) This
universality may be particularly helpful for distributed source
coding in multi-signal settings such as sensor networks [27].
We refer the reader to articles by Haupt et al. and Goyal et al.
elsewhere in this issue for related discussions.
■ Channel coding. As explained in [15], CS principles (spar-
sity, randomness, and convex optimization) can be turned
around and applied to design fast error correcting codes over
the reals to protect from errors during transmission.
■ Inverse problems. In still other situations, the only way to
acquire f may be to use a measurement system � of a cer-
tain modality. However, assuming a sparse basis � exists for
f that is also incoherent with �, then efficient sensing will
be possible. One such application involves MR angiography
[1] and other types of MR setups [28], where � records a
subset of the Fourier transform, and the desired image f is
sparse in the time or wavelet domains. Elsewhere in this
issue, Lustig et al. discuss this application in more depth.
■ Data acquisition. Finally, in some important situations the
full collection of n discrete-time samples of an analog signal
may be difficult to obtain (and possibly difficult to subse-
quently compress). Here, it could be helpful to design physi-
cal sampling devices that directly record discrete, low-rate
incoherent measurements of the incident analog signal.
The last of these applications suggests that mathematical

and computational methods could have an enormous impact
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in areas where conventional hardware design has significant
limitations. For example, conventional imaging devices that
use CCD or CMOS technology are limited essentially to the
visible spectrum. However, a CS camera that collects incoher-
ent measurements using a digital micromirror array (and
requires just one photosensitive element instead of millions)
could significantly expand these
capabilities. (See [29] and an arti-
cle by Duarte et al. in this issue.)

Along these same lines, part
of our research has focused on
advancing devices for “analog-
to-information” (A/I) conversion
of high-bandwidth signals (see
also the article by Healy et al. in
this issue). Our goal is to help
alleviate the pressure on conventional ADC technology,
which is currently limited to sample rates on the order of 1
GHz. As an alternative, we have proposed two specific archi-
tectures for A/I in which a discrete, low-rate sequence of
incoherent measurements can be acquired from a high-
bandwidth analog signal. To a high degree of approxima-
tion, each measurement yk can be interpreted as the inner
product 〈 f, ϕk〉 of the incident analog signal f against an
analog measurement waveform ϕk. As in the discrete CS
framework, our preliminary results suggest that analog sig-
nals obeying a sparse or compressible model (in some ana-
log dictionary � ) can be captured efficiently using these
devices at a rate proportional to their information level
instead of their Nyquist rate. Of course, there are challenges
one must address when applying the discrete CS methodol-
ogy to the recovery of sparse analog signals. A thorough
treatment of these issues would be beyond the scope of this
short article and as a first cut, one might simply accept the
idea that in many cases, discretizing/sampling the sparse
dictionary allows for suitable recovery. Our two architec-
tures are as follows:

1) Nonuniform Sampler (NUS). Our first architecture simply
digitizes the signal at randomly or pseudo-randomly sampled
time points. That is, yk = f(tk) = 〈 f, δtk〉. In effect, these

time points are obtained by jittering nominal (low-rate)
sample points located on a regular lattice. Due to the inco-
herence between spikes and sines, this architecture can be
used to sample signals having sparse frequency spectra far
below their Nyquist rate. There are of course tremendous
benefits associated with a reduced sampling rate, as this

provides added circuit settling
time and has the effect of reduc-
ing the noise level.
2) Random Modulation Prein-
tegration (RMPI). Our second
architecture is applicable to a
wider variety of sparsity domains,
most notably those signals hav-
ing a sparse signature in the
time-frequency plane. Whereas it

may not be possible to digitize an analog signal at a very
high rate rate, it may be quite possible to change its polari-
ty at a high rate. The idea of the RMPI architecture [see
Figure 4(a)] is then to multiply the signal by a pseudo-ran-
dom sequence of ±1s, integrate the product over time win-
dows, and digitize the integral at the end of each time
interval. This is a parallel architecture and one has several
of these random multiplier-integrator pairs running in par-
allel using distinct sign sequences. In effect, the RMPI
architecture correlates the signal with a bank of sequences
of ±1, one of the random CS measurement processes
known to be universal, and therefore the RMPI measure-
ments will be incoherent with any fixed time-frequency dic-
tionary such as the Gabor dictionary described below.
For each of the above architectures, we have confirmed

numerically (and in some cases physically) that the system is
robust to circuit nonidealities such as thermal noise, clock tim-
ing errors, interference, and amplifier nonlinearities. 

The application of A/I architectures to realistic acquisition
scenarios will require continued development of CS algorithms
and theory. To highlight some promising recent directions, we
conclude with a final discrete example. We take f to be a one-
dimensional signal of length n = 512 that contains two modulat-
ed pulses [see the blue curve in Figure 4(b)] From this signal, we

[FIG4] Analog-to-information conversion. (a) Random modulation preintegration (RMPI) system. (b) Original two-pulse signal (blue) and
reconstruction (red) via �1synthesis from random ±1 measurements. (c) Two-pulse signal and reconstruction via reweighted �1 analysis.
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collect m = 30 measurements using an m × n measurement
matrix � populated with i.i.d. Bernoulli ±1 entries. This is an
unreasonably small amount of data corresponding to an under-
sampling factor of over 17. For reconstruction we consider a
Gabor dictionary � that consists of a variety of sine waves time
limited by Gaussian windows, with different locations and scales.
Overall the dictionary is approximately 43× overcomplete and
does not contain the two pulses that comprise f . The red curve
in Figure 4(b) shows the result of minimizing ‖x‖�1 such that
y = ��x. The reconstruction shows pronounced artifacts, and
we see ‖ f − f�‖�2/‖ f‖�2 ≈ 0.67. However, we can virtually
eliminate these artifacts by making two changes to the �1 recov-
ery program. First, we instead minimize ‖�∗ f̃‖�1 subject to
y = � f̃ . (This variation has no effect when � is an orthobasis.)
Second, after obtaining an estimate f �, we reweight the �1 norm
and repeat the reconstruction, with a lower penalty applied to
those coefficients we anticipate to be large. Figure 4(c) shows the
result after four iterations of reweighting; we see
‖ f − f �‖�2/‖ f ‖�2 ≈ 0.022. We refer the reader to [30] for more
information on these directions. The point here is that even
though the amount of data is ridiculously small, one has never-
theless captured most of the information contained in the signal.
This, in a nutshell, is why CS holds such great promise.
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