
VAIN: Attentional Multi-agent Predictive Modeling

Yedid Hoshen
Facebook AI Research, NYC

yedidh@fb.com

Abstract

Multi-agent predictive modeling is an essential step for understanding physical,
social and team-play systems. Recently, Interaction Networks (INs) were proposed
for the task of modeling multi-agent physical systems, INs scale with the number
of interactions in the system (typically quadratic or higher order in the number
of agents). In this paper we introduce VAIN, a novel attentional architecture for
multi-agent predictive modeling that scales linearly with the number of agents. We
show that VAIN is effective for multi-agent predictive modeling. Our method is
evaluated on tasks from challenging multi-agent prediction domains: chess and
soccer, and outperforms competing multi-agent approaches.

1 Introduction

Modeling multi-agent interactions is essential for understanding the world. The physical world
is governed by (relatively) well-understood multi-agent interactions including fundamental forces
(e.g. gravitational attraction, electrostatic interactions) as well as more macroscopic phenomena
(electrical conductors and insulators, astrophysics). The social world is also governed by multi-agent
interactions (e.g. psychology and economics) which are often imperfectly understood. Games such
as Chess or Go have simple and well defined rules but move dynamics are governed by very complex
policies. Modeling and inference of multi-agent interaction from observational data is therefore an
important step towards machine intelligence.

Deep Neural Networks (DNNs) have had much success in machine perception e.g. Computer Vision
[1, 2, 3], Natural Language Processing [4] and Speech Recognition [5, 6]. These problems usually
have temporal and/or spatial structure, which makes them amenable to particular neural architectures
- Convolutional and Recurrent Neural Networks (CNN [7] and RNN [8]). Multi-agent interactions
are different from machine perception in several ways:

• The data is no longer sampled on a spatial or temporal grid.
• The number of agents changes frequently.
• Systems are quite heterogeneous, there is not a canonical large network that can be used for

finetuning.
• Multi-agent systems have an obvious factorization (into point agents), whereas signals such

as images and speech do not.

To model simple interactions in a physics simulation context, Interaction Networks (INs) were
proposed by Battaglia et al. [9]. Interaction networks model each interaction in the physical
interaction graph (e.g. force between every two gravitating bodies) by a neural network. By the
additive sum of the vector outputs of all the interactions, a global interaction vector is obtained.
The global interaction alongside object features are then used to predict the future velocity of the
object. It was shown that Interaction Networks can be trained for different numbers of physical agents
and generate accurate results for simple physical scenarios in which the nature of the interaction is
additive and binary (i.e. pairwise interaction between two agents) and while the number of agents is
small.
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Although Interaction Networks are suitable for the physical domain for which they were introduced,
they have significant drawbacks that prevent them from being efficiently extensible to general multi-
agent interaction scenarios. The network complexity is O(Nd) where N is the number of objects
and d is the typical interaction clique size. Fundamental physics interactions simulated by the
method have d = 2, resulting in a quadratic dependence and higher order interactions become
completely unmanageable. In Social LSTM [10], this was remedied by pooling a local neighborhood
of interactions. The solution however cannot work for scenarios with long-range interactions. Another
solution offered by Battaglia et al. [9] is to add several fully connected layers modeling the high-order
interactions. This approach struggles when the objective is to select one of the agents (e.g. which
agent will move), as it results in a distributed representation and loses the structure of the problem.

In this work we present VAIN (Vertex Attention Interaction Network), a novel multi-agent attentional
neural network for predictive modeling. VAIN’s attention mechanism helps with modeling the locality
of interactions and improves performance by determining which agents will share information. VAIN
can be said to be a CommNet [11] with a novel attention mechanism or a factorized Interaction
Network [9]. This will be made more concrete in Sec. 2. We show that VAIN can model high-order
interactions with linear complexity in the number of vertexes while preserving the structure of the
problem, this has lower complexity than IN in cases where there are many fewer vertexes than edges
(in many cases linear vs quadratic in the number of agents).

For evaluation we introduce two non-physical tasks which more closely resemble real-world and
game-playing multi-agent predictive modeling, as well as a physical Bouncing Balls task. Our
non-physical tasks are taken from Chess and Soccer and contain different types of interactions and
different data regimes. The interaction graph on these tasks is not known apriori, as is typical in
nature.

An informal analysis of our architecture is presented in Sec. 2. Our method is presented in Sec. 3.
Description of our experimental evaluation scenarios are presented in Sec. 4. The results are provided
in Sec. 5. Conclusion and future work are presented in Sec. 6.

Related Work

This work is primarily concerned with learning multi-agent interactions with graph structures. The
seminal works in graph neural networks were presented by Scarselli et al. [12, 13] and Li et al. [14].
Another notable iterative graph-like neural algorithm is the Neural-GPU [15]. Notable works in
graph NNs includes Spectral Networks [16] and work by Duvenaud et al. [17] for fingerprinting of
chemical molecules.

Two related approaches that learn multi-agent interactions on a graph structure are: Interaction
Networks [9] which learn a physical simulation of objects that exhibit binary relations and Com-
munication Networks (CommNets) [11], presented for learning optimal communications between
agents. The differences between our approach VAIN and previous approaches INs and CommNets
are analyzed in detail in Sec. 2.

Another recent approach is PointNet [18] where every point in a point cloud is embedded by a deep
neural net, and all embeddings are pooled globally. The resulting descriptor is used for classification
and segmentation. Although a related approach, the paper is focused on 3D point clouds rather
than multi-agent systems. A different approach is presented by Social LSTM [10] which learns
social interaction by jointly training multiple interacting LSTMs. The complexity of that approach is
quadratic in the number of agents requiring the use of local pooling that only deals with short range
interactions to limit the number of interacting bodies.

The attentional mechanism in VAIN has some connection to Memory Networks [19, 20] and Neural
Turning Machines [21]. Other works dealing with multi-agent reinforcement learning include [22]
and [23].

There has been much work on board game bots (although the approach of modeling board games as
interactions in a multi agent system is new). Approaches include [24, 25] for Chess, [26, 27, 28] for
Backgammons [29] for Go.

Concurrent work: We found on Arxiv two concurrent submissions which are relevant to this work.
Santoro et al. [30] discovered that an architecture nearly identical to Interaction Nets achieves
excellent performance on the CLEVR dataset [31]. We leave a comparison on CLEVR for future
work. Vaswani et al. [32] use an architecture that bears similarity to VAIN for achieving state-of-
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the-art performance for machine translation. The differences between our work and Vaswani et al.’s
concurrent work are substantial in application and precise details.

2 Factorizing Multi-Agent Interactions

In this section we give an informal analysis of the multi-agent interaction architectures presented by
Interaction Networks [9], CommNets [11] and VAIN.

Interaction Networks model each interaction by a neural network. For simplicity of analysis let us
restrict the interactions to be of 2nd order. Let ψint(xi, xj) be the interaction between agents Ai and
Aj , and φ(xi) be the non-interacting features of agent Ai. The output is given by a function θ() of
the sum of all of the interactions of Ai,

∑
j ψint(xi, xj) and of the non-interacting features φ(xi).

oi = θ(
∑
j 6=i

ψint(xi, xj), φ(xi)) (1)

A single step evaluation of the output for the entire system requires O(N2) evaluations of ψint().

An alternative architecture is presented by CommNets, where interactions are not modeled explicitly.
Instead an interaction vector is computed for each agent ψcom(xi). The output is computed by:

oi = θ(
∑
j 6=i

ψcom(xj), φ(xi)) (2)

A single step evaluation of the CommNet architecture requires O(N) evaluations of ψcom(). A
significant drawback of this representation is not explicitly modeling the interactions and putting
the whole burden of modeling on θ. This can often result in weaker performance (as shown in our
experiments).

VAIN’s architecture preserves the complexity advantages of CommNet while addressing its limita-
tions in comparison to IN. Instead of requiring a full network evaluation for every interaction pair
ψint(xi, xj) it learns a communication vector ψc

vain(xi) for each agent and additionally an attention
vector ai = ψa

vain(xi). The strength of interaction between agents is modulated by kernel function
e|ai−aj |2 . The interaction is approximated by:

ψint(xi, xj) = e−‖ai−aj‖2ψvain(xj) (3)

The output is given by:
oi = θ(

∑
j 6=i

e−‖ai−aj‖2ψvain(xj), φ(xi)) (4)

In cases where the kernel function is a good approximation for the relative strength of interaction (in
some high-dimensional linear space), VAIN presents an efficient linear approximation for IN which
preserves CommNet’s complexity in ψ().

Although physical interactions are often additive, many other interesting cases (Games, Social, Team
Play) are not additive. In such cases the average instead the sum of ψ should be used (in [9] only
physical scenarios were presented and therefore the sum was always used, whereas in [11] only
non-physical cases were considered and therefore only averaging was used). In non-additive cases
VAIN uses a softmax:

Ki,j = e−‖ai−aj‖2/
∑
j

e−‖ai−aj‖2 (5)

3 Model Architecture

In this section we model the interaction between N agents denoted by A1...AN . The output can be
either be a prediction for every agent or a system-level prediction (e.g. predict which agent will act
next). Although it is possible to use multiple hops, our presentation here only uses a single hop (and
they did not help in our experiments).

Features are extracted for every agent Ai and we denote the features by Fi. The features are guided
by basic domain knowledge (such as agent type or position).
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Figure 1: A schematic of a single-hop VAIN: i) The agent features Fi are embedded by singleton
encoder Es() to yield encoding esi and communications encoder Ec() to yield vector eci and attention
vector ai ii) For each agent an attention-weighted sum of all embeddings eci is computed Pi =∑

j wi,j ∗ ecj . The attention weights wi,j are computed by a Softmax over −||ai − aj ||2. The
diagonal wi,i is set to zero to exclude self-interactions. iii) The singleton codes esi are concatenated
with the pooled feature Pi to yield intermediate feature Ci iv) The feature is passed through decoding
network D() to yield per-agent vector oi. For Regression: oi is the final output of the network. vii)
For Classification: oi is scalar and is passed through a Softmax.

We use two agent encoding functions: i) a singleton encoder for single-agent features Es() ii) A
communication encoder for interaction with other agents Ec(). The singleton encoding function Es()
is applied on all agent features Fi to yield singleton encoding esi

Es(Fi) = esi (6)

We define the communication encoding function Ec(). The encoding function is applied to all
agent features Fi to yield both encoding eci and attention vector ai. The attention vector is used for
addressing the agents with whom information exchange is sought. Ec() is implemented by fully
connected neural networks (from now FCNs).

Ec(Fi) = (eci , ai) (7)

For each agent we compute the pooled feature Pi, the interaction vectors from other agents weighted
by attention. We exclude self-interactions by setting the self-interaction weight to 0:

Pi =
∑
j

ej ∗ Softmax(−||ai − aj ||2) ∗ (1− δj=i) (8)

This is in contrast to the average pooling mechanism used in CommNets and we show that it yields
better results. The motivation is to average only information from relevant agents (e.g. nearby or
particularly influential agents). The weights wi,j = Softmaxj(−||ai − aj ||2) give a measure of
the interaction between agents. Although naively this operation scales quadratically in the number
of agents, it is multiplied by the feature dimension rather by a full E() evaluation and is therefore
significantly smaller than the cost of the (linear number) of E() calculations carried out by the
algorithm. In case the number of agents is very large (>1000) the cost can still be mitigated: The
Softmax operation often yields a sparse matrix, in such cases the interaction can be modeled by the
K-Nearest neighbors (measured by attention). The calculation is far cheaper than evaluating Ec()
O(N2) times as in IN. In cases where even this cheap operation is too expensive we recommend to
default to CommNets which truly have an O(N) complexity.

The pooled-feature Pi is concatenated to the original features Fi to form intermediate features Ci:

Ci = (Pi, ei) (9)
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The features Ci are passed through decoding function D() which is also implemented by FCNs. The
result is denoted by oi:

oi = D(Ci) (10)

For regression problems, oi is the per-agent output of VAIN. For classification problems, D()
is designed to give scalar outputs. The result is passed through a softmax layer yielding agent
probabilities:

Prob(i) = Softmax(oi) (11)

Several advantages of VAIN over Interaction Networks [9] are apparent:

Representational Power: VAIN does not assume that the interaction graph is pre-specified (in fact the
attention weights wi,j learn the graph). Pre-specifying the graph structure is advantageous when it is
clearly known e.g. spring-systems where locality makes a significant difference. In many multi-agent
scenarios the graph structure is not known apriori. Multiple-hops can give VAIN the potential to
model higher-order interactions than IN, although this was not found to be advantageous in our
experiments.

Complexity: As explained in Sec. 2, VAIN features better complexity than INs. The complexity
advantage increases with the order of interaction.

4 Experiments

We presented VAIN, an efficient attentional model for predictive modeling of multi-agent interactions.
In this section we show that our model achieves better results than competing methods while having
a lower computational complexity.

We perform experiments on tasks from two different multi-agent domains to highlight the utility and
generality of VAIN: chess move and soccer player prediction.

Chess Piece Prediction

Chess is a board game involving complex multi-agent interactions. There are several properties of
chess that make it particularly difficult from a multi-agent perspective:

• There are 12 different types of agents with distinct behaviors.
• It has a well defined goal and near-optimal policies in professional games.
• Many of the interactions are non-local and very long ranged.
• At any given time there are multiple pieces interacting in a high-order clique (e.g. blocks,

multiple defenders and attackers).

In this experiment we do not attempt to create an optimal chess player. Rather, we are given a board
position from a professional game. Our task is to to identify the piece that will move next (MPP).
Although we envisage that deep CNNs will achieve the best performance on this task, our objective
here is to use chess as a test-bed for multi-agent interactive system predictors using only simple
features for every agent. For recent attempts at building an optimal neural chess player please refer
to [27, 28]. The position illustrates the challenges of chess: non-local interactions, large variety
of agents, blockers, hidden and implied threats, very high order interactions (here there’s a clique
between pawn, rook, queen, bishop etc.).

There are 12 categories of piece types in chess, where the category is formed of the combination
of piece type and color. There are 6 types: Pawn, Rook, Knight, Bishop, Queen and King and two
colors: Black and White. A chess board consists of 64 squares (organized in 8 rows and 8 columns).
Every piece is of one category pi and is situated at a particular board square (xi, yi). All methods
evaluated on this task use the features: (pi, xi, yi for all pieces on the board I). The output is the
piece position in the input (so if the input is (12,7,7), (11,6,5), ... output label 2 would mean that
piece with features (11,6,5) will move next). There are 32 possible input pieces, in the case that fewer
than 32 pieces are present, the missing pieces are given feature values (0, 0, 0).

For training and evaluation of this task we downloaded 10k games from the FICS Games Dataset, an
on-line repository of chess games. All the games used are standard games between professionally
ranked players. 9k randomly sampled games were used for training, and the remaining 1k games
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for evaluation. Moves later in the game than 100 (i.e. 50 Black and 50 White moves), were dropped
from the dataset so as not to bias it towards particularly long games. The total number of examples is
around 600k.

We use the following methods for evaluation:

• Rand: Random piece selection.

• FC: A standard FCN with three hidden layers (Node numbers: Input - 32 * (13 + 16), 64,
64, 32). The input is the one-hot encoding of the features of each of the 32 pieces, the output
is the index of the output agent. This method requires indexing to be learned.

• SMax: Per-piece embedding neural network with scalar output. The outputs from all input
pieces are fed to a softmax classifier predicting the output label. Note that this method
preserves the structure of the problem, but does not model high-order interactions.

• 1hop − FC: A one-hop network followed by a deep (3 layers) classifier. The classifier
predicts the label of the next moving piece (1-32). Note that the deep classifier removes the
structure of the problem. The classifier therefore has to learn to index.

• CommNet: A standard CommNet (no attention) [11]. The protocol for CommNet is the
same as VAIN.

• IN : An Interaction Network followed by Softmax (as for VAIN). Inference for this IN
required around 8 times more computation than VAIN and CommNet.

• ours− V AIN .

Soccer Players

Team-player interaction is a promising application area for end-to-end multi-agent modeling as
the rules of sports interaction are quite complex and not easily formulated by hand-coded rules.
An additional advantage is that predictive modeling can be self-supervised and no labeled data is
necessary. In team-play situations many agents may be present and interacting at the same time
making the complexity of the method critical for its application.

In order to evaluate the performance of VAIN on team-play interactions, we use the Soccer Video and
Player Position Dataset (SVPP) [33]. The SVPP dataset contains the parameters of soccer players
tracked during two home matches played by Tromsø IL, a Norwegian soccer team. The sensors
were positioned on each home team player, and recorded the player’s location, heading direction
and movement velocity (as well as other parameters that we did not use in this work). The data was
re-sampled by [33] to occur at regular 20 Hz intervals. We further subsampled the data to 2 Hz. We
only use sensor data rather than raw-pixels. End-to-end inference from raw-pixel data is left to future
work.

The task that we use for evaluation is predicting from the current state of all players, the position of
each player for each time-step during the next 4 seconds (i.e. at T + 0.5, T + 1.0 ... T + 4.0). Note
that for this task, we just use a single frame rather than several previous frames, and therefore do not
use RNN encoders for this task.

We evaluated several methods on this task:

• Static: trivial prediction of 0-motion.

• PALV : Linearly extrapolating the agent displacement by the current linear velocity.

• PALAF : A linear regressor predicting the agent’s velocity using all features including the
velocity, but also the agent’s heading direction and most significantly the agent’s current
field position.

• PAD: a predictive model using all the above features but using three fully-connected layers
(with 256, 256 and 16 nodes).

• CommNet: A standard CommNet (no attention) [11]. The protocol for CommNet is the
same as VAIN.

• IN : An Interaction Network [9]. This results in O(N2) network evaluations.

• ours− V AIN .
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Figure 2: a) A soccer match used for the Soccer task. b) A chess position illustrating the high-order
nature of the interactions in next move prediction. Note that in both cases, VAIN uses agent positional
and sensor data rather than raw-pixels.

We excluded the second half of the Anzhi match due to large sensor errors for some of the players
(occasional 60m position changes in 1-2 seconds).

Bouncing Balls

Following Battaglia et al. [9], we present a simple physics-based experiment. In this scenario, balls
are bouncing inside a 2D square container of size L. There are N identical balls (we use N = 50)
which are of constant size and are perfectly elastic. The balls are initialized at random positions and
with initial velocities sampled at random from [−v0..v0] (we use v0 = 3ms−1). The balls collide
with other balls and with the walls, where the collisions are governed by the laws of elastic collisions.
The task which we evaluate is the prediction of the displacement and change in velocity of each ball in
the next time step. We evaluate the prediction accuracy of our method V AIN as well as Interaction
Networks [9] and CommNets [11]. We found it useful to replace VAIN’s attention mechanism by an
unnormalized attention function due to the additive nature of physical forces:

pi,j = e−||ai−aj ||2 − δi,j (12)

Implementation

Soccer: The encoding and decoding functions Ec(), Es() and D() were implemented by fully-
connected neural networks with two layers, each of 256 hidden units and with ReLU activations. The
encoder outputs had 128 units. For IN each layer was followed by a BatchNorm layer (otherwise the
system converged slowly to a worse minimum). For VAIN no BatchNorm layers were used. Chess:
The encoding and decoding functions E() and D() were implemented by fully-connected neural
networks with three layers, each of width 64 and with ReLU activations. They were followed by
BatchNorm layers for both IN and VAIN. Bouncing Balls: The encoding and decoding function Ec(),
Es() and D() were implemented with FCNs with 256 hidden units and three layer. The encoder
outputs had 128 units. No BatchNorm units were used. For Soccer, Ec() and D() architectures
for VAIN and IN was the same. For Chess we evaluate INs with Ec() being 4 times smaller than
for VAIN, this still takes 8 times as much computation as used by VAIN. For Bouncing Balls the
computation budget was balanced between VAIN and IN by decreasing the number of hidden units in
Ec() for IN by a constant factor.

In all scenarios the attention vector ai is of dimension 10 and shared features with the encoding
vectors ei. Regression problems were trained with L2 loss, and classification problems were trained
with cross-entropy loss. All methods were implemented in PyTorch [34] in a Linux environment.
End-to-end optimization was carried out using ADAM [35] with α = 1e−3 and no L2 regularization
was used. The learning rate was halved every 10 epochs. The chess prediction training for the MPP
took several hours on a K80 GPU, other tasks had shorter training times due to smaller datasets.

5 Results

Qualitative Visualization

Let us first look at the attention maps generated by VAIN for our experimental scenarios. This
visualization serves as a tool for understanding the nature of interactions between the agents. Note
that VAIN only receives feedback on its future prediction but never receives explicit supervision on
the nature of interaction between the agents.

Bouncing Balls: In Fig. 3 we can observe the attention maps for two different balls in the Bouncing
Balls scenario. The position of the ball is represented by a circle. The velocity of each ball is indicated
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Figure 3: A visualization of attention in the Bouncing Balls scenario. The target ball is blue, and
others are green. The brightness of each ball indicates the strength of attention with respect to the
(blue) target ball. The arrows indicate direction of motion. Left image: The ball nearer to target ball
receives stronger attention. Right image: The ball on collision course with the target ball receives
much stronger attention than the nearest neighbor of the target ball.

Figure 4: A visualization of attention in the Soccer scenario. The target ball is blue, and others are
green. The brightness of each ball indicates the strength of attention with respect to the (blue) target
ball. The arrows indicate direction of motion. This is an example of mean-field type attention, where
the nearest-neighbors receive privileged attention, but also all other field players receive roughly
equal attention. The goal keeper typically receives no attention due to being far away.

by a line extending from the center of the circle, the length of the line is proportional to the speed
of the ball. For each figure we choose a target ball Ai, and paint it blue. The attention strength of
each agent Aj with respect to Ai is indicated by the shade of the circle. The brighter the circle,
the stronger the attention. In the first scenario we observe that the two balls near the target receive
attention whereas other balls are suppressed. This shows that the system exploits the sparsity due
to locality inherent in this multi-agent system. In the second scenario we observe, that the ball on
collision course with the target receives much stronger attention, relative to a ball that it much closer
to the target but is not likely to collide with it. This indicates VAIN learns important attention features
beyond the simple positional hand-crafted features typically used.

Soccer: A few visualizations of the Soccer scenario can be seen in Fig. 4. The positions of the
players are indicated by green circles, apart from a target player (chosen by us), that is indicated by
a blue circle. The brightness of each circle is chosen to be proportional to the strength of attention
between each player and the target player. Arrows are proportional to player velocity. We can see in
this scenario that the attention to nearest players (attackers to attackers, midfielder to midfielders) is
strongest, but attention is given to all field players. The goal keeper normally receives no attention
(due to being far away, and in normal situations not affecting play). This is an example of mean-field
rather than sparse attention.

Chess: For the Chess scenario, the attention maps were not easily interpretable. We think this is
due to the interactions in Chess being complex and high-order. The main visible trend was stronger
attention to important and nearby pieces.

Chess MPP The results for next moving chess piece prediction can be seen in Table. 1. Our method
clearly outperforms the competing baselines illustrating that VAIN is effective at selection type
problems - i.e. selecting 1 - of- N agents according to some criterion (in this case likelihood to move).
The non-interactive method SMax performs much better than Rand (+9%) due to use of statistics
of moves. Interactive methods (FC, 1hot− FC, CommNet, IN and V AIN ) naturally perform
better as the interactions between pieces are important for deciding the next mover. It is interesting
that the simple FC method performs better than 1hop − FC (+3%), we think this is because the
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Rand FC SMax 1hop− FC CommNet IN ours
0.045 0.216 0.133 0.186 0.272 0.283 0.301

Table 1: Accuracy results for the Next Moving Piece (MPP) experiments. Indexing-based methods
FC (simple fully-connected) and 1hop− FC (single-hop network) performed better than unigram-
statistic based method SMax. As our method both does not use indexing and models higher order
interactions it has significantly outperformed other methods on this task. VAIN’s attention mechanism
outperforms CommNet and INs.

Method Static PALV PALAF PAD IN CommNet ours
0.5 0.54 0.14 0.14 0.14 0.16 0.15 0.14

1103a 2.0 1.99 1.16 1.14 1.13 1.09 1.10 1.09
4.0 3.58 2.67 2.62 2.58 2.47 2.48 2.47
0.5 0.49 0.13 0.13 0.13 0.14 0.13 0.13

1103b 2.0 1.81 1.06 1.06 1.04 1.02 1.02 1.02
4.0 3.27 2.42 2.41 2.38 2.30 2.31 2.30
0.5 0.61 0.17 0.17 0.17 0.17 0.17 0.17

1107a 2.0 2.23 1.36 1.34 1.32 1.26 1.26 1.25
4.0 3.95 3.10 3.03 2.99 2.82 2.81 2.79

Mean 1.84 1.11 1.10 1.08 1.04 1.04 1.03

Table 2: Soccer Prediction errors (in meters) on the three datasets evaluated with the leave-one-out
protocol. This is evaluated for 7 methods. Non-interactive methods: no motion, linear velocity, linear
all features, DNN all features and interactive methods: Interaction Networks [9], CommNet and
VAIN (ours). All methods performed better than the trivial no-motion. Methods using all features
performed better than velocity only, and DNN did better than linear-only. The interactive methods
significantly outperformed the non-interactive methods, with VAIN outperforming other methods.
We conclude that on this task VAIN could capture the multi-agent interaction without modeling each
interaction individually, thus being only 4% of the size of IN.

classifier in 1hop−FC finds it hard to recover the indexes after the average pooling layer. This shows
that one-hop networks followed by fully connected classifiers (such as the original formulation of
Interaction Networks) struggle at selection-type problems. Our method V AIN performs much better
than 1hop− IN (11.5%) due to the per-vertex outputs oi, and coupling between agents. V AIN also
performs significantly better than FC (+8.5%) as it does not have to learn indexing. It outperforms
vanilla CommNet by 2.9%, showing the advantages of our attentional mechanism. It also outperforms
INs followed by a per-agent Softmax (similarly to the formulation for VAIN) by 1.8% even though
the IN performs around 8 times more computation than VAIN.

Soccer We evaluated our methods on the SVPP dataset. The prediction errors in Table. 2 are broken
down for different time-steps and for different train / test datasets splits. It can be seen that the
non-interactive baselines generally fare poorly on this task as the general configuration of agents is
informative for the motion of agents beyond a simple extrapolation of motion. Examples of patterns
than can be picked up include: running back to the goal to help the defenders, running up to the other
team’s goal area to join an attack. A linear model including all the features performs better than a
velocity only model (as position is very informative). A non-linear per-player model with all features
improves on the linear models. Both the interaction network, CommNet and VAIN significantly
outperform the non-interactive methods. VAIN outperformed CommNet and IN, achieving this with
only 4% of the number of encoder evaluations performed by IN. This validates our premise that
VAIN’s architecture can model object interactions without modeling each interaction explicitly.

Bouncing Balls

The results of our bouncing balls experiments can be seen in Tab. 3. We see that in this physical sce-
nario VAIN significantly outperformed CommNets, and achieves better performance than Interaction
Networks for similar computation budgets. In Fig. 5 we see that the difference increases for small
computation budgets. The attention mechanism is shown to be critical to the success of the method.
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VEL0 VEL-CONST COMMNET IN VAIN
RMS 0.561 0.547 0.510 0.139 0.135

Table 3: RMS accuracy of bouncing ball next step prediction. We observe that CommNet does a
little better than the no-interaction baseline due to its noisy interaction vector. Our method VAIN
improves over Interaction Networks and both are far better than CommNet.

Figure 5: Accuracy differences between VAIN and IN for different computation budgets: VAIN
outperforms IN by spending its computation budget on a few larger networks (one for each agent)
rather than many small networks (one for every pair of agents). This is even more significant for
small computation budgets.

Analysis and Limitations

Our experiments showed that VAIN achieves better performance than other architectures with similar
complexity and equivalent performance to higher complexity architectures, mainly due to its attention
mechanism. There are two ways in which the attention mechanism implicitly encodes the interactions
of the system: i) Sparse: if only a few agents significantly interact with agent ao, the attention
mechanism will highlight these agents (finding K spatial nearest neighbors is a special case of
such attention). In this case CommNets will fail. ii) Mean-field: if a space can be found where the
important interactions act in an additive way, (e.g. in soccer team dynamics scenario), attention would
find the correct weights for the mean field. In this case CommNets would work, but VAIN can still
improve on them.

VAIN is less well-suited for cases where both: interactions are not sparse such that the K most
important interactions will not give a good representation and where the interactions are strong and
highly non-linear so that a mean-field approximation is non-trivial. One such scenario is the M body
gravitation problem. Interaction Networks are particularly well suited for this scenario and VAIN’s
factorization will not yield an advantage.

6 Conclusion and Future Work

We have shown that VAIN, a novel architecture for factorizing interaction graphs, is effective
for predictive modeling of multi-agent systems with a linear number of neural network encoder
evaluations. We analyzed how our architecture relates to Interaction Networks and CommNets.
Examples were shown where our approach learned some of the rules of the multi-agent system. An
interesting future direction to pursue is interpreting the rules of the game in symbolic form, from
VAIN’s attention maps wi,j . Initial experiments that we performed have shown that some chess rules
can be learned (movement of pieces, relative values of pieces), but further research is required.
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