Formula Key

base b or $(b_1 / b_2 \text{ for a } trapezoid)$

height h

Area A

Perimeter P

Perimeter

diagonal $d(d_1/d_2 \text{ for a } kite)$

 90^{0}

Perpendicular two lines form a 90° angle.

P = total of all sides (side + side + side + side ...)

Perimeter

To find the perimeter of any shape **add** all the **side lengths** together.

Pythagorean Theorem

Area of a triangle $A = \frac{1}{2} \times b \times h$ or $\frac{1}{2}bh$ or $\frac{bh}{2}$

Area of a rectangle A = b x h or bh

Area of a parallelogram $A = b \times h$ or bh (Same as a rectangle)

Area of a trapezoid $A = \frac{1}{2} \times (b_1 + b_2) \times h$ or $\frac{(b_1 + b_2)h}{(b_1 + b_2)h}$

Area of a kite $A = \frac{1}{2} \times d_1 \times d_2$ or $\frac{1}{2} d_1 d_2$ or $\frac{1}{2} d_2 d_2$

rectangle

parallelogram

Area of a Triangle

Formula: ½ x base x height or ½ b x h or ½ bh

The base is measured by length

The height is measured by length

The height and the base must form a 90° angle.

Area of a Rectangle

Formula: base x height or b x h or bh

The base and the height must be perpendicular.

Perpendicular = two lines form a right angle. (90°)

Base x height = Area 12 x 9 = 108 Area = 108 in.²

Area of Kites

Formula: Area = $\frac{1}{2}$ diagonal₁ x diagonal₂

Area of a Parallelogram

Formula: base x height or b x h or bh $12 \times 8 = 96$ Area = 96 in.^2

*Use the same formula as a rectangle

Area of a Trapezoid

Formula: $Area = \frac{1}{2} (base_1 + base_2) \times height$ $A = \frac{1}{2} (b_1 + b_2) \times h$ $A = \frac{1}{2} (9 + 12) \times 8$ $A = 84 \text{ cm}^2$

Area of a Circle Using Radius

Definition: the inside of circle

Formulas: Area = $\pi \times radius^2$ or $A = \pi r^2$ Area = $\pi \times (7 \text{ cm.}^2)$ or $A = \pi (7^2)$ Area = $\pi \times 49 \text{ A} = 49 \pi \text{ A} = 154 \text{ cm}$.

Formula Key for Circles

Diameter is 2 x radius. (2r)

It is *a line*segment that
divides a circle in
half.

Each half is called a *semi-circle*.

The diameter crosses through the *center point*.

Equations to find Diameter & Radius

Formulas: **diameter** = 2 x radius or 2r**radius** = $\frac{1}{2} x$ diameter or $\frac{1}{2} d$

Circumference

Definition: The distance around the whole circle

Formulas: Circumference = πx **diameter** or C= πd Circumference = $2 x \pi x$ **radius** or C= $2\pi r$

Circumference using diameter:

Diameter= 14 cm. $C = \pi d$ or $C = 14\pi$ C = 44 cm.

Circumference using radius:

Radius = 7cm. $C = 2 \times \pi \times r$, $C = 2\pi r$, $C = 14\pi$, C = 44 cm.

Formulas: $\underline{\text{Circumference}} = \pi \times \text{diameter}$ or C= πd $\underline{\text{Circumference}} = 2 \times \pi \times \text{radius}$ or C= $2\pi r$

Formulas: $\underline{\text{Circumference}} = \pi \times \text{diameter}$ or $\textbf{C} = \pi \textbf{d}$ $\underline{\text{Circumference}} = 2 \times \pi \times \text{radius}$ or $\textbf{C} = 2\pi \textbf{r}$

Area of a Circle

Definition: the inside of circle

Formulas: Area = $\pi \times radius^2$ or $A = \pi r^2$ Area = $\pi \times (\frac{1}{2} diameter)^2$ or $A = \pi(\frac{1}{2} d)^2$

Area of a Circle Using Diameter

Definition: the inside of circle

Formulas: Area = $\pi x (\frac{1}{2} \text{ diameter})^2$ or $A = \pi(\frac{1}{2}d)^2$ Area = $\pi x (\frac{1}{2}14 \text{ cm.}^2)$ or $A = \pi(7^2)$ Area = $\pi x 49 A = 49 \pi A = 154 \text{ cm.}$

Area of a Circle Using Radius

Definition: the inside of circle

Formulas: Area = $\pi x radius^2$ or $A = \pi r^2$ Area = $\pi x (7 \text{ cm.}^2)$ or $A = \pi (7^2)$ Area = $\pi x 49 A = 49 \pi A = 154 \text{ cm.}$

Major and Minor Arcs

•Note- The major arc will have three vertices to show direction.

Interior Angles of shapes & Lines

Straight Lines

The angles that make up a line *always* equal 180 degrees.

Triangles

Angles

The symbol for an angle is < Angles are measured in degrees. The symbol for degrees is 04 Examples:

 $(Angle A) < A = 35^{\circ}$

(Angle B) <B = 65°

(Angle C) <C = 80°

The sum (total) of interior (inside) angles of a triangle is always 180°

Quadrilateral

Quadrilaterals (Squares, etc)

(A Quadrilateral has 4 straight sides)

80° + 100° + 90° + 90° = 360° Let's tilt a line by 10° ... still adds up to 360°!

Divide the shape into triangles:

A quadrilateral can be divided into two triangles. Each triangle has 3 angles that add up to 180° . 2 X 180° = 360° .