CS 352 Internet Technology

Srinivas Narayana

http://www.cs.rutgers.edu/~sn624/352-S19

Dept. of Computer Science

Rutgers University

About us: Management

- Professor: Srinivas Narayana
 - http://www.cs.rutgers.edu/~sn624
 - srinivas.narayana@rutgers.edu
 - Office hours: CoRE 312, Thursdays 10 am -- noon or by appointment
 - Class: Wed 10.20 11.40 AM and Fri 3.20 4.40 PM TIL 232
- Recitation section 5: Bala Murali Komanduri <u>bk455@scarletmail.rutgers.edu</u>
 - Thursday 12.15 1.10 PM LSH-B267
- Recitation section 6: Jayant Kannadkar jdk176@scarletmail.rutgers.edu
 - Thursday 8.55 9.50 AM LSH-B115
- Course info
 - http://www.cs.rutgers.edu/~sn624/352-S19/
- Piazza: accessible from class Sakai site

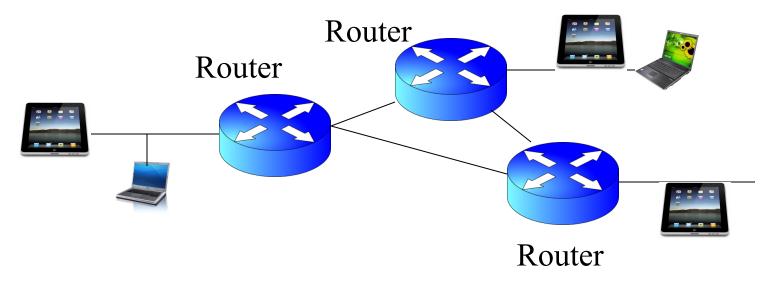
Class etiquette

- Cell phones in off position
- No FB status updates, texting, selfies in class
- If you need to surf while in class (I prefer you do not), do not disturb your neighbors
- Stop me anytime to ask questions
- Try to learn as much as you can in class

What is a Network?

- Carrier of information between 2 or more entities
- Interconnection may be any medium capable of communicating information:
 - copper wire
 - Lasers (optic fibre)
 - Microwave
 - Cable (coax)
 - satellite link
 - Wireless link (cellular, 802.11, bluetooth)
- Examples: Ethernet, 802.11(WIFI), cable modem, cellular

A single link network


- Send bits of data in packets or frames
- Need to worry about errors, how to convert bits into signals and vice versa

A single link multiple access network

- Send bits of data in packets or frames
- Need to worry about errors, how to convert bits into signals and vice versa
- In addition, how to differentiate among many receivers?
- Every host as a link layer address: MAC address
- Packets or frames will have destination address
- However, can't have every computer in the world on the same link!

A multi-link network

- Connect multiple links via routers
- Need to figure out how to route packets from one host to another host

Components of a network

Link

Communication links for transmission

Host

Computer running applications of end user

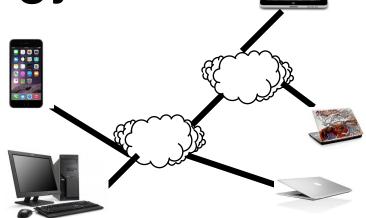
Router

Computer for routing packets from input line to another output line

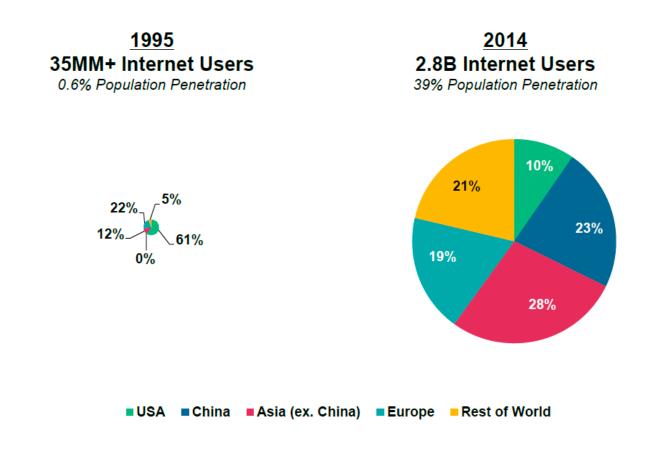
Gateway

 A device directly connected to two or more possibly different networks (serves as an access point), provides access

Network

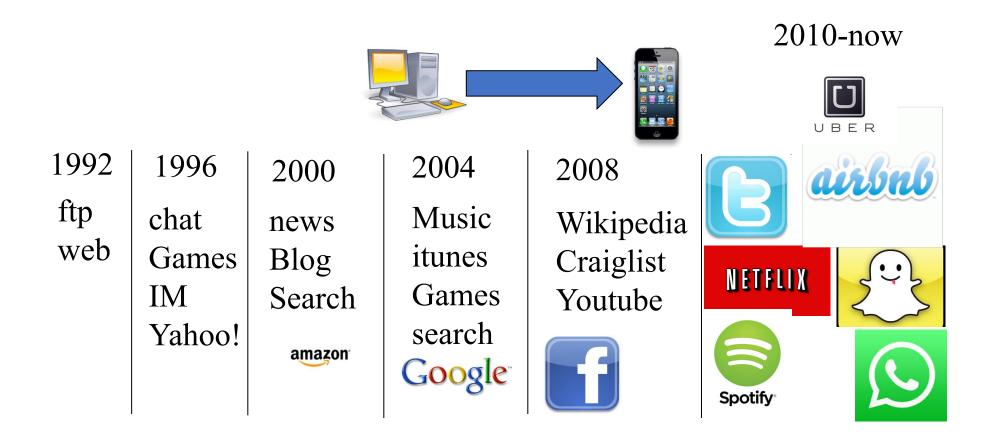

 A group of hosts, links, routers capable of sending packets among its members

Why are networks useful?


- Availability of resources
 - Resources become available regardless of user location
- Performance and load sharing
 - Ex: Move work to the least loaded machine
- High reliability
 - Alternative sources for the same data (multiple copies)
- Human-to-human communication!
 - Ex: telephone (voice over IP), text messaging

What is Internet Technology?

- What is an internet?
 - Network of networks
- What is *the* Internet?
 - A global internet based on the IP protocol
 - Network to network adopt a common language
- What does "Internet technology" refer to?
 - Architecture, protocols, and services

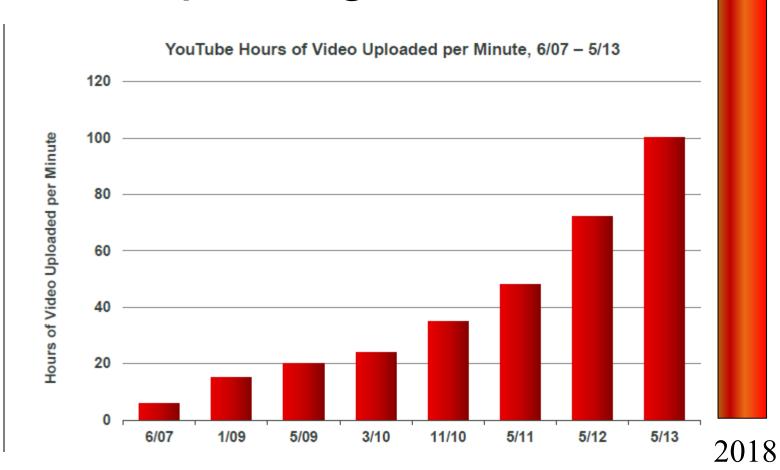

Internet growth

2018: 3.6B users

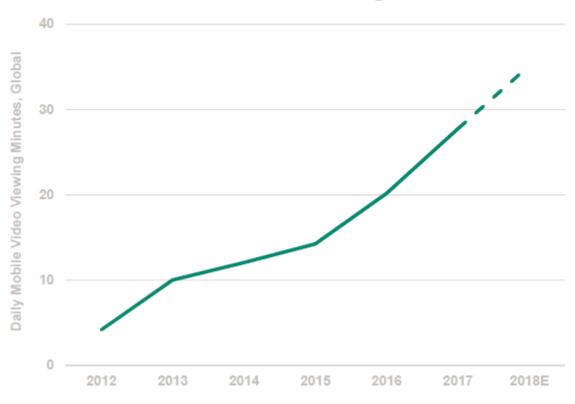
Mobile Phones: in 1995 80 M, now 5 B

Evolution of Internet Applications

Web evolution

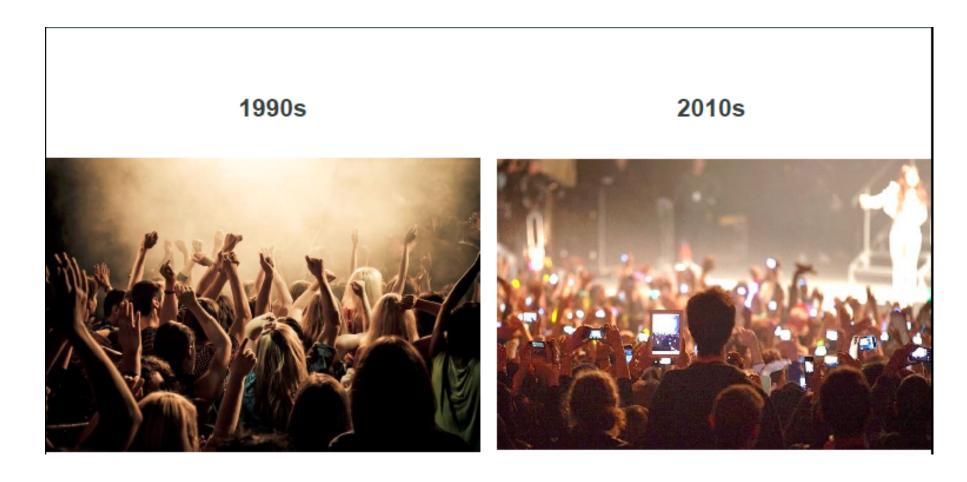

- Web 1.0
 - Read-only web
 - Content → Users
 - Yahoo, google, daily targum
- Web 2.0
 - Read-write web
 - Content → Users and Users → Content
 - Blog, wikipedia, facebook, twitter, youtube
- Web 3.0
 - Contextual web

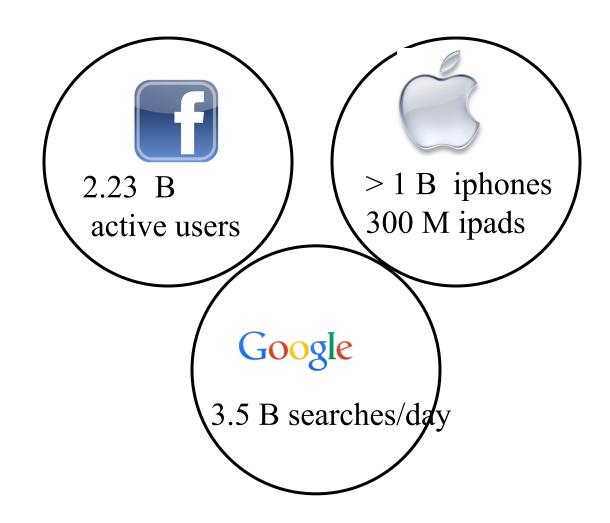
 - Personalized, location dependent
 Apps on your phone get organized (ex: weather, maps); Google NOW
- Web 4.0
 - Devices will be connected as first class objects: refrigerator, car, fitbit, thermostat, ...
 - Prediction-Machine learning


Content is exploding

HD quality video: 2G to 4G / hour

Video = Mobile Adoption Climbing...


Mobile Video Usage


Transforming the economy

- Mobile payment
 - Venmo, square, paytm
- Shared resource platforms
 - Uber, Airbnb, WeWork

Just dancing and listening, to video, tweets, selfies, and share

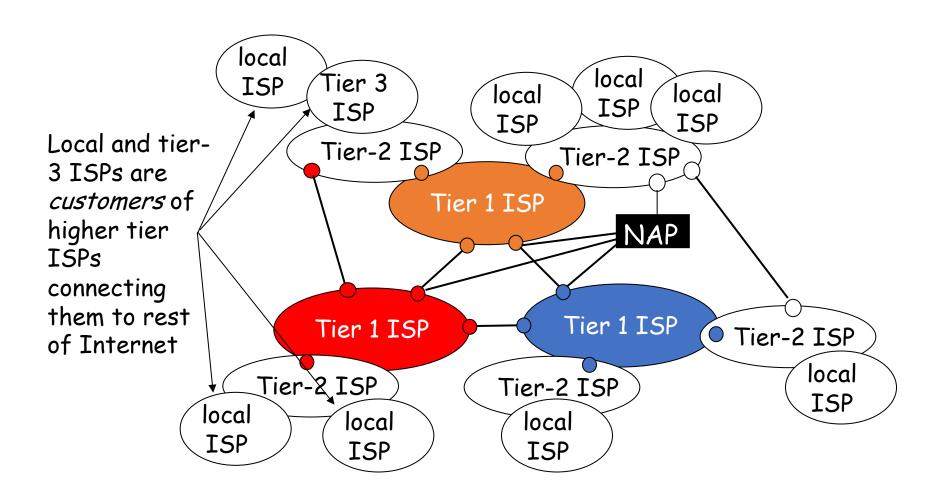
Scale of Web apps

Impact of the Internet on People

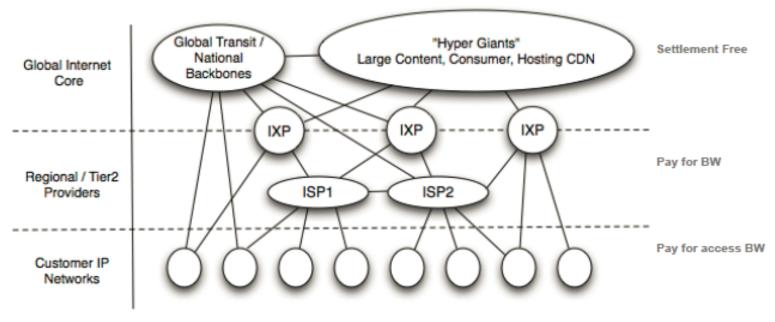
- Access to remote information
 - HW assignments from my server
 - Stock quotes from financial web site
 - · News, wikipedia, google
- Person to person and group communication
 - email, whatsapp, blogs, fb, twitter, instagram, snapchat
- Interactive entertainment
 - video clips (youtube), movies (netflix), music (itunes, spotify), games
- Online commerce
 - Amazon, Ebay, hotels

Impact of the Internet on Society

- The good
 - Access to information, services, e-commerce, productivity
- The bad
 - Gossip, distraction, Internet addiction, chat room
- The ugly
 - Phishing, fraud, trolling, cyberbullying
- The Internet is a mirror of society


Internet Players

- Users of applications
 - Everyone (mom and pop, kids) to get something done
- Network Designers
 - Protocol design and implementation
 - Performance, cost, scale
- Internet Service Providers
 - Administrators and ISPs (AT&T)
 - Management, revenue, deployment
- Market/businesses on the Internet
 - Consumer to consumer (ebay), Business to consumer (amazon, netflix), Business to business (alibaba, importers.com,21food.com), Consumer to business (hotjobs, monster), Govt to C, Govt to B, etc.


Internet service providers (ISPs)

- Local ISPs: Tier 3 (cablevision)
- Regional ISPs: Tier2 (internap)
- Global ISPs: Tier 1 (Verizon, Sprint, AT&T, level 3, century link, Deutsche Telekom, NTT)
 provide access to the entire internet; connect ISP to other ISPs
- Peering ISPs
 - Have a mutual relationship about forwarding traffic of each others customers (no \$ involved)
- Transit ISPs
 - Provides access to all reachable customers (\$\$ involved)

Core Networks: ISP Tiers

ISPs connected via Exchanges

- Flatter Internet
- Business models among, content provider, transit providers, and customers
- Net Neutrality

Types of Networks in an Internet

- Local area networks (LAN)
 - Privately owned, within building
 - High speed, broadcast, Ethernet
 - 2 to 100 Mbps
- Wide area networks (WAN)
 - Spans a large area
 - Point-to-point, high speed fiber lines
 - Long delays but very high speed links
 - Several Gbps

Types of Networks (cont'd)

- Wireless networks
 - Hosts connected by radio or infrared links
 - Local area and wide area
 - Satellite networks

Google WAN

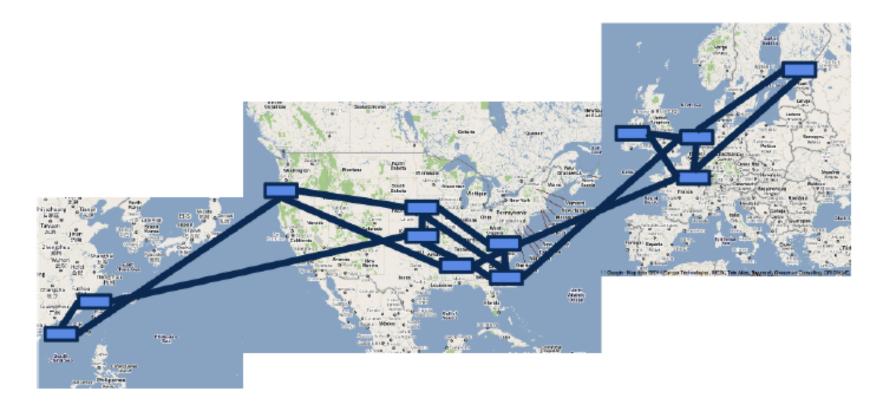
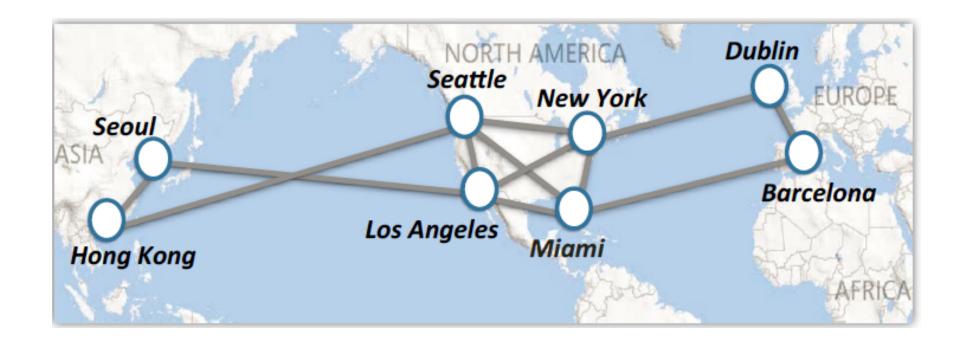



Figure 1: B4 worldwide deployment (2011).

Microsoft WAN

Historical perspective

- Late 1960's: ARPAnet (4 nodes)
- Early 1970's: Aloha net, ethernet, multiple access problem
- Mid-to-late 1970's: TCP/IP, 4.2BSD
- 1980's to early 1990's: early internet growth, e-mail & file transfer dominant, NSFNET
- Mid 1990s: NSFnet handed over to commercial service providers, WWW explodes
- Late 90s, business models using the internet; dot-com boom and bust
- Early to mid 2000s, Web 2.0, Facebook, google, Wikipedia
- Future: "Embedded networks", 5 to 10 billion devices waiting to be networked, media convergence, ubiquitous RFID tags

Course Goals

Understand the basic design principles of computer networks

- Understand how the Internet works
 - Services, protocols, and architectures
- Text: "Computer networking, a top-down approach," by James Kurose and Keith Ross

Course Assessments

- Sakai quizzes (15%)
 - 6 of them, can drop lowest grade
- 2 Mid-terms (15% each)
 - No electronic devices, notes, or cheat sheets allowed
- Final (25%)
 - You must notify me at least 2 weeks before the final if you need to take the makeup!
- Project (30%)
 - Part 1 (10%)
 - Part 2 (10%)
 - Part 3 (10%)
- You may not dispute a grade before 24 hours or after 7 days of receiving it

Programming assignments

- Single long project
 - Broken into three parts
- Can work in a group of 2
- Both program and write-up required
- Background needed to get started:
 - C or Python (211, 214 level)
 - Comfortable using data structures (dictionaries, vectors, trees)
 - Unix (login, permissions, gcc)

Programming assignments

- Each phase of the code feeds into the next phase
- Make improvements for next phase of the assignment
- Hand-in via sakai
 - Failure to meet the deadline will result in a zero for all team members.
 No exceptions.
- You must turn in all projects to pass this course

Academic integrity

- No cheating on projects and exams
 - Run code similarity detectors on the projects & code review
 - Scrutinize exams for copying
- Department academic integrity policy
 - https://www.cs.rutgers.edu/academic-integrity/introduction
 - Please read and acknowledge your awareness of this policy