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Studiesof the categorical perception(CP) of sensorycontinuahave along andrich historyin
psychophysicsin 1977,Macmillan et al. introducedthe useof signaldetectiontheoryto CP
studies. Andersonet al. simultaneouslyproposedhe first neuralmodelfor CR, yet this line
of researcthasbeenlesswell explored. In this paper we assesshe ability of neural-netvark
modelsof CPto predictthe psychophysicgberformancef realobsererswith speectsounds
andartificial/novel stimuli. We show thata variety of neuralmechanismss capableof gen-
eratingthe characteristicef cateyorical perception.Hence,CP may not be a specialmodeof
perceptiorbut anemepgentpropertyof ary sufiiciently powerful generalearningsystem.

Studiesof the catayorical perception(CP) of sensorycon-
tinua have a long andrich history. For a comprehensie
review up until a decadeago, seethe volume edited by
Harnad(1987). An importantquestionconcernsthe pre-
cise definition of CP. Accordingto the seminalcontribu-
tion of Macmillan, KaplanandCreelman(1977),“The rela-
tion betweenan obsener’s ability to identify stimuli along
a continuumand his ability to discriminatebetweenpairs
of stimuli drawn from that continuumis a classicproblem
in psychophysics{p.452). The extentto which discrimina-
tion is predictablefrom identificationperformancehaslong
beenconsideredhe acid testof catgyorical—asopposedo
continuous—perception.

Continuousperceptionis oftencharacterizedvy (approx-
imate) adherenceo Webers law, accordingto which the
differencelimen is a constantfraction of stimulus magni-
tude. Also, discriminationis much betterthan identifica-
tion:! Obserers can make only a small numberof identi-
ficationsalong a single dimension,but they can make rel-
ative (e.g. pairwise)discriminationsbetweena muchlarger
numberof stimuli (Miller, 1956). By contrastCP wasorig-
inally defined(e.qg., Liberman, Harris, Hoffman and Grif-
fith, 1957; Liberman, Cooper Shankweilerand Studdert-
Kennedy 1967) as occurring when the grain of discrim-
inability coincidedwith (andwas, hence predictablefrom)
identificationgrain (i.e., whensubjectscould only discrimi-
natebetweenridentifiablecateyories,not within them). Con-
sequentlyin CPthediscriminationof equallyseparatedtim-
ulus pairsasa function of stimulusmagnitudeis nonmono-
tonic, peakingat a category boundary(Wood, 1976)defined
asa 50% point on a sharplyrising or falling psychometric
labelingfunction.

In fact, thereare dggreesof CP. The strongestcaseof
identificationgrainequalto discriminationgrainwould mean
that obsenerscould only discriminatewhat they caniden-
tify: onejust noticeabledifferencewould be the the size of
thewhole category. This (strongestriterionhasneverbeen
metempirically: it hasalwaysbeenpossibleto discriminate
within thecatagory, andnotjustbetweenin his 1984review,
Reppcallsthecoincidencef thepointof maximumambigu-
ity in theidentificationfunctionwith the peakin discrimina-

tion “the essentiabefiningcharacteristiof cateyorical per
ception” (p.253). Macmillan et al. (1977) generalizethis,
defining CP as“the equivalenceof discriminationandiden-
tification measuresWhich cantake place“in the absencef
a boundaryeffect sincethereneedbe no local maximumin
discriminability” (p.453).

In the sameissueof Psytological Review in which the
influential paperof Macmillan et al. appeared Anderson,
Silverstein,Ritz and Joneg1977) appliedto CP a trainable
neural-netwark model for associatie memory (the brain-
state-in-a-bo basedjointly on neurophysiologicatonsid-
erationsandlinearsystemsheory Simulatedabeling(iden-
tification) andABX discriminationcurveswereshown to be
very muchlik e thosepublishedn the experimentalpsychol-
ogy literature.In the presenpaperwe will referto suchnet-
work modelsasexhibiting syntheticCP. Unlike psychophys-
ical studiesof real (humanandanimal)subjectswhich have
maintainedanactive profile, syntheticCP (with someimpor-
tant exceptions,reviewed belon) hasremainedlargely un-
explored® despitethe vastand continuingupsuge of inter-
estin neuralmodelsof perceptionand cognitionfrom ten
or so yearsago, as documentedn the landmarkvolume
of Rumelhartand McClelland (1986), and updatedby Ar-
bib (1995). An adwantageof suchcomputationaimodelsis
that, unlike real subjects,they can be “systematicallyma-
nipulated”(Wood, 1978,p.583)to uncovertheir operational
principles,a point mademorerecentlyby Hansonand Burr
(1990)who write: “connectionistmodelscanbe usedto ex-

'In identification participantsare requiredto learn (or supply
alreadylearned)uniquelabelsto stimuli. In discrimination partic-
ipantsmust(learnto) distinguishbetweerclassef stimuli. Usu-
ally, singlestimuli arepresentedh identificationandmultiple stim-
uli in discrimination put seetherecentwork of Lotto, Kluenderand
Holt (1998)where“experimentaldesignandstimuluspresentation
areexactly the same;only theresponsdabelsdiffer” (p.3649).

2Dreyfus and Dreyfus (1988) credit JamedA. Anderson to-
getherwith StephenGrossheg and Tuevo Kohonen,with keeping
neural-netmodelingin artificial intelligenceand cognitive science
alive “during the darkages”(their Footnote8) in whichit wasgen-
erally consideredo beenhave supersededly the physical-symbol
systemhypothesiof intelligence.
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plore systematicalljthe complex interactionbetweerlearn-
ing andrepresentation{p.471).

The purposeof the presentpaperis to assesseural-net
modelsof CR, with particularreferenceto their ability to
simulatethe behaior of real obseners. As with ary psy-
chophysicaimodel,the pointsin which syntheticCP agrees
with obsenationshow thatrealperceptuaandcognitive sys-
temscouldoperateon thesameprinciplesasthoseembodied
in themodel. Wherereal andsyntheticbehaviors differ, this
cansuggestvenuedor new experimentation.

Theremaindeof this papeiis structuredasfollows. In the
next section,we outline the historical developmentof theo-
riesof CPandits psychophysicabasis.We thenreview var
ious neural-netmodelsfor syntheticCP. Thesehave mostly
consideredrtificial or novel continuawhereasxperimental
work with humansubjectshasusuallyconsideregpeechor,
more accuratelysynthetic,near speeb stimuli), especially
syllable-initialstopconsonantsThus,we describehe useof
two ratherdifferentneuralsystemso modelthe perception
of stops. The applicationof signaldetectiontheoryto syn-
thetic CPis thenconsideredFinally, theimplicationsof the
resultsof connectionismodelingof CParediscussedhefore
we presenbur conclusionsandidentify future work.

Characterizatioof CP

Categyorical perceptioris usuallydefinedrelative to some
theoreticalposition. Views of CP have accordinglyevolved
in stepwith perceptuatheories.However CPis defined the
relationbetweendiscriminationandidentificationremainsa
centralone. At the outset,we distinguishcategorical per-
ceptionfrom mete categyorization(‘sorting’) in thatthereis
no warping of discriminability or rated similarity or inter-
stimulus representatiordistance(i.e., compressiorwithin
catgyoriesandseparatiobetweenjn thelatter Also, CPcan
beinnateasin thecaseof colorvision (e.g.,Bornstein,1987)
or learned(e.g.,Goldstone,1994;1998).

Early Characterizationdrom Speeh CP

The phenomenorof CP was first obsened and charac-
terizedin the seminalstudiesof the perceptionof synthetic
speechat HaskinsLaboratoriesjnitiated by Libermanet al.
(1957),but seeLiberman,1996,for a comprehensie histor
ical review. Theimpactof thesestudiesonthefield hasheen
tremendousMassaro(1987a)writes, “The studyof speech
perceptionhas beenalmostsynorymouswith the study of
catgyorical perception”(p.90).

Liberman et al. (1957) investigatedthe perceptionof
syllable-initial stop consonantg/b/, /d/ and/g/) varying in
place of articulation, cued by second-formantransition.
Liberman,Delattreand Cooper(1958)wenton to studythe
voiced/\oicelessontrasttuedby first-formant(F1) cutback,
or voice onsettime (VOT).2 In both casesperceptionwas
foundto be catgorical,in thata steeplabelingfunctionand
apealeddiscriminationfunction(in an ABX task)wereob-
sened,with the peakat the phonemeéboundarycorrespond-
ing to the 50% point of the labelingcurve. Fry, Abramson,
Eimasand Liberman (1962) found the perceptionof long,

steady-stateowelsto be much*“less cateyorical” than stop
consonants.

An importantfinding of Libermanet al. (1958)wasthat
thevoicingboundarydependedystematicallyn placeof ar-
ticulation. In subsequenwork, LiskerandAbramson(1970)
found that as the place of articulation moves back in the
vocal tract from bilabial (for a /ba—pd VOT continuum)
throughalveolar (/da—td) to velar (/ga—ka), so the bound-
ary moves from about25ms VOT throughabout35ms to
approximatelyd2ms. Why this shouldhappenis uncertain.
For instance Kuhl (1987) writes: “We simply do not know
why theboundary'moves”” (p.365). Oneimportantimpli-
cation,haowever, is that CP is morethan merelybisectinga
continuum otherwisethe boundarywould beatmid-rangen
all threecases.

At thetime of the earlyHaskinswork, andfor someyears
thereafter CP was thoughtto reflecta mode of perception
speciako speeche.g.,Libermanetal., 1957,1967;Studdert-
Kennedy Liberman,Harrisand Cooper 1970)in which the
listenersomehav madereferenceo production.It wassup-
posedthatan early andirreversiblecorversiontook placeof
the continuoussensoryrepresentationinto a discrete,sym-
bolic codesubservindgothperceptiorandproduction(motor
theory). Thus,perceptionof consonantss supposedlynore
categorical thanthat of steady-stateowels becausehe ar-
ticulatory gestureshatproducetheformeraremorediscrete
thantherelatively continuouggestureproducingthelatter.

Althoughthereis little or no explicit mentionof Webers
law in early discussion®f motortheory its violation is one
of theaspectsn whichCPwasimplicitly supposedo bespe-
cial. Also, atthattime, CPhadnotbeenobsenedfor stimuli
otherthanspeechasituationwhichwassoonto change Ac-
cordingto Macmillan,BraidaandGoldbeg (1987),however,
“all ... discriminationdatarequirepsychoacoustiexplana-
tion, whetherthey resembléNebers Law, displaya peak,or
aremonotonic”(p.32). In spiteof attemptgo modify it suit-
ably (e.g.,LibermanandMattingly, 1985,1989; Liberman,
1996), the hypothesighat CP is specialto speecthasbeen
unableto beartheweightof accumulatingontraryevidence.

One strongline of contrary evidence comesfrom psy-
choacoustidnvestigationsnotably that of Kuhl and Miller
(1978), using non-humananimal listenerswho “by def-
inition, [have] no phonetic resources”(p.906). These
workerstrainedfour chinchillasto responddifferentially to
the Oms and 80ms endpointsof a syntheticVOT contin-
uum as developedby Abramsonand Lisker (1970). They
then testedtheir animals on stimuli dravn from the full

% As pointedout to us by Michael Studdert-kennedy(personal
communicationAugust?7, 1997),the conceptof VOT wasnot for-
mulateduntil 1964by LiskerandAbramson.In the1958Liberman
et al. paper F1-cutbackwasviewed asa purely acousticvariable:
Its origin in VOT wasnot understoodat thattime. VOT wasorigi-
nally definedasanarticulatoryvariable—thenterval betweerstop
releaseandthe onsetof voicing—having multiple acousticconse-
guencesjncluding the presence/absenad prevoicing, variations
in release-brstenepy, aspirationdurationandF1 onsetfrequeng.
In this senseVOT includesF1 onsetfrequeng: Thetwo are(sup-
posedly)perfectlycorrelated.
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Figurel. Meanidentificationfunctionsobtainedor bilabial, alve-
olar andvelar syntheticVOT seriesfor humanlistenersand chin-
chillas. Smoothcurves have beenfitted to the raw datapointsby
probit analysis. Reprintedwith permissionfrom Kuhl and Miller,
“Speechperceptionby the chinchilla: Identificationfunctionsfor
syntheticVOT stimuli”, Journal of the AcousticalSocietyof Amer
ica, 63(3),March1978,905-917.Copyright 1978AcousticalSoci-
ety of America.

0to 80ms range. Four humanlistenersalso labeled the

stimuli for comparison.Kuhl and Miller found “no signif-

icant differencesbetweenspecieson the absolutevaluesof

the phoneticboundaries... obtained,but chinchillas pro-

duced identification functions that were slightly, but sig-

nificantly, less steep”(p.905). Figure 1 shows the mean
identification functions obtainedfor bilabial, alveolarand

velar syntheticVOT series(Kuhl and Miller’ s Figure 10).

In this figure, smooth curves have beenfitted to the raw

datapoints(at0, 10,20, ... 80ms). Subsequentlyworking

with macaquesKuhl and Padden(1982, 1983) confirmed
that theseanimalsshaved increasedliscriminability at the

phonemeboundaries.Although animal experimentsof this

sort are methodologicallychallenging,andtherehave been
difficulties in replication (e.g., Howell, Rosen,Laing and

Sackin,1992working with chinchillas),the corvergenceof

humanandanimaldatain this studyhasgenerallybeentaken

as supportfor the notion that generalauditory processing
and/orlearningprinciplesunderliethis versionof CP

The emepging classicalcharacterizatiorof CP hasbeen
neatly summarizedy Treisman,Faulkner Naishand Ros-
ner (1995) as encompassindour features: “a sharp cat-
egory boundary a correspondingdiscriminationpeak, the
predictability of discriminationfunctionfrom identification,
andresistanceo contectual effects” (p.335). Theseauthors
go on to critically assesghis characterizationreferring to
“the unresoheddifficulty thatidentificationdatausuallypre-
dict a lower level of discriminationthanis actually found”
(pp.336-7) as, for example, in the work of Liberman et
al. (1957),Studdert-kennedyet al. (1970),Macmillan et al.
(1977) and Pastore(1987a). They alsoremarkon the ne-
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Figure 2. (a) Thetransformatiorof stimulusto responseanbe
seenas a two-stageprocessof a sensoryoperationfollowed by a
decisionoperation.This is consistentvith signaldetectiortheorys
separatiomf sensitvity andresponsdiasmeasuresRedravn from
Massaro1987h (b) In FujisakiandKawashimas dual-processhe-
ory, therearetwo routesfrom sensoryprocessingo decision:one
continuougX) andthe otherdiscrete(X').
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cessityto qualify “Studdert-Kennedyet al.'s claim thatcon-
text effects[and othersequentialependenciesdreweakor
absenin cateyorical perception”(seealsoHealy and Repp,
1982). We will take the classicalcharacterizatiorof CP to
encompassnly thefirst threeaspectsdentifiedabore, given
thenow ratherextensive evidencefor context effectsandse-
quentialdependenciege.g.,BradyandDarwin, 1978;Diehl,
ElmanandMcCusler, 1978;Rosen,1979; ReppandLiber-
man, 1987; Diehl and Kluender 1987)which can shift the
category boundary*

SignalDetectionand Criterion-SettingTheories

The pioneeringHaskinswork on phoneticcategorization
took placeat a time whenpsychophysicsvasdominatedby
thresholdnodelsandbeforetheinfluenceof signaldetection
theory (Greenand Swets,1966; Macmillan and Creelman,
1991)wasfully felt. Analyseshasedn signaldetectiorthe-
ory (SDT) differ from classicaliews of CPin two respects.
First, SDT clearlyseparatemeasuresf sensitvity (d') from
measuresf responsdias(p). Secondthetwo views differ
in detailsof how discriminationis predictedfrom identifica-
tion, with labelingplaying a centralrole in both aspectof
performancen the classicalview. We dealwith the latter
pointin somedetail belov; brief remarkson the first point
follow immediately

Figure 2(a) (after Massaro,1978b) shavs the transfor
mation of stimulusto responsan an identificationor dis-

4 However, the magnitudeof contet effectsvariesgreatlywith
the natureof the stimuli andtendsto be negatively correlatedwith
the degreeof CPR, asdiscussedy Repp(1984). Also, the “unre-
solved difficulty” referredto above arisesin part, if not entirely,
from the different contets of the stimuli in typical identification
anddiscriminationtasks(Repp,HealyandCrowder, 1979;Lotto et
al., 1998),atleastin the caseof vowels.
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crimination task as a two-stageprocess:sensoryoperation
followed by decisionoperation. This is obviously consis-
tentwith SDT's separatiorof sensitvity factors(having to
do with sensoryperception)and responsebias (having to
do with decisionprocesses).The importanceof this in the
currentcontet is that classicalnotionsof CP are ambigu-
ousaboutwhich of the representationare cateyorical: The
informationpassedetweensensoryanddecisionprocesses
(labeledX in the figure) could be categorical or continuous.
In thelatter case this still allows theresponséo be categor-
ical, but thisis not CP in Massaras view becausehe cate-
gorizationdoesnotoccuratthesensory/perceptuatage:He
prefersthe termcategorical partition. Emphasizinghis dis-
tinction, Massaro(1987a)writes, “| cannotunderstandvhy
catgyorizationbehavior was(andcontinuego be)interpreted
asevidencefor catayorical perceptionlt is only naturalthat
continuousperceptionshouldleadto sharpcateyory bound-
ariesalonga stimuluscontinuum”(p.115). (SeealsoHary
andMassaro]1982,andthereply of Pastore SzczesiulWiel-
gus,NowikasandLogan,1984).

According to SDT, X representsa continuousdecision
variate.In thesimplestcasetherearetwo kindsof presenta-
tion (historically called signal and signal-plus-noisgand X
is unidimensional. The two classe®f presentatiomgive rise
to two normaldistributionsof equalvariance pnewith mean
zero and the other with meand'. Stimuli are thenjudged
to be from oneclassor the otheraccordingto whetherthey
give rise to an X value which is greaterthan or lessthan
someinternal criterion. However, as detailedby Macmil-
lan etal. (1977)andreviewed below, the paradigmsusedin
the studyof CP have generallypbeenmorecomplec thanthis
simplecase.

Is the internal criterion fixed or canit shift as experi-
ence changes? This questionhas beenaddressedn the
recentwork of Treismanet al. (1995) who apply the ear
lier criterion-settingheory(CST) of TreismanandWilliams
(1984)to CP. Accordingto CST, a sensorysystemresets
the responsecriterion betweeneachtrial accordingto “the
latestinformationavailableto it, aboutits own sensoryper
formanceandthe ervironment” (p. 337), leadingto sequen-
tial dependenciesThe relevanceto CP had beennotedby
Elman (1979) who suggestedhat consonantdaptationef-
fects might be due to suchcriterion shifts. When applied
to ABX discrimination,CST “is shown to fit the datafrom
theliterature” (Treismanet al., 1995,p.334), in thata peak
occursat the category boundary This is essentiallybecause
CST sharesthe basicassumption®f the classicalHaskins
model (p.345), which also predicts(from labeling) a peak
asdescribedbelon. Moreover, the absolutevalueof the ob-
seneddiscriminationperformancas closeto thatpredicted
by CST. Thisis not the casewith the Haskinsmodel,which
predictsa lower performancehanis actually obsened, as
discussedmmediatelybelown. Thebetterfit achieredby CST
relative to theHaskinsmodelis attributedto theformer'sad-
ditional criterion-settingassumptions.

Predictionof Discriminationfromldentification

In the classicalHaskinsview, discriminationin an ABX
task (astraditionally usedin CP studies)is basedon covert
labeling.FirstA is labeledcovertly (in thesensehatthesub-
jectis notrequiredto reportthis judgmentto theinvestigator
asin overt identification), then B, then X: If the A andB
labels are different, the subjectrespondsX is A or X is B
accordingto X's label, otherwisethe subjectguesses.On
this basis,ABX discriminationis predictablefrom identifi-
cation. Indeed,oneof the criticismsof this paradigm(e.qg.,
PisoniandLazarus,1974; Massarcand Oden,1980)is that
it promoteddentification/labelindbehaior, soarguablypro-
moting cateyorizationbehavior also.For judgementsnvolv-
ing justtwo categories,wheretheprior probability of eachis
equal theproportioncorrectin discriminationis predictedas

P(C) =0.5[1+ (pa—Ps)’] 1)

wherepa is the probability of identifying the A stimulusas
oneof the two cateories,pg is the probability of identify-

ing the B stimulusasthat samecategory, andthe guessing
probability is 0.5 (Libermanet al., 1957; Macmillan et al.,

1977). It is well-known that this model predictsdiscrimi-

nationwhich is almostinvariably lower thanthat obsenred.

CP theoristshave usually playeddown this discrepang by

emphasizinghe correlationbetweenthe predictedand ob-

sened curves—thatis, their similar, non-monotonicshape
andthefactthatthey peakatapproximatelythesamegbound-
ary) point.

Massaro(1987a)writes, “For somereason,the discrep-
ang/ has never been a deterrentfor adwocatesof cate-
gorical perceptionnor a central result for ary alternatve
view” (p.91). However, the dual-processnodel of Fujisaki
andKawashima(1969,1970,1971)doesindeedeffectively
take this discrepang asthe basisof an alternatve view, in
which both a continuous(auditory) and a cateyorical (pho-
netic) modeof processingo-exist (Figure2(b)). If the sub-
ject fails to label A and B differently via the cateyorical
route then, insteadof guessingthe continuous(but decay-
ing) representationsf A andB areconsulted.Accordingto
Macmillan et al. (1977, p.454), the extentto which Equa-
tion 1 underestimatediscriminationdetermineshe weight
to begivento eachprocessoasto fit thedatabest. They crit-
icize dual-processheoryfor “its embarrassingpck of parsi-
mory” (p.467),however, in thateverythingthatcanbe done
via the discreteroute (and more) can also be achieved via
the continuousroute. Thetheorydoes,however, have other
strengthslt canexplain, for instancetheeffectthatmemory
requirement®f the experimentalprocedurehave on CP on
thebasisthatthetwo processebave differentmemory-decay
properties.

Macmillan et al. point out thatthe Haskinsmodelis tac-
itly basedon low thresholdassumption? arguingthat mere

®In thresholdtheories(Luce, 1963; Macmillan and Creelman,
1991),a physicalcontinuumis assumedo mapto discretepercep-
tual statesratherthaninto a perceptuakcontinuum. The threshold
is thedivision betweertheinternalstates.In high thresholdtheory
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correlationbetweenobsened discriminationand that pre-
dicted from identificationis inadequatesupportfor the no-

tion of CP. By contrast,they characterizeCP on the ba-
sis of signal detectiontheory in termsof the equivalence
of discriminationandidentification. The essentiadefining
characteristiof CPis thenconsideredo bethe equialence
of identificationd’, found using the approachproposedby

BraidaandDurlach(1972)for auditoryintensityperception,
and discriminationd’. The Braida and Durlach model as-
sumesadistribution correspondingo eachpointonthe con-

tinuum, andthenfinds a d’ for eachadjacentpair of distri-

butions. If we canfind ad’ correspondindo the samepair

of distributionsin ABX discrimination,thenthesetwo sen-
sitivity measureshouldbe equalif discriminationis indeed
predictablefrom identification.

To avoid thelow thresholdassumptionsf adiscretesetof
internalstates Macmillan et al. extendedGreenand Swets’
earlier (1966)derivationof d' from yes-noandtwo-intenal
forcedchoice(2IFC) psychophysicatasksto the somavhat
more complicatedABX task. It was analyzed(pp.458—
9) asa 2IFC subtask(to determineif the standardsarein
the order (AB) or (BA)®), followed by a yes-nosubtask.
This is describedas “a continuous(SDT) model for cate-
gorical perception”(p.462). This view of the importance
of continuousinformationto CP is gaininggroundover the
classicalcharacterizatiorof CP. For instance,Treismanet
al. (1995)statethat “CP resemblestandardpsychophysical
judgements”(p.334) while Takagi (1995) writes, “In fact,
the signaldetectionmodelis compatiblewith both categor-
ical and continuouspatternsof identification/discrimination
data”(p.569).

NeuralModelsof CP: A Review

In this section,we presenta historical review of neural
modelsof CP

TheBrain-State-in-a-Box

Early neuralmodelsof cateyorical perceptionwere es-
sentiallybasedn associatie memorynetworks—oneof the
few kinds of netattractingary kind of interestin the “dark
ages”(seeNote 2) beforethe discovery of the error back-
propagationalgorithm (Rumelhart, Hinton and Williams,
1986). (SeeKohonen,1977, and Hinton and Anderson,
1981, for extensie contemporaryreviews of parallelmod-
els of associatie memoryand Anderson,1995, for a more
recentintroductorytreatment.) This is quitea naturalmodel
for CPin mary ways. An associatie netis addressedavith
somepartialor noisy patternandretrievesthe corresponding
noise-freecanonicalpattern,or prototype. This is akin to
a pureor classicalform of CP wherebya non-prototypical
stimulusis replacedn memoryby its prototype(from which
it is consequentlyndistinguishable).

We will take Andersonet als (1977) paperasthe start-
ing point for our review of neuralmodelsof CP. We note,
however, that this selectionmay be contentious. Gross-
berg, for example, also has a legitimate claim to be the

originator of this line of researchwith his very early pa-

personneuralmodelsof psychologicafunctions(Grossbeg,

1968a,1968b,1969)althoughAndersons work on associa-
tive memorydatesbackatleastasfar (viz., Anderson,1968;

seeGrossbey, 1987, and CarpenterGrossbeg and Rosen,
1991a;1991b.for morerecentdevelopments.)We preferthe

Andersonet al. modelbecausef its greatersimplicity and

perspicacityandits moredirectandobvioususein modeling
humanpsychophysicatiata.

AndersonSilversteinRitz andJoneg1977)considemet-
works of neurong which “are simple analogintegratorsof
their inputs” (p.416). They extend the earlier work men-
tioned above (e.g., Anderson,1968)in two main ways. It
hadpreviously beenassumedp.413)that:

1. nenoussystemactivity couldberepresentelly thepat-
ternof activationacrossa groupof cells;

2. different memory traces make use of the same
synapses;

3. synapseassociatéwo patterndy incrementingsynap-
tic weightsin proportionto the productof pre- and post-
synapticactities.

Theform of learningimpliedin 3is in effectcorrelational,
andhasbeencalledHebbianby mary workers. As the neu-
ronshavelinearactivationfunctions,aform of linearcorrela-
tion is computedmakingthe netamenabldo analysisusing
linearsystemgheoryasfollows.

SupposeN-dimensionalinput patternvectorsf; are to
be associateavith M-dimensionabutputpatternvectorsg;.
A netis createdwith N input units andM outputunits. In
accordanceavith point2 above, f andg areto berepresented
by the patternsof activationacrosgheinputandoutputunits
respectiely. Then, accordingto the learning scheme the
(M x N) connectionmatrix A of synapticweightsbetween
thetwo setsof unitsis incrementedy

Ai= glng ) (2)
whereT denoteghe vectortransposeln this way, the over-
all connectvity matrix is determinedasA = 3; A;, summed
overall | inputpatternslf all inputsaremutuallyorthogonal,
theoutputfor ary fi will be

iZAifk

= Auf+ ;Aifk
=

= gfpfut ;gifink
iZx

U gk7

the thresholdghemseles setthe limits to detection,anderrorson
noisetrials ariseonly from guessing.In low thresholdtheory the
limit on performancés setby afactorotherthanthethresholdsuch
asnoise(Pastore 1987b,p. 36).

®We use angledbraces(( )) to denotean actual presentation
dyad or triad (for which X cannotbe ambiguous),in contrastto
ABX which is the nameof the paradigm.

"We usethetermsneuon andunit interchangeably

Afk ==

by Equation2
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since,by thedefinitionof orthogonality:

112
f;rfl' :{ g I||

Hence,the systemoperatesas a perfectassociatorin this
case: The directionof the outputvectoris identicalto that
of theassociateihputvector (Thelength,however, is mod-
ified by the lengthof the input vectorandwill alsodepend
onthenumberof repetitionsof thatinputin accordancevith
Equation2.) Whentheinputsarenotorthogonalthenetwill
producenoiseaswell asthe correctoutputbut it will still be
“quite usable”(p.417).

To corvertthis linear pattern-associationetinto amodel
of CR, Andersonet al. madetwo extensions. The first was
to discardthe M distinct outputunits andto introducepos-
itive feedbackfrom the setof N input neuronsonto itself.
The(N x N) matrix bf A (whichthey now call the“feedback
matrix”) is madesymmetricin this case sothatthe synaptic
weightbetweerunitsi andj is equalto thatbetweerunitsj
andi: a; = aji. Forthecaseof arbitrary(non-orthogonaljn-
puts,it is shovn (p.424)that(providedtheir averageis zero)
theinputsarea linearcombinationof the eigervectorsof the
feedbackmatrix A, andall eigervaluesarepositive.

The introductionof positive feedbackmakesthe system
potentiallyunboundedn thatactivationscannow grow with-
out limit. The secondextensionovercomeghis problemby
allowing the individual neuronsto saturateat an activation
of £ C. Thatis, the activation function of eachneuronis
linearwith-saturation.Thus,in use,all units areeventually
driven into saturation(either positive or negative in sense)
andthe nethasstablestatescorrespondingo some(possibly
all) of the cornersof a hypercubgbox) in its N-dimensional
statespace. (Of course,not all cornersare necessarilysta-
ble.) For thisreasonthe modelwascalledbrain-state-in-a-
box (BSB). Consideredasvectorsin the statespacethese
cornersare the eigervectorsof A and can be identified, in
psychologicaterms,with thedistinctivefeaturesof the sys-
tem (p.425). For eachsuchstablestate thereis a region of
attractionin statespacesuchthat if an input initially pro-
ducesan outputin this region, that outputwill evolve over
time to reachthatstablestate whereit will remain.

Usedasa modelof CR theinputs(i.e., thef;) areasso-
ciatedwith themselesduring training, thatis, during com-
putationof the (N x N) matrix A@. This is an essentially
unsupervisedperation. However, if the training patterns
are labeledwith their patternclass,the cornersof the box
canbe similarly labeledaccordingto the input patternsthat
they attract. (Thereis, of course,no guaranteethat all
cornerswill be so labeled. Cornerswhich remain unla-
beledcorrespondo rubbish statesin the jargon of associa-
tive networks.) Thereafter an initial noisy input (consist-
ing of a linear sum of eigervectors)within the region of
attractionof a labeledcornerwill evoke an output which
is a canonicalor prototypical form correspondingto the
eigervector of the input with the largesteigervalue. An-
dersonet al. (pp.430—433)presenta simulationof CP in
which their neuralmodelperformedtwo-classidentification

i=j
otherwise

(LLLAL-1-1-T) (11111011

@)

proportion labeled "0’

01 2 3 45 6 7 8
vector number

(b)

Figure 3.  (a) eight-dimensionalsystemwith two orthogonal
length-two eigemvectorsusedin the simulationof CP basedon the
brain-state-in-a-boxieuralmodel. Inputs consistedof 16 equally
spacedength-onevectorsas shovn, with addednoise. Redravn
from Andersonetal. (1977). (b) Respons®f modelfor the simu-
latedidentificationtaskwith 1,000presentationat eachnoisecon-
dition: standardieviation 0.0,0.40r 0.7.

andABX discriminationtasks. The two prototypes(eigen-
vectors)were the eight-dimensionabrthogonalvectors of

length-two in the directions(1,1,1,1,—-1,—1,-1,—1) and
(3,1,-1,-1,1,1,—-1,—1) respectiely (Figure3(a)). These
were usedto setthe weightsas detailedabove. Inputsto

themodelthenconsistedf 100repetitionsof 16 length-one
vectorsequally spacedbetweenthe prototypeeigervectors,
with addedzero-meanGaussiamoise accordingto one of

four conditions: The standarddeviation (SD) of the noise
waseither0.0,0.1,0.20r 0.4.

We have replicatedAndersonet al’'s simulation. Weights
were calculatedfrom the inner product of each of the
two training patternswith itself, addedto produce the
feedbackmatrix in accordancewith Equation2. Testing
used1,000presentationsinderthreedifferentnoise condi-
tions. During testing, the activation of eachneuronwas
computedas
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acti(t) = a (extinput) + B(intinput) , (3)

whereextinput; andintinput; are,astheir namesclearly sug-
gest,the externalinput to unit i andthe internal (feedback)
inputto thesameunit. A decayterm,

Aact; = a (extinput) + B (intinput;) — (decayact; ,

canbe incorporatednto the model, which tendsto restore
activationto a restinglevel of zero. Throughoutthis work,

decaywassetto 1 sothatthe activationis given simply by

Equation3.

For thereplicationof Andersoretal’s simulation the ex-
ternal scalefactor a andinternal scalefactor 3 were both
setat 0.1. The saturationlimit for the neuronswas set at
C=41. Self connectiondbetweenneuronswere allowed.
We alsofound it necessaryo userathermore noisepower
thanAndersoretal. did. We believethisis becauseuruseof
1,000testpatterngin placeof Andersonetal’s 100) makes
our resultslessaffectedby small-sample=ffects. Thus,our
noiseconditionswereSD= 0.0,0.4and0.7.

In all noise-freecases,the systemcorvergedto one of
its two stable, saturatingstatesfor all 1,000 inputs. For
the addednoise conditions, there was only a very small
likelihood of corvergenceto an unlabeledcorner (rubbish
state). This occurredfor approximatelyl% of the inputs
whenSD= 0.4andfor about6% whenSD= 0.7. Figure3(b)
shaws the identificationresultsobtainedby noting the pro-
portion of inputswhich corvergeto the saturatingstatecor-
respondingo endpoint0. For the no-noisecondition, cate-
gorizationis perfectwith the classboundaryat the midpoint
betweenthe prototypes. For the noiseconditions,SD=0.4
andSD= 0.7, thelabelingcurvesareveryreasonablepprox-
imationsto thoseseenin theclassicalCPliterature.Overall,
thisreplicateghe essentiafindingsof Andersoretal.

Considemext the ABX discriminationtask. Andersonet
al. consideredwo inputsto thenetto bediscriminablef they
cornvergedto differentstablestates.(Note thatasAnderson
et al. areconsideringa simpletwo-classproblemwith con-
vergenceto one or other of the two labeledstates,and no
rubbishstates,they are never in the situationof having A,
B andX all covertly labeleddifferently, ascanconcevably
happerin reality.) If they corvergedto thesamestablestate,
a guesswas madewith probability 0.5, in accordanceavith
Equationl. This meanghatdiscriminationby the netis ef-
fectively a directimplementatiorof the Haskinsmodel. In-
deed,Andersonet al. obsered a distinct peakat midrange
for theirintermediate-noiseondition,justasin classicalCP.
Finally, they obtainedsimulatedreactiontimesby notingthe
numberof iterationsrequiredto cornvergeto a stable saturat-
ing state. As in classicalCP (e.g.,Pisoniand Tash,1974),
therewasanincreasen reactiontime for inputscloseto the
catgyory boundaryfor the intermediatenoisecondition,rel-
ative to inputs more distantfrom the boundary Again, we
have replicatedthesefindings(resultsnot showvn).

In supportof the assertionthat the modelis “quite us-
able” whenthe inputs are not orthogonal, Anderson(1977,
pp.78-83)presentsan examplein which the BSB modelis

usedto categorize vowel data (seealso Anderson,Silver

steinandRitz, 1977). 12 Dutch vowelswererepresentety

eight-dimensionalectors,eachelementmeasuringthe en-

ergy within a certainfrequengy bandof an average steady-
statevowel. It is highly unlikely thattheseinputsare mutu-

ally orthogonalyet “when learningceasedeachvowel was
assignedo adifferentcorner”(p.81). Indeed,asmentioned
earlier non-orthogonalitycan act as noise, thus preventing
(unrealistic)perfectcatayorization.

Andersonet al. (1977)conjecturethat positive feedback,
saturationand synapticlearningare “responsiblefor thein-
terestingcategorization]effectsin oursimulations”(p.433).
With the benefitof hindsight,however, we now know (based
onthe extensie review materialandnew resultsbelow) that
syntheticcateyorizationcanbeobtainedn avarietyof neural
models.eventhoselackingpositive feedbaclkandsaturation.
In this regard,the commentsof Grossbey (1986) concern-
ing saturationin the BSB model are apposite. He chaged
Andersonet al. with introducinga homunculusas a result
of their “desireto presere the framework of linear systems
theory”. He continues:“No physicalprocesss definedto
justify thediscontinuougshangen theslopeof eachvariable
whenit reachesan extremeof actiity ... The modelthus
invokesa homunculugo explain... cateyoricalperception”
(pp.192-194).

In our view, however, ahomunculugs anunjustified,im-
plicit mechanisnwhich s, in the worstcase,comparablén
sophisticatiorand compleity to the phenomenorto be ex-
plained. By contrast,Andersonet al. postulatean explicit
mechanisn(firing-rate saturation)which is both simpleand
plausiblein that somethingdlike it is a ubiquitousfeatureof
neuralsystems.In the wordsof Lloyd (1989),“Homunculi
aretolerableprovided they canultimately be dischagedby
analysisinto progressiely simpler subunculi, until finally
eachmicrunculusis so stupid that we canreadily seehow
a merebit of biological mechanisntould take over its du-
ties” (p.205). Andersonet al. go so far asto tell us what
this “mere bit of biological mechanism’is—namely rate
saturationin neurons. (SeeGrossbeg, 1978, andthe reply
theretoof AndersorandSilverstein, 1978,for additionaldis-
cussionof the statusof the non-linearityin the Andersonet
al. BSBmodel:seealsoBéginandProulx,1996 for morere-
centcommentary) To besure thediscontinuityof thelinear
with-saturatioractivationfunctionis biologically andmath-
ematicallyunsatiséctory but essentiallysimilar behavior is
obsenedin neuralmodelswith activationfunctionshaving a
moregradualtransitioninto saturationlasdetailedbelow).

TheTRACE Model

In 1986,McClellandandEImanproduceda detailedcon-
nectionistmodelof speectperceptiorfeaturinglocalistrep-
resentationsand extensie top-dovn processingn addition
to the more usual bottom-up flow of information. This
model, TRACE, is now ratherwell known, soit will be de-
scribedonly briefly here. Therearethreelevelsto the full
model,correspondingdo the (localist) feature,phonemeand
word units. Units at differentlevels that are mutually con-
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sistentwith a given interpretationof the input have excita-
tory connectionswhile thosewithin a level thatare contra-
dictory have inhibitory connections—thais, processings
competitive

Strictly speakingTRACE is asmuchamodelof lexical ac-
cessingasof speectperceptiomperse,astheexistenceof the
word unitsmakesplain. McClellandandElmanassumedn
inputin termsof somethindik e ‘distinctive features’ which
sidestepsmportantperceptuafjuestionsabouthow the dis-
tinctive featuresare derived from the speeclsignaland,in-
deedaboutwhetherthisanappropriateepresentationr not.
In their 1986 Cognitive Psydology paper McClelland and
ElmandescribeTRACE Il which, they say is “designedto
accountprimarily for lexical influencesn phonemepercep-
tion” using“mock speech asinput (p.13). However, they
alsoreferto TRACE | which is “designedto addresssome
of the challengegosedy thetaskof recognizingphonemes
in real speech”and cite EImanand McClelland (1986) for
furtherdetails.Unfortunately TRACE | doesnot featurereal
speechinputeither

Top-davn effectsare manifestthroughthe lexical status
(or otherwise)of words affecting (synthetic)phonemeper
ceptionandthereby(synthetic)featureperceptionalso. Al-
though TRACE hasbeenusedto simulatea variety of ef-
fectsin speechperception,we concentratehereon its use
to modelCP.

An 11-step/g/—/k/ continuumwasformedby interpolat-
ing the featurevalues: namely voice onsettime (VOT) and
the onsetfrequengy of the first formant, F1. The endpoints
of the continuum(stimuli 1 and11) weremoreextremethan
prototypical/g/ and/k/, which occurredat points3 and 9,
respectiely. Theword unitswereremoved,thusexcluding
ary top-dowvn lexical influence,andall phonemeunits other
than/g/ and/k/ werealsoremoved. Figure4(a) shavs the
initial activations(at time stept = 1) at thesetwo unitsasa
functionof stimulusnumber As canbeseenthereis aclear
trendfor theexcitation(whichis initially entirelybottom-up)
to favor /g/ atlow stimulusnumberbut /k/ at high stimulus
number Thetwo curvescrossat stimulusnumbers, indicat-
ing that this conditionis maximally ambiguous(i.e., this is
thephoneméoundary) However, thevariationis essentially
continuousratherthan categorical, asshavn by therelative
shallavnessof the curves. By contrast,after 60 time steps,
thetwo representationareasshavn in Figure4(b). As are-
sult of mutualinhibition betweenthe /g/ and/k/ units,and
possiblyof top-dovn influenceof phonemeunits on featu-
ral units also, a much steeper(more cateyorical) response
is seen.

This appeardo be a naturalconsequencef the compe-
tition betweenexcitatory and inhibitory processing. Many
researcherbave commentedn this ubiquitousfinding. For
instance,Grossbey (1986) states,“Categorical perception
can... be anticipatedwhenever adaptve filtering interacts
with sharplycompetitive tuning, not justin speectrecogni-
tion experiments”(p.239).

McClellandand EImango on to modelovert labeling of
the phonemeshasingidentificationon a variantof Luce’s
(1959)choicerule. Theresultis shavn in Figure4(c), which
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Figure 4. Cateagorical perceptionin the TRACE model: (a) Initial

activationof the/g/ and/ k/ unitsarisingfrom bottom-upinfluence
of the featureunits, at time stept = 1. (b) Activationsattime step
t=60. (c) Labelingfunctionsafter post-processingising Luce’s
choicemodelwith k=5, andABX discriminationcure. Redravn

from McClellandandEIman(1986).
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also depictsthe ABX discriminationfunction. The choice
rule involvessettinga constank (actuallyequalto 5) which

actsas a free parameteiin a curve-fitting sense. Quinlan
(1991)accordinglymakesthefollowing criticism of TRACE:

“Indeed, k determinedthe shapeof the identificationfunc-
tions ... A ratheruncharitableconclusion... is that the
modelhasbeenfixed up to demonstrateateyorical percep-
tion ... Cateyorical perceptiondoesnot follow from ary of

the a priori functionalcharacteristic®f the net” (p.151). It

is alsoapparenthatthe obtainedABX discriminationcurve
is not very corvincing, having a ratherlow peakrelative to

thosefoundin psychophysicaéxperiments.

We considerfinally the relation betweendiscrimination
andidentificationin TRACE. McClellandand Elman point
out that discriminationin real CP is betterthan predicted
from identificationandthat TRACE also“producesthis kind
of approximatecateyorical perception”(p.47). The mech-
anism by which this happensis by an interactionof the
bottom-upactivationsproducedy the speechinputwith the
top-down activations. Accordingto the authors,the former
decaywith time, but not entirely to zero,whereaghe latter
produceamorecanonicalepresentatiowith time but donot
completelyoverwrite the input with its prototype(and the
time courseof theseinteractionsgivesa way of predicting
theincreasen reactiontime for stimuli closeto the cateyory
boundary) Theauthorsremarkon the practicaldifficulty of
distinguishingbetweerthis feedbaclexplanationandadual-
processexplanation.

Bad-propagation

As is well known, thefield of neuralcomputingreceveda
majorboostwith thediscovery of theerrorback-propagation
algorithm(RumelhartHinton andWilliams, 1986)for train-
ing feedforward netswith hiddenunits, so-calledmultilayer
perceptrongMLPS). It is thereforesomavhatsurprisingthat
back-propagatiortearning has not figured more widely in
studiesof syntheticCP. We have usedthis algorithmasthe
basisfor modelingthe categorical perceptiorof bothspeech
(dealtwith in the next section)and artificial stimuli (dealt
with here).

Many workers (Bourlard and Kamp, 1988; Elman and
Zipser 1988; Baldi and Hornik, 1989; Hansonand Burr,
1990) have obsened that feedforward auto-associate net$
with hidden units effectively perform a principal compo-
nent analysisof their inputs. Harnad, Hansonand Lu-
bin (1991) exploited auto-associatiotraining to producea
precatgorization discriminationfunction. This was then
re-examined after categorization training to seeif it had
warped. Thatis, a CP effect was definedas a decreaseén
within-category inter-stimulusdistancesand/oran increase
in between-catgory inter-stimulusdistancegelative to the
baselineof auto-associatioalone. The stimuli studiedwere
artificial—namely differentrepresentationsf the length of
(virtual) lines—andthe net's taskwasto catayorizetheseas
shortor long.

A back-propagatiomet with eight input units, a single
hidden layer of 2to 12 units and 8 or 9 output units was

used. The 8 differentinput lines were representedn 6
different ways, to study the effect of the iconicity of the
input coding (i.e., how analog,non-arbitrary or structure-
preservingit wasin relationto whatit represented) Af-
ter auto-associatiotraining (using eight output units), the
trainedweightsbetweenrhiddenlayerandoutputlayerwere
reloadedtheinputto hiddenlayerweightsweresetto small
randomvalues, and training recommenced. The net was
given a double task: auto-associatiorfagain) and catego-
rization. For the latter, the nethadto label lines1to 4 (for
instance)asshortand5 to 8 aslong. This requiredan addi-
tional output,makingninein this case.

Strong CP effects (with warping of similarity spacein
theform of increasedseparatioracrosshe category bound-
ary and compressiorwithin a cateyory) were obsened for
all input representationsT he strongeskffect was obtained
with the least iconic, most arbitrary (place) code. The
cateorization task was very difficult to learn with only
two hidden units, h=2. With more hidden units, how-
ever, the patternof behaior did not changewith increas-
ing h (3to12). This is taken to indicate that CP is not
merelya byproductof informationcompressiorby the hid-
denlayer Nor wasCP a resultof overlearningto extreme
values, becausehe effect was present(albeit smaller) for
larger valuesof the epsilon(g) error criterion in the back-
propagatioralgorithm. A testwasalso madeto determine
if CP was an artifact of re-usingthe weightsfor the pre-
catgyorizationdiscrimination(auto-associatiorfpr theauto-
association-plus-cagerization. Performancevas averaged
over several precatgorizationnets,andcomparedo perfor
manceaveragedver severaldifferentauto-association-plus-
catgyorizationnets. Again, althoughwealer andnot always
presenttherewasstill evidenceof syntheticCP

A final test concernedconicity and interpolation: Was
the CP restrictedto trained stimuli, or would it generalize
to untrainedones?Netsweretrainedon auto-associatiothe
usualway, andthen,during categorizationtraining, someof
the lines wereleft untrained(say line 3 andline 6) to see
whetherthey would neverthelesswvarp in the ‘right’ direc-
tion. Interpolationof the CP effectsto untrainedlines was
found,but only for the coarse-codetkpresentations.

A “provisional conclusion”of Harnadet al. (1991) was
that“whateverwasresponsibldor it, CPhadto besomething
very basicto how thesenetslearned”.In thisandsubsequent
work (Harnad HansonandLubin, 1995),thetime-courseof
thetrainingwasexaminedandthreeimportantfactorsin gen-

8 Here, the term auto-associativeefersto multilayer feedfor
ward netswith hidden units trainedto reproducetheir inputs as
outputs. This is distinct from auto-associate feedbacknetslike
theBSB modelin whichthereareno hiddenunitsandtheinputand
outputunitsarephysicallyidentical.

°The readermight objectthat lines of differing lengthare not
perceved catgyorically by humans,and so a network simulation
shouldnotshav CPeither Thisis thepointof varyingtheiconicity
of thecodings:to find theonesthatmake senseLiterally giving hu-
manobserersandnetworks both 12 lines to identify/discriminate
will not producean equivalenttask: the codingneedso be varied
to achieve theequvalence.
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eratingsyntheticCPwereidentified:

1. maximalinterstimulusseparationnducedduring auto-
associatioriearningwith the hidden-unitrepresentationsf
each(initially random)stimulusmoving asfarapartfromone
anotheraspossible;

2. stimulusmovementto achiere linear separabilitydur-
ing categgorizationlearning,which undoessomeof the sepa-
rationachiezedin 1 above,in away which promoteswithin-
catgyory compressiomndbetween-cagory separation;

3. inverse-distance‘repulsive force” at the catgory
boundarypushingthe hidden-unitrepresentatioaway from
theboundaryandresultingfrom the form of the (inverseex-
ponential)errormetricwhich is minimizedduringlearning.

Onefurther factor—the iconicity of the input codings—
wasalsofoundto modulateCP. The generalrule is thatthe
furthertheinitial representatioiis from satisfyingthe parti-
tion implied in 1 to 3 above (i.e., the lessiconic it is), the
strongeris the CP effect. SubsequentlyTijsselingandHar-
nad(1997)carriedouta moredetailedanalysisocusingpar
ticularly ontheiconicity. Contraryto thereportof Harnadet
al. (1995),they foundno overshootasin 2 above. They con-
clude: “CP effectsusuallyoccurwith similarity-basedcate-
gorization, but their magnitudeand direction vary with the
setof stimuli used how [theseare]carnedupinto cateyories,
andthedistancebetweerthosecateyories”.

This work indicatesthat a feedforward net trained on
back-propagatiofis able (despiteobvious dissimilarities)to
replicatethe essentiafeaturesof classicalCP muchtheway
the BSB model of Andersonet al. (1977)does. Thereare,
however, notavorthy differencesThe mostimportantis that
Harnadetal’s back-propagationetsaretrainedon interme-
diate (ratherthansolely on endpoint)stimuli. Thus,gener
alizationtestingis a more restrictedform of interpolation.
Also (becauséhe feedforwardnethasno dynamicbehavior
resultingfrom feedback)reactiontimes cannotbe quite so
easilypredictedasAndersoretal. do (but seebelow.)

Competitive Learning and Category Detecting
Neuons

Goldstone SteyversandLarimer(1996)reporton alabo-
ratoryexperimentwith humansubjectsn which stimuli from
anovel dimensiorwerecategorically perceved. The stimuli
were createdby interpolating(morphing seven curves be-
tweentwo randomly selectedbezierendpointcurves. The
dimensions novelin thatsubjectsarehighly unlikely everto
have seerpreciselythosemorphedshapedefore. The major
interestin the context of this paperis that Goldstoneet al.
alsopresenta neuralmodel(a form of radial-basisunction
net)which qualitatively replicateshe behavioral results.

The modelhasa layer of hiddenneuronswhich become
specializedfor particular stimulus regions, therebyacting
as “categgory detectingneurons”in the senseof Amari and
Takeuchi(1978)or “featuredetectingneurons”in the sense
of Schyns(1991). This is doneby adjustingthe input-to-
hidden(or position) weights. Simultaneouslyassociations
betweerhidden/detectoneuronsandoutput(category) units
arelearnedby gradientdescent.As well asthe feedforward
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connectionsrom input-to-hidderandfrom hidden-to-output
units,thereis feedbackrom the categoryunits,which causes
thedetectorunitsto concentrateearthe cateyory boundary
This works by increasingthe position-weightlearningrate
for detectorghatareneighborsf adetectothatproducesan
impropercategyorization.Notethatthewhole actiity pattern
of the hiddendetectorsdetermineshe activity of the cate-
gory nodes.This in turn determineghe error and, thus, the
learningrate: No singledetectorcandeterminethelearning
rate(Mark Steyvers,personatommunicationJuly 9, 1997).

Goldstoneetal. mentionthesimilarity of theclassification
partof their modelto ALcoVvE (Kruschke, 1992). Like AL-
COVE, thehiddennodesareradial-basigunction units“acti-
vatedaccordingto the psychologicakimilarity of the stimu-
lusto theexemplaratthepositionof thehiddennode”(p. 23).
The essentialdifferenceis that Goldstoneet al.s exemplar
nodesaretopologically arranged and can move their posi-
tion in input spacethroughcompetitive learningof their po-
sition weights.

Simulationswere performedwith input patternsdrawvn
from 28 points on the morphed continuum. (Two-
dimensionalgray-scaledrawings of the curves were con-
vertedto Gaborfilter representationgescribingthe inputs
in termsof spatially organizedliine sggments.) Therewere
14 hiddenexemplar/detectoneuronsand 2 output/catgory
neurons.Lik e the experimentswith the humansubjectsthe
simulationsinvolved learning two different classifications
accordingo differentcut-offs alongthe novel dimension.In
onecondition (left split), the cut-off (boundary)wasplaced
betweerstimuli10and11;in theothercondition(right split),
it wasplacedbetweerstimuli 18 and19. In both casesglas-
sical CP wasobsened. Although Luce’s choicerule is ap-
parentlyusedin the Goldstoneetal. model,it seemdhatthe
k parametewhich wastreatedby McClellandandElmanas
free in the TRACE model and adjustedto give CP, is here
treatedasfixed (at unity). The labeling probability shoved
a characteristiovarping, with its 50% point at the relevant
boundary Discriminationbetweerntwo stimuli wasassessed
by taking the Euclideandistancebetweertheir hidden-node
activation patterns.This revealeda peakin sensitvity at or
neartherelevantcategyory boundary

Unfortunately Goldstoneet al. did not (andcannot)make
a strict comparisorof their humanandsimulationdata,be-
causeof the different numbersof curvesin the two con-
tinua studied. Recallthat seven morphedcurvesconstituted
the continuumfor the experimentswith humanparticipants,
whereasa morphingsequenc®f 28 curveswasusedin the
simulations. Sucha comparisoncould have beenvery re-
vealingfor understandingyntheticCP. Nonethelessthere
is sufficient coincidenceof the form of their resultsin the
two casedo shaw thatneuralnetscanindeedmake credible
modelsof learnedcateyorization.

The authorscontrasttheir work with that of Anderson
et al. (1977)and Harnadet al. (1995). In theseother ap-
proachesthey say “eachcategory hasits own attractor'®so

°We preferto resene thetermattractorto describeastablestate
of adynamicalsystem.As such,it cannotstrictly describethe sort
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thatCP*occursbecausénputsthatareveryclosebutfall into
differentcategorieswill bedrivento highly separateattrac-
tors” (p.248). In their net, however, detectorcongregyateat
thecatggoryboundaryandthus“small differences. . will be
reflectedby [largely] differentpatternof actiity”. Theseas-

pectsof theirwork arepresentedspotentiallyadvantageous.

However, they seemto run counterto the prevailing view in
speechCP researchaccordingto which the paradigm“has
overemphasizetheimportanceof thephoneticooundarybe-
tweencateyories” (Repp,1984,p. 320) at the expenseof ex-
ploringtheinternalstructureof the categoriesin termsof an-
chorsand/orprototypedqe.g.,Macmillan,1987;Kuhl, 1991;
Volaitis and Miller, 1992; Miller, 1994; Iversonand Kuhl,
1995;GuenterandGjaja, 1996—hut seel otto etal., 1998.

Categorizationof Stop
Consonantdy NeuralNetworks

From the foregoing review, it is apparenthat (giventhe
right encodingschemadfor the inputs) neuralmodelsof CP
have norealproblemreplicatingthe classicabbsenationsof
a sharplabelingfunction anda pealed discriminationfunc-
tion, at leastfor learnedcategorization. While there may
sometimesbe contrary suspicions(as when Luce’s choice
ruleis usedin the TRACE model,or netsaretrainedto place
the category boundaryat a particularpoint on theinput con-
tinuum), the effectsaresufiiciently robustacrossa variety of
differentarchitecturesand approacheso supportthe claim
that they reflect the emepgent behaior of ary reasonably
powerful learningsystem(seebelan). With the exception
of thevowel categgorizationwork usingthe BSB model(An-
derson,1977; Andersonet al., 1977), however, the neural
modelsof syntheticCP reviewedthusfar have all takentheir
inputsfrom artificial or novel dimensionswhereashe vast
majority of real CP studieshave usedspeechstimuli—most
oftenstopconsonantgor, morecorrectly simplifiedanalogs
of suchsounds).Our goalin this sectionis accordinglyto
considerthe catagyorizationof stop consonantdy a variety
of neuralmodels.As mentionecdearlier animportantaspect
of the cateyorizationof stop consonantss the shift of the
catgyory boundarywith placeof articulation. Thus, it is of
considerablénterestto ascertainf neuralmodelsof CPre-
producethis effectasemegentbehavior.

Stimuliand Pre-Processing

The stimuli used in this section were synthesized
consonant-gwel syllables suppliedby Haskins Laborato-
ries, and nominally identical to those used by Kuhl and
Miller (1978) which were developedearlier by Abramson
andLisker (1970). Stimuli very muchlik e these|f notiden-
tical, have beenusedextensiely in studiesof speechCP:
they have becomea gold standad for this kind of work.
They consistof threeseries digitally sampledat 10kHz, in
whichVOT variesin 10msstepsfrom 0 to 80ms,simulating
a seriesof English, prestressedjilabial (/ ba—pd), alveolar
(/ da—ta) andvelar(/ ga—kd) syllables.Eachstimulusbegan
with a releaseburst, andthe two acousticvariablesof aspi-
ration durationand F1 onsetfrequeng werethenvariedsi-

multaneouslyn orderto simulatethe acousticconsequences
of variationin VOT. Strictly then, the VOT continuumis
not unidimensional. However, as mentionedin Footnote3,
thesetwo variableshave often beenthoughtto be perfectly
correlated.

Thestimuli werepre-processefibr presentatioto thevar-
ious netsusinga computationamodel of the peripheralau-
ditory system(Pontand Damper 1991). The useof such
sophisticategbre-processingbviously requiressomejustifi-
cation. We know from above thatthe iconicity of the input
representatioto thenetwork is important:theclosertherep-
resentationo that'seen’by therealobsenerthebetter Also,
therehaslong beena view in the speectresearcHiterature
that CP reflectssomekind of “restructuringof information”
(Kuhl and Miller, 1978, p.906) by the auditory systemin
the form of processinghon-linearities. We wishedaccord-
ingly to find correlatesof CP in the neuralactivity of the
auditorysystemfollowing Sinex andMcDonald(1988)who
write: “It is of interestto know how thetokensfrom a VOT
continuumarerepresenteth theperipherabuditorysystem,
andwhether[they] tendto be groupedin a way which pre-
dicts the psychophysicatesults” (p.1817). Also, asa step
towardsunderstandinghe acoustic-auditoryestructuringof
information, we wishedto discover the importantacoustic
featureswhichdistinguishinitial stops.In thewordsof Nos-
sairandZahorian(1991),who usedautomaticspeectrecog-
nition techniquedor this purpose:“Such featuresmight be
morereadilyidentifiableif the front-endspectralprocessing
morecloselyapproximatedhatperformedoy the humanau-
ditory system”(p.2990). Full detailsof the pre-processing
aredescribecklsavhere(Damper Pontand Elenius,1990):
Only abrief andsomavhatsimplified descriptionfollows.

Theoutputof the auditorymodelis a neurogran{or neu-
ral spectogram) depicting the time of firing of a set of
128simulatedauditorynenefibersin responséo eachstim-
ulusappliedattimet = 0 ata simulatedsoundpressurdevel
of 65dB. Spacingof thefiltersin thefrequeng dimensions
accordingto the Greenvood (1961)equationgcorresponding
to equalincrementsf distancealongthe basilarmembrane.
Becauseof the tonotopic (frequeng-place)organizationof
auditorynenefibers,andthesystematispacingof thefilters
acrossthe 0to 5kHz frequeng range,the neural spectro-
gramis avery effective time-frequenyg representationThe
high datarate associatedvith the full representatiots dra-
matically reducedoy summingnenwe firings (spikes)within
time-frequeng cells to producea two-dimensionaimatrix.
Somesuchdatareductionis necessaryn orderto estimate
reliably the parametersof the network model from sparse
training data. Spikesare countedin a (12 x 16)-bin region
stretchingfrom —25msto 95msin 10ms stepsin thetime
dimensionandfrom 1to 128 in stepsof 8 in the frequeny
(fiber CFindex) dimension.Thus,the netshave amaximum
of 192inputs. Thesdime limits werechoserto excludemost
(but not all) of the prestimulusspontaneousactivity andthe
region whereresponsesvere expectedto be entirely char

of staticinput-outputrelationwhich Goldstoneetal. clearlyhave in
mind.
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acteristicof the vowel. The impacton syntheticCP of the
numberandplacementf thesetime-frequenyg cellshasnot
yet beeninvestigatedsystematicallyjust becausehe initial
schemethat we tried worked so well. Someprior thought
wasgivento theresolutionschosen.The 10mswidth of the
time bin correspondsapproximatelyto onepitch period. The
groupinginto eight contiguousfilters, in conjunctionwith
equi-spacingaccordingto the Greenvood equation,corre-
spondsto a cell width which is an approximatelyconstant
fraction (about0.7) of thecritical bandwidth.

Since the auditory pre-processoris stochasticin nature
(becausef its simulationof mechanical-to-neurdtansduc-
tion in the hair cells of the cochlea) repetitionsof the same
input stimulus producestatistically different outputs. This
factis very corvenient:It meanghata sufiiciently largedata
setfor trainingtheneuralmodelscanbe generatedimply by
runningthe pre-processarepeatedlywith the samenput. In
this work, 50 repetitionswere usedfor eachof the three(bi-
labial, velar, alveolar)seriesto produceneuralspectrograms
for trainingandtestingthe nets

Brain-State-in-a-Boxodel

Therewasa distinctnetfor eachof the (bilabial, alveolar,
velar) stimulusseries. The input datawerefirst reducedto
(approximatelyzero-mearbipolar patternsy subtractings
from eachvalue. This wassufficient to ensurethat negative
saturatingstateswere appropriatelyusedin forming attrac-
tors,in additionto positive saturatingstatesinitially, simula-
tionsusedall 192inputs. A possibleproblemwasanticipated
asfollows. The numberof potentialattractorstategcorners
of the box) in the BSB modelgrows exponentiallywith the
numberof inputs: In this casewe have 21°2 potentialattrac-
tors. Clearly, with sucha large number the vastmajority of
statesmustremainunlabeled. This will only be a problem,
however, if atestinputis actuallyin the region of attraction
of suchan unlabeled(rubbish)state. In the event, this did
not happen.However, trainingwasstill unsuccessfuh that
thedifferentendpointstimuli (canonicaloicedor 0OmsVOT,
andcanonicalunvoicedor 80msVOT) wereattractedo the
samestablestates:Therewasno differentiationbetweerthe
differentendpoints.This wastakenasanindicationthatthe
full 192-valuepatternsveremoresimilarto oneanotheithan
they weredifferent.

In view of this, the mostimportanttime-frequeng cells
wereidentifiedby averagingtheendpointresponseandtak-
ing their difference.The N cells with the largestassociated
absolutevalueswere then chosento form the inputsto an
N-input, N-unit BSB net. This is a form of orthogonaliza-
tion. ldeally, this kind of pre-analysiss bestavoided: The
neuralmodeloughtto be powerful enoughin its own right
to discover the importantinputs. Preliminarytestingindi-
catedthat resultswere not especiallysensitve to the pre-
cisevalueof N providedit wasin the rangesomevherebe-
tweenaboutlOand40. A value of 20 was thereforecho-
sen. These20 mostimportanttime-frequenyg cells are lo-
cated around the low-frequeng region (correspondingto
200to 900Hz) just afteracousticstimulusonsetwherevoic-
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ing activity variesmaximally as VOT varies. The precise
time locationof this region shiftsin the threenets(bilabial,
alveolar, velar)in the sameway asdoesthe boundarypoint.
The netswerethentrainedon the 0 ms and80ms endpoints
andgeneralizatiorwastestedon the full rangeof stimuli in-
cludingthe (unseen)ntermediatg10to 70ms) stimuli.

Becauseof the relatively large number(100) of training
patternscontributingto thefeedbacknatrix (Equation2) and
henceto theweights,it wasnecessaryo increaseéheneuron
saturationlimit markedly (to C=+20,00Q. The external
scalefactorwas setat a = 0.1, and the internal scalefac-
tor at = 0.05. Thesevalueswere arrived at by trial and
error; network behaior was not especiallysensite to the
precisesettings. Again, self connectionsbetweenneurons
were allowed. It was found that the Oms (voiced) train-
ing patternswverealwaysassignedifferentcornersfrom the
80ms (unvoiced)patterns.During generalizatiortesting,no
rubbishstateswere encountered:Corvergencewas always
to alabeledattractor Moreover, the activation vector (after
convergence)for the 0 ms stimuli wasfoundto be the same
after training for all threeseries(i.e., the voiced stimuli all
sharedthe sameattractorsjrrespectve of placeof articula-
tion). The samewastrue of the 80ms (unvoiced)endpoint
stimuli. (This would, of course be a problemif the taskof
the netwereto identify the placeof articulationratherthan
thepresence/absenoévoicing.)

Figure5(a) shows the identificationfunction obtainedby
plotting the proportionof the 50 presentationsvhich con-
vergedto a statelabeledvoicedfor eachof the threeseries;
Figure5(b) shavstheone-stemliscriminatiorfunction(aver
agedover 1,000presentationsbtainedusingthe procedure
of Andersonretal. (1977)asdescribedn the Brain-State-in-
a-Box subsectiorabove. Theresultsareclearandunequv-
ocal: Classicalategorizationis obsenedwith a steeplabel-
ing curve andan ABX discriminationpeakat the cateyory
boundary Although the labeling curve is rathertoo steep
andtheactualboundaryvaluesobtainedareslightly low (by
about5 or 10ms),theshift with placeof articulationis qual-
itatively correct. The finding of correctorder of boundary
placementwvas very consistentacrossreplicationswith dif-
ferentscalefactors: We take this to be an indication of its
significance.With thesemorerealisticinput patternsthere
is noneedo addnoiseastherewasin thecaseof theartificial
(vectors)input.

Figure 6(a) shavs the alveolar labeling curve from Fig-
ure5 plottedtogethemvith theKuhlandMiller (1978)human
andchinchilladata. This confirmsthattheBSB models syn-
theticidentificationfunctionsarea reasonablehut notexact,
replicationof the humanandanimaldata. It is not possible
to apply probit analysisto determinethe phoneticboundary
for the (alveolar) BSB modelbecauseghereis only a single
point which is neither100%or 0%. Obviously, the bound-
aryis somavherebetweer20 and30ms. Also, the synthetic
function is closerto the chinchilla datathanto the human
data. The root-mean-squarérms) differencebetweenthe
BSB functionandthe animaldatais 19.2 percentaggoints,
whereaghe correspondindigure for the humandatais 27.8
percentageoints. (The rms differencebetweenKuhl and
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Figure5. Cateyorical perceptiorof voice-onsetime in the brain-
state-in-a-boxmodel: (a) Labelingfunctionsfor bilabial, alveolar
andvelar series.Eachpointis an averageof 50 presentations(b)

One-stepABX discriminationfunctions. Eachpointis an average
of 1,000presentations.

Miller’ s animaland humanalveolarlabeling datawas 10.5
percentag@oints.) Findingsweresimilar in the caseof the
bilabial andvelarstimuli.

Figure7 shavstheobtainedone-stemiscriminationfunc-
tion for thealveolarseriesandthatpredictedon the basisof
Equationl. They areessentiallyidentical,differing only in
that the obtainedfunction is contaminatedy the sampling
statisticsof theguessingprocess.

Bad-propagation Network

In light of the foregoing review, thereare (at least)two
waysthatamodelof syntheticCPbasednback-propagation
training of afeedforwardnetcanbe produced:

1. As with the BSB model(andparallelingtheanimalex-
perimentsof KuhlandMiller, 1978),the netis trainedon the
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Figure 6. Compositdabelingfunctionsfor the alveolarseriesfor
humanschinchillasand neuralnetworks. The humanandanimal
dataare taken from Kuhl and Miller (1978, their Figure 3) . (a)
Brain-state-in-a-boxeuralmodel. (b) Multi-layer perceptron.

0ms and 80ms endpointsand generalizatioris thentested
usingthefull rangeof VOT stimuli.

2. Using the auto-associatioparadigmof Harnadet al.
(1991,1995),hidden-unitrepresentationgsultingfrom pre-
andpost-catgorizationtrainingarecompared.

In thiswork, we have adoptechpproacHL, mostlybecause
we have both psychophysicabnd synthetic(BSB model)
dataagainstwhich to asses®ur simulation. This was not
the casefor Harnadet al.’s artificial data,which accordingly
requiredsomeotherreferencdor comparison.

Initially, a separateMLP hasbeenconstructedor each
of the three (bilabial, alveolar, velar) series. Eachof the
threenetshad192 input units,a number(n) of hiddenunits,
anda singleoutputunit (with sigmoidalactivationfunction)
to actasa voiced/uvoiceddetector Eachnet wastrained
on 50 repetitions(100 training patternsin all) of the end-
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Figure 7. Cateayorical perceptiorof voice-onsetime in the brain-
state-in-a-boxmodel: ObtainedABX discriminationfunction for
thealveolarseriesandthatpredictedon thebasisof thecorrespond-
ing labelingfunction usingthe Haskinsformula. The closecorre-
spondenceeflectsthe factthatthe neuralmodelcornvertstheinput
to adiscretelabel,sothatits discriminationfunctionis a directim-
plementatiorof the Haskinsformula.

Tablel

Resultoftrainingthe 192-2-1bilabial multilayerperception
to an error criterion of € = 0.25 starting from 10 different
initial weightsettings.

h1ho coding
iterations d.f?Oth 5
oms 80ms ifferent?
48 01 10 Y
49 01 10 Y
51 01 10 Y
51 10 01 Y
54 01 10 Y
56 01 10 Y
56 10 01 Y
107 00 11 Y
125 11 00 Y
230 01 00 N
point stimuli. The numbern of hidden units turned out

not to be at all important. In fact, we do not needhid-
den units at all. Damper Gunn and Gore (forthcoming)
shav that synthetic CP of the VOT continuumis exhib-
ited by single-layemperceptronsandthey exploit this factin
identifying the neuralcorrelatesof CP at the auditorynene
level. We usedn = 2 in the following. Suitabletraining pa-
rameters(arrived at by trial and error) were: learningrate,
n = 0.005 momentun 0.9, weightrange= 0.05 errorcri-
terion, € = 0.25. The € error criterion was determinedby
allowing an averageerror of 0.05(or 0.0025whensquared)
for eachof the 100training patterns.

Table 1 shows the result of training the bilabial net
10 times from differentinitial weight settings. As can be
seen,the nettrainedto the 0.25 error criterion very easily:

typically in about50 epochs Thestrongtendeng, especially
for those caseswhere the criterion was reachedquickly,
was to encodethe 0 ms endpointwith hiddenunit activa-
tions of h1h, =01 andthe 80ms endpointwith h;h, = 10.
(Of course,h1 andh;, were never exactlyO or 1 but, more
typically, somethindike 0.050r 0.95) On only oneexcep-
tional occasion(whentraining required230 epochs)was a
hidden-unitcoding arrived at for which h; and h, for the
differentendpointswere not both different. Similar results
wereobtainedfor thetwo other(alveolar, velar) nets,except
that the alveolar net was rathermore inclined to discover
the h1h, =00/11 coding. Seven weight setswere selected
for subsequentesting: namely thoseobtainedin lessthan
100trainingepochs.

Figure 8(a) shows typical labeling functions (from the
sevenof each)obtainedby averagingoutputactivationsover
the50 stimuluspresentationateachVOT valuefor thethree
nets. This averagingprocedureavoids ary necessityto set
arbitrary decisionthreshold(s}o determineif the net’s out-
put is a voicedor urvoicedlabel: we simply interpretthe
averageasthe proportionlabeledvoiced. The reademight
guestionthe validity of the averagingoperationsincea real
listenerwould obviously nothave availablein auditorymem-
ory astatisticalsampleof responsefrom which the average
could be computed. Taking the average however, is a sim-
ple andcorvenientproceduravhichmaynotbetoo different
from the kind of similarity measurehat could concevably
be computedfrom a set of prototypesstoredin long-term
memory (In ary event, it parallelswhat Andersoret al. did
in their simulation.) Again, classicalCPwasobsenedin all
sevencasesyith a steeplabelingfunctionandseparatiorof
thethreecurvesaccordingto placeof articulation.

The boundaryvaluesfound by probit analysis(Finney,
1975), averagedacrossthe seven repetitions,were 20.9ms,
32.8msand41.6msfor thebilabial, alveolarandvelarstim-
uli respectiely. Thesearein excellentagreementvith the
literature(seeTable2) atleastin the caseof thealveolarand
velarstimuli. Thelabelingcurvefor thebilabial seriesn Fig-
ure8is notasgoodasfor thealveolarandvelarstimuli, with
theaverageactivationbeingrathertoo low at20msVOT and
somevhattoo high for VOTs greaterthan 30ms. Damper
et al. (1990)dealat somelengthwith a possiblereasonfor
this,whichhasto dowith thedetailsof thesynthesistrateyy.
To usetheir description the bilabial stimuli are“pathologi-
cal”. It is interestingthatthe BSB modelalsoseemgo be
sensitve to this pathology producingtoo smallaVOT value
for thebilabial category boundary—seé&igure8(a). The ef-
fectwasalsofound (unpublishedesults)for a competitve-
learning net trained with the Rumelhartand Zipser (1985)
algorithm. The boundarymovementwith placeof articula-
tion is an emegent property of the nets—seehe detailed
commentdn the Discussiorsectionlater Thereis no sense
in whichthenetsareexplicitly trainedto separatéhebound-
ariesin thisway.

Figure 6(b) earliershows the typical syntheticidentifica-
tion curve of Figure8(a) for the alveolarMLP comparedo
the Kuhl and Miller (1978) humanand chinchilla data. It
is apparentthat the multi-layer perceptronis a ratherbet-



NEURAL NETWORK MODELS OF CATEGORICAL PERCEPTION 15

Table2
Summaryphoneticbhoundarydata for humans,chinchillas
andthe MLP neural model.

Boundary Bilabial Alveolar Velar
values (ms) (ms) (ms)
Human
pooled 26.8 35.2 42.3
range 21.3-29.5 29.9-42.0 37.2-47.5
Chinchilla
pooled 23.3 33.3 42.5
range 21.3-245 26.7-36.0 41.0-43.7
MLP
averaged 20.9 32.8 41.6
range 18.6-23.4 30.7-35.1 39.8-45.0

Note. Humanandchinchilladataarefrom Kuhl andMiller

(1978), and pooled meansthat the identificationdatawere
aggrejatedbeforefitting a sigmoidandtakingits 50% VOT

value. Therewerefour humanlistenersandfour chinchillas,
exceptfor the bilabial andvelar conditions,whereonly two
chinchillasparticipated. Figuresfor the MLP arefor seven
repetitionsof training, startingfrom differentrandominitial

weightsets,andavelaged meanshatthe 50% VOT bound-
ary valueswereobtainedndividually andthenaveraged.

ter model of labeling behavior thanis the brain-state-in-a-
box. By probit analysisthe alveolarboundaryis at 32.7ms
(cf. 33.3msfor chinchillasand35.2msfor humans)whichis
little differentfrom theaveragevalueof 32.8msfor theseren
repetitions. The rms differencebetweenthe MLP function
andtheanimaldatais 8.1 percentag@oints,whereaghedif-
ferencefor the humandatais 14.2 percentag@oints. These
figuresareabouthalf thosefor the BSB model. Again, find-
ingsweresimilarin the caseof the bilabial andvelarstimuli.

Considemow the discriminationfunctionsfor the MLPs.
Unlike the Andersonet al. simulation, which producesa
discretecode, the MLPs producea continuousvaluein the
range (0,1) becauseof the sigmoidal activation function.
This meanswe are not forced to use covert labeling as a
basisfor the discrimination. We have simulateda one-step
ABX experimentusingthe Macmillanetal. (1977)modelin
which thereis first a 2IFC subtasko determinethe orderof
the standards{AB) or (BA), followedby a yes-nosubtask.
The A andB standardsvere selectedat randomfrom adja-
centclasses:thatis, from the setsof 50 responseat VOT
valuesdiffering by 10ms. The X focuswaschosenat ran-
dom, with equalprobability of 0.5, from one of thesetwo
classesOutputactivationswerethenobtainedfrom eachof
theinputsA, B andX. Becauseof the perfect*‘memory” of
the computersimulation, it is possibleto collapsethe two
subtaskdnto one. Let the absolutedifferencein activation
betweertheX andA inputsbe| X — A |; similarly| X — B |.
Theclassificatiorruleis then,

XiS{A if | X —A| <|X - B] @

B otherwise
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Figure8. Cateyoricalperceptiorof voice-onsetime by multilayer

perceptronsvith two hiddenunits. (a) Labelingfunctionsin terms
of averageactivation. Eachfunction (bilabial, alveolar and velar

series)s obtainedrom a differentnet,andeachpointis anaverage
of 50 presentations(b) Discriminationfunctionsfrom a simulated
one-stepABX task. Eachpointis an averageof 1,000 presenta-
tions: 500 of (ABA) and5000f (ABB). The guessinghresholdg

was0.001.

Finally, this classification is scored as either correct
orincorrect

We found,however, that| X — A | and| X — B | wereoc-
casionallyalmostindistinguishablén oursimulationsjn that
they differedonly in the 4th or 5th decimalplace. In terms
of the Macmillanet al. model,this meanghatareallistener
in the 2IFC subtaskwould probablyhave yieldedidentical
(AA or BB) outcomeswhich areinappropriatefor the yes-
no subtask. To avoid making the simulationtoo sensitve
to round-of errors,andto simulatethe non-idealityof real
listeners,we thereforeintroduceda guessingthreshold g.
Accordingto this, X wasonly classifiecby therule of Equa-
tion 4 above if
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Figure9. Cateagoricalperceptiorof voice-onsetime by MLP with
two hiddenunits: Obtainedone-stepABX discriminationfunction
for the alveolarseriesandthat predictedon the basisof the corre-
spondinglabeling function using the Haskinsformula. Here,the
obtaineddiscriminationis betterthan predicted(as seenin psy-
chophysicaresults)reflectingthe factthatthe outputof the neural
modelis continuougatherthandiscrete.

[X—A|—-|X-B||>g.

If this inequalitywasnot satisfied thenthe classificationof
X wasguesseavith anequalprobabilityof 0.5for eachclass.
Resultswerenot especiallysensitve to the actualvalueof g.

Figure 8(b) shavs the discriminationfunctionsobtained
from such a simulated ABX experiment. There were
500 (ABA) presentationsand 500 (ABB) presentations,
1,000in all. Again taking advantageof a computational
shortcut,therewere no presentationsf the (BA) standard,
on the groundsthat the simulationhad perfectmemoryso
thatsymmetryis assuredandthis conditionis practicallyin-
distinguishablefrom the (AB) standard. (In the real situ-
ation, of course,memoryfor the standardpresentedn the
secondnterval of the (AB) or (BA) dyadwill generallybe
betterthanfor the standardn thefirst interval.) The guess-
ing threshold,g, was 0.001. There are clear peaksat the
phonemeboundary and the movementof thesepeakswith
the placeof articulationis qualitatively correct. Paralleling
theless-steefandmorepsychophysicallyeasonablelpbel-
ing functions thediscriminationpeaksarenotassharpasfor
the BSB model. They arecloserto thosetypically obtained
from reallisteners.

Figure9 shavsthediscriminationcurve obtainedrom the
simulationdescribedabove (for the alveolarseries)andthat
predictedfrom labelingusingthe Haskinsformula. Similar
resultswere obtainedfor the other VOT series. The back-
propagationmodel (unlike the BSB model, which also re-
guiressomepre-processingf the neurogramsgorvincingly
reproduceghe importanteffect wherebyobsened discrim-
ination in psychophysicatestsexceedsthat predictedfrom
Equationl. This canbeinterpretedasevidencefor the im-
portanceof continuousepresentation(sh CP
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Figure 10. Standarddeviation of the MLP’s output activation.

Eachpointis anaverageof 50 presentations.

We have so far beenunableto train a single netto label
thesedataproperly Althougha192-2-1nettrainseasilyon
all six endpointstimuli, it will not generalizeso asto put
theboundaryin the correctlocationfor eachof thethreese-
ries of inputs. Studiesare continuingto seeif this problem
canbe overcomeusingmore hiddenunits and/ora different
outputcoding

Figure 10 shaws the standarddeviation of the activation
versusVOT. As onewould expect,this tendsto peakat the
catggory boundary(althoughthis is clearerin this particular
figure for the alveolarand velar seriesthanfor the bilabial
stimuli) which is consistentwith our remarksabove about
this seriesbeing pathological. Indeed,the standarddevia-
tion couldbetakenasa crediblepredictorof reactiontimein
humanpsychophysicaéxperiments.

SyntheticCPandSignal
DetectionTheory

In view of the importanceof Macmillan et al!s (1977)
contribution to the field, it seemsclear that syntheticCP
shouldbeassessedsingthetechniqueshey have pioneered.
Yet, apartfrom thework of Eijkman (1992),we know of no
othersuggestiorin the literatureto the effect thatthe meth-
ods of psychophysicén general,and signaldetectionanal-
ysisin particular are relevant to the evaluationof neural-
net models. (Even then, Eijkman doeslittle more thanad-
vanced' as a useful measureof separationin a pattern-
recognitioncontext: His mainconcerris with his “black box
image” techniquefor visualizing the internal structureof a
net.) In this section,we considerthe relation betweenla-
beling/identificatioranddiscriminationfrom the perspectie
of SDT.

In the standardyes-no detectiontask, hits are yes re-
sponsedo signal presentationandfalsealarmsareyesre-
sponsedo signal-plus-noisg@resentationsin the ABX dis-
crimination paradigm, it is arbitrary whether (ABA) and
(BAB) aretakento correspondo signal presentationsand
(ABB) and (BAA) aretakento correspondo signal-plus-
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Table3

Stimulus-esponse matrix for the ABX discrimination

paradigm.

Presentation Responsé Respons@
(ABA) hit miss
(ABB) falsealarm correctrejection
(BAA) falsealarm correctrejection
(BAB) hit miss

noise,or vice versa. We adoptthe former corvention,asin
Table3, whereResponsé& meanghatthe subjectnominated
thefirst interval ascontainingthe standarccorrespondingo
X, andRespons@ meanghatthe secondnterval wasnom-
inated. In the simulationsdescribedn the previous section,
the perfectmemoryof the computersimulationsmeanghat
theorderof the A andB standardsvasirrelevant. Hence as
previously stated,only the stimulus-responseatrix in the
top half of thetablewascollected.

Macmillan et al. (1977) considerthe unbiasedcase of
ABX discrimination. This, they say is “the only one for
which asimpleexpressiorcanbewrittenfor thehit andfalse
alarmrates”(p.459)in theform of their Equation3:

H = P(Responsé|(ABA)) = P(Responsé|(BAB))
= 1-FA

A d'-like sensitvity measureannow be obtainedas

diy = z(H)-2zFA)
= z(H)—z(1-H)
= 27(H), (5)

from the hit rate alone. True d' canthen be found from

this d's using Table 3 of Kaplan, Macmillan and Creelman
(1978).In thetermsof Macmillanetal. (1977),CPrequires
thatthis true d' for discriminationshall be equivalentto an

“identificationdistance” or identificationd’, obtainedby the
Braida and Durlach (1972) procedure. This involves sub-
tractingthe ztransformedprobabilitiesof assigningpresen-
tationsto the samecategory.

In the following, we analyzeonly the back-propagation
neuralmodelof VOT perceptionWe excludetheBSB model
from consideratiorfor two reasons.First, accordingto the
resultsof the previous section,it producesa lesscorvinc-
ing simulation of the psychophysicaldata. (Recall also
thatit wasnecessaryo orthogonalizehe input datafor the
BSB modelbut not for the back-propagatiomodel.) Sec-
ond,it is inherentlyunsuitableor theanalysisbecausdts la-
beling functionincludesmary 1 and0 points which arenot
amenableo transformatiorto z-scoresasthey yield values
of too,

Table4 shows the (one-stepHiscriminationd’, found us-
ing Equation5 and Table 3 of Kaplanet al., andthe iden-
tification d' obtainedfrom the z-transformedidentification
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Figure 11 Discriminationd’ versusidentificationd’ for the back-
propagatiomeuralmodelandthealveolarVOT series.Cateorical
perceptioraccordingto Macmillanetal. (1977)requiresthatthese
two sensitvity measuresre equvalent (i.e., in the ideal case,all

pointsshouldlie ontheunity-slopeline).

proportionsfor the representatie caseof the alveolarseries.
In Figure 11, discriminationd’ is plotted againstidentifica-
tion d'. Accordingto the Macmillan et al. characterization
of CR, thesetwo measureshouldbe equivalent. That s,
the pointsof Figure 11 shouldbe distributed aboutthe unit-
slopestraightline. Clearly, discriminationd’ exceedsiden-
tification d’ asis so often found: The slopeof the best-fit
line is actually 1.899 (unafectedby forcing the regression
throughthe origin). However, on the basisof a pairedt-test
(t=1.2926with v = 7 degreesof freedom,two-tailedtest),
we rejectthe hypothesighat thesetwo sensitvity measures
areequivalent(p ~ 0.2). Similar findings hold for the bil-
abialandvelarseries.As in otherstudies the two measures
are highly correlated. Regressionanalysis(alveolar series)
yieldsr = 0.8740for the casewhen(on thebasisof assumed
equality)thebest-fitline is forcedto passhroughthe origin,
andr = 0.8747whenit is not (p < 0.1). Hence we conclude
thatdiscriminationperformances correlatedwvith but some-
whathigherthanidentificationperformanceasin the caseof
humanobsenrers(e.g.,Macmillan,1987,p.59).

Discussionimplicationsof
SyntheticCP

Thusfar, we have emphasize@€Pasanemegentproperty
of learningsystemsn general,arguing thatit is not a ‘spe-
cial’ modeof perception. In this section,we aim to make
theseclaimsmoreconcretelf CPisindeedanemegentand
generalproperty of learning systems then one might ask:
Why are strongCP effectsnot alwaysfound (e.g.,in vowel
discriminationor long-rangeintensityjudgements)Mstead,
degreeof CPis obsenedto vary with the natureof the stim-
uli, the psychophysicaprocedurethe experienceof the par
ticipantsandsoon. To answerthis key questionwe draw a
sharpdistinctionbetweerthe two essentiallydifferentkinds
of syntheticCP which have beenexploredin this paper

Considerfirst the work using artificial or novel stimuli,
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Table4

SDTanalysisof syntheticCP by the badk-propagationneural model: alveolarseries.

VOT Identification Z(ident) Identifi- Discrimination ds= Discrimi-

(ms) proportion cationd’ hit rate(H) 27(H) nationd'
0 0.955 - - - - -
10 0.955 1.6950 0.0095 0.4840 —0.0803 —0.3800
20 0.941 1.6855 1.7046 0.8280 1.8926 2.2426
30 0.424 —0.0191 1.4567 0.9720 3.8220 3.9120
40 0.070 —1.4758 0.1593 0.5260 0.1305 0.4810
50 0.051 —1.6351 0.0 0.4220 —0.3936 —0.8736
60 0.051 -1.6351 0.0 0.4500 —0.2513 0.6826
70 0.051 —-1.6351 0.0 0.5180 0.0903 0.4006
80 0.051 —1.6351 0.0 0.5040 0.0201 0.1904

suchasthat of Andersonetal. (1977),Harnadet al. (1991,
1995)andGoldstoneet al. (1996). In thesecasesthe cate-
gory boundaryis placedeither (a) at a point predetermined
by the labelssuppliedduring (supervised}raining, if train-
ing wasonthecompletecontinuumor (b) atthecenterof the
continuum|f trainingwason theendpointf thecontinuum
only. This correspondgo the situationwherereal partici-
pantswould not alreadypossesénternallabels,anchors,or
prototypesandsowould only displayCP asaresultof train-
ing and experience. Hence, this type of syntheticCP can
only be a reasonablenodelof learnedcategorization,such
asthat found in the categorizationtraining experimentsof
Goldstoneetal. (1996),aswell asthoseof Goldstong1994),
BealeandKeil (1995),Peartzow andHarnad(1997),Living-
stone,Andrews and Harnad(1998), Goldstone(1998), and
Stevenage(1998), ratherthan of innatecategorization. By
contrastjn thework on stopconsonantshe netsaretrained
on endpointstimuli from a VOT continuumandgeneraliza-
tion of the learningto intermediatestimuli is tested. In this
casethe syntheticlistenerplacesthe catggory boundarieof
thethree(bilabial, alveolar, velar) seriesn away which pre-
dictsthe psychophysicalesultsfrom reallisteners.

A veryrevealingfindingin thisregardis thattheBSB sim-
ulation catayorizesthe artificial (vectors)continuumandthe
VOT stimuli very differently, even though training is on
endpointsin both cases. Figure 3(b) shaws that the cat-
egory boundaryis preciselyat midrange,betweenstimuli
numbers7 and8. This is hardly surprising: It is difficult
to seewhat elsethe net might do to dichotomizethe data
otherthanbisectthe continuumatits midpoint. Onthe other
hand,Figure5(a)shovsthattheBSB netspositiontheir pho-
neticboundarieso asto segyregatethe VOT seriesby place
of articulationin the sameway humanandanimallisteners
do. This striking differencein network behaior canonly
be credibly explainedby the differentinput continua: It is
unlikely thatit could have arisenthroughessentiallytrivial
differencesn parameterssuchasthe differentnumbersof
inputsin thetwo caseq16 cf. 20). Thus,we infer thatthere
is somepropertyof the input continuain the simulationof
VOT perceptionwhich is not sharedby the much simpler
artificial/vectorscontinuum.Hence we do not expectto ob-

sene strongCP effectsin all case®f generalizatiortesting:
only when the stimulus continuum (appropriatelyencoded
for presentationo the net)hassomespecialproperties.That
is, the potentialfor cateyorizationmustbe somehav implicit
in the physicalstimuluscontinuumandits encodingschema.
Becausdhey areembodiedn software,connectionismod-
elscanbe systematicallymanipulatedo discovertheir oper
ationalprinciples. Thus,meansareavailableto discoverjust
whatthesespecialpropertiesmightbe. Damperetal. (forth-
coming)shaw thateachof thethree(bilabial, alveolar, velar)
netshasits strongestconnectionso differentareasof the
neurogramand thesedifferencegredictthe shift of bound-
arywith placeof articulation.We infer thatwhatis supposed
to be a ‘continuum’ is actually not. Thereare discontinu-
ities (systematicallydependentponplaceof articulation)in
the AbramsonandLisker stimuli themseles,andthis is the
sensén whichthepotentialfor cateyorizationexists. In other
words,whatis supposedo be a unidimensionaktontinuum
(only VOT andfeaturesperfectly correlatedwith it vary) is
actuallymultidimensional.

Of coursejn the caseof the VOT stimuli, theinputsto the
BSB nethave beensubjectedo sophisticateghre-processing
by the auditory model of Pontand Damper(1991). The
role this (simulated)auditory processingplays in the ob-
sened catgorization behaior is currently being investi-
gated.Earlyindications(Damper1998)arethattheauditory
pre-processings a vital to realisticsimulationof VOT per
ceptionin that“the front-endprocessois notessentiato cat-
egory formationbut playsanimportantpartin theboundary-
movementphenomenonpy emphasizing... partsof the
time-frequeny regionsof the speectsignal” (p.2196).

We are now in a positionto refine our notion of emer
gentfunctionality The conceptof emegencehasgrown in
popularityin cognitive scienceand neuralcomputingin re-
centyearsandis startingto influencemodelsof speechcat-
egorization(e.g. Guenterand Gjaja, 1996; Lacerda,1998).
The term doesnot easilyadmit of a precisedefinition (e.g.,
Holland, 1998, p.3), but Steels (1991) writes: “Emer
gentfunctionality meansthat a function is not achieved di-
rectly by a componentor a hierarchicalsystemof compo-
nents, but indirectly by the interaction of more primitive
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componentsamongthemseles and with the world [italics
added]’(p.451). This seemgo captureratherwell whatis
going on here: The primitive componentsare the units of
theneuralnet(s)which interactwith “the world” in theform
of external stimuli, with sensorytransductionand/orearly
perceptuaprocessingnediatingbetweenthem. The inter
action “with the world” is particularlyimportant. The po-
tentialfor cateyorizationmustexist implicitly in thesensory
continuum. Soin what senseis CP not specia? Fromthe
work describedn this paper it is apparenthat we do not
needspecializedorocessingapparatusasis positedin mo-
tor theory Rather providedthe sensorycontinuaare of the
right form, ary generalearningsystemoperatingon broadly
neuralprinciplesoughtto exhibit the essential®f CP

Finally, we note that the TRACE model apparentlyacts
like the BSB model, simply placingthe phoneticbhoundary
between/g/ and/k/ at midrange. This could either be be-
causehestylizedinputsto thenet(interpolatedvOT andF1
onsetfrequeng) are not good counterpart¢o the Abram-
son and Lisker stimuli or, more likely, becausethere has
beenno (simulated)auditory pre-processingf thesepat-
terns.Furtherwork is necessaryo distinguishbetweerthese
two possibilities.

Conclusionsand FutureWork

Neuralnetsprovide an underexploredyet revealingway
of studyingCP. We have shavn thatavarietyof neuralmod-
els is capableof replicatingclassicalCR with the point of
maximalambiguityof thesteedabelingfunctionandasharp
peakof the discriminationfunction coinciding at the cate-
gory boundary Given the ubiquitousway that CP arisesin
network performancewe believe thatthe effectis very basic
to haw suchnets(andotheradaptve systemsuchashuman
andanimalsubjects)earn. Focusingon the specialcaseof
speechCPwith initial stopconsonantsye have alsodemon-
stratedthe shift of phonemeboundarywith placeof articu-
lation for the voicing continuumusingtwo differentnets—
the historically importantbrain-state-in-a-boxodelof An-
dersoretal. (1977)anda morerecentmultilayer perceptron
(back-propagationnodel. The mostcorvincing demonstra-
tion of syntheticCPto dateis by the perceptrormodel. The
catgyorizationbehavior is an emegentpropertyof the sim-
ulations: Thereis no sensen which it is programmednto
the model,or resultsfrom parameteadjustmenin a curve-
fitting sense. The back-propagatiomet also replicatesthe
frequentlydocumenteaffect wherebyobseneddiscrimina-
tion performancexceedshatpredictedrom labelingonthe
assumptiorthat only discreteinformation aboutthe labels
is available (the so-calledHaskinsmodel). It doesso by
retaining continuousinformation after the stageof sensory
processingThatis, the categorizationoccursat the laterde-
cisionstage.

Early studiesof CP consideredhe effectin termsof low-
thresholdheorieswhich assume mappingof sensorystim-
uli to discretenternalstatesIn 1977,Macmillanetal. made
an importantadwanceby applyingto CP the more modern
methodsof signaldetectiontheory which assumea contin-

uousinternalrepresentationThey suggestedhat CP should
be characterizethy theequivalenceof identificationanddis-
crimination sensitvity, both measuredvith d’. Our back-
propagatiorsimulationsfail to satisfythis definitionin that
identificationd’ is statisticallydifferentfrom discrimination
d’, althoughthetwo arecorrelated.

The Macmillan et al. (1977) paperis now twenty years
old. So, despiteits pioneeringnature, it is obviously not
thelastword on CP. Indeed since1977,Macmillan hasre-
treatedsomeavhatfrom the positionof taking equivalenceof
discriminationandidentificationto bethedefiningcharacter
istic of CP (seeMacmillan, Goldbeg andBraida,1988). In
1987,hewrites: “It is clearthatfew if any dimensionshave
thisproperty”(p.78). Nonetheless'Relationsbetweertasks
can provide usefulinformation aboutthe mannerin which
stimuli are processedhowever suchprocessings named”.
In thepresentvork, we have shovn thattherelationbetween
identification and discriminationperformancefor a simple
neural-netsimulation of VOT perceptionclosely parallels
that seenfor real subjects. As the simulationis faithful in
otherrespectsoo, it can(andshould)betakenseriouslyasa
modelof CP. Becaus@f thesimplicity of themodel,andthe
way that category boundaryphenomenarisequite naturally
during learning,we concludethat CP is not a specialmode
of perception.Rather it is anemegentpropertyof learning
systemsin general,and their interactionwith the stimulus
continuunt! mediatedby sensorytransductiorand/orearly
perceptuaprocessing.

The assumptionaunderlying our models are similar to
thoseof Neargy (1997, Footnotel) who presupposessdo
we: “The segmentationof the input signals... beforethey
arepresentedo a perceptuaimodel”. In addition, because
of their inability to handletemporalsequence®f inputs,
the modelsare assumedo have perfectmemory(seePort,
1990, for criticisms of impropertreatmentof time in con-
nectionistmodels.) In the caseof VOT perceptionthe re-
duced(192-value)neuralspectrogranis availableasa (con-
venientlypresgmented)taticinput to theback-propagation
net. Apart from an implicit time as spacerepresentation,
thereis no explicit representatiorof relationaltime. Pre-
cisetime representatioseemaunnecessarfor the credible
modelingof VOT perception sincethe spike-countingpro-
cedure(which reducesthe neurogramto a 192-component
vectorfor presentatioo the MLP) effectively obscureshis.
The BSB modelwasunableto distinguishthe voicing con-
trastin the complete192-value patternsand was therefore
given20 selectednputvaluesonly, againasa staticpattern.

1 According to Harnad (1982): “experiential inputs [can]
vary continuouslyalong several sensorydimensions,ratherthan
falling neatlyinto certainprefabricatecbhysicalor perceptuatate-
gories... [They canbe]multidimensionahndpolysensory.. such
ascomplex geometridorms,acoustidimbresandsoundsequences,
comple daily eventsand sequencesf experiences—irfact, ary
experiencethatvariesalonganactualcontinuum(or a‘virtual’ con-
tinuum, in virtue of unresohable information compleity). And
thisis not yet to have mentionedpurely abstracitasessuchasthe
‘space’ from which ... the foregoing list of examples[were ex-
tracted]".
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Reallistenersobviously heara sequencef soundsuring
speechcommunicationand memoryeffectsare a very im-
portantcomponenbf perceptionHence apriority for future
work is the addition of recurrent(feedback,as opposedto
purelyfeedforward)connectionso themorerealisticpercep-
tronmodel,in themannemf Jordan(1986)or EIman(1990),
so as to implementan imperfect memory buffer. Future
studiesshould also addressthe synthetic cateyorization of
vowel continua,andthe preciserole of pre-processinfy the
(simulated)auditoryperiphery Much could alsobe learned
from studyingareal(ratherthansynthesized$top-consonant
continuumprovidedsuficientproductionscouldbegathered
from theambiguougegion aroundthe phonetichoundary

Finally, animportantquestionconcerngherole of theau-
ditory modelvis a vis the input stimuli. What would hap-
penif we wereto apply our analysedirectly to the input
patternswithout the (rathercomple) auditory modelinter
vening? It is difficult to do this becausehereis only a sin-
gle synthetictokenfor eachacousticstimulus. (This is un-
avoidable sincewe are no longer simulatingthe stochastic
proces®f mechanical-to-neuratansductiorby thecochlear
hair cells.) Hence,thereis an extreme paucity of dataon
which to train the neuralnetwork model(s). In an attempt
to answerthis questionindirectly, Damperet al. (forthcom-
ing(Damperet al., 2000)) replacedthe auditory front-end
with a short-timeFourier analysisand then useda support
vector machineto model labeling behavior. This kind of
learningmachinemakesbestuseof sparsdraining data. It
wasfoundthatcorrectmovementof theboundarywith place
of articulationwasabolishedjndicatingthat someaspecior
aspectof peripheralauditory function are essentiato cor-
rect simulationof cateyorizationbehaior. To confirm that
this was not an artifact of having only a singletraining to-
ken per class,perceptronsveretrainedon single, averaged
neurogramavhereuponappropriatecategorizationbehaior
wasmaintained Damper 1998),indicatingthatinformation
aboutthe statisticaldistribution of training datait is not es-
sentialto the simulation,andthatthe extremesparsityof the
training dataneednot be fatal. In future work, we intend
to confirm thesepreliminary findings in two ways. First,
we will usea databasef real speechsothat multiple train-
ing tokenswhosestatisticsreflectnaturalvariability in pro-
ductionwill be availablefor training. Secondwe will em-
ploy a variety of simplified front-endanalysego determine
thoseaspect®f theperipherabuditorytransformatiorwhich
are essentiato simulatingboundarymovementwith place
of articulation
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