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A lot of unlabeled data is plentiful and cheap, eg.

documents off the web

speech samples

images and video

But labeling can be expensive.

Unlabeled points Supervised learning Semisupervised and
active learning



Typical heuristics for active learning

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat
Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall
uncertainty,...)
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Biased sampling: the
labeled points are not
representative of the
underlying distribution!
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Sampling bias

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall
uncertainty,...)

Example:

45% 5% 5% 45%

Even with infinitely many labels, converges to a classifier with 5%
error instead of the best achievable, 2.5%. Not consistent!

Manifestation in practice, eg. Schutze et al 03.
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Case II: Efficient search through hypothesis space

Ideal case: each query cuts the version space in two.

+ −

H

Then perhaps we need just log |H| labels to get a perfect
hypothesis!

Challenges: (1) Do there always exist queries that will cut off a
good portion of the version space? (2) If so, how can these queries
be found? (3) What happens in the nonseparable case?
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Basic primitive:

! Find a clustering of the data

! Sample a few randomly-chosen points in each cluster

! Assign each cluster its majority label

! Now use this fully labeled data set to build a classifier
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Basic primitive:

! Find a clustering of the data

! Sample a few randomly-chosen points in each cluster

! Assign each cluster its majority label

! Now use this fully labeled data set to build a classifier

⇒



Efficient search through hypothesis space

Threshold functions on the real line:

H = {hw : w ∈ R}
hw(x) = 1(x ≥ w) w

− +

Supervised: for misclassification error ≤ ϵ, need ≈ 1/ϵ labeled
points.
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Efficient search through hypothesis space

Threshold functions on the real line:

H = {hw : w ∈ R}
hw(x) = 1(x ≥ w) w

− +

Supervised: for misclassification error ≤ ϵ, need ≈ 1/ϵ labeled
points.

Active learning: instead, start with 1/ϵ unlabeled points.

Binary search: need just log 1/ϵ labels, from which the rest can be
inferred. Exponential improvement in label complexity!

Challenges: Nonseparable data? Other hypothesis classes?



Some results of active learning theory

Separable data General (nonseparable) data
Query by committee

Aggressive (Freund, Seung, Shamir, Tishby, 97)
Splitting index (D, 05)
Generic active learner A2 algorithm
(Cohn, Atlas, Ladner, 91) (Balcan, Beygelzimer, L, 06)

Disagreement coefficient
Mellow (Hanneke, 07)

Reduction to supervised
(D, Hsu, Monteleoni, 2007)
Importance-weighted approach
(Beygelzimer, D, L, 2009)
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Separable data General (nonseparable) data
Query by committee

Aggressive (Freund, Seung, Shamir, Tishby, 97)
Splitting index (D, 05)
Generic active learner A2 algorithm
(Cohn, Atlas, Ladner, 91) (Balcan, Beygelzimer, L, 06)

Disagreement coefficient
Mellow (Hanneke, 07)

Reduction to supervised
(D, Hsu, Monteleoni, 2007)
Importance-weighted approach
(Beygelzimer, D, L, 2009)

Issues:

Computational tractability

Are labels being used as efficiently as possible?



A generic mellow learner [CAL ’91]

For separable data that is streaming in.

H1 = hypothesis class

Repeat for t = 1, 2, . . .
Receive unlabeled point xt

If there is any disagreement within Ht about xt ’s label:
query label yt and set Ht+1 = {h ∈ Ht : h(xt) = yt}

else
Ht+1 = Ht

Is a label needed?
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A generic mellow learner [CAL ’91]

For separable data that is streaming in.

H1 = hypothesis class

Repeat for t = 1, 2, . . .
Receive unlabeled point xt

If there is any disagreement within Ht about xt ’s label:
query label yt and set Ht+1 = {h ∈ Ht : h(xt) = yt}

else
Ht+1 = Ht

Is a label needed? Ht = current candidate
hypotheses

Region of uncertainty

Problems: (1) intractable to maintain Ht ; (2) nonseparable data.



Maintaining Ht

Explicitly maintaining Ht is intractable. Do it implicitly, by
reduction to supervised learning.

Explicit version

H1 = hypothesis class
For t = 1, 2, . . .:

Receive unlabeled point xt

If disagreement in Ht about xt ’s label:
query label yt of xt

Ht+1 = {h ∈ Ht : h(xt ) = yt}
else:

Ht+1 = Ht

Implicit version

S = {} (points seen so far)
For t = 1, 2, . . .:

Receive unlabeled point xt

If learn(S ∪ (xt , 1)) and learn(S ∪ (xt , 0))
both return an answer:

query label yt

else:
set yt to whichever label succeeded

S = S ∪ {(xt , yt)}



Maintaining Ht

Explicitly maintaining Ht is intractable. Do it implicitly, by
reduction to supervised learning.

Explicit version

H1 = hypothesis class
For t = 1, 2, . . .:

Receive unlabeled point xt

If disagreement in Ht about xt ’s label:
query label yt of xt

Ht+1 = {h ∈ Ht : h(xt ) = yt}
else:

Ht+1 = Ht

Implicit version

S = {} (points seen so far)
For t = 1, 2, . . .:

Receive unlabeled point xt

If learn(S ∪ (xt , 1)) and learn(S ∪ (xt , 0))
both return an answer:

query label yt

else:
set yt to whichever label succeeded

S = S ∪ {(xt , yt)}

This scheme is no worse than straight supervised learning. But can
one bound the number of labels needed?
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Label complexity [Hanneke]
The label complexity of CAL (mellow, separable) active learning can be
captured by the the VC dimension d of the hypothesis and by a parameter θ
called the disagreement coefficient.

! Regular supervised learning, separable case.

Suppose data are sampled iid from an underlying distribution. To get a
hypothesis whose misclassification rate (on the underlying distribution) is
≤ ϵ with probability ≥ 0.9, it suffices to have

d

ϵ

labeled examples.

! CAL active learner, separable case.

Label complexity is

θd log
1
ϵ

! There is a version of CAL for nonseparable data. (More to come!)

If best achievable error rate is ν, suffices to have

θ

„

d log2 1
ϵ

+
dν2

ϵ2

«

labels. Usual supervised requirement: d/ϵ2.



Disagreement coefficient [Hanneke]

Let P be the underlying probability distribution on input space X .
Induces (pseudo-)metric on hypotheses: d(h, h′) = P[h(X ) ̸= h′(X )].
Corresponding notion of ball B(h, r) = {h′ ∈ H : d(h, h′) < r}.

Disagreement region of any set of candidate hypotheses V ⊆ H:

DIS(V ) = {x : ∃h, h′ ∈ V such that h(x) ̸= h′(x)}.

Disagreement coefficient for target hypothesis h∗ ∈ H:

θ = sup
r

P[DIS(B(h∗, r))]
r

.

h*

h

d(h∗, h) = P[shaded region] Some elements of B(h∗, r) DIS(B(h∗, r))



Disagreement coefficient: separable case

Let P be the underlying probability distribution on input space X .
Let Hϵ be all hypotheses in H with error ≤ ϵ. Disagreement region:

DIS(Hϵ) = {x : ∃h, h′ ∈ Hϵ such that h(x) ̸= h′(x)}.

Then disagreement coefficient is

θ = sup
ϵ

P[DIS(Hϵ)]
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.



Disagreement coefficient: separable case

Let P be the underlying probability distribution on input space X .
Let Hϵ be all hypotheses in H with error ≤ ϵ. Disagreement region:

DIS(Hϵ) = {x : ∃h, h′ ∈ Hϵ such that h(x) ̸= h′(x)}.

Then disagreement coefficient is

θ = sup
ϵ

P[DIS(Hϵ)]

ϵ
.

Example: H = {thresholds in R}, any data distribution.

target

Therefore θ = 2.
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Disagreement coefficient: examples [H ’07, F ’09]

! Thresholds in R, any data distribution.

θ = 2.

Label complexity O(log 1/ϵ).

! Linear separators through the origin in R
d , uniform data distribution.

θ ≤
√

d .

Label complexity O(d3/2 log 1/ϵ).

! Linear separators in R
d , smooth data density bounded away from zero.

θ ≤ c(h∗)d

where c(h∗) is a constant depending on the target h∗.

Label complexity O(c(h∗)d2 log 1/ϵ).


