
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

Parallel Architecture for Face Recognition using MPI

Dalia Shouman Ibrahim
Computer Systems Department

Computer and Information Sciences
Ain Shams University

Egypt

Salma Hamdy
Computer Science Department

Computer and Information Sciences
Ain shams University

Egypt

Abstract—The face recognition applications are widely used in
different fields like security and computer vision. The recognition
process should be done in real time to take fast decisions. Princi-
ple Component Analysis (PCA) considered as feature extraction
technique and is widely used in facial recognition applications
by projecting images in new face space. PCA can reduce the
dimensionality of the image. However, PCA consumes a lot of
processing time due to its high intensive computation nature.
Hence, this paper proposes two different parallel architectures
to accelerate training and testing phases of PCA algorithm by
exploiting the benefits of distributed memory architecture. The
experimental results show that the proposed architectures achieve
linear speed-up and system scalability on different data sizes from
the Facial Recognition Technology (FERET) database.
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I. INTRODUCTION

Over the last decade, face recognition has become one of
the most important issues in computer vision and machine
learning. Face recognition involves applications like airport se-
curity [1], surveillance systems, automated student attendance,
album organization, computer entertainment, virtual reality,
online banking and video indexing.

One of the goals of surveillance systems for example, is
to identify a particular person among large crowds with no
physical interaction. The matching results do not require an
expert to be interpreted, as the target person is compared
against images from a database. Such automated process can
be used for finding known criminals and terrorists if their
images are stored in the database. One of the basic algorithms
to solve face recognition problems is the Principle Component
Analysis (PCA)Fig.1.

Fig. 1. PCA Recognition System

PCA is used in many fields and have a lot of applications
in machine learning and data mining. Any application that has
data sets of numerical dimensions can apply the PCA algorithm
beacuse PCA is basically used to reduce the dimensions to the
lower number of independent dimensions by understanding the
correlations from multi-dimensions [2]. In this paper, address
the problem face recognition based on PCA, and suggest two
different approaches for speeding-up the process.

The rest of this paper is organized as follows. We introduce
categories of face recognition algorithms and present the
related work in section II. Section III elaborates on the use
of PCA for face recognition. In section IV two approaches are
proposed for speeding-up the PCA with distributed databases.
Experimental results are presented in Section V. Finally,
section VI concludes the paper and discuss the future work.

II. RELATED WORK

Face recognition algorithms can be categorized according
to how the features are extracted from the face image.

• In appearance based methods, features are mainly from
pixel intensity values [3] [4]. These methods can be
organized into linear or nonlinear analysis methods [5].
In linear methods, matching depends on the calculated
distance between the projected testing face image and
the projected training faces in a face space. The smaller
the distance between the projected vectors, the more
similar the two images are. Example for linear methods
include PCA, Independent Component Analysis (ICA)
and Linear Discriminant Analysis (LDA). Nonlinear anal-
ysis methods try to compensate for the ill performance
of the linear methods in some cases when the image
has variations in illumination, viewpoint and/or facial
expression. Therefore, the relations between pixels are
not linear. Examples of such methods include Kernel
PCA (KPCA), Kernel ICA (KICA) and Kernel Fisher
Discriminant Analysis (KFLD) [6].

• On the other hand, geometrical feature matching [5]. The
geometrical feature approach construct feature vectors
based on the geometrical representation of the face. The
feature vector contains the face outline, eyes, mouth and
nose positions.

Interested readers can refer to [7] [8] for a more compre-
hensive categorization of face recognition

One common linear algorithm is the PCA, which is consid-
ered a feature extraction technique and a dimensional reduction
method. PCA is widely used for face detection and recognition
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beacuse of achieving high accuracy while requiring a small
number of features [9].

The main problem of PCA is consuming a huge amount
of time because of its computationally intensive nature [10].
A major step of the algorithm is calculating the covariance
matrix of the dataset to be able to get the eigenvectors and
eigenvalues. This step intensively increases the execution time
of the algorithm when the training data-base contains a lot of
pictures.

Many researches focus on how to accelerate this step to
improve the overall recognition performance. One approach
is calculating the eigenvectors and eigenvalues without cal-
culating the covariance matrix. Methods like the expectation
maximization algorithm (EM) to reduce the determinant matrix
manipulation [9].

There are some tries to accelerate PCA. One approach
in [11] suggest a use of distributed computing to improve
recognition on huge databases, specifically, TH-FACE [12].
Their proposed algorithm uses special distributed parallel
architecture with mmx technology to speed-up the matching
process in PCA algorithm. Their PC cluster uses a Parallel
Virtual Machine (PVM) that consists of one host and five
slaves. Consequently, the database is divided into five parts.
Furthermore , they divide the face image into five sub parts to
improve the recognition rate. This method is called multimodal
face recognition method (MMP-PCA). However, they enforce
that the input images be labeled with information about gender
and age. The input image are normalized to the standard image
size (360×480 pixel) to fit the facial key points such as eyes
and nose.

In [2], the proposed approach compute PCA in one pass
on a large data set based on summarization matrices. Fur-
thermore, that algorithm is applied on database management
systems(DBMS). They use parallel data set summarization via
user-defined aggregations and solve Singular Value Decompo-
sition (SVD) by using Math Kernel Library (MKL) parallel
variant of the Linear Algebra PACKage (LAPACK) library.

Authors in [13], proposed a distributed parallel system
consisting of one host, four slaves and some clients. The
Parallel Virtual Machine (PVM) is established by the host. In
addition, the communication is done over TCP socket and the
whole system is communicated and linked over 100M network
switch, and achieves an acceleration ratio of 4.133 if the whole
system works together.

III. PRINCIPLE COMPONENT ANALYSIS IN FACE
RECOGNITION

The main goal of PCA algorithm is to improve the com-
putational complexity by reducing the dimensionality of the
presented data and keeping the significant variations among
data points [14].

Assuming a set of data points represented in (x − y)
coordinate system. Training and recognition require finiding
a relation between these points that enables classification or
clustering based on a distance metric like euclidean distance,
cosine angle distance, mean square error (MSE) distance,
Manhattan distance or correlation distance [15]. Finding such a
relation is not easily done and may be erroneous. To centralize

the points around the origin, their mean is calculated and
subtracted from all points to get them closer. Since the main
goal is to reduce the dimensionality another coordinate system
is used to represent the centralized points in one instead of two
dimensions.

The new coordinate system consists of one long vector
split between points. The data is then re-distributed around this
new vector such that each point represented with two values
is now transformed and projected to a proper location in the
new reduced system.

Covariance is one method to model the relation between
data points. In this case, the covariance between each data
point and every other point is calculated in a matrix C. Con-
sequently, the eigenvector and eigenvalue of C are calculated
and used to re-distribute the points into one dimensional space,
that is the points should be re-drawn around this eignvector.
Besides, the eigenvalues represent the vectors lengths. There-
fore the longest vector is chosen to represent the data. This is
done by simply applying dot product between each point and
the new vector. This achieves the main goal of reducing the
space from two to one dimension only.

The above procedure is applicable also to three dimensional
systems. These steps can be applied on images. If the image
has M × N pixels, and there are P images in the training
database, then, each image is considered the image as a point
in M×N dimensional spaces, with a total number of P points
(images). A relation should be established between every
pixel in the image and every image in the training database.
However, this consumes a lot of time working in this original
space.

We can summarize the steps of applying PCA to an image
dataset as follows:

- In the training phase

Step 1 : For the purpose of computing the mean,
convert the image to be a column in a 2D
matrix called A. This matrix represents all
images. Therefore, the matrix size is ((M×
N)×P).

X = [ img1 img2 ...... imgn ]((MxN)xP)
(1)

Step 2 : Calculating the average of all pixels in
all images (each pixel with its corresponding
pixels) and subtracting the average from X to
remove any lighting. consequently, all pixels
are returned back to the origin of the system.

avg =
1
P

P

∑
i=1

imgi (2)

A = X−avg (3)

Step 3 : Get the eigenvalues and eigenvectors by
calculating the covariance matrix. The num-
ber of eigenvalues and eigenvector is equal
to P-1. The covariance matrix consumes a lot
of time, therefore, if the number of images in
the training database is less than the number
of data points in the image, it is better to
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calculate the linear covariance L, and then
calculate the eigenvalues and vectors based
on L [16].

C = AAT (4)

L = AT A (5)

[V,D] = eig(L) (6)

Where:
V is the matrix of eigenvectors.
D is the diagonal matrix for eigenvalues.

Step 4 : Sort the eignvectors based on their eigen-
values. The longest vectors which have the
largest eigenvalues can split the points in the
proper way.

Step 5 : Project the training images to this new
space by applying dot product between A
and V matrices.

Step 6 : Store the resulting face space.

- In recognition phase

Step 1 : Convert image into a ((M×N)×1) vector.
Step 2 : Subtract the mean calculated in the training

phase from this image vector.
Step 3 : Project the testing image in the face space.
Step 4 : Calculate the Euclidean distance between

the projected test image and all training
images. Images having the distance less than
or equal to a predetermined threshold is
matched to, the testing image belong to that
image.

IV. PROPOSED APPROACH

We exploit distributed parallel programming models to
improve the execution of PCA for face recognition. This
enables the distribution of either data or tasks over a network
of connected computers. The Message Passing Interface (MPI)
[17] enables us to run different MPI tasks concurrently on dif-
ferent machines. In addition, MPI handles the communication
by sending message between nodes. MPICH2 [18] implemen-
tation is a high-performance and portable implementation of
the MPI standard. MPICH2 is provided by Argonne National
Laboratory [19].

We use MPICH2 with one master and four slaves nodes to
implement a distributed database environment to handle two
scenarios.

• Having one test image and a very large database, search-
ing for a matching face could take too long if done on
a single processing node. Moreover, if the database is
updated frequently, due to system feedbacks or regular
new entries, the training steps will be repeated as frequent
which will also consume much time on one processor.
The proposed approach is handled this by splitting the
training database and distributing a subset to each node.
Every single node, including the master node, uses PCA
algorithm to train on its allocated subset and stores the
resulting face space locally. During testing, copies of the
target image is sent to every node for recognition and

each local match is sent back to the master node. The
Master concatenates the results with its own and sorts the
result and appears the final match based on the smallest
Euclidean distance.
• When the training database is somehow fixed, or rarely

updated and the training steps are done once or infre-
quently. Moreover, if the system is receiving a streamed
video, there will be a large number of frames, and in
each frame there could be several faces to identify, like
in airport surveillance systems. Hence, there are a lot of
testing images fed into the recognition system.
Every processing node has a complete copy of the
database. This way, each node performs the training phase
once and stores the results in its local memory. When
the master receives a stream of testing images, they
are distributed to the slaves. Each slave runs the PCA
algorithm for recognition and retrieves the closest match
from the face space which will be the final result for that
input image. Finally, the master node collects and displays
the results.

V. EXPERIMENTAL RESULTS

The two proposed approaches are evaluated by applying
them to different database sizes and measuring the speed-up.
The main metric for evaluation is the execution time in each
approach separately.

We deploy the proposed architectures on a cluster hosted on
the Faculty of Computer and Information Sciences, Ain Shams
University, Egypt. The cluster has two blade chassis; each
has six blade servers. Each blade server has two Quad-Core
Intel R©Xeon R©CPU E5520 @ 2.27GHz with 24GB RAM. All
twelve servers are connected together on an infinite band
network. Moreover, VMware ESXi is installed directly on
each server. Consequently, the Vsphere client is used to post
jobs on these servers. Five servers are used in the presented
experiments and the Facial Recognition Technology (FERET)
database is used in training and testing [20] [21]. All images
are colored, of the same size; 512 x 768 pixels, and stored
as 32-bit floating point number in PPM form. We use around
1.5 GB worth of images in the experiments. The 1000 images
are used in the first approach but only 500 for training in the
second approach because loading time consumes a lot of time
and our focus is recognition time.

We adopt a central database approach to enable easy
modification in one location. The training and testing images
reside on the server, and each slave loads these images via
an infinite band network. Thus, the communication overhead
does not have a high impact on the performance of the overall
system because of the network speed. In the experiments each
slave can access the images and stores the training results as
an XML file in its local storage. These XML files are used in
the recognition steps.

A. Distribute Training Database and Duplicate Test Image

The experiments are carried out using one master node and
four slaves with five different database sizes. In the training
phase, the master divides the training database equally over the
slaves and itself. In addition, it creates text files containing the
indices of the images associated with each slave, depending
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Fig. 2. Sequence diagram to recognize 1 test image vs 1000 images in
training DB

Fig. 3. Sequence diagram to recognize stream of testing images in training
DB

Fig. 4. The execution time for training different sizes of face DB

on the training set size, and the number of slaves. Each slave
accesses its assigned text file and loads the associated images
into its local storage. Training is done locally for each machine
and all (P-1) eigenvectors are considered ignoring the zero
eigenvector. The training results are stored as XML files on
local storage. A sequence diagram shows this architecture in
Fig.2 For each experiment, the training database is increased
from 200, 400, 600, 800 to 1000 images. As a result, the XML
file size of the training results is 1364024 , 2728934, 4095359,
5463706, and 6828681 KB, respectively. Consequently, storing
and loading time of these XML files consume a lot of time. In
addition, they need workaround to deal with that time which
is out of scope now. The training results are shown in the
Table I. The training time includes the time of calculating PCA
eigenfaces and projecting all training faces into the eigenspace.
In case of 200 training images, the sequential time is 303.766
seconds, and decreases significantly when the training database
is distributed over 2, 3, 4 and 5 nodes respectively, as shown
in Fig.4.

The maximum speed-up scored is 25X when the training
database is distributed on five servers, achieving superlinear
speed-up. The supperlinear speed-up is achieved because the
large size of the XML does not fit in cache for sequential
processing.

In the recognition phase, the master node sends copies
of the testing image to the four slaves. Each slave tries to
recognize the testing image against its local training set and
sends the result back to the master. The master node selects
the image having the least Euclidian distance among these
results as shown in Fig. 2. The recognition time increases
from 0.609 to 3.172 seconds when the training database size is
increased from 200 to 1000 images in the sequential algorithm
as shown in Table II. However, after distributing the databases
on different numbers of servers, the recognition time decrease
and the speed-up increases linearly to 5X when using five
servers as shown in Fig. 5. The experimental results show that
proposed architecture achieves accelerating ratio 5.208 instead
of 4.133 in [13].
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Table I. THE EXECUTION TIME FOR TRAINING OF DIFFERENT
TRAINING DATASET SIZE AND TESTED BY 1 IMAGE

DB Imgs 1 Server 2 Servers 3 Servers 4 Servers 5 Servers
200 303.766 75.703 33.968 18.891 12.14
400 1216.172 303.328 136.063 75.75 48.719
600 2749.71 683.672 303.718 170.75 109.203
800 4887.65 1216.313 541.751 303.39 194.047

1000 7713.812 1901.389 847.235 474.312 303.5

Table II. THE EXECUTION TIME FOR RECOGNITION STEP OF
DIFFERENT TRAINING DATASET SIZE AND TESTED BY 1 IMAGE

DB Imgs 1 Server 2 Servers 3 Servers 4 Servers 5 Servers
200 0.609 0.313 0.204 0.156 0.125
400 1.203 0.61 0.407 0.297 0.234
600 1.828 0.921 0.594 0.453 0.359
800 2.734 1.203 0.812 0.594 0.485
1000 3.172 1.531 1.015 0.766 0.609

B. Duplicate Training Database and Distributed test Image

The training database is fixed and the training phase is
done once at the master node. Therefore, the training time
is ignored. In addition, copies of the resulting XML file are
distributed to the four slaves as shown in Fig.3.

In the recognition phase, a number of test images are
captured from video camera attached to the master node node
which distributes them to the slaves in a manner similar to the
one used in the previous section. As mentioned earlier, there
is no communication overhead in the proposed architecture.

The recognition time decreases significantly when the test
images are distributed over an increasing number of slaves.
As shown in the Table III, in case of 500 test images when
searching in training database have 500 images , the sequen-
tially required 757.172 seconds and recognition time dropped
to 151.313 seconds on five machines. The presented distributed
approach is 5X faster than the sequential algorithm and the
linear speed-up is reached as shown in Fig. 6.

Fig. 5. The execution time for recognition one test image vs different sizes
of face DB

Table III. THE EXECUTION TIME FOR RECOGNITION STEP OF 500
IMAGES IN TRAINING DATABASE AND DIFFERENT NUMBER OF TESTED

IMAGES

No.Testing Imgs 1 Server 2 Servers 3 Servers 4 Servers 5 Servers
100 151.875 75.954 51.578 37.969 30.282
200 302.547 151.891 101.36 75.64 60.562
300 455.172 227 151.297 113.469 90.781
400 605.297 302.578 202.766 151.282 121.032
500 757.172 378.203 252.765 189.125 151.313

Fig. 6. The execution time For recognition step of 500 image in training
database and different number of tested images

VI. CONCLUSION AND FUTURE WORK

In this paper, two MPI-based approaches are proposed
to handle different scenarios in face recognition systems.
Distributing the training set and duplicating the test image is
most likely the best solution when the stored training images
are updated regularly and there is only input test at a time.
On the other hand, having a large number of test faces or
processing a video stream for recognition, is best handled by
centralizing the training set and distributing the test images.
The proposed systems improve execution time up to 25X in
training and 5X in recognition phase, reaching superlinear and
linear speed-up. Experiments considered all P-1 eigenvectors
in the PCA algorithm. However, taking a fewer number of
eigenvectors is expected to improve the expected execution
time even further.

Future work includes studying the nonlinear methods for
feature extraction and enhancing their performance. We will
try to design robust algorithms for face recognition with
occlusions in unconstrained environment. In addition, using the
benefits of shared memory architecture and parallel distributed
memory architecture to get better performance.
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