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CHAPTER II

DIFFRACTION BY A DISK

The problem of diffraction by a disk has a rigorous solution
[24-26]; however, it is not suitable for numerical calculations in
the quasi-optical region when the dimensions of the disk are large
in comparison with the wavelength. The physical optics approach
used in such cases sometimes gives erroneous results. In particular,

the fringing field calculated in this approach does not satisfy the
reciprocity principle.

In this Chapter a refinement of the physical optics approach is
carried o@t. First. the diffraction of a plane electromagnetic wave
by a disk with normal incidence (§ 7-9) is investigated, «nd then
(§ 10-12) diffraction by a disk with oblique incidence of a plane

electromagnetic wave is}investigated.

Normal Irradiation

- 5 7. Thé Physical Optics Approach

Let an ideally conducting, infinitely thin disk of radius a
(Figure 17) be irradiated by plane wave
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Figure 17. Diffraction by a
disk of a plane wave propagated
along the z axis.
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B e H, =0, (7.01)

The uniform part of tﬁe current
exclited on the disk by wave (7.01)
is determined by Equation (3.01)
and has the components
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Let us find the field created by

this current.

Since the diffraction field in the far zone (R »>> kaz) is of

interest to us, the vector potential

Alx, y, 2)=-) fd ]"1( 9
X, Y, Z)=——\pdp P, -
‘ co 0 .

may be simplified by using the relationship

r=y K 4p*—2pRcosQ =R —pcosQ,

where Q@ is the angle between p and R, and

As a result, we obtain the simpler equation

oiRR

1
A(x,y,z)w_j? R

Continuing by using the equations

(7.03)
(7.04)
cos Q1 =sin ¥ cos(p — ). (7.05)
2
2o ) i(o, 9) e 2 ay, (7.06)
0 ‘ -
(7.07)

H=rot A, rot H= —ikE,

it is easy to show that in the spherical coordinate system the

fringing field components with R >> ka

equal g



EbmH’z:ikA’,

Ey=—H,=ik4,, (7.08)
E,=H,=0,
where
A,:--A,cos?—-Axsinq»',‘ , .
A= . . (7.09)
s =(Azcosp}- A, sing)cosd—A,sing,
Substituting here the values
ikR
A =-—<Hyp g J k 9 ~—
= Fsia (Rasin, ) } (7.10)
Ax:-—:A;:;:O . i

which result from Equations (7.02) and (7.06), let us find the field
radiated by the uniform part of the current in the form

ikR
Esxﬂ—,w la”ox ”cosﬁj(kasmé})w !
(7.11)

ikR
: . Cos . e
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The function Jl(ka sin 8) is a first order Bessel function. By

using its asymptotic expression

J,(kasinﬂ)z!/ 2—-—-cos (kasin8~—§§—),~ (7.12)

nka sin ¥

which 1s applicable when ka sin 8 >> 1, one is able to rewrite Equa-
tions (7.11) in the following form:

- o a sing w
Ey=H =—iHo V 2k sin 0 cosasino
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R ]

(7.13)
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The resulting equations show that in the region R > ka?, kasin®d > 1
the fringing field may be investigated as the sum of the spherical
waves from two "luminous" points on the rim of the disk, the polar
angles of which respectively equal ¢ = ¢ and ¢y = 7 + 4. it is not
difficult to see that thesewaves satisfy the Fermi principle.
Actually, of all the points on the disk's surface, the point p = a,
¥ = ¢ 1s the closest to the observation point (R % ¢) | and the point
p =a, p =7 + ¢ 1s the furthest from it.

However, Equations (7.13) describe the radiation not only from
the two "luminous" points, but they determine the fileld radiated by
the entire "luminous" region which is adjacent to the line connecting

the points p = a, ¢ = ¢ and p. = a, v = 1 + ¢.

Let us show that the luminous region actually makes the main
contribution to the fringing field. For this purpose, let us cal-
culate the fileld radiated by the currents which flow inside the
sector encompassing the line ¢ = ¢ (Figure 18). Let us take the
angular dimensions of the sector in such a way that its arc, which
equals 2a@0, would’occupy the first Fresnel zone. When this is done,
the angle @O will satisfy the equation

§ a(l-cos¢.)sin0=z4-}-. (7.14)
L4 d In the case being investiga-
. \ ted by us, when the condition ka
3 3 sin 0»1 is fulfilled, we have
from Equation (7.14)

&

A
cosib,zln—mzzl—-*i—, (7.157

hence

Figure 18. Calculation of the
field radiated by the "luminous™”

region of the disk. sgz.}/zzggg‘ (7.16)
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The vector potential of the currents flowing in the indicated

sector 1is determined by the equation

' ) ?, a
A, = e _.l... H"__E;«;.f S““ Seu—ikpsms cos 'b? dp t)
v : ’
m ’ —a, 0 ( 7 . 17 )

A‘mAg”O' ’

Taking into account the condition ka sin 8»1, one may show that the
field created by the currents of this sector will equal

E°SH?~H“VW~ksm8 cos 8 X
w Sing 3‘_‘5 e-~tkas§n&+¢;-‘- )
s ¢ R : Vkasmv ’ F
- (7.18)
Ho ~ Hos }/ FEsm X
cos » e‘m —ikasin 841 - of — 1
Xsmo R ° (Vkasmi}) J

The amplitude of the expressions which have been found is approximate-
ly\fE' times larger than the amplitude of the first terms in Equation
(7.13). Moreover, expressions (7.18) and the corresponding terms

in Equation (7.13) differ slightly in their phases: the first have

= [
the factor ¢% , and the latter — the factor —e*! . The result obtained
is similar to the well-known thesis in optics that the effect of a
wave 1is equal to the effect of half of the first Fresnel zone (see,

for example [27], p. 132).

In the vicinity of the directions 0=0 and ®=m, when the
azimuthal components lose their meaning, for the purpose of studying
the fringing field it 1is more convenient to use the Cartesian

components
E;=(Eycosd-}-E sind)cos ¢ — £ sing, -
E,=(E,cosd+ Esind)sinp -+ E,cos. (7.19)
Turning to Equations (7.11), we find that when 8=0and #==x=
e * k’ 1114
E.=0, E,= M,Hox._ﬁ,.fﬁ_., (7.20)
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Consequently, in the physical optics approach the field scattered
in the directions #==0and #=r preserves the polarization of the

incident wave. ) N

§ 8. The Field From the Uniform
Part of the Current

Let us proceed to calculation of the field created by the non-
uniform part of the current with normal irradiation of the disk.
Since the latter is concentrated mainly in the vicinity of the dilsk's
edge (p = a), the vector potential corresponding to it will equal,

in accordance with Equation (7.06),

a x -
e - b=
A=t (@1 petrenterimag, (8.01)
o 0 )

The inner integral is calculated with ka sin®#>1 based on the
stationary phase method (see, for example [21], p. 256), and Equation
(8.01) 1s transformed to the form

PN .
% elkR i ry

-
A g =5V oy T X

a - . a (8.02)

X [ 6{ o, g e dp —i j I ha)e™ ”"’dp} :

which allows one to interpret the fringing field as the field from
a luminous line on the disk. This line is a diameter, the polar

angle ¢y of the points on which equals

=% and ¢§,==}9. (8.03)

Assuming the dlameter of the disk is sufficiently large in com-
parison with the wavelength (ka >> 1), one may approximately assume
that the nonuniform part of the current near the disk's edge will be
the same as on the corresponding half-plane (Figure 19). On the basis
of § 4, the field from the nonuniform part of the current flowing
on the half-plane —®<y,<a may be representedin the form



=
i kk+r)

— — i1 8 T —lkasin®
E, )=k, (1)=Eo, [ (1 e e :
H, (1)=—ikA, (1)cos 8 =
1 (RR+T
1 e —~ikasin®
H@Xg g (1) VQ‘%;R e oy

and similarly the field from the current flowing on
—a<y, <% nay be represented in the form

(8.0L)

the half-plane

1(are)

E (2)-zkA (2)‘“5%. ft(g) y'mk elkasin®

o ' | t1[rr+l (8.05)
1
e o f — ot 8 ikasin®
H,‘(Q),,. tkA”'(.?)cos& {{,é g (2)Wy P e
Here
m+§. q

A(I) -—g——V ‘ ‘)fjl(n)e—lkv,sln!'d

(8.06)

kR+-
A(Q)N"CLB/T Jj;()elkv,slnbdﬂ'

and the functions fl and gl

(0<3<~2§-) by the equations

B 8
. . I cos—5- +sin~2~'
f (Uwf(‘)'*"m f(ly=— L) .
COS =5~ u i 8
1 — 1 2° — nT‘
f (2)....f(2)--m' f(2)= Y : ‘
‘ cos L sla —~ o ]
L cos 7 2
gt(l)vwg(l)‘*_sinﬂ * g(l)"‘““" sin ¥ ’
. ]
f oy cos cor—z-«f-sln-}-
g (z)wg(2)*'m, g(2)=:.- L) . j

From relationships (8.04) -~ (8.06), it follows that

are determined for the right half-space

(8.07)

(8.08)
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Figure 19. Diffraction by a disk. —my'
The half-plane L lies in the —__"__ g . 1(])e ~Hhasin®
plane of the disk. The edge of T Znkcosd 0n '8 T (8.10)
the half-plane 1s tangent to the s ke sin ¢ o
circumference of the disk at the ffmfﬂe T dy=
point y, = a, x; = 0 (a 1s the ~m :

ie thasin &
radius of the disk). =5kcosd Hor, 8 (2 -

In accordance with the assumption of equal currents on the disk and
on the half-plane, one may consider the following equalities to be
valid:

a a
Jj; (p’ q)‘) e-—ckps!n de — J‘ jl (1‘) e-—-—lkr,» sfn’dm !
-0l

a a (8.11)
ag P e dp= [ J(me"" Py ]

Therefore, the field from the nonuniform part of the current flowing
on the disk will equal

b In
) ;agw { (ka sin 3-—;—)
E‘MWHam37‘2:.'aa'sino[f'(2)e T
3 |
i { ka sini B
P CELL o)]f_f_
‘ f*(1)e 7 .
int t(kastn&-—%}) (8.:[2)
E,=H — __" 109 ' -
8 * T Yiizasiad LS (2)e
»I(kas!n$~3~f) 7Y 4
—g L
g'me b | %

where in view of {(7.01)

E, = —Hycos9, Hy==—iixsing (8.13)
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For the directiond=—=0, we have according to Equation (8.01)
A««.:L.Pﬁf.j‘dq)fj*(g ) dp, ,/ (8.14)

but 1n accordance with equalities (8.09) - (8.11)

[ 1,000 ) do= 5 Hoz-cos,
0 (8.15)
[ 7.0, o= Horsiny.

0

Consequently,
. SRR
Axrz%-e—r[ cos@*d’{»}i' (b $)dp+

2e 0

+J‘Siﬂ ‘Pd‘? J.i;‘ (p, $) dp} =0,
0

i ‘ (8.16)

2=
A= [ 5 cos f I, 4*)6'9—}-

‘ *Jsm pdy f}' lo, )dP]

1 J
that 1s, in the direction of the main fringe (¥=0) the field from the
nonuniform part of the current equals zero.

1 and J2 for the field from the

nonuniform part of the current, one may write the equations

By using the Bessel functions J

ia E’sc

Ey=—H,= “f'(z)”—i‘(l)]l(kasms)-{-
+‘U'(2)+i’(1)ll (kf:zsun‘))}e
Ey=H,="3" (i @) g’ (1)11,(kasina)+
+ilg' (@) +g' (), (ka siua)}f_:..‘;'. , ]

(8.17)

which with ka sin 3> 1 change to Expressions (8.12), which were already
found. In the direction®=0, these equations give a field which
equals, 1n accordance with (8.16), zero, and with intermediate values



they are interpolated. Since the transition from Equations (8.12)
to Equatilons (8.17) 1s no* completely unique, in the angular interval
0f<9f5%-Equations (8.177 may give a certain error. This error is
not very significant, since in this interval the field from the uni-

form part of the current 1s large.

§ 9. The Total Field Being Scattered by a
Disk with Normal Irradiation

Turning to Equations (8.07), (8.08) and (8.17), let us represent
the field from the nonuniform part of the currenﬁ in the following

form:
cos 9

:;—-Haxiaﬁoxsi [y J(kasnnﬁ)m-a-
—[2fe (17@ —F ()], (kasin8) 4

ikR

+ilf (2) +f(1)1f (ka sin§)} cos o S,

ekR
8:*osi}.l,‘kasmﬂ)«-—«.—» (9.01)

¥

E'«—"“‘—-;H,-—-—-laﬂox

sin

—1afe (g @) — g ()], (kasin8)+

+ilg@+g W) (asind)sinp - |

Here the first terms, as is readily apparent, represent the field
from the uniform part of the current taken with the opposite sign.
As a result, the total field scattered by the disk (that is, the
sum of the fields radiated by the uniformand nonuniform parts of the
current) will be expressed only in terms of the functions f and g
which determine in the rigerous solution the cylindrical wave from

the half-plane's edge

E,=—Hy=—"27" cos g {[f (2) — -
— ()]}, (kasin8) i 2+
(1Y, (kasin®)} -,
fgmﬁ,f-*iag“ sing {[g(2)—
— g/, (kasind) +ilg @)+
+g (], (kasin M} -

(9.02)




Substituting here the explicit expressions for the functions
f and g, we arrive at the final expressions for the fringing fileld

— — iaﬂ‘x .’. (kil 3!!‘1 6)

*

i )
sin—-
W2

" J,(ka sinb) T e*R
— il n ) R C0s 9P,

cos "‘"f‘"

o

| " iaH. [ 1 (tasind (9.03)
EG::Hvz:M 2 [ 3 )+

sln—i—

. Jy(kasind) To*R .
+l!,(ason )JQR sin p.

cos 5"

]

These equations are valid in the right half~spwue(0<&<&%7 . In the

left half-space (%<3<“) , the fringing field is easily found by
assuming that its electric field is an even function, and its magnetic
field an odd function of the z coordinate:

E,(2)=E,(— 2) }

H_ (z2)=—H_(—2). (9.04)
Consequently, in the region z < 0 (that is, when "%<3<*)
laH e [ Ji(kasind
CO!T
kR
___il,(ka:;ina) ,S—R—-cos?.
sin 5~
(9.05)

1 2 [ '

cos 5

. Jy(kasind) ] o'*R . ,
—+ i ’(azn) OR sing.
sin 5 . J

Assuming that in Equations (9.03) and (9.05)8=0 and 8=a=, respectively,

we obtain
ika® R
Eymm-—i'—'ﬁgz"k""a £S““"O' (9*06}

which 1s equivalent to the physical optics approach [see Equation
(7.20) 1.



Expressions (9.03) and (9.05) agree with the result cbtained by
Braunbek [29] for the scalar fringing field in the far zone. It is
also interesting to compare these expressions with the precise numeri-
cal results obtained by Belkina [34] by the separation of variables
method in the spheroidal coordinate system. It turns out that even
with ka = 5 a satisfactory agreement is observed between our approxi-
mation method and the rigorous theory. In Figures 20 and 21, graphs
of the functions V(@) and V™ (8), are presented which allow one to
calculate the fringing field on the basis of the equations

ikat

WikR

E,=— Hem—i——wﬁ.y-\"",’ ®) %—-—cos ?, )

: ; . i#R (9.07)
Eoz'::H?zigf.,-l"')(ﬁ)%sin?. f

The continuous curve corresponds to the rigorous theory [34]. The
dash-dot curve corresponds to the field from the uniform part of the
current, and the dashed curve corresponds to the field calculated
according to Equation (9.03) and (9.05).

Oblique Irradiation

§ 10. The Physical Optics Approach

Let us investigate the general case when the plane wave

E= E. elk (y7sin' g4z cos’p) ( 10.01 )

falls on the disk at an arbitrary angle to its axis. Let us take
the spherical coordinate system in such a way that the normal to the
incident wave front, n, would lie in the half-plane ?==€; and form
an angle vy (0<?p<%}) with the z axis (Figure 22). Adhering to the
investigation procedure used in the previous sections, let us first -
calculate the fringing field in the physical optics approach.

The uniform part of the current excited on the disk by wave
(10.01) is determined by Equation (3.01) and has the components

e 5 Laitysing 0 £ iky sin -0
jz"""‘gx H§yg ?}gm”"&g@zg v ¥1 }S%G; ilGaGL?)
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Figure 20. The function V®®m for a disk
with a normal incidence of the wave. The
various curves correspond to different
approximations.

The field radiated by it is found, as was done in § 7, by integrating
(with the condition R »>»> kag). In the case of E-polarization of the
incident wave (E,lyoz), this field equals

TLoh affR

YAt "R (10,085
E = H =——igF L. 1, (ka f’l‘-}-pi) oltR A :
v § = 0x°COSYSING W ——
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Figure 21. The function V®® for a disk
with normal incidence of a plane wave.

The various curves correspond to different
approximations. :

and in the case of H-polarization (Hs,1y02)

A kR
Etzﬁ,“”‘-'ia[-{ucogasfn?!,(ka 28K ’ l

,/‘ F F] R
J (ka:":—" :’T') olkR (10.04)
o =l M | ,

The quantities X and u in Equations (10.03) and (10.04) are deter-
mined in the following way:

p=sindsinp —siny, (10.05)

4 == sin { cos 9, }
/>0,
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.
Assuming ?ss-%§ andﬂzz“*“Y(7“<i3<W),in the resulting expressions,

let us find the fleld scattered by the disk in the direction toward
its source. With E-polarization of the incldent wave, 1t equals

. Eqx 0 |eikR
E,=—Hy=— m‘“2° “;’;‘ i (2ha sin B) =
E,=H_=0. : (10.06)
and with H-polarization
E,—=H = csd J (2ka sin #)2 =
v =1y ="7" md 1% | (10.07)
E¢mf{,z=0.

Using the asymptotic expressions for the Bessel functions, one
is able to show that when R »>> ka2 andkay/ﬁtFFfél the fringing field
is radiated from a luminous region on the disk. In the case when
v/ﬁﬁFE?*O, the luminous region is increased and in the limit (when
A = yu = 0) the entlire surface of the disk starts to "shine".

§ 11. The Field Radiated by the
Nonuniform Part of the Current

Let us calculate the field in the nonunifor.. part of the current
'I’(p. ’{’):‘““J(Po ({‘)gi.ps'ﬂf!lﬂé. (11‘01)

Its corresponding vector potential

2

a LikR — f 3. 1, -
A=t jd?fl(w)e HVi oty ”’dqa (11.02)

0 ) -

by means of the stationary phase method is transformed with
kay' P +8*>1 £ the form _

* a :
it T ‘ r — ikp Viifpe _
1/&0 4 1’1-,1.’ [XJ(P’ € d ,
0

i AR (11.03)
—i f (g, 5,) VR g } i-i:f .
4 .. .

Herpre



=2, Pa=1-}-8 (11.04)

are the stationary phase points
and the quantity 6 1s determined

by the equalities

inBe=—_® Y
ﬁnbﬁ_yiﬁrzi, u»5-.y]£¥;;- (11.05)

Figure 22. "The oblique inci- From Equation (11.03) it
dence of a plane wave on a disk. rollows that with B > kaz and

n is the normal to the incident e

wave front. kay/ 2 Fp"> 1 the main contribution
to the fringing field 1s given

by the luminous region adjacent to the line ¢ = wl, p = wz. Thus,

the stationary phase points wl, wz physically correspond to the

luminous line on the disk surface.

In order to calculate the vector potential (11.03), it is
necessary for us to first express the nonuniform part of the current
on the half-plane in terms of its field in the far zone. For this
purpose, let us introduce the auxiliary coordinate systems X15 ¥q
and X5, ¥, (see Figure 23), and let us take the following designations:

2 Bl(a2’ 82) are the angles between the normal to the incident

wave front and the coordinate axes x;, y; (x2, y2);
¢g‘vg = —¢g) is the angle between the z axis and the projection
of the indicated normal on the plane X, = 0y

¢l(¢l = -¢2) is the angle between the z axis and the direction
from the coordinate origin to the point p(yl, z) which lies in the
plane X, = 0 and is the projection of the observation point P(x, v, z);

r, is the distance from the origin to the point p(yl, zZ).

The quantities introduced here are determined by the equations:
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cosa, === —siny cosp,, cosd, ==sinysin,,

“zm“‘;’v Ja==—5,
o0 __ oSy ) __CosY
SIn Py = o5 ag’ Cos 9 T sina, ’
. sin i cos (§y —
sin @y == - - :,’) =,
V1 =sin®isin?(§, —¢) (11.06)

Cos P, = ___CosD
Y YT =sint b sin?(§y —g)

0 (1]
Pra==-—=P Pp=9,

ro=RV 1 =sin*8sin® (¢, —9) .

Furthermore, let us write the expressions for the field from the
nonuniform part of the current excited by wave (10.01) on an ideally
conducting half-plane —oo<y, <a. In accordance with § 5, they have

the form

L ]

E = Ik, cos a, E f 9 el k.r.+~4~) lksd(sin;?-slnq,)
- =" orf (1 #1) Sz e . (11.07)

l’l,,.;..f.)v
ike,
Hx‘ze x»cm“'”ox.g‘(?v ?;))ey

ika(sin 7‘.’-—-1!11 %s)
e »

2nk,r,
where

. k,=ksina,, (11.08)
ky(sing, —sing] )=k YT -3,

0 - 0
11— ¢ T ot
sin — x-}'cos - 2"

ey
sin g7 — sin g, singl—sing,

I! (?v ?? }=
f1— 90 nt o

— $in 2 +co‘ "2""" Cﬂs,' (11‘09)

0
(W P )*—* T - ) ’
sin g; — sin ¢y sin g — sin g, ;

x . 3z
Cmy<%<?}

On the other hand, this field may be expressed in terms of

the vector potential

WV FF =P Fin—tF

a @
L ik s con By ikt cos —
A= — jl(n)e d-qSe ¢ "V2‘+{y.-- o] ;‘-E)"d' (11.10)
~a —a»




By means of equation

% VogrG
Mpy— L (P T
Ay WD) =% \ voro
; —o

¢=V 7 —F, Img>0, D>0,

emiud:
: (11.11)

i

which follows from Equation (3.10), if one substitutes z t, w =2z,

d = -ip, k = -iD, in it we find that

. [
Ix _thx,cos a, e
A= e jJ(’z)”f;"lkv/2”+(yx-n)‘le""°°'"dl- (11.12)

Taking the fact into account that
the nonuniform part of the current
is concentrated mainly 1in the
vicinity of the half-plane edge
and using the asymptotic repre-
sentation of the Hankel function,

x.y:2)

we obtain

i '_i;_ ik(x, cos aytry sin a4+ = o k9,
Ly = J'-'(’l)e 4 (11.13)

kyry
—~00

Figure 23. Diffraction by a disk  where P, =cos§, -—sina, sing, =

with oblique incidence of a plane ,

wave. The half-plane L lies in  =sinysin¢, —sindcos(}, —9)

the plane of the disk. Its edge ‘

is tangent to the circumference v/ | —sin*ycostd, (11.14)
1 — sin? 0 sin?(¢; — ¢)

of the disk at the point X, = 0

vy, = a (a is the radius of the
disk). In the case when wl = § [see

Equations (11.04) and (11.05)]-

the function @l takes the wvalue

0= —/ Ty, (11.15)

Starting from expression (11.13), it is not difficult to show
that the fringing field in the far zone is described by the following

equations:



i‘.;““.:'.:-""' ik Sin al Ccos aj Sin ?lAy‘+fk Sin‘a‘A;’g’ 1 ( 11 . 16 )
H, =—iksina cosg,A,, ’

Wwhere
A, =81, (%), A, =8l (), |
[ Yy Xy e\ (11'17)
6 . i “f;‘ {h{x, cos ’t“*”:ﬂﬂa,).i-t.{.
=TV R C '

[
1, 0= [ 1, ()™ F Py,
. (11.18)

a :
I ()= j‘ J,, () ek o w'd,,’
—

Then by equating expressioné (11.07) -and (11.16), we find the desired
connection between the nonuniform part of the current on the half-
plane —O <y, <@ gnd its field in the far =zone

I, ()= 5 = g" (@ ?? Je~te T w;

T 1k27 sina, cos g,

+ ¢ .._...._..! ; ‘ ‘
1,00 =5 575; (Euul’ @ur #0) — (11.19)
’ ..uan‘ .

—cosa, tg 9,Hy, g (91 7; )€

One may show in a completely similar way that the nonuniform
part of the current excited by wave (10.01) on the half-plane
—oco<y,<a creates, in the far zone, the fringing field

E’r‘m J— ik Siﬂ a,'COS a‘ Siﬂ ?gAy‘ + ik Sinz G‘A”, ( 11 20 )
2 ==-—{Rsin 2, COS P, Ay"

where

Ay;.z 93[#. (7.), Ax. =0,/ Xy (),

——— ¥ *
T ikir,sinn, — x, cos 2,4 T

{
8, == — e
2 ¢ kyry ’

(11.21)
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f ikv Vf S
1= [ 4, e " F ¥y,
-

5 e Vi T - (11.22)
]x,(“?ﬂ)z SJX’("’})G’ Vi fow -
On the other hand, in accordance with § 5 this field equals
‘ et *:“) ikagsin 2"
—ikxycos a H, € wa(sin g —sin g4
Ex'ze ikxy cos ng.f’ (2,90 ) W e 2 ,
' (11.23)
| ;kﬁ+%0 ihyatsin <0
) ik, CO8 04 1 3, € afsin -,zwsm %4)
Hx."'"e Ho,-,g (P2 ?,) m“ e
Here
(11.24)

k, (sinp, —sin §) ) = — | J-p7,

and the functions ['(ps 93) and g'(¢.9,) are determined by the equations:

i%—ﬁ it
Y ) sin =g — s T3 cos ¢!
P %)= sing) —sin ¢, singl —sing, '
0 0 .
11— 9 f1t 9
sin 12 l+cos'2 ! (11.25)
g (o 7 )=— ot
¥ sin g0 —sinp, T sin g0 — sin gy
- . - P - - #
/ 3= Y
\""‘-§°<?‘<-§- v

Equating the quantities (11.20) and (11.23), we find

N

H,, g" (91 %))

RN T Gy
! Ve (ha)=— ik2=  sin a, cos g,
¢ eitaV AL

[x. () = ik2x  sin? a; {Eﬂxj (P ?g )—

---cos a, tg ?.Hu,,g"‘ (Pas ?g ) J

(11.26)

In this way we established the relationship between the nonuniform
part of the current on the half-plane and its field in the far zone.
Now let us return fo a calculation of the field from the nonuniform

part of the current flowing on the disk.



Since the disk 1is assumed to be large in comparison wilth the
wavelength, the nonuniform part of the current in the vicinlty of 1ts
edge may be approximately considered the same as on a corresponding
half-plane. Consequently, the integrals in Equation (11.03) will
approximately equal the corresponding integrals from the current on

the half-plane:

oo 9 T =1 (@),

Y ~ikp VXL
Jyl (p? ?l) € k' > * wdp z’y; ('pl)'

v ’ (11.27)
L0 4) €T o1 (),

Xy

7. (@, we"‘”‘“d 1, ($)-

s

J

c’.—ﬂjg.a‘-——-.a CQ_...‘Q QM‘
i

As a result, the vector components of (11.03) may be represented in

the following form:

. ‘
A=<V k,ﬁ; T, i, (e.n. ]

| ‘ (11.28)
....,L 2ra eltR I ( ]
=7V Fvees R © [ RCAE S/ MCA)
Then substituting these values into the equations
Eg::ikA?—-..:.—ik[Amsin (s —9—A, cos(y; — o)), (11.29)
E,=ikA,=ik[A,cos($, —g)+ A,sin (y,— )] cos 9, )

we find the fleld from the nonuniform part of the current flowing
on the disk

—— M, — 1 eft® sinth —9) -
E;f H&”" ]/m R {“ ox.{sina‘cosp . .
cos (§; —
-~~—-s—l—[~lf};--’)—-cos 2, tg?,]X
X lg' @y, ¢ )eHaV FEE_jgl (g, ¢, )et*ﬂ"'”w] (11.30)
¢ o
= o, ([ (s 7y) eite VT —

— if* (9, 9, ) etV TET | }



§ e

4
] lkR 5(.&___)
Ey=H, =20 __{_.,H [w 19
¢ V2rka V;\z,H,,z R O, smm,cosy,+

1 o
+j%§%*ml Cos 7, tg ?x]!gl(?” ?: )e«-lka‘ fEre

. ' s i — (ll . 31)
—ig (3 9) ) B, SEERX

X[ (3, ?: ) a—lkaV \TEpT _ if* (9, SP; ) euml’h.,,,p ] }

The resulting expressions are valid when kay/A"Fp*>1. They
may be slightly simplified to

k4
'y

E o — H._at iy
T Vrmar g e R X
X{ H cos 8W[g (? ?, )e.-ualr’v+w

—ig'(p, 7)) etV TFw ] — E, " costhi—v) v

Xy ’ln’

le‘(?. 9; ) e—ihaViTEE _ ifi(o o} )e"“”’”*“’l}
. =

ae - e"k x
} Zzka ¥ higpr R

X{____ H cos($, — ¢) [gx (?“ ?: ) e—-tkawo-—-

(11.32)

Es—H =

Ox, S!ll‘d‘

ikayml sin (% — ?))(

B ig,(?” ?;) ¢ sinfo,
—ika VX7 8 NTT
X[ 7)) e~ TP i (g, @) € THF }

if we use the identitiles

¢
-T- EU x‘COS 8

sin (4, — ?) “cos (4 —¢)

cos  sin ($;—%)
sin a, cos ¢, sin?a, -cosa, tg 9=

sin® a2y

¢°5(¢|~7)+Slﬂ(¢; e COS(Fy — 9) (11.33)

s$in a, CoS ¢, sm‘ ay cos g P = sin?a; cos 8 °

The operations carried out above may be briefly summarized in
the following way. The field from the nonuniform part of the curreqﬁ
on the disk

2= a

iAR .

A= fafae per d
c d

is found (without direct calculation of the current) in terms of the
known field of an auxiliary half-plane



e X203 8,47 2118 o341 ry (ke
A=ty E fwe iy
ktrl
00

by a replacement of
o‘ ®
§36. 9 "% ag vy f 3 emody

in those cases when ¢ = @1. The functions ¢ and @l are determined

by the equations

(11.34)

I —sin?y cos*

b, = sin 7 sin¢ —sin 9 cos (‘*""““’)l/n sin? 0 sinX{—g¢)"

D =sin ysin —sin 8 coz (p —9), _ }

Solution (11.32) was determined exactly in this way with kay A +¢*> 1,
when, for auxiliary half-plane whose edge touches the rim of the
disk at the points ¢ = §, ¢y = n + §, the phase @l was equal to ¢.

A solution to the problem using this methed also 1is possible

in the case

= =

e . (11.35)
when ¢, = ¢ = 0. The direction 8=r1, g::%} corresponds to the princi-

pal maximum of the scattering dlagram, and therefore is of special
interest. Substituting the relationships

¢ HOx. Siﬂ??--—l ]
T TkER SiN Y cogt g0
: | (11.36)
—_ o 5"?:“"
I»": tk-l'* sm’ (Eor + Cosa, tg? 01;) cosy ‘
which follow in this case from (11.19) into the equations -
A, w...._......f(l cos §+ 1, sin¢)d¢,
] (11.37)

gy,mjiéfij(i sing —1_ mx@)d¢.
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we find the field radiated by the nonuniform part of the current in
the directicn of the principal maximum. With the E-polarization of

the incident wave (E, Lyoz), it equals
ikR
E,=Hy=Es - sms (21( cos Y —! tzf’:’ "'E‘)eR :
Ey=H,=0,

(11.38)

and with the H-polarization GLJsz)of the incident wave, 1t equals

Ey=—H:=—E, nsm"xx

X (2K cos g — gl (11.39)

R *
E.=H,=0, J

where

n

d}
YV 1i—sin*ysini§ E=

K:::: /l——-Slﬂ Y?Iﬂ q,dq, (ll.NO)

°“"""au]n
QQ_—-—a»

which are complete elliptic integrals. From the resulting expressions,
1t follows that with the rotation of the incident wave polarization by
90° the phase of the field from the nonuniform part of the current

is changed by 180°, as it was in the case of a half-plane. If y » O,
then the difference between the polarizations disappears, and in the
limit (when y = 0) we arrive at the previous result (8.16).

Numerical calculations were carried out using Equations (11.38)
and (11.39). They showed that for values of y not exceeding 55° the
field from the uniform part of the current is at a minimum ka times
larger than the field from the nonuniform part of the current.

§ 12. The Scattering Characteristics with -
an Arbitrary Irradiation

The total fleld scattered by the disk equals the sum of the flelds
radiated by the uniform and nonuniform parts of the current. However,
now, 1in contfast to the case of normal irradiation, in region
kaV ¥ w'> 1 the total field no longer is expressed only in terms of the

functions f and g. Therefore, we will first investigate 1in more



detail the fringing field in the incldent plane(x:=Q ?mntvg where
the expressions (11.32) take the form

i'} o ) iXR
Ey=—Hy=Zee Egel—[* (1) " +if*@) "] 5=
with cpz:..g., a>1,
:} |
E =—Hy= V'E'“T‘“T“"‘i («-—f‘(2>e'*“"+zi'(1)e""‘“"1 Y (12.01)

with ?-—--- 3Ly,

i

aln

v Y 2ekalu]

ikR
E :’zw—H’ :—:.wg‘i——-—-&‘“ ”t (2) e“aP ‘t: (l) --tlc;a] e

with P=—3:

Y

‘H
Ey=H, = 2
8 ¥ ]/2nka,:. (=

. AR
g (e " ig* (2) "] -

witm.—-.-;-. 8>,

1.!.

‘ olkR
Ey= H, =2 oy _ga ) eton p igh 1) o S

¥y 2zrafp]

withg=-%, 8<¥,

=
'y

E’ =} M{g (2) e‘k“i‘ l'g' (1) e-—ika“}f_k__

? ;/2’:1:::! |

with ?—~=—-—-;f--

(12.02)

The functicns fl(l) and gl(l) correspond to the field of the auxiliary
half-plane —o<<y<a , and the functions r1(2) and g(2) correspond

to the field of the half-plane —a<y<oo,

In accordance with -

Equations (11.09) and (11.25), they are determined by the expressions

fr)=f(1)— ,—-——-—-—-—i,,;°'}m ,

g (=g ()- 200,

— ]
sin 21+cos—%:1
f(l) siny ~3ind *
B e
e BTH 3 +CO! ;Y
gﬁ)"‘" sin | — sin & '

(Equation continued

(12.03)

on next page.)
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cosy _
f‘(z)xf(m’{—smyus}nﬁ » F@)= siny—sind '

: cos d slno2 + cos _;1 i (12.03)
g‘(z):’:g(Q)'*‘éinywsinb  8(2)=— siny—sind '
. or T
if ¢=75 and ¢<5 ; and
—y )
cos T sina+1-—-—c03321
il (1) f(l) siny -+ sind’ f(l):‘:—-—~ Sm'{ 4 sin 8
: cos D sin +1+cos ek
gl(l)zg(l)“'s‘in-(-%sm&’. g(l)= sin{+sind °
. a o_. (12.04)
’ cosy sin +cos 1
['@=[@)+ gy xsms ”2):“'. sm°{+sin0 ’

8 | -
sin t’»cos 5 L4

cosd
2'2)=8e@) + g Twms g@2)= siny4sind °*
Y+ ,

if p=— and #<4..

It was mentioned above that when ka >> 1 in the direction
d=Y (0°<7<55), ‘I{z‘; the field from the nonuniform part of the current
is negligibly small in comparison with the field from the uniform
part. Therefore, for the field from the nonuniform part of the
current one may write, with the help of Bessel functions, the

following interpolation formulas: with ?:a%
iaEyy (r¢ . ;
E,=—H, =“'a’§"{b' (W) —'@2)%4EQ) —

. oikR
— i)+ @ @)

| A (12.05)
Ey=H, ="0=(1g0()—g* @] 4O — ]
) o eitR
s —ilg () +2* @O J
and with p=——
E,=—H, =22 (p )~ @140+ | (12.06)

. oI ER
+i [P )+ 1 @1, O} -

(Equation continued on next page).



tfer gt (1) — g @1 GH-

Ey=H,=
eun (12.06)
+ilg' ()+g'@)NL O} -
where
= ka (sin 8 —sin¥y), }
E::ka$m8~%ﬁnyy (12.07)

These expressions are valid in the region 0<8<-—§-; when > 1 and f{{>1
they change to Equations (12.01) and (12.02), and in the direction
3==T,?=={;they give a fleld equal to zero.

Using specific expressions for the functions fl and gl, it 1is
not difficult to establish that the total field scattered by the
disk in view of Equations (10.03) and (10.04) may be represented in

the following form:

with p=-7
| {aE,, ]
E =--H, -—---~{[f(1)—-f(2)ll (C)-—-
— i)+, (C)}m
1aH (12.08)
Ey=H,==*{le()—g @AM O —
— f’(g(li-i—g(?)l SOV o ‘
and with ?==-%;
E,=—H,="22l{ ()~ [ @140 +
1 (1) -+ 124 0} S
ia (12.09)
Ey=H, =" (lg (1)~ g @], 0+
+ileM+e @U@ - |
It 1s convenient to write these expressions as follows
;f~~H«wwu4ﬁﬂim !
(12.10)

z iaR
fimggg — mggsgfﬁ, %f}i..j..‘.? }




where the functions I and £ are determined in the reglon 0€3<——§- by

the equations:

ey " 1t e
2(3' 1) . sin 5 cotm-fl
S L& __. J .
.‘3(8, .” sin-—2- cos--—zm
' !

and in the region %—48«;:
§(8, -') == = l’(:) . +i J’(;) With P== ",I
2(3, Y) } cos-u—;‘ nin—-—-—u‘; ‘ z
(12.12)

£, v) }x:': D8 i DO yith g=—jp.
2(3. T) sin -—-——-!2.,

cos—3
)

Here assuming y = 0, we obtain the previous relationships (9.03) and

(9.05).

In the airections'a;—.-.y and 8==—1 (with cpa—-;.;.), where the
scattering diagram has a principal maximum, it follows from Equations

(12.11) and (12.12) that

‘f(r)_“_};(y)—.:_;chosx (12.13)

and

Hr—y)=—S(x-~7)=—kacosT. (12.14)

In the direction toward the source (8:——.:«‘1, qz.’..-z’f-.), the functions

¥(® and E£(8) take the values )
L)
£9)

Here considering #-—==, we obtain

}zi;;;,!-;é(i)**ff.(ﬁ)‘ (12.15)

F(2) = — S (z) = ka, (12.16)



which corresponds to the physical optics approach [Equation (7.20)].

The functions I and I allow one to calculate

353fa"f!’, 3”-_..-m’!£]‘ (12~17)
which are the effective scattering surfaces with the E- and H-polar-
izations of the incident wave. Let us recall that, by definition,
the effective scattering surface 1is a quantity equal to

°z4*R‘,'~§.%' (12.18)
where
S = 5 Re[EH’] (12.19)

which 1s the energy'flux density averaged over one oscillation cycle
(the Poynting vector) in the scattered wave, and SO is a similar

quantity for the 1incldent wave.

In this way, we obtained the expressions for the fringing field
which approximately take into account the nonuniform part of the
current. In the incident plane(?=ﬂtf%), they have a form which is
rather simple and convenient for calculations. It is also interesting
that in this case they satisfy the reciprocity principle as distinct
from expressions (10.03) and (10.04) which correspond to the uniform
part of the current. It is net difficult to prove this by verifying
that Equations (12.11) are not changed with the simultaneous replace-
ment of y by & and of & by y, and Equations (12.12) are not changed
with the replacement of % by n -~ y and of y by =8 [in the case ~

p=—5 1.

However, Equations (12.11) and (12.12) lead to a discontinuity
of the magnetic fleld tangential component H¢ on the plane z = 0 in
which the disk lies. As in the case of diffraction by a strip, the
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reason for this is that we did not consider the interaction of the
edges. It is also necessary to take into account this interaction
in the case of glancing incidence of the plane wave(?mz%%).when

the fringing field components E, and H must be equal to zero.

¢
Let us point out once again in conclusion to this section that

expressions (12.11) and (12.12) near directions 0::1,3£= = —71 (with

?=2%;) have an interpolation character, but in return tpey allow

one to represent the fringing field in the incident plane x = 0 in

a convenient (uniform) form which frequently 1s of greatest importance

(compare § 24).



CHAPTER III

DIFFRACTION BY A FINITE LENGTH CYLINDER

The distinctive feature of this problem is that, in addition
to the nonuniform part of the current on the cylinder's surface
which 1s caused by the discontinuity, there also exists a nonuniform
part of the current arising as a consequence of the smooth curve of
the surface. This part of the current has the character of waves
travelling over the cylindrical surface along geodesic lines [36] —
that 1s, along spirals on the cylinder. These waves, which as they
move strike the edge of the cylinder, undergo diffraction and
excite secondary surface currents. In turn, the nonuniform part of
the current resulting from the discontinuity undergoes diffraction
while being’propagated‘over the cylindrical surface. It is clear
that specific consideration of all these effects 1s a very complicated

problem.

However, if all the linear dimensions of the cylinder are
sufficiently large in comparison with the wavelength, these effects
may be neglected when calculating the fringing field in many cases
which are of practical interest. In particular, they may be neglected
when calculating the field scattered in the direction toward the
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source [5, 37]. 1In this case it 1s sufficient to consider only the
nonuniform part of the current which is caused by the discontinuity
of the surface, and we will do this in this Chapter. The equations
obtained in this way are generalized to the case when the observation
direction does not colncide with the direction of the source.

§ 13. The Physical Optics Approach

Let us investigate the diffraction of plane electromagnetlc wave

E = E, e*Wsinr+econn (13.01)

on a finite, ideally conducting cylinder of radius a and length 7. Let

us position the spherical coordinate system in such a way that 1its
origin is at the center of the cylinder, and the normal n to the
incident wave front lies in the half-plane ?==§' and forms an angle
. (0<'{<~;-) with the z axis (Figure 24%).

l* : An incident wave having an
arbitrary linear polarizaton always
may be represented as the sum of

‘ two waves with mutually perpen-
" /r—-—.’.'
v dicular polarizations. Therefore,

3 for a complete solution of the
problem, it 1is sufficlent to in-

Figure 24. Diffraction of a plane vestigate two particular cases of

wave by a finite cylinder. n 1s .
the normal to the incident wave incident wave polarization:

front.

(1) E-polarization, when the incident wave electric vector is-
perpendicular to the plane (E, L yoz)and

(2) H-polarization, when Holyoz .

The uniform part of the current excited on the cylindrical sur-
face by wave (13.01) has, with the E-polarization, the components



¢ : ’ iA®
0 =— 55 Bez-sinysinge™®,

,"dg;f.,sin';cos?e”", ’ (13.02)

]

¢ e .
f‘: == E.,~co§7 cospe ",

and with the H-polarization it has the components

‘°mj°==0, ' ) }
R (13.03)
J, = — 5z Hoxsinge™®, [
where
® = asinysiny 4§ cosy. (13.0%)

Let us calculate the field created by these currents in the region

n

=

The vector potential of the fringing field is determined by

the equations

I
2 2s ’ 2 . ) ‘“r
&z—;—j'a' .fj(t.w.»)-;-—dt with y=0 - (13.05)
v -4
and
K
\ a 9 '2 . elkr '
A=2L j dy | 1@ 95t witn 1>>0, (13.06)
-~ {
- Y
where

(13.0;)

r=yTFy—D+E=0" -

Since the field 1n the far zone (R» ka*,R>4I') is of interest to us,
these expressions may be simplified by using the relationship

re~R--asindsin$ —Lcos & (13.08)



As a result, we obtain a simpler equation

eikR

[
7
A= a_ R elka sin & sin !,’)d(p j jo (C q,) e~lk( cos &dc
[ .
k2

(13.09)

Since the current components are described by the functions
F@e”*® | then the problem of finding the field reduces

essentially
to a calculation of integrals of the type

0
eikﬂcosx—-—cos &)d: S f('{i)eip“m’d'{):‘:—‘

N{.."“"\“""

1 l;—‘(cas {—cos ) __
mg’k(cos {— cos §) {e

(13.10)

. ——iy-(cos -cus §) ¢ ;
e 3 7 } S.'f('{’)e‘pﬂm d&?.

B

The integral

[ .
S j(3)e? ™" ¥ dy, p=rka(sin(-sind) (13.11)

when p >> 1 is easily calculated by the stationary phase method.

The
stationary phase point is determined ‘from the condition Zsing—0
and equals
Y.
7 2" (13.12)
Then assuming $=—---3, we find
’ s
9 : ' 2 ,’9
[ raeriay=tgae™ [T a= -
- T (13.13)

—ip4l
-~y -1 (*e)e“"’ j ettdi= “i (fa)e WT

As a r@sult, we obtain the fo1lcwing expressions for the
vector potential:



with E-polarization

; a E i ielkR
Ac= Eoesin{ =1, A=A, =0 /, (13.14)

and with H-polarization

ikR
a L.}
A:xﬁﬂng?“‘I, Ax::::AF:O, (13’15)
where .
ig-’-(cos 7—cos B) ~i;£(cos §—cos &)
) : e &
I= ik(cosyy — cos B) X
-ika (sin y43in 8) +i ;' (1 3. 16 }
XV ka(s!n1+sin&) :

The fringing field in the region ?zz,.%% is determined by the
relationships

E?x"“ﬂa:ikf‘z,
Ey=H_= —ikAsind. (13.17)

Therefore, with the E-polarization it equals

un
E,=H,.5‘o, }
and with H-polarization
: (174 \
E,=H _—-:-if‘fﬂ.x-sina -
¥ 2% R 1
E,=Hy=0." (13.19)

The resulting equations show that the field scattered by the cylin-

drical surface is created mainly by a luminous band adjacent to the

cylinder's generatrix with ¢=a%==-n%~. The radiation from this

band may be represented [see Equation (13.16)] in the form of spheri-
cal waves diverging from its ends (points 2 and 3 in Figure 24).

Now let us write Expressions (13.18) and (13.19) in a form which

is most convenlent for calculating the effective scattering area



E H ia eikﬂ““"ﬁ 3
¢ sm“““q““gw’“k"“‘z (9, 1)
13

(13.20)
ia AR Y
EamﬂngH°”'T'2u (8, ).
Here
-—
Y. ~Gsnnx,§] =—Gsind, (13.21)
and
2
f} =2 ’/ﬂka(s!n-{+sln #) X
sin[%!(cos'{-—-cos 0)] —ika (sin 1+sln6)+l;—~ (13-22)
X e .

cosY —cos d

The index "0" on 5: and 2: means that the fleld was calculated in
the physical optics approach (based on the uniform part of the
current), and the index "c¢'" shows that this fringing field is created
by a cylindrical surfacé. The effective scattering area, in accord-
ance with (12.17), ié determined for a cylindrical surface by the

relationships
—t 12 )
% p="a'| Y, | =matsin®y|G",
| = eatsintolar (13.23)
In the direction of the mirror-reflected ray (@#=Y), we have
";,z""‘ y=hal*sin = Tl‘sm& (13.24)

In the direction toward the source(8—~r‘,n , the functions jgc
and }S equal

nka cos B

L _ 2 Vsin B sin(kl cos b) .e"m" sin $+ig (13 2; )

These expressions are valild 1f ka sin 8>»1 . Tt is not difficult
to see, by means of equations (13.02) - (13.05), that the fringing
field equals zero if y = 0 and O=x. Thus in the case of radar (that

OO LD 2 060.71 7€



is, in the direction toward the source) we find an expression for
the fringing field in the region ka sin 9>1 and in the direction

=a . Naturally the desire arises to write interpolation equations —
that 1s, equations which would provide a continuous transition from
the region ka sin®>»1 to the direction 9§=x . Now let us note that
the fleld scattered by a cylinder is comprised of the fields scattered
by the leteral (cylindrical) surface and the base (end) of the
cylinder. 1In the physical optics approach, the field scattered by
- the end of the cylinder 1s equivalent to the fleld scattered by a
disk. But the field scattered by a disk is described by Bessel
functions. Therefore, it 1s also advisable to express the field
scattered by the cylindrical surface in terms of Bessel functions.
As s result, the desired interpolation equations for the fleld
scattered by the cylindrical surface may be represented in the form

U]

En = — 2; 231::8 (™ €03 B_ ikt cos N1, @) — i, Ol
- (13.26)

= 2kasin 8.

From this it follows thatE:g ‘E:% = 0 in the direction 8==, and with
the conditions ka sin 8>1 we obtain Equations (13.25).

The field belng scattered by the cylinder's end (by the disk),
in accordance with equalities (10.06) and (10.07), is described in
fthe physical optics approach by the equations

— o
Z, }__ cos b piticos®

i ®)e :
. +sind (13.27)
2, :

Consequently, the field scattered by the entire surface of the
cylinder will be determined in the plane ==-€} by the equations:“

—

Ey""""Ha*-m ox* E

(13.28)
=H, =12 H,, ”;’RZ‘

where



Y, ® P
o Fyeple™ P P— e M ) (@) — i, Q) F
2 (8) , : (13.29)

cos § iklcos & o
::m./l (C) e (C =:2kasin 9)'

These equatlons allow one to determine in the physical optics
approach the effective scattering area of a finite cylinder.

§ 14. The Field Created by the Nonuniform
Part of the Current

Let us find the field from the nonuniform part of the current
caused by the surface's discontinuity. Figuratively speaking, the
field scattered by the cylinder is created by the "luminous" regions
on its end and lateral surface. Mathematically this field 1is
described by the sum of spherical waves from the "luminous" points 1,
2 and 3 (seé Figure 2#){ Obviously the field from the nonuniform
part of ﬁhebcurrent also will have the form of spherical waves diverg-

ing from these same points.

In the case when the length and diameter of the cylinder are
sufficiently large in comparison with the wavelength, one may
approximately consider that the nonuniform part of the current near
the discontinulty 1s the same as that on a corresponding wedge. The
field radiated by this part of the current in principle may be found
in the same way as in the case of the disk. However, such a method
is rather complicated. We will find the desired field by a simpler
and more graphic method, starting from a physical analysls of the
solution obtained for the disk. -

For this purpose, let us investigate the structure of waves
(12.01) and (12.02) which are radiated by the disk. These equations

include the factor

24 AR - 1

ia s it a
V2ska(siny -sin.) R ¥ 3=kR R ysiny+ slad =

(14.01)




Here }/gg' is the unfolding coefficlient of the wave. It shows how
the fileld 1s formed with increasing distance from the disk: the
diffracted wave which is cylindrical near the disk unfolds into a
spherical wave as the distance from it increases. The coefficlent
(siny+sind)—" is proportional to the width ¢f the luminous region on
the disk or, in other words, to the width of the first Fresnel zone.
Thus, in Equations (12.01) and (12.12) the functions 1 ang gl depend
only on the body's geometry -—— more precisely, on the character of
the discontinuity.

Therefore, it 1is entirely natural to assume that the similar
waves which are belng scattered by a cylinder have the same structure

and differ only in the functions fl and gl which correspond in this

case to a rectangular wedge. Consequently, in the direction toward
the source, the field from a nonuniform part of the current flowing
on the cylinder may be represented when ka sin #>1 1in the following

way:

:-i’-l‘.) 41kl cos §

. i
Ec:“'H&:;f’é%on{f'(l)e ( ' -
IkR

In
_— [ f! (2) ei klcos O‘ + I“ (3) e‘-iﬁ!cog .] e"‘ (("T)} _e_R‘_“ ,

. § (¢25) +irtcos s - (14.02)
Etzﬂvz = Hu‘{g‘(l)e(“) , |

V2= -
— 10! 2 Iklcos " —tklcos § “l( :'}‘ eltR
[g'(2)e +2'@)e le (7

In accordance with § 4, the functions fl and gl are determined by
the equations
:ln-z- A
1
rm_ nn( L ]
2(1)_ co — — 1
n -
! “cos® .
fores - . ’
'co:%’-—cm”:%) 2sin @ (14.03)
=
gag)}w a = + % b 0 I
s:ss?wi cos - — COB "

(Equation continued on next page.)



e ————

cosd __ sind

p—

“+23in® " cosd °*

f* 3) ‘m sin*;;( t -
n

g3 co:%ml
— | sinh (14.03)
+ " 420 J— 2cosh °*
cos = — cos
where
3
=5 . (14.04)

In Chapter IV, we will show [see Equation (17.25)] that in the
direction 8=x—y== one may neglect the field from the nonuniform
part of the current flowing on the cylinder in comparison with the
field from the uniform part, if ka>» 1. Therefore, for the fleld
from the nonuniform part of the current, one may write with the help
of Bessel functions the followlng interpolation equations:

AR o3
E’== —H.:%E",E__E (8)'

(14.05)
uk
E,=H, = 2 (8.
Here (
i zl (8’)215‘.{‘./, (C)‘*-TN.‘J: (cn e(klcos._
— @)@ —i Qe M ",
' O =M, @ HiNY, @] 4 — (14.06)
— ' QU@ —isy Qe *,
and the functionswﬁl,?}I and Ml, N1 respectively equal -
“ﬁ. 1 — £ '  § e o
=l =r, } g ()Fg' @) (14.07)

or



E ]
M sla— _ i .
=" -+ n ®— 20 =

cos —~ — cos

n
1 )*cms"* sind

—— x 20}~ sin® ~ 2cos¥ '
cos - — cos—p i

— "
N'}...__,..““”( 2 (14.08)
n

2
Co’n*“

1

J

The resulting Equations (14.05) change when ka sin®» 1 into Equations
(14.02), and in the direction #=1= they give a value equal to zero

for the field.

§ 15. The Total Fringing Fleld

Summing Expressions (13.28) and (14.05), it is not difficult to
see that the total field scattered by a cylinder will equal

. kR Y
E,=—Hy="§ Ewu- Y O

. xR (15.01)
E’ zﬂ? z-%‘- H,,-fﬁ-.z(ﬂ).

where
Y (&) =[MJ, ©)+iNJ, @] ™ —
— [ B @ — i @)™ ",
Y () =[M4, () +iNJ, @] €+ * — (15.02)

— 2O @ — iy Qe 0,
{=2kasind , -

and the functions ﬁ, N and M, N are expressed only in terms of the
functions f and g which correspond to the asymptotic solution for a

rectangular wedge
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po—

M M
— = Iy== 2, == 1:;: 2.
N} F()==f(2) N} gi)=g©2 (15.03)

or

M sin — 1 i
P pvd .
M n (“‘“ n _n—28 ® 2 )’
cos - cos— cos—~ —"cos

{ (15.04)

N msin"“" 2 . I . i
N{  :n n l‘“‘“’ = s—20" = W)
cos— —1 cos—-—cos— cos———cos—

The functions f(3) and g(3) in turn are determined by the equation

'i(&}__""% C :
T n (c' -+ x 1’+23) (15.05)

g(3) os{- —1  .cos—~ —cos

Thus only the functions f and g are included in the final expressions
for the scattering characteristic of a plane wave by a cylinder.

In the direction $==z , the functions £ and £(9) take, as in
the case of a disk, the values

B (x) = — S(x) = kae ¥, (15.06)

and with #=3 they respectively equal

cos—~ — ]

~;- | —sin — .
2 (% ) = .__(_,"'__“ - +- T:’ ctg 'S"‘}'ikl) [N(8)— iJ(C)],

LA
CO"'—-

’:}— (—:'— ctg %+ikl) A (C),

' 4 =
2(%)“1( S““-E-- ——ctg~ -lkl).l,(C)+ } (15’(_).7)

where ¢ = 2ka. The terms 1in this equation which contain the factor
kl refer to the field from the uniform part of the current, and the
remaining terms refer to the fleld from the nonuniform part of the

current.

Gh



In accordance with (12.17), the effective scattering area of
the cylinder 1is determined with the E-polarization of the incldent

wave by the function
3, == 22| E ()1, (15.08)
and with the H-polarization of the incident wave by the function

3, ==a’ | L (8) " (15.09)

Let us note that Expressions (15.02) for the scattering field
may'be obtained directly on the basis of an analogy with the
Equations (12.06), omitting the calculation of the fields from the
uniform and nonuniform parts of the current. In the same way, one

may obtain the expressions

x(e %) = [/, (§)+iNJ, (eue"“ Moty
(cot -4 con By}

- =@M (5)*-&’-(5)1'! .

Z(8, 8)=[M/, (E)+cNJ, (s)]e "“""fm "

— ~(co:0+cot LN

—g@LE—i),R)e .

(15.10)

which are suitable for calculating the fringing field in the region
""""’"";"' ‘;‘<3; §<m (34::’*“‘“1’{);. The quantities here equal

= ka (sin & 4-sin 9) (15.11)
_ . .
. M ﬂnj;
Ml a X
X[ - l = ! 4 )
( x e B, — ® [N N
cos——cos ~ cos —~—cog ~———
ﬁ sh*} ' . )
— 2 - (15.12)
N n = 03,
cos — —ecos ——
- P —3=3 ' 344
cos - ~=cos W cos <§~ o 03 m+““")

g



f(3)}w_ o 7 t _ 1
g3 ) = -3, = m) (15.13)
n

ccs ;;" Cos n cos n cos

Expressions (15.10) satisfy the reciprocity principle — that
is, they do not change their values if one interchanges & and 8,.
When #=8,, they change into the previous Evpressions (15.02).

Equations (15.02) and (15.10) describe the radiation from the
currents flowing only on part of the cylinder's surface: on the one
end (when z = %) and on half of the lateral surface (-7 < ¢ < 0).
Morecver, thesg expressions do not take into account the nonuniform
part of the current caused by the curvature of the cylindrical sur-
face. Therefore, they must be refined with values of # and &
which are close to % and n. However, in the case #=# — that is, in
the direction towards the source — these corrections may be neglected
if the parameters ka and kI are sufficiently large. Numerical cal-
culations performed by us on the basis of Equations (15.02) show
that this evidently may be done already when ka = = and kZ = 10 7.

The graphs of the functions ;ﬁ;z,‘ﬁw){’ and fg%:{zm)!? constructed for
this case in Figures 25 and 26 agree with the experimental curve(l)
(the dashed 1line): the position of the maxima and minima basically
agree, and the number of diffraction fringes 1is the same. For the
purpose of illustrating the effect of the ends, we constructed a graph
of the effective scattering area for those same values of ka and ki

taking intc account only the uniform part of the current on the

2

cylindrical surface (Figure 27). A comparison of Figures 25, 26 and
27 shows that the effect of the ends begins to appear when 8 = 120°.

Footnote (1) appears on page 89.
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FOOTNOTES

1. on page 86. The experimental curves shown in Figures 25 and 26
and also those in Figures 31, 32, 65 and 71 were
obtained by Ye. N. Mayzels and L. S. Chugunova.
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CHAPTER IV

DIFFRACTION OF A PLANE WAVE INCIDENT ALONG THE
SYMMETRY AXIS OF FINITE BODIES OF ROTATION

In this Chapter we will refine the physical optics approach
for certain other bodies of rotation, whose surfaces have circular
discontinuities. We will limit ourselves to the case when a plane
electromagnetic wave falls on the bodles along their symmetry axis.

As before, we will assume that the linear dimensions of the

bodies are large in comparison with the wavelength. In this case the

currents in the vicinity of a circular discontinuity of any convex
surface of rotation:may be approximately considered to be the same

as that on a corresponding conical body. Consequently, it is
sufficient to study the field from the nonuniform part of the current
which 1is caused by the circular discontinuity of the surface, using

such a body as an example.

§ 16. The Field Created by the Nonuniform
Part of the Current

Let a plane electromagnetic wave fall on a conical body in the
positive direction of the 2z axis (Figure 28). From the relationships
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(16.01)

L]

E = —— (grad div A £*A),
H=rotA

we find the following expressions for the fringing fleld in the wave

zone:

E,=H, =ikA,, }

with 8=0

Ey=—H.=ikA, | ~vil (16.02)
and

E,::sty:zikAz, } ‘

: i 8= x. 6.0
E,=H,=ita, |00 7% (16.03)

The vector potertial 1s determined by the equation

2x I *

A x_::‘ eiurj'[J'L & ed’ik: cos "(a~—~Csinw)dC+
3 .

r
[

I , (16.04)
UL @eT™ 2 (0 —Tsin ) dC) dy.
0 -

Here r 1s the distance from the discontinuity to the observation
point, jl(g) is the surface current density flowing on the 1rradiated
side of the body, and jz(c) is the current density on the shadowed
side. The upper sign in the exponents refers to the case #==, and
the lower sign refers to the case 8#=0. Since the nonuniform part of
the current 1is concentrated mainly in the vicinity of the discontin-
uity, the vector potential corresponding to it may be represented 1in

the form
2

'Az%fi'if(fj:(cletmc“'@+
‘0 0

o ® , ' 16.0
. +§ I;(C)et'k:m"dz)dq}.‘, ( 5)
(I o

Obviously the nonuniform part of the current near the discontin-
ulty of a conical surface may be considered to be approximately the
same as on a corresponding wedge (Figure 29). In the local cylindri-
cal coordinate system r,, $1> %y, the fleld from the nonuniform part
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Figure 29. The dihedral angle
corresponding to the discontin-

Figure 28. Diffraction of a ulty of a conical surface.

plane wave by a conical body.

The plane wave 1s propagated of the current flowing on such

along the z axis.
a wedge 1s determined in the

far zone (kr, >> 1) by the following equations:

1
E.(§)=—H, (§) =ik, (%),
CHL @)= E =ik () (16.06)
where
LY [Froe s
(16.07)

’V“*r)

-4.m AyeT g
N ; - BRIy .?d e
§jJ)e} }

Here the upper sign in the exponents refers to the case ¢1 =71 + w,
and the lower sign — to the case ¢l = w. On the other hand, in
§ 4 1t was shown that this field equals

i (kr, +7
E @)=E, @ =,
ikt 7) (16.08)
H,(4)=H,, (08— *

where E, (¢), H, (4) are the values of the incident wave amplitude at
the wedge edge, and fl and gl are angular functions characterizing

the scattering diagram.



Let us introduce the designation

®© . corm o cos
] m§ j: (C)et (kS cos dt +S j; (C)exm Od:‘ ( 16 .09 )
o -

Equating Expressions (16.06) and (16.08), we find

¢Egg, (9 cHo, (4)
o= I = € (16.10)

The components le and J¢1 are mutually perpendicular, and when

9=0 and ¥=% they are parallel to the plane x0y (Figure 30). The
different orientation of the unit vector e¢1 when =0 and 8== 1s
connected with the fact that the angle ¢1 is measured from the irrad-
iated face of the wedge. 1In the original x, y, 2z coordinate system

the vector J has the components

= J SinY
Jy=—J, cosp—J_sin} .

and

Jy=J, siny-4J .
asinetlocose, 1 L a—n (16.12)
Jy=—J, cos¢4-J sin¢ | - .

Substituting Expressions (16.10) here, we obtain
Je = <= [['Eq,, () sin g — g'H,, (§)cos ¢,

, with =0
Sy =T 1B, () 08§+ g Hoy (st 4 - (16.13)

and

Je= o (B, (Wsin g+ 2'H,, @ cosdl, | .
‘ twith 0=z  (16.14
jya“'}}%’}:“‘Em‘(‘?)cm?""g‘Hgg"q')Sin‘” ’ - )

Now identifying the current near the conical surface discontinuity
with the current on the wedge, we find the components of vector
potential (16.05)
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unit vectors e¢l and

ez, in the cases 8=0

with #=0(16.15)

and d==, As = T :m 5[[ E, L (2) sin ¢ -

+ g'H,,, (%) cos 3] dy,
with#=% (16.16)

ikr
Ay e S Slf 2, () COS 9 =

H,, (§)sin 9] d§,

Furthermore, let the plane wave be polarized 1n such a way that

Eyll0x. Then

mjw~.5“unm H,, ($)=— E,s cosy. (16.17)
Considering these relationships and substituting Expressions (16.15)
and (16.16) into Equations (16.02) and (16.03), we find the field
from the nonuniform part of the current which is caused by the
¢ircular discontinuilty of the conical surface

Eem Hy= 23 (1 +g) 5 |

" with =0 (16.18)
E!/:':Hx:‘-‘-‘-ﬂ ’ T
and
Ex L H “::a”.f!".,‘ . f:_i_ )
& 7o) with #=-=. (16.19)
E?::H’:::O ‘ »

Equation (16.18) 1is applicable for the values (}ﬁm&—;—,%<9<ﬂ, and
Equation (16.19) for the values'ggggggggggg . In the case of a

gk



disk(wm%, Qﬁn), the field from the nonuniform part of the current
equals zero on the z axis, since fl = -gl = -1/2 whenf#=0 , and
fl = gl = -1/2 when 8':«.,1; [compare (8.16)].

Using the resulting relationships in the following sections,we
willl calculate the effective scattering area (in the direction #=1=z)
for specific bodies. We shall assume that they are irradiated by

the plane wave

E,=H,= E, e, , (16.20)

and thelr linear dimensions are large in comparison with the wave-
length.

§ 17. A Cone

Let a cone (Figure 28) be irradiated by plane electromagnetic
wave (16.20). The uniform part of the current which 1s excited on
the cone's surface has the components

-0

0= ;—- E,x sm ® e“"“

o

i\

)
1
°’ o . } : (17.01)

o:-'b - d

and creates in the direction % ==z (with R> ka®, R> kI2) the field

. . - i s ei'k
Esz""‘ﬂy:“‘”‘gox;‘{tg g “§"+

ikR
Bl et Figa) g (17.02

Ey:H;‘:O.

Here the first term describes the spherical wave dlverging from the
vertex of the cone, and the remaining terms describe the spherical

wave from its base.

The field caused by the discontinulty of the surface at the
cone base is a spherical wave, and 1s determined in accordance with



(16.19) by the expression
2 n

/ Tsin.—; AR b
Ex=—H,=— 5 E,.|tga+ S etihl
R ' co:iwco:gﬁ R C17.03)
n n
Eyzﬂzzo, }
where
]
n:.«.:l-{—"‘“" : C 17.04)

n

An asyinptotic calculation of the rigorous diffraction sex—ies
for a semi-infinite cone [38-U40] shows that in the direction® = =a
one may neglect the effect of the nonuniform part of the curxrent
caused by the conical point. Therefore, summing (17.02) and < 17.03),
we obtain the following expression for the fringing field:

Ei=—H,=—E, [é— tg*a (1 — e*n -

=
— sig— €17.05)
+ ka : » e:m];ff_.
B,..—H,zso

Let us point out the following important feature of the xresulti
equation. " In the problems which were investigated in the pre—~wvious
chapters, the edge waves of the fringing fleld were expressed only
in terms of the functions f and g. But now in the equation fo x the
spherical wave from the cone's base, in addition to the term ~which
depends on f and g [the last term in the bracket of Equation (17.05)
there i1s an additional term [term --i/sig’we’™ in Equation (17.0 5)]
whir does not depend on these functions and is determined by the
uni 'orm part of the current Therefore, it 1s impossible to =xreprese
the resulting spherical wave from the cone's base only in ter-ms of
the functions f and g which characterize the total edge wave dlagra
from the corresponding wedge edge. This important fact was m ot
considered in [4#1, 44], as a consequence of which their authce rs did



not succeed in obtaining correct results for a cone with an arbitrary

aperture angle w(0 < w < n/2).

The effective scattering area in accordance with (12.18) 1is
determined by the equation

a:m[m’, (17.06)

where the function I 1s connected with the fringing field by the

relationship
a eikR
E‘;-T—-—Hy::.:w*é”on‘Tz . (17007)
and equals
{ 2 x
. *—’i—-sln';;
£ Etg"“sm klei*'+we_2ih'o (17. 08)

cos 7'!. cos n

The analogous function in the physical optics approach may be written
in accordance with (17.02) in the form

E°z—£!‘7-.tg’msinkle‘“—-tgme""'. (17.09)

With the deforming of the top part of the cone into a disk
®
(”"?rvlf*o), Equations (17.08) and (17.09) are transformed, respec-
tively, to the form
ﬂ___' 1 =
S="-ita—ctg. |

L= — ika.

(17.10)

Furthermore, it follows from (17.08) and (17.09) that for large

values of the parameter ka(ka »>> tg2w) the functions ¥ and 20 may

be represented in the form

2 =
V;sinf; (17-»11)
gww e?it{’
4 Fd )
£0g o0l

% 4



IO =g w &A1, (17.12)
Thus even in the case of short waves ( ka >> tgzm, but R >> klz),
our Expression (17.08) does not change into the physical optics

equation, but substantially differs from it because

isin?’:— !
n n
:1:::1:(1’} p o (1713)
CQ!T“‘"(‘.D&“;"‘
and
£ == za* tgt w. (17.14)
With this
1 ;3
| wln g
I=3 (17.15)

that is, for sufficiently short waves (or for sufficiently large
dimensions of the cone) the function o is proportional to oo. The
coefficient of proportionality here does not depend on the cone
dimensions, but is determined only by its shape.

This result is graphically illustrated by the curves giving
the effective scattering area of a cone (w = 10°25', k = =, 2 = 90°)
as a function of 1its length (Figure 31). Whereas our equation (the
continuous line) is in satisfactory agreement with the results of
measurements (the small crbsses)(l), the physical optics approach
(the dashed line) gives values which are smaller than the experimental
values by 13-15 dB. For sharply pointed cones, the nonuniform part of
the current has an especially large values. In Figure 32, a curve is

constructed for the effective surface of a cone (ka = 2.75 n, @ = 90°)

Footnote (1) appears on page 113,
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Flgure 31. The effective scatter-

ing area of a finite cone as a
function of its length. The
function ¢ (the continuous line)
was calculated on the basis of
equation (17.06) which con-
siders the nonuniform part of
the current in the vicinity of
the circular discontinuity.

The function o0 (the dashed
line) corresponds to the physi-
cal optics approach.

with its deformation into a disk
(v + 90°). The discrepancy be-
tween our curve and the physical
obtics approach here reaches
almost 30 dB when o = 2°.

Expression (17.08) obtailned
by us also allows one, in con-
trast to the physical optics
approach (17.09), to evaluate
the role of the shape of the
shadowed part of the body and
shows that the reflected signal
will be larger, the closer this
shape 1s to a funnel-shaped form
(@ =7 - w). Thus, for example,
in the case w = 10°, kZ = 10 =«
(k = ) the signal reflected by
the cone may exceed by 15 dB the
value corresponding to physical

optics (see Figure 33) if Q@ =
170°.

Let us note that our Expression (17.13) 1is equivalent to the

expression presented in the above-mentioned papers [41, U447.

However,

the latter expression 1is appiicable only for sharply pointed cones,
whereas we have, in addition to (17.13), Equation (17.08) which is

sultable for cones with any aperture angle w ((ﬁ§m€~:}.

&

The calculation method discussed may be generalized in the case

of asymmetric irradiation of the cone.

However, with asymmetric

irradiation, generally speaking, it 1s necessary to take into account

the nonuniform part of the current caused by the point of the cone.

In concluding this section, let us calculate the effective
scattering area for a body which is formed by rotation around the
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Figure 32. The effective scattering area of a finite cone
as a function of the vertex angle.
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rure 33. The effective scatter-
1z area of a finite cone as a
metion of the shape of the

1aded part.

z axis of the plane figure shown
in Figure 34, Integrating the
uniform part of the current, it is
not difficult to show that the -
field scattered in the direction
3=n by the lateral surface of the
truncated cone (Figure 35) is
determined by the equation

x = Hyz:: qu'[‘“‘({; tg’w,+ %tg w!). 8%"‘ +

» ’ N kil | /ER
»ﬂ};ig%ﬁ%igw? § R "
(17.16)
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Figure 35. The generatrix of

Figure 34. The generatrix of
the surface of rotation. of a truncated conical surface.

Summing this expressing with (17.02), where the quantities 7 and a
must be replaced by Zl and a,, we find the field from the uniform
part of the current flowing on the entire illuminated side of the

body
E P— | ____‘_{!_Eux’ 1 t" k[ —t 2ikl,
x = y= 7\, wsin kI, e’ goe |-
| 2R

! . ikly %k, A (17- 17)
-}-[H;tg’m,»smklze +(1—-—a—; t* tg ]2"". ;7 -

The field radiated by the nonuniform part of the current is

determined in accordance with § 16 by the equation

a,E ,fl o n ikly
5" e Fig o—tg o) ™

Ex=—H,=— & -

. ‘ [ cOs '-—-COS;I';' '
2l t ' (17.18)

a, By My skt +1y | e*R

js4 a0 e LML S,

+a, 5 2w, +1igo, R

Cos ““mCOS“"“' -

. 2

where
ny=142"% , --1+‘°"'9 (17.19)

Now summing (17.17) and (17.18), we obtain a refined expression

for the fleld scattered in the direction 8-—=x
"‘f"( gmsmkke""‘—% (17.20)

Eo=—H,=—22

(Equation continued on next page.
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2 z ; ,
o si ‘;;‘ ‘Qikl o
L P T ikly + 20kl
g € g gy sin ke '
| C0S - —Cos ==
ny
2. (17.20)
oo sin - ikR :
+ a4 M M2 eQ"k o+t | ¢ .
ay k14 2&)‘ R '
€05 7= — o8

”:

Consequently, the effective scattering area will equal

2 =
- sl - ’
1k, ny Ay Q2ith
o=ra ““% wsin kle™" 5o +
COS"“‘«-—-COS"““‘ :
ny
21 - s, (17.21)
o nm
| I o gg RlR2ik1 ny Ny 2k (L+1)] |
-+-;E;tg w, sin kl,e +2 2, r7a, ©
COSn —~e COS n’

In the physical optics approach, the analogous quantity equals

1 R YR 12
Eatgﬁnmnkge — tg we™"" -

N "
6% =— 'xa:

' (17.22)
+[E:‘i; tg, o, sin kl,(;”"’—]L (1 al 21&1,) tg ] 2:&1' r.

When the top part of the cone is deformed into a disk(ﬁ~>%u A—+0),
Equations (17.21) and (17.22) take the form

' . 1 x g 1 . il
s=ma |—ika,— ;:ctg;—;f‘-{-m tg? o, sin kle" "+

2 n A s
- sin — (17.23)
a, Ny - Ny 2kl
o e, '
a, & 2, 4
cos' S —cos -—-n \

0t 1 . ikl
:%:mar"Mﬂrfa;@”%&ﬂM§“j+
"l" s 3 . A

In these expressions assuming wy = 0, we find the effective

scattering area for a finite cylinder



|
—;mﬁaffw~zka,w;;€tg;:+"’“‘;“me ’ (17.25)

0 = na. (ka,)?, (17.26)

in connection with which

3 Q
n, =, nz::.."'l'—f-;. ‘ (17.27)

Equation (17.25) is more precise than Equation (15.06) which
was derived In § 15, where the value of the field In the direction

O0=a was taken in the physical optics approach.

§ 18. A Paraboloid of Rotation

Let us 'Q;alculate the effective scattering area of a paraboloid
of rotation r2 = 2pz (Figure 36) which is irradiated by plane wave
(16.20). The uniform part of the current excited on the paraboloid's

surface has the components
[4 .
jgm;& E oy sin ae™z, ‘

O __
iy=0 (18.01)

0 c .. ’
i, =13z F,x-cosa cos ve™. )

Integrating this current, it is not difficult to show that in the
direction #== it radiates the field

(224

Ee=—Hy=—Ep 5 (1) 1ga s’ ).

E,—=H, =0, J (18.02) -

Here a 1is the radius of the base of the paraboloid; lm-g-; m«gctg’m is

its length; o 1is the angle between the z axis and the tangent to the

generatrix of the paraboloid (r‘? 2pz ). At the point z = 7, the

angle o takes the value amm(tgmmg) .

b sa i NS s S T BENES ook s BNy s | 1‘33
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Figure 36. Diffraction
of a plane wave by a

paraboloid of rotation.

The field from the nonuniform part
of the current caused by the discontinuity
of the paraboloid's surface is determined
by Equation (17.03). The field from the
nonuniform part of the current which 1s
caused by the smooth curve of the para-
boloid's surface equals zero in the case
of symmetric radiation [45]. Therefore,
summing (18.02) and (17.03) we find the
expression for the resulting fringing

field.
2 =

' \
sin - /
ak,. n n ozt ) eXR
Ex:::"""H ..,_._.,L(tg +WW,§..(_; .:)....k_'

0“"‘---05“"‘"
csn C

Ey=H,=0 ’ (18.03)

w42
n )’

Consequently, the effective scattering area of the paraboloid
will be determined by the relationship |

2 0= 2
“";'Slﬂ";' .
6 =ra? tgm—#——um--ﬁ;em“ , (18.04)
COS“""-——*COS"”
n
which, when the paraboloid is deformed into a disk {®—3. {0, Q=
amﬁ) , 1s transformed to the form
. 1 :
s==a’|ika 4+ Tzdg% (18.05)
Comparing Expression (18.04) with the equation
= mattgle |1 —e™Mp, (18.06)

which physical optics gives for the effective scattering area, we
see that they differ significantly from one another. First of all,
the oscillating character of the function GO draws our attention:



the reflected signal equals zero if a whole number of half-waves
(z““%”*”le*QrS--'>is fitted into the length of the paraboloid, and
it takes a maximum ?alge if a half-integral number of half-waves
a(lxwg(u4~%j,n:xh2,3..JVis contained in this length.

A calculation performed by us on the basis of Equation (18.04)
, tgw 0.1 (k m) shows

o

= —

for parabololids with the parameters 9 = 9Q°
(Figure 37) that, although the oscillating character of the effective
scattering area is preserved, the amplitude of the oscillations is
only 2 dB, and the maximum values of the functica o exceed the corres-
ponding values 1n the physical optics approach by almost 13 dB. A
still stronger divergence between the results of our theory and
physical optics 1is detected when the paraboloid is defdrmed into a

kK =7, @ = 90°, w > 90°).

-

3n

disk (Figure 38, ka
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Figure 37. The effective scattering area of a finite
paraboloid as a function of its length with a constant
value of the angle w (tgow 0.1)., The diameter of the

hase varies.
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Figure 38. The effective scattering area of a

finite paraboloid as a function of its length
with a constant radius of the base.

As in the case of a cone, the shape of the shadowed part turns
out to have a substantial influence on the reflected signal. For
example, for a paraboloid with the parameters ka = 2r, k1 = 10 =,
tgw = 0.1 (k = 7), the reflected signal increases Dy b4 4B with an

increase of Q{w < 0 < 7 - -w) (Figure 39).



In concluding this section,
y = ‘ let us dwell for a moment on
""’d the question of calculating the
. effectlive scattering area for
/// ‘ bodles of rotation of a complex
s o | shape, whose elements are the
: 2€f lateral surfaces of truncated
e parabotoids. The field from the
nonuniform part of the current
¥ T | arising in the vicinity of
circular discontinuities may be
a v J” —F $ﬁ:# determined without difficulty
from Equation (17.03). The field

Figure 39. The effective scatter- [rom the uniform part of the
ing area of a finite paraboloid current is found by quadratures.

as a function of the shape of
the shaded part Thus, the fleld being created in
the direction 0¢== by the uniform
part of the current which flows on the lateral surface of the truncated
paraboloid re = 2pz(p = a tgu, = aytgu,; see Figure 4o) is determined

by the equation

1 . . . 1174
Egms — Hy = ) Eye (a1 wy — a:tg o, c**h )e'i“'“i’k“'- (18. 07)
Eys=Hy=0.

Here

l,m%-(a,ctga,-—-a,ctgw‘) (18.08)
is the helght of the truncated paraboloid (the distance between its
bases). Let us note that Equation (18.07) is a simple algebraic
corollary of Expression (18.02): 1t is the difference of the fields
scattered, respectively, by the paraboloid of height 5414~ f% and

by the parabolold of height , _ 3’



§ 19. A Spherical Surface

! e Tin
Tncident wave (16.20) excites a
t ’ surface current on the surface of an
, ideally conducting sphere (a radius of
oty " ’ p and a center on the z axis at the

point z = p). The uniform part of

Figure U0. The generatrix of this current has the components

the lateral surface of a 2 c (ke

truncated paraboloid of &:3““§;Euﬁosaf’ ]

rotation. ” ‘
i,=0, (15.01)

¢
j: =z f: £, sin B cos etk l
The currents flowing on a spherical ring cut from the sphere's
surface by the planes z = Zl and z = Zl + 22 (Figure U41) create, in
the direction V==, the field

Exmmﬂbﬁzgox[*“(%ltg’w!w‘_{%)e?ikh+}
: kR !
a, i LTI A 19.02
+(—2-tng-—;;)e ¥ } TR i (19.02)
nyﬂxzor ’
where
l,=p(1 —sinw,), } ) 0 (19.032)
Iy =p (sin o, —sin w,);
s B
P o —eos g (19.04)

Here a4 is the radius of the first cross section; a, is the radius
of the second cross section; wl<w2) is the angle between the z axis

i

and the tangent to the meridian at the point z = Zl(z2 = Z1 + 22).

s P - k14
Furthermore, assuming in Equation (19.02) o= (s,==const), we
obtain in the physical optics approach an expression for the fileld

scattered by the spherical segment (Figure 42)
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Figure 42. A spherical segment
4 with a conically shaped base.
Figure 41. A ring cut from the
surface of 1its sphere by the

- - : a i
planes z = Zl and z = Z1 + Zg‘ E. H,: Eu{j 2@30‘4&‘
i\ o ] ™R
.*..(..g.tgm.....z;)e ]._..k...‘ (19‘05)

Here we used the new designations

(19.06)

a=a, o=—u, }

l=1I,=p(l —sinw).

Equations (19.02) and (19.05) are simplified if ka; >> 1 and

ka2 >> 1. Thus, the field from the spherical ring will equal
" a. 2ikly\ oiny, e*R
Ere—=—H,=—E,, %tgo;—~%tnge )eq"%@—-, (19.07)

and the field from the spherical segment will equal

, oonr. o'ER
a‘g” (seco—tgw e“'*’)%—f . (12.08)

E":_:_...Hy::_:—w

If here one assumes w = 0, then equation

E o Hoe o 0Eu €% (19.09)
T Ty T T TR

gives us the field scattered by a hemisphere. The value of the
effective scattering area corresponding to it will equal, in
accordance with (17.06),

o = na’. (19.10)



Now let us find the field scattered by the spherical segment
considering the discontinuity of the surface; one may neglect the
perturbation of the current as a consequence of the smooth curve of
the surface if ka >> 1 [74]. The nonuniform part of the current
which 1is caused by the discontinuity creates in the direction ¥==n
the field (17.03). Summing the latter with the fleld (19.08), we

find the desired field

COs @
¢ e i
0s n Cos n

o 2 n
aE,, 1 p S0y ot IRR
Epm=—H,=—2 ( e ﬁ)ﬁ%,, (19.11)

Consequently, the effective scattering area of a spherical segment

will equal
”® "
- sin —
1 n n 21kl
m— }
s=1na cosw-{— 5 ?.‘_‘e .
cosn—-—cosn (19’12)
w42
n=1-4——.

In the physical optics approach, a similar quantity 1is determined
by field (19.08) and equals |

2

ol b 2kl
{2 tgwe - (19’13) ‘

cos w

With the deforming of the spherical surface into a disk
w3
(””*i%hl“*& Qz?cm“‘), Equations (19.12) and (19.13) are transformed,

respectively, to the form : |

6 == 14} ika+3~— ctgi ’
n n

a (19.14)

G'::“.-?’.a* (ka);‘ |

It follows from Equations (19.12) and (19.13) that the effective
scattering area of a spherical segment is an oscillating function of
its length. The oscillation period equals %. Numerical calculatilons
performed on the basis of these equations showed (Figure 43) that, |
with small angles of the discontinuity (9 = 15°), one may still
neglect the field from the nonuniform part of the current. In Figur
4L | graphs are constructed for the effective scattering area of a |

ig
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Figure 43. The effective scatter- Figure 44. A comparison of the

ing area of a spherical segment
as a function of its length with
a constant radius of the base.
The function ¢ (the continuous

effective scattering,area of

a spherical segment/(continuous
line) and a finite“cone (dashed
line) which have the same bases.

line) is calculated on the basis
of Equation (19.12) which con-
siders the nonuniform part of
the current near the discontin-
uity. The function o0 (the
dashed line) is calculated from
Equation (19.13), and corres-
ponds to the physical optics
approach.

spherical segment and a finite
cone (the dashed curve) which
have the same diameter and base

shape.

The results obtain=:d in this Chapter show that the reflected
signal depends substantially on the shape of the shaded part of the
body, and increases with an increase of the concavity. However,
since the nonuniform part of the current is concentrated mainly near
the discontinuity, that part of the shaded surface which is several
wavelengths away from the discontinuity evidently will not have a

noticeable effect on the reflected signal and may be an arbitrary

shape.



It 1s interesting that our expressions, which agree satisfactor-
ily with experiments, even with large (in comparison with the wave-
lengths) dimensions of the bodles, do not change into the physical
optics equations, but differ from them substantially. At the same
time, physical optics, contrary to the widely held opinion concerning
its reliability in such cases, leads to a significant discrepancy with

experiments.

The method used in this Chapter allows one to calculate the
effective scattering area assoclated with the symmetric irradiation
of any convex body of rotation, the surface of which has circular
discontinuities. It may also be generalized to the case of asymmetric
irradiation. However, when doing this it is necessary to take into
accoung the nonuniform part of the current caused by the point and

the smoqth curve of the surface.

-



FOOTNOTES

1. on page 98. See footnote on page 86.



