
Elementary algorithms and their
implementations

Yiannis N. Moschovakis1 and Vasilis Paschalis2

1 Department of Mathematics, University of California, Los Angeles, CA
90095-1555, USA, and Graduate Program in Logic, Algorithms and
Computation (MΠΛA), Athens, Greece, ynm@math.ucla.edu

2 Graduate Program in Logic, Algorithms and Computation (MΠΛA), Athens,
Greece, pasva@yahoo.com

In the sequence of articles [3, 5, 4, 6, 7], Moschovakis has proposed a math-
ematical modeling of the notion of algorithm—a set-theoretic “definition” of
algorithms, much like the “definition” of real numbers as Dedekind cuts on the
rationals or that of random variables as measurable functions on a probability
space. The aim is to provide a traditional foundation for the theory of algo-
rithms, a development of it within axiomatic set theory in the same way as
analysis and probability theory are rigorously developed within set theory on
the basis of the set theoretic modeling of their basic notions. A characteristic
feature of this approach is the adoption of a very abstract notion of algorithm
which takes recursion as a primitive operation, and is so wide as to admit
“non-implementable” algorithms: implementations are special, restricted al-
gorithms (which include the familiar models of computation, e.g., Turing and
random access machines), and an algorithm is implementable if it is reducible

to an implementation.
Our main aim here is to investigate the important relation between an

(implementable) algorithm and its implementations, which was defined very
briefly in [6], and, in particular, to provide some justification for it by showing
that standard examples of “implementations of algorithms” naturally fall un-
der it. We will do this in the context of (deterministic) elementary algorithms,
i.e., algorithms which compute (possibly partial) functions f : Mn ⇀ M from

(relative to) finitely many given partial functions on some set M ; and so part
of the paper is devoted to a fairly detailed exposition of the basic facts about
these algorithms, which provide the most important examples of the general
theory but have received very little attention in the general development. We
will also include enough facts about the general theory, so that this paper
can be read independently of the articles cited above—although many of our

The research for this article was co-funded by the European Social Fund and
National Resources - (EPEAEK II) PYTHAGORAS in Greece.

2 Yiannis N. Moschovakis and Vasilis Paschalis

choices of notions and precise definitions will appear unmotivated without the
discussion in those articles.3

A second aim is to fix some of the basic definitions in this theory, which
have evolved—and in one case evolved back—since their introduction in [3].

We will use mostly standard notation, and we have collected in the Ap-
pendix the few, well-known results from the theory of posets to which we will
appeal.

1 Recursive (McCarthy) programs

A (pointed, partial) algebra is a structure of the form

M = (M, 0, 1, Φ) = (M, 0, 1, {φM }φ∈Φ), (1)

where 0, 1 are distinct points in the universe M , and for every function con-

stant φ ∈ Φ,
φM : Mn ⇀ M

is a partial function of some arity n = nφ associated by the vocabulary Φ with
the symbol φ. The objects 0 and 1 are used to code the truth values, so that
we can include relations among the primitives of an algebra by identifying
them with their characteristic functions,

χR(~x) = R(~x) =

{
1, if R(~x),

0, otherwise.

Thus R(~x) is synonymous with R(~x) = 1.
Typical examples of algebras are the basic structures of arithmetic

N u = (N, 0, 1, S, Pd), N b = (N, 0, 1, parity, iq2, em2, om2)

which represent the natural numbers “given” in unary and binary notation.
Here S(x) = x + 1, Pd(x) = x−· 1 are the operations of successor and prede-
cessor, parity(x) is 0 or 1 accordingly as x is even or odd, and

iq2(x) = the integer quotient of x by 2, em2(x) = 2x, om2(x) = 2x + 1

are the less familiar operations which are the natural primitives on “binary
numbers”. (We read em2(x) and om2(x) as even and odd multiplication by
2.) These are total algebras, as is the standard (in model theory) structure on
the natural numbers N = (N, 0, 1, =, +,×) on N. Genuinely partial algebras
typically arise as restrictions of total algebras, often to finite sets: if {0, 1} ⊆
L ⊆ M , then

3 An extensive analysis of the foundational problem of defining algorithms and
the motivation for our approach is given in [6], which is also posted on
http://www.math.ucla.edu/∼ynm.

Elementary algorithms and their implementations 3

M ↾L = (L, 0, 1, {φM ↾L}φ∈Φ),

where, for any f : Mn ⇀ M ,

f ↾L(x1, . . . , xn) = w ⇐⇒ x1, . . . , xn, w ∈ L & f(x1, . . . , xn) = w.

The (explicit) terms of the language L(Φ) of programs in the vocabulary
Φ are defined by the recursion

A :≡ 0 | 1 | vi | φ(A1, . . . , An) | pn
i (A1, . . . , An)

| if (A0 = 0) then A1 else A2, (Φ-terms)

where vi is one of a fixed list of individual variables; pn
i is one of a fixed

list of n-ary (partial) function variables ; and φ is any n-ary symbol in Φ. In
some cases we will need the operation of substitution of terms for individual
variables: if ~x ≡ x1, . . . , xn is a sequence of variables and ~B ≡ B1, . . . , Bn is a
sequence of terms, then

A{~x :≡ ~B} ≡ the result of replacing each occurrence of xi by Bi.

Terms are interpreted naturally in any Φ-algebra M , and if ~x, ~p is any list
of variables which includes all the variables that occur in A, we let

[[A]](~x,~p) = [[A]]M (~x,~p)

= the value (if defined) of A in M , with ~x := ~x,~p := ~p. (2)

Now each pair (A,~x, ~p) of a term and a sufficiently inclusive list of variables
defines a (partial) functional

FA(~x,~p) = [[A]](~x,~p) (3)

on M , and the associated operator

F ′
A(~p) = λ(~x)[[A]](~x,~p). (4)

We view F ′
A as a mapping

F ′
A : (Mk1 ⇀ M) × · · · × (Mkn ⇀ M) → (Mn ⇀ M) (5)

where ki is the arity of the function variable pi, and it is easily seen (by
induction on the term A) that it is continuous.

A recursive (or McCarthy) program of L(Φ) is any system of recursive term

equations

A :





pA(~x) = p0(~x) = A0

p1(~x1) = A1

...
pK(~xK) = AK

(6)

4 Yiannis N. Moschovakis and Vasilis Paschalis

such that p0 ≡ pA, p1, . . . , pK are distinct function variables; p1, . . . , pK are
the only function variables which occur in A0, . . . , AK ; the only individual
variables which occur in each Ai are in the list ~xi; and the arities of the
function variables are such that these equations make sense. The term A0 is
the head of A, and it may be its only part, since we allow K = 0. If K > 0,
then the remaining parts A1, . . . , AK comprise the body of A. The arity of A
is the number of variables in the head term A0. Sometimes it is convenient to
think of programs as (extended) program terms and rewrite (6) in the form

A ≡ A0 where {p1 = λ(~x1)A1, . . . , pK = λ(~xK)AK}, (7)

in an expanded language with a symbol for the (abstraction) λ-operator and
mutual recursion. This makes it clear that the function variables p1, . . . , pK

and the occurrences of the indivudual variables ~xi in Ai (i > 0) are bound in
the program A, and that the putative “head variable” pA does not actually
occur in A. An individual variable z is free in A if it occurs in A0.

To interpret a program A on a Φ-structure M , we consider the system of
recursive equations 




p1(~x1) = [[A1]](~x1, ~p)
...

pK(~xK) = [[AK]](~xK , ~p).

(8)

By the basic Fixed Point Theorem 8.1, this system has a set of least solutions

p1, . . . , pK ,

the mutual fixed points of (the body of) A, and we set

[[A]] = [[A]]M = [[A0]](p1, . . . , pK) : Mn ⇀ M.

Thus the denotation of A on M is the partial function defined by its head
term from the mutual fixed points of A, and its arity is the arity of A.

A partial function f : Mn ⇀ M is M -recursive if it is computed by some
recursive program.

Except for the notation, these are the programs introduced by John Mc-
Carthy in [2]. McCarthy proved that the Nu-recursive partial functions are

exactly the Turing-computable ones, and it is easy to verify that these are also
the N b-recursive partial functions.

In the foundational program we describe here, we associate with each Φ-
program A of arity n and each Φ-algebra M , a recursor

int(A,M) : Mn M,

a set-theoretic object which purports to model the algorithm expressed by A
on M and determines the denotation [[A]]M : Mn ⇀ M . These referential

intensions of Φ-programs on M model “the algorithms of M ”; taken all
together, they are the first-order or elementary algorithms, with the algebra

Elementary algorithms and their implementations 5

X

S

- -x

s
T

s0 f(x)

�

?
input

· · ·
� z output W

Fig. 1. Iterator computing f : X ⇀ W .

M exhibiting the partial functions from (relative to) which any particular
elementary algorithm is specified.

It naturally turns out that the N u-algorithms are not the same as the
N b-algorithms on N, because (in effect) the choices of primitives in these two
algebras codify distinct ways of representing the natural numbers.

2 Recursive machines

Most of the known computation models for partial functions f : X → W
on one set to another are faithfully captured by the following, well-known,
general notion:

Definition 2.1 (Iterators). For any two sets X and Y , an iterator (or
abstract machine) i : X Y is a quintuple (input, S, σ, T, output), satisfying
the following conditions:

(I1) S is an arbitrary (non-empty) set, the set of states of i;
(I2) input : X → S is the input function of i;
(I3) σ : S → S is the transition function of i;
(I4) T ⊆ S is the set of terminal states of i, and s ∈ T =⇒ σ(s) = s;
(I5) output : T → Y is the output function of i.

A partial computation of i is any finite sequence s0, . . . , sn such that for
all i < n, si is not terminal and σ(si) = si+1. We write

s →∗
i

s′ ⇐⇒ s = s′, or there is a partial computation with s0 = s, sn = s′,

and we say that i computes the partial function i : X ⇀ Y defined by

i(x) = w ⇐⇒ (∃s ∈ T)[input(x) →∗
i

s & output(s) = w].

For example, each Turing machine can be viewed as an iterator i : N N,
by taking for states the (so-called) “complete configurations” of i, i.e., the
triples (σ, q, i) where σ is the tape, q is the internal state, and i is the location

6 Yiannis N. Moschovakis and Vasilis Paschalis

of the machine, along with the standard input and output functions. The same
is true for random access machines, sequential machines equipped with one
or more stacks, etc.

Definition 2.2 (Iterator isomorphism). An isomorphism between two it-
erators i1, i2 : X Y with the same input and output sets is any bijection
ρ : S1֌→S2 of their sets of states such that the following conditions hold:

(MI1) ρ(input1(x)) = input2(x) (x ∈ X).
(MI2) ρ[T1] = T2.
(MI3) ρ(τ1(s)) = τ2(ρ(s)), (s ∈ S1).
(MI4) If s ∈ T1 and s is input accessible, i.e., input1(x) →∗ s for some x ∈ X,

then output1(s) = output2(ρ(s)).

The restriction in (MI4) to input accessible, terminal states holds trivially
in the natural case, when every terminal state is input accessible; but it is
convenient to allow machines with “irrelevant” terminal states (much as we
allow functions f : X → Y with f [X] (Y), and for such machines it is
natural to allow isomorphisms to disregard them.

For our purpose of illustrating the connection between the algorithm ex-
pressed by a recursive program and its implementations, we introduce re-

cursive machines, perhaps the most direct and natural implementations of
programs.

Definition 2.3 (Recursive machines). For each recursive program A and
each Φ-algebra M , we define the recursive machine i = i(A,M) which com-
putes the partial function [[A]]M : Mn ⇀ M denoted by A as follows.

First we modify the class of Φ-terms by allowing all elements in M to occur
in them (as constants) and restricting the function variables that can occur
to the function variables of A:

B :≡ 0 | 1 | x | vi | φ(B1, . . . , Bn) | pi(B1, . . . , Bki
)

| if (B0 = 0) then B1 else B2 (Φ[A, M]-terms)

where x is any member of M , viewed as an individual constant, like 0 and 1.
A Φ[A, M]-term B is closed if it has no individual variables occurring in it,
so that its value in M is fixed by M (and the values assigned to the function
variables p1, . . . , pK).

The states of i are all finite sequences s of the form

a0 . . . am−1 : b0 . . . bn−1

where the elements a0, . . . , am1
, b0, . . . , bn−1 of s satisfy the following condi-

tions:

• Each ai is a function symbol in Φ, or one of p1, . . . , pK , or a closed Φ[A, M]-
term, or the special symbol ?; and

Elementary algorithms and their implementations 7

• each bj is an individual constant, i.e., bi ∈ M .

The special symbol ‘:’ has exactly one occurrence in each state, and that the
sequences ~a,~b are allowed to be empty, so that the following sequences are
states (with x ∈ M):

x : : x :

The terminal states of i are the sequences of the form

: w

i.e., those with no elements on the left of ‘:’ and just one constant on the right;
and the output function of i simply reads this constant w, i.e.,

output(: w) = w.

The states, the terminal states and the output function of i depend only on M
and the function variables which occur in A. The input function of i depends
also on the head term of A,

input(~x) ≡ A0{~x :≡ ~x} :

where ~x is the sequence of individual variables which occur in A0.

The transition function of i is defined by the seven cases in the Transition
Table 1, i.e.,

σ(s) =

{
s′, if s → s′ is a special case of some line in Table 1,

s, otherwise,

and it is a function, because for a given s (clearly) at most one transition
s → s′ is activated by s. Notice that only the external calls depend on the
algebra M , and only the internal calls depend on the program A—and so,
in particular, all programs with the same body share the same transition
function.

Theorem 2.4. Suppose A is a Φ-program with function variables ~p, M is

a Φ-algebra, p1, . . . , pK are the mutual fixed points of A, and B is a closed

Φ[A, M]-term. Then for every w ∈ M ,

[[B]]M(p1, . . . , pK) = w ⇐⇒ B : →∗
i(A,M) : w. (9)

In particular, with B ≡ A0{~x :≡ ~x},

[[A]]M(~x) = w ⇐⇒ A0{~x :≡ ~x} : →∗
i(A,M) : w,

and so the iterator i(A,M) computes the denotation [[A]]M of A.

8 Yiannis N. Moschovakis and Vasilis Paschalis

(pass) ~a x : ~b → ~a : x ~b (x ∈ M)

(e-call) ~a φi : ~x ~b → ~a : φM

i (~x) ~b

(i-call) ~a pi : ~x ~b → ~a Ai{~xi :≡ ~x} : ~b

(comp) ~a h(A1, . . . , An) : ~b → ~a h A1 · · · An : ~b

(br) ~a if (A = 0) then B else C : ~b → ~a B C ? A : ~b

(br0) ~a B C ? : 0 ~b → ~a B : ~b

(br1) ~a B C ? : y(6= 0) ~b → ~a C : ~b

• The underlined words are those which trigger a transition and change.
• ~x = x1, . . . , xn is an n-tuple of individual constants.
• In the external call (e-call), φi ∈ Φ and arity(φi) = ni = n.
• In the internal call (i-call), pi is an n-ary function variable of A defined by the

equation pi(~x) = Ai.
• In the composition transition (comp), h is a (constant or variable) function

symbol with arity(h) = n.

Table 1. Transition Table for the recursive machine i(A,M).

Outline of proof. First we define the partial functions computed by i(A,M)
in the indicated way,

p̃i(~xi) = w ⇐⇒ pi(~xi) : →∗ : w,

and show by an easy induction on the term B the version of (9) for these,

[[B]]M (p̃1, . . . , p̃K) = w ⇐⇒ B : →∗
i(A,M) : w. (10)

When we apply this to the terms Ai{~xi :≡ ~xi} and use the form of the internal
call transition rule, we get

[[Ai]]
M (~xi, p̃1, . . . , p̃K) = w ⇐⇒ p̃i(~xi) = w,

which means that the partial functions p̃1, . . . , p̃K satisfy the system (8), and
in particular

p1 ≤ p̃1, . . . , pK ≤ p̃K .

Next we show that for any closed term B as above and any system p1, . . . , pK

of solutions of (8),

B : →∗ w =⇒ [[B]]M (p1, . . . , pK) = w;

Elementary algorithms and their implementations 9

this is done by induction of the length of the computation which establishes
the hypothesis, and setting B ≡ Ai{~xi :≡ ~xi}, it implies that

p̃1 ≤ p1, . . . , p̃K ≤ pK .

It follows that p̃1, . . . , p̃K are the least solutions of (8), i.e., p̃i = pi, which
together with (10) completes the proof.

Both arguments appeal repeatedly to the following trivial but basic prop-
erty of recursive machines: if s0, s1, . . . , sn is a partial computation of i(A,M)

and ~a∗,~b
∗

are such that the sequence ~a∗s0
~b
∗

is a state, then the sequence

~a∗s0
~b
∗
, ~a∗s1

~b
∗
, . . . , ~a∗sn

~b
∗

is also a partial computation of i(A,M). ⊓⊔

3 Monotone recursors and recursor isomorphism

An algorithm is directly expressed by a definition by mutual recursion, in our
approach, and so it can be modeled by the semantic content of a mutual
recursion. This is most simply captured by a tuple of related mappings, as
follows.

Definition 3.1 (Recursors). For any poset X and any complete poset W ,
a (monotone) recursor α : X W is a tuple

α = (α0, α1, . . . , αK),

such that for suitable, complete posets D1, . . . , DK :

(1) Each part αi : X × D1 × · · ·DK → Di, (i = 1, . . . , k) is a monotone
mapping.

(2) The output mapping α0 : X × D1 × · · · × DK → W is also monotone.

The number K is the dimension of α; the product Dα = D1 × · · · ×DK is its
solution set ; its transition mapping is the function

µα(x,~d) = (α1(x,~d), . . . , αK(x,~d)),

on X × Dα to Dα; and the function α : X → W computed by α is

α(x) = α0(x,~d(x)) (x ∈ X),

where ~d(x) is the least fixed point of the system of equations

~d = µα(x,~d).

By the basic Fixed Point Theorem 8.1,

10 Yiannis N. Moschovakis and Vasilis Paschalis

α(x) = α0(x,~d
κ

α(x)), where ~d
ξ

α(x) = µα(x, sup{~d
η

α(x) | η < ξ}), (11)

for every sufficiently large ordinal κ—and for κ = ω when α is continuous.
We express all this succinctly by writing4

α(x) = α0(x,~d) where {~d = µα(x,~d)}, (12)

α(x) = α0(x,~d) where {~d = µα(x,~d)}. (13)

The definition allows K = dimension(α) = 0, in which case5 α = (α0) for
some monotone function α0 : X → W , α = α0, and equation (12) takes the
awkward (but still useful) form

α(x) = α0(x) where { }.

A recursor α is continuous if the mappings αi (i ≤ K) are continuous, and
discrete if X is a set (partially ordered by =) and W = Y ∪{⊥} is the bottom
liftup of a set. A discrete recursor α : X Y⊥ computes a partial function
α : X ⇀ Y .

Definition 3.2 (The recursor of a program). Every recursive Φ-program
A of arity n determines naturally the following recursor r(A,M) : Mn M⊥

relative to a Φ-algebra M :

r(A,M) = [[A0]]
M (~x,~p)

where {p1 = λ(~x1)[[A1]]
M (~x1, ~p), . . . , pK = λ(~xK)[[AK]]M (~xK , ~p)}. (14)

More explicitly (for once), r(A,M) = (α0, . . . , αK), where Di = (Mki ⇀ M)
(with arity(pi) = ki) for i = 1, . . . , K, D0 = (Mn ⇀ M), and the mappings
αi are the continuous operators defined by the parts of the program term A
by (4); so r(A,M) is a continuous recursor. It is immediate from the semantics
of recursive programs and (11) that the recursor of a program computes its
denotation,

r(A,M)(~x) = [[A]]M (~x) (~x ∈ Mn). (15)

Notice that the transition mapping of r(A,M) is independent of the input
~x, and so we can suppress it in the notation:

4 Formally, ‘ where ’ and ‘where ’ denote operators which take (suitable) tuples
of monotone mappings as arguments, so that where (α0, . . . , αK) is a recursor
and where (α0, . . . , αn) is a monotone mapping. The recursor-producing operator
‘ where ’ is specific to this theory and not familiar, but the mapping producing
where is one of many fairly common, recursive program constructs for which
many notations are used, e.g.,

(letrec([d1 α1] . . . [dK αK]) α0) or (d1 = α1, . . . dK = αK) in α0.

5 Here Dα = {⊥} (by convention or a literal reading of the definition of product

poset), µα(x, d) = d, and (by convention again) α0(x,⊥) = α0(x).

Elementary algorithms and their implementations 11

µr(A,M)(~p) = µr(A,M)(~x,~p) = (α1(~p), . . . , αK(~p)). (16)

Caution: The recursor r(A,M) does not always model the algorithm ex-

pressed by A on M, because it does not take into account the explicit steps

which may be required for the computation of the denotation of A. In the
extreme case, if A ≡ A0 is an explicit term (a program with just a head and
empty body), then

r(A,M) = [[A0]]
M (~x) where { }

is a trivial recursor of dimension 0—and it is the same for all explicit terms
which define the same partial function, which is certainly not right. We will
put off until Section 7 the correct and complete definition of int(A,M) which
models more faithfully the algorithm expressed by a recursive program. As it
turns out, however,

int(A,M) = r(cf(A),M)

for some program cf(A) which is canonically associated with each A, and so
the algorithms of an algebra M will all be of the form (14) for suitable A’s.

Definition 3.3 (Recursor isomorphism). Two recursors α, β : X W
(on the same domain and range) are isomorphic6 if they have the same dimen-
sion K, and there is a permutation (l1, . . . , lK) of (1, . . . , K) and poset isomor-
phisms ρi : Dα,li → Dβ,i, such that the induced isomorphism ρ : Dα → Dβ on

the solution sets preserves the recursor structures, i.e., for all x ∈ X,~d ∈ Dα,

α0(x,~d) = β0(x, ρ(~d)),

ρ(µα(x,~d)) = µβ(x, ρ(~d)).

In effect, we can reorder the system of equations in the body of a recursor
and replace the components of the solution set by isomorphic copies without
changing its isomorphism type.

It is easy to check, directly from the definitions, that isomorphic recursors
α, β : X W compute the same function α = β : X → W ; the idea, of
course, is that isomorphic recursors model the same algorithm, and so we will
simply write α = β to indicate that α and β are isomorphic.

4 The representation of abstract machines by recursors

We show here that the algorithms expressed by abstract machines are faith-
fully represented by recursors.

6 A somewhat coarser notion of recursor isomorphism was introduced in [7] in order
to simplify the definitions and proofs of some of the basic facts about recursors,
but it proved not to be a very good idea. We are reverting here to the original,
finer notion introduced in [5].

12 Yiannis N. Moschovakis and Vasilis Paschalis

Definition 4.1 (The recursor of an iterator). For each iterator

i : (input, S, σ, T, output) : X Y,

as in Definition 2.1, we set

r(i) = p(input(x))

where {p(s) = if (s ∈ T) then output(s) else p(σ(s))}. (17)

This is a continuous, discrete recursor of dimension 1, with solution space
the function poset (S ⇀ Y) and output mapping (x, p) 7→ p(input(x)), which
models the tail recursion specified by i.

It is very easy to check directly that for each iterator i : X Y ,

r(i)(x) = i(x) (x ∈ X), (18)

but this will also follow from the next, main result of this section.

Theorem 4.2. Two iterators i1, i2 : X Y are isomorphic if and only if the

associated recursors r(i1) and r(i2) are isomorphic.

Proof. By (17), for each of the two given iterators i1, i2,

ri = r(ii) = (valuei, µi),

where for p ∈ Di = (Si ⇀ Y) and x ∈ X,

valuei(x, p) = p(inputi(x)),

µi(x, p) = µi(p) = λ(s)[if (s ∈ Ti) then outputi(s) else p(τi(s))] : Si ⇀ Y.

Part 1. Suppose first that ρ : S1֌→S2 is an isomorphism of i1 with i2, and
let fi : Si ⇀ Y be the least-fixed-points of the transition functions of the two
iterators, so that

fi(s) = outputi(τ
|s|
i (s)) where |s| = the least n such that τn

i (s) ∈ Ti.

In particular, this equation implies easily that

f1(s) = f2(ρ(s)).

The required isomorphism of r1 with r2 is determined by a poset isomor-
phism of the corresponding solution sets (S1 ⇀ Y) and (S2 ⇀ Y), which must
be of the form

π(p)(ρ(s)) = σs(p(s)) (s ∈ S1), (19)

by Proposition 8.4. We will use the given bijection ρ : S1֌→S2 and bijections
σs : Y֌→Y which are determined as follows.

We choose first for each t ∈ T1 a bijection σ∗
t : Y֌→Y such that

σ∗
t (output1(t)) = output2(ρ(t)) (t ∈ T1),

and then we consider two cases:

Elementary algorithms and their implementations 13

(a) If f1(s)↑ or there is an input accessible s′ such that s →∗ s′, let σs(y) = y.
(b) If f1(s)↓ and there is no input accessible s′ such that s →∗ s′, let σs = σ∗

t ,

where t = τ
|s|
1 (s) ∈ T1 is “the projection” of s to the set T1.

Lemma. For all s ∈ S1,

στ1(s) = σs (s ∈ S1). (20)

Proof. If f1(s) ↑ or there is an input accessible s′ such that s →∗ s′, then
τ1(s) has the same property, and so σs and στ1(s) are both the identity; and
if f1(s)↓ and there is no input accessible s′ such that s →∗ s′, then τ1(s) has
the same properties, and it “projects” to the same t = τn

1 (s) ∈ T1, so that
σs = στ1(s) = σ∗

t . ⊓⊔ (Lemma)

Now π in (19) is an isomorphism of (S1 ⇀ Y) with (S2 ⇀ Y) by Proposi-
tion 8.4, and it remains only to prove the following two claims:

(i) value1(x, p) = value(x, π(p)), i.e., p(input1(x)) = π(p)(input2(x)). This
holds because s = input1(x) is input accessible, and so σs is the identity and

π(p)(input2(x)) = π(p)(ρ(input1(x)) = σs(p(input1(x))) = p(input1(x)).

(ii) π(µ1(p)) = µ2(π(p)), i.e., for all s ∈ S1,

π(µ1(p))(ρ(s)) = µ2(π(p))(ρ(s)). (21)

For this we distinguish three cases:
(iia) s ∈ T1 and it is input accessible. Now (a) applies in the definition

of σs so that σs is the identity and we can compute the two sides of (21) as
follows:

π(µ1(p))(ρ(s)) = µ1(p)(s) = output1(s),

µ2(π(p))(ρ(s)) = output2(ρ(s)),

and the two sides are equal by (MI4) whose hypothesis holds in this case.
(iib) s ∈ T1 but it is not input accessible, so that (b) applies. Again

π(µ1(p))(ρ(s)) = σs(µ1(p)(s)) = σs(output1(s)),

µ2(π(p))(ρ(s)) = output2(ρ(s)),

and the two sides are now equal by the choice of σs = σ∗
s .

(iic) s /∈ T1. In this case we can use (20):

π(µ1(p))(ρ(s)) = σs(µ1(p)(s)) = σs(p(τ1(s))),

µ2(π(p))(ρ(s)) = π(p)(τ2(ρ(s))) = π(p)(ρ(τ1(s))) = στ1(s)(p(τ1(s)),

and the two sides are equal by (20).

This completes the proof of Part 1.

14 Yiannis N. Moschovakis and Vasilis Paschalis

Part 2. Suppose now that π : (S1 ⇀ Y)֌→(S2 ⇀ Y) is an isomorphism
of r1 with r2, so that by Proposition 8.4,

π(p)(ρ(s)) = σs(p(s)) (p : S1 ⇀ Y),

where ρ : S1֌→S2 and for each s ∈ S1, σs : Y֌→Y . Moreover, since π is a
recursor isomorphism, we know that

p(input1(x)) = π(p)(input2(x)) (22)

π(µ1(p))(ρ(s)) = µ2(π(p))(ρ(s)) (23)

We will use these identities to show that ρ is an isomorphism of i1 with i2.

(a) ρ[T1] = T2, (MI2).

From the definition of the transition maps µi, it follows immediately that
outputi = µi(⊥), and hence

output2 = µ2(⊥) = µ2(π(⊥)) = π(µ1(⊥)) = π(output1);

and then using the representation of π, for all s ∈ S1,

output2(ρ(s)) = π(output1)(ρ(s)) = σs(output1(s)),

so that output1(s)↓ ⇐⇒ output2(ρ(s))↓ , which means precisely that ρ[T1] =
T2.

(b) If s = input1(x), then σs is the identity and ρ(s) = ρ(input1(x)) =
input2(x), (MI1).

If t is such that ρ(t) = input2(x), then by (22), for all p,

p(s) = π(p)(input2(x)) = π(p)(ρ(t)) = σt(p(t));

and if we apply this to

p(u) =

{
y, if u = s,

⊥, otherwise,

and consider the domains of convergence of the two sides, we get that t = s,
and hence y = σs(y) and ρ(s) = ρ(t) = input2(x).

(c) If s is input accessible, then for every t ∈ Y , σs(y) = y.

In view of (b), it is enough to show that if σs is the identity, then στ1(s) is
also the identity. This is immediate when s ∈ T1, since τ1(s) = s in this case.
So assume that s is not terminal, and that σs is the identity, which with (23)
gives, for every p,

µ2(π(p))(ρ(s)) = π(p)(µ1(p))(ρ(s)) = σs(µ1(p)(s)) = µ1(p)(s).

If s /∈ T1, then ρ(s) /∈ T2 by (a), and so this equation becomes

Elementary algorithms and their implementations 15

π(p)(τ2(ρ(s))) = p(τ1(s)).

If t is such that ρ(t) = τ2(ρ(s)), then this identity together with the represen-
tation of π gives

σt(p(t)) = π(p)(ρ(t)) = π(p)(τ2(ρ(s))) = p(τ1(s));

and, as above, this yields first that t = τ1(s) and then that στ1(s) is the
identity.

(d) If s is terminal and input accessible, then output2(ρ(s)) = output1(s),
(MI4).

As in (b), and using (c) this time,

output2(ρ(s)) = π(output1)(ρ(s)) = σs(output1(s)) = output1(s).

Finally:

(e) For all s ∈ S1, ρ(τ1(s)) = τ2(ρ(s)).

This identity holds trivially if t ∈ T1, in view of (a), and so we may assume
that t /∈ T1 and apply the basic (23), which with the representation of π yields
for all p and s,

σs(µ1(p)(s)) = µ2(π(p))(ρ(s)) = π(p)(τ2(ρ(s))).

If, as above, we choose t so that ρ(t) = τ2(ρ(s)), this gives

σs(p(τ1(s))) = π(p)(ρ(t)) = σt(p(t));

and by applying this to some p which converges only on τ1(s), we get t = τ1(s),
so that τ2(ρ(s)) = ρ(t) = ρ(τ1(s)), as required. ⊓⊔

5 Recursor reducibility and implementations

The notion of simulation of one program (or machine) by another is notori-
ously slippery: in the relevant Section 1.2.2 of one of the standard (and most
comprehensive) expositions of the subject, van Emde Boas [1] starts with

Intuitively, a simulation of [one class of computation models] M by
[another] M ′ is some construction which shows that everything a ma-
chine Mi ∈ M can do on inputs x can be performed by some machine
M ′

i ∈ M ′ on the same inputs as well;

goes on to say that “it is difficult to provide a more specific formal definition
of the notion”; and then discusses several examples which show “how hard it
is to define simulation as a mathematical object and still remain sufficiently
general”.

16 Yiannis N. Moschovakis and Vasilis Paschalis

The situation is somewhat better at the more abstract level of recursors,
where a very natural relation of reducibility of one recursor to another seems
to capture a robust notion of “algorithm simulation”. At the same time, the
problem is more important for recursors than it is for machines: because this
modeling of algorithms puts great emphasis on understanding the relation

between an algorithm and its implementations, and this is defined by a re-
ducibility.

In this section we will reproduce the relevant definitions from [6] and we
will establish that the recursor r(A,M) determined by a program on an alge-
bra M is implemented by the recursive machine i(A,M).

Definition 5.1 (Recursor reducibility). Suppose α, β : X W are re-
cursors with the same input and output domains and respective solution sets

Dα = Dα
1 × · · · × Dα

K , Dβ = Dβ
1 × · · · × Dβ

L,

and transition mappings

µα : X × Dα → Dα, µβ : X × Dβ → Dβ .

A reduction of α to β is any monotone mapping

π : X × Dα → Dβ

such that the following three conditions hold, for every x ∈ X and every
d ∈ Dα:

(R1) µβ(x, π(x, d)) ≤ π(x, µα(x, d)).
(R2) β0(x, π(x, d)) ≤ α0(x, d).
(R3) α(x) = β(x).

We say that α is reducible to β if a reduction exists,

α ≤r β ⇐⇒ there exists a reduction π : X × Dα → Dβ .

Recursor reducibility is clearly reflexive and (easily) transitive.

If K = L = 0 so that the recursors are merely functions, this means that
they are identical, α0(x,⊥) = β0(x,⊥); and if K = 0 while L > 0, then these
conditions degenerate to the existence of some monotone π : X → Dβ , such
that

µβ(x, π(x)) ≤ π(x), β0(x, π(x)) ≤ α0(x,⊥), α(x) = α0(x,⊥) = β(x),

which simply means that β computes α—i.e., they hold of any β such that
β = α with π(x) = dκ

β(x) as in (11). In the general case, (R1) and (R2) imply
(by a simple ordinal recursion) that for all x and ξ,

dξ
β(x) ≤ π(x, dξ

α(x)), β0(x, dξ
β(x)) ≤ α0(x, dξ

α(x)),

Elementary algorithms and their implementations 17

and then (R3) insures that in the limit,

β(x) = β0(x, dκ
β(x)) = α0(x, dκ

α(x)) = α(x);

thus β computes the same map as α but possibly “slower”, in the sense that
each iterate dξ

β(x) gives us part (but possibly not all) the information in the

corresponding stage dξ
α(x)—and this in a uniform way. It is not completely

obvious, however, that the definition captures accurately the intuitive notion
of reduction of the computations of one recursor to those of another, and the
main result in this section aims to provide some justification for it.

Definition 5.2 (Implementations). A recursor α : X Y ∪ {⊥} into a
flat poset is implemented by an iterator i : X Y if it is reducible to the
recursor representation of i, i.e.,

α ≤r r(i).

Theorem 5.3. For each recursive program A and each algebra M, the re-

cursive machine i(A,M) associated with A and M implements the recursor

r(A,M) defined by A on M, i.e.,

r(A,M) ≤r r(i(A,M)).

To simplify the construction of the required reduction, we establish first a
technical lemma about Scott domains, cf. Definition 8.2:

Lemma 5.4. Suppose α : X W and the solution set Dα has the Scott

property, and set

D∗
α = {d ∈ Dα | (∀x)[d ≤ µα(x, d)]}. (24)

Then D∗
α is a complete subposet of Dα, and for any recursor β : X W ,

α ≤r β if and only if there exists a monotone map π∗ : X × D∗
α → Dβ which

satisfies (R1) – (R3) of Definition 5.1 for all x ∈ X, d ∈ D∗
α.

Proof. We assume the hypotheses on α and π∗ : X ×D∗
α → Dβ , and we need

to extend π∗ so that it has the same properties on Dα.

(1) The subposet D∗
α is complete, and for each d ∈ D, the set

X∗
d = {d∗ ∈ D∗

α | d∗ ≤ d}

is directed, so that

ρ(d) = sup X∗
d ∈ D∗

α.

Proof. For the first claim, it is enough to show that if X ⊆ D∗
α is directed and

d = sup X, then d ∈ D∗
α: this holds because for any d∗ ∈ X, d∗ ≤ d, and so

d∗ ≤ µα(x, d∗) ≤ µα(x, d),

18 Yiannis N. Moschovakis and Vasilis Paschalis

using the characteristic property of D∗
α and the monotonicity of µα; and now

taking suprema, we get the required d ≤ µα(x, d).
For the second claim, if d1, d2 ∈ X∗

d , then they are compatible, and so
their supremum d∗ = sup{d1, d2} exists, d∗ ≤ d, and it suffices to show that
d∗ ∈ D∗

α; this holds because di ≤ µ(x, di) ≤ µα(x, d∗) by the characteristic
property of D∗

α and the monotonicity of µα, and so d∗ ≤ µα(x, d∗) by the
definition of d∗. ⊓⊔ (1)

We now extend π∗ it to all of Dα by

π(x, d) = sup{π∗(x, d∗) | d∗ ∈ X∗
d}.

(2) (R1): For all x and d, µ2(x, π(x, d)) ≤ π(x, µ1(x, d)).

Proof. We must show that

µ2(x, sup{π∗(x, d∗) | d∗ ∈ D∗
α & d∗ ≤ d})

≤ sup{π∗(x, e∗) | e∗ ∈ D∗
α & e∗ ≤ µ1(x, d)}. (25)

If d∗ ∈ D∗
α and d∗ ≤ d, then d∗ ≤ ρ(d), hence π∗(x, d∗) ≤ π∗(x, ρ(d)), and if

we take suprema and apply µ2, we get

µ2(x, sup{π∗(x, d∗) | d∗ ∈ D∗
α & d∗ ≤ d}) ≤ µ2(x, π∗(x, ρ(d)))

≤ π∗(x, µ1(x, ρ(d))),

using the hypothesis, that (R1) holds for π∗; thus to complete the proof of (25),
it is enough to verify that

µ1(x, ρ(d)) ≤ µ1(x, d),

which, however, is clearly true, since ρ(d) ≤ d and µ1 is monotone. ⊓⊔ (2)

(3) (R2) For all x and d, β0(x, π(x, d)) ≤ α0(x, d).

Proof. Arguing as in the proof of (2), we conclude that

β0(x, π(x, d)) = β0(x, sup{π∗(x, d∗) | d∗ ∈ X∗
d}) ≤ β0(x, π∗(x, ρ(d)))

≤ α0(x, ρ(d)) ≤ α0(x, d),

where we appealed to (R2) for π∗ in the next-to-the-last inequality. ⊓⊔ (3)

Finally, (R3) holds because the computation of α takes place entirely
within D∗

α on which the given π∗ coincides with π and is assumed to sat-
isfy (R1) – (R3). ⊓⊔

Elementary algorithms and their implementations 19

Proof of Theorem 5.3. We fix a recursive program A and an algebra M and
set

α = r(A,M) = (α0, α1, . . . , αK), β = (β0, β1) = r(i(A,M))

as these are defined in Definitions 3.2, 2.3 and 4.1, so that

D0 = (Mn ⇀ M), Dα = D1 × · · · × DK (with Di = (Mki ⇀ M));

the mappings αi are the continuous operators defined by the parts Ai of
the program A by (4); the transition mapping µα of α (defined in (16)) is
independent of the input ~x; Dβ = (S ⇀ M) with S the set of states of the
recursive machine i(A,M); β0(d)(~x) = d(A0{~x :≡ ~x} :); and

µβ(d) = β1(d) = λ(s)[if (s =: w′ for some w′) then w′ else d(σ(s))],

where σ is the transition mapping σ of the recursive machine and (like µα)
is independent of the input ~x. To complete the proof, we need to define a
monotone mapping π : Dα → Dβ so that (tracing the definitions), the follow-
ing two conditions hold:

(R1) For all ~p ∈ Dα, β1(π(~p)) ≤ π(µα(~p)); this means that for all w ∈ M ,

π(µα(~p))(: w) = w, (R1a)

and for every non-terminal state s of the recursive machine i(A,M) and any
w ∈ M ,

π(~p)(σ(s)) = w =⇒ π(µα(~p))(s) = w. (R1b)

(R2) For all ~x ∈ Mn, ~p ∈ Dα and ~x ∈ Mn, w ∈ M ,

π(~p)(A0{~x :≡ ~x} :) = w =⇒ [[A0]]
M (~x,~p) = w.

The third conditions (R3) is independent of the reduction π and holds by
Theorem 2.4, (18), and (15).

For each tuple ~p ∈ Dα, let

M {~p := ~p} = (M, 0, 1, {φM

φ∈Φ} ∪ {p1, . . . , pn})

be the expansion of the algebra M by the partial functions p1, . . . , pK in the
vocabulary Φ∪{p1, . . . , pK} of the given program A. The states of i(A,M) are
also states of i(A,M {~p := ~p})—but differently interpreted, since p1, . . . , pK

have now been fixed and so calls to them are external (independent of the

program A) rather than internal. For any state ~a : ~b, we set

π(~p)(~a : ~b) = w ⇐⇒ ~a : ~b →∗
M{~p:=~p} w

⇐⇒ the computation of i(A,M {~p := ~p})

which starts with ~a : ~b terminates in the state : w.

20 Yiannis N. Moschovakis and Vasilis Paschalis

Since M and the Φ[A, M]-terms are fixed, these computations depend only on
the assignment {~p := ~p}, and we will call them {~p := ~p}-computations ; they
are exactly like those of i(A,M), except when one of the pi is called with the
correct number of arguments: i.e., when pi is n-ary, then for any x1, . . . , xn,

~a pi : x1 · · ·xn
~b →{~p:=~p} ~a : pi(x1, . . . , xn) ~b

We establish that π has the required properties in a sequence of lemmas.

(1) The mapping π is monotone.

Proof. If ~p ≤ ~q and π(~p)(s) = w, then the finite {~p := ~p}-computation
starting with s calls only a finite number of values of the partial functions
p1, . . . , pK and terminates in the state : w; the {~p := ~q}-computation starting
with s will then call the same values of q1, . . . , qK , it will get the same answers,
and so it will reach the same terminal state : w. ⊓⊔ (1)

(2) For each Φ[A, M]-term B,

π(~p)(B :) = [[B]]M (~p).

Proof is easy, by induction on B. ⊓⊔ (2)

By Lemma 5.4, it is enough to verify (R1) and (R2) for ~p ∈ D∗
α, and we

will appeal to this in (5) below.

(3) (R1a): π(µα(~p))(: w) = w.

Proof. This is immediate from the definition of π, since the {~p := µα(~p)}-
computation starting with : w terminates immediately, without looking at the
partial function assigned to any pi. ⊓⊔ (3)

(4) (R1b) for the case where s is a state of the form

~a pi : x1x2 · · ·xn
~b

with arity(pi) = n.

Proof. By the transition table of the recursive machine i(A,M),

~a pi : x1x2 · · ·xn
~b → ~a Ai{~xi :≡ ~x} : ~b

and so the hypothesis of (R1b) in this case gives us that

π(~p)(~a Ai{~xi :≡ ~x} : ~b) = w

which means that w is the output of the {~p := ~p}-computation

~a Ai{~xi :≡ ~x} : ~b
...
: w


 {~p := ~p}

Elementary algorithms and their implementations 21

By (2) above,

~a Ai{~xi :≡ ~x} : ~b
...

~a : [[Ai{~xi :≡ ~x}]](~p) ~b


 {~p := ~p}

and so, comparing outputs, we conclude that ~a and ~b are empty and

w = [[Ai{~xi :≡ ~x}]](~p).

On the other hand, by the definition of π and µα, there is a {~p := µα(~p)}-
computation

pi : x1x2 · · ·xn

: [[Ai{~xi :≡ ~x}]](~p)

]
{~p := µα(~p)}

which gives us precisely the required conclusion of (R1b) in this case,

π(µα(~p))(~a pi : x1x2 · · ·xn
~b) = w.⊓⊔ (4)

(5) (R1b) otherwise, i.e., when s is not a state of the form ~a pi :

x1x2 · · ·xn
~b.

Proof. The transition table of i(A,M) now gives

s → ~a′ : ~b
′

for some state ~a′ : ~b
′
, and the hypothesis of (R1b) guarantees a computation

~a′ : ~b
′

...
: w


 {~p := ~p}

Since the transition s → ~a′ : ~b
′
does not refer to any function letter pj , it is

equally valid for i(A,M {~p := ~p}), and so we have a computation

s

~a′ : ~b
′

...
: w


 {~p := ~p}

But ~p ≤ µα(~p) since ~p ∈ D∗
α, and so by (1),

s

~a′ : ~b
′

...
: w


 {~p := µα(~p)}

22 Yiannis N. Moschovakis and Vasilis Paschalis

which means that π(µα(~p))(s) = w and completes the proof of (R1b). ⊓⊔ (5)

(6) (R2) holds, i.e.,

π(~p)(A0{~x :≡ ~x} :) = w =⇒ [[A0]]
M (~x,~p) = w.

Proof. This is an immediate consequence of (2), which for B ≡ A0{~x :≡ ~x}
gives π(~p)(A0{~x :≡ ~x} :) = [[A0{~x :≡ ~x}]]M (~p) = [[A0]]

M (~x,~p). ⊓⊔ (6)

This completes the proof of Theorem 5.3. ⊓⊔

While the technical details of this proof certainly depend on some specific
features of recursive machines, the idea of the proof is general and quite ro-
bust: it can be used to show that any reasonable “simulation” of a McCarthy
program A by an abstract machine implements the recursor r(A,M) defined
by A—and this covers, for example, the usual “implementations of recursion”
by Turing machines or random access machines of various kinds.

6 Machine simulation and recursor reducibility

On the problem of defining formally the notion of one machine simulating
another, basically we agree with the comments of van Emde Boas [1] quoted
in the beginning of Section 5, that it is not worth doing. There is, however, one
interesting result which relates a specific, formal notion of machine simulation
to recursor reducibility.

Definition 6.1 (Machine simulation, take 1). Suppose

ii = (inputi, Si, σi, Ti, outputi) : X Y (i = 1, 2)

are two iterators on the same input and output sets. A formal simulation
of i1 by i2 is any function ρ : S2 → S1 such that the following conditions hold:

1. For any state t ∈ S2, if ρ(t) →1 s ∈ S1, then there is some t′ ∈ S2 such
that t →∗

2 t′ and ρ(t′) = s.
2. If t0 = input2(x), then ρ(t0) = input1(x).
3. If t ∈ T2, then ρ(t) ∈ T1 and output1(ρ(t)) = output2(t).
4. If t ∈ S2 \ T2 and ρ(t) ∈ T1, then there is path

t →2 t0 →1 · · · →2 tk ∈ T2

in i2 such that output1(ρ(t)) = output2(tk) and ρ(ti) = ρ(t) for all i ≤ k.

This is one sort of formal notion considered by van Emde Boas [1], who
(rightly) does not adopt it as his only (or basic) formal definition.

Theorem 6.2 (Paschalis [8]). If i2 simulates i1 formally by Definition 6.1,

then r(i1) ≤r r(i2).

Elementary algorithms and their implementations 23

We do not know whether the converse of this result holds, or the relation
of this notion of simulation with natural alternatives which involve maps ρ :
S1 → S2 (going the other way). The theorem, however, suggests that perhaps
the robust notion r(i1) ≤r r(i2) may be, after all, the best we can do in the
way of giving a broad, formal definition of what it means for one machine to
simulate another.

7 Elementary (first-order) recursive algorithms

The term
E ≡ if (φ1(x) = 0) then y else φ2(φ1(y), x)

intuitively expresses an algorithm on each algebra M in which φ1, φ2 are
interpreted, the algorithm which computes its value for any given values of x
and y. We can view it as a program

E : p0(x, y) = if (φ1(x) = 0) then y else φ2(φ1(y), x) (26)

with empty body, but the recursor r(E,M) of E constructed in Definition 3.2
does not capture this algorithm—it is basically nothing but the partial func-
tion defined by E. This is because, in general, the recursor r(A,M) of a
program A captures only “the recursion” expressed by A, and there is no re-
cursion in E. The theory of canonical forms which we will briefly outline in
this section makes it possible to capture such explicit algorithms (or parts of
algorithms) by the general construction (A,M) 7→ r(A,M). In particular, it
yields a robust notion of the elementary algorithms of any given algebra M .

To ease the work on the syntax that we need to do, we add to the language
a function symbol cond of arity 3 and the abbreviation

cond(A, B, C) ≡df if (A = 0) then B else C;

this is not correct semantically, because cond is not a strict partial function,
but it simplifies the definition of Φ-terms which now takes the form

A :≡ 0 | 1 | vi | c(A1, . . . , An) (Φ-terms)

where c is any constant (φi, cond) or variable function symbol (pn
i) of arity n.

A term is immediate if it is an individual variable or the “value” of a
function variable on individual variables,

X :≡ vi | pn
i (u1, . . . , un) (Immediate terms)

so that, for example, u, p(u1, u2, u1) are immediate when p has arity 3. Com-
putationally, we think of immediate terms as “generalized variables” which
can be accessed directly, like the entries a[i], b[i, j, i] in an array (string) in
some programming languages.

24 Yiannis N. Moschovakis and Vasilis Paschalis

Definition 7.1 (Program reduction). Suppose A is a program as in (6),

pi(~xi) = c(A1, . . . , Aj−1, Aj , Aj+1) (27)

is one of the equations in A, and Aj is not immediate. Let q be a function
variable with arity(q) = arity(p) which does not occur in A. The one-step

reduction of A determined by pi, j and q yields the program B constructed by
replacing (27) in A by the following two equations:

pi(~xi) = c(A1, . . . , Aj−1, q(~xi), Aj+1)

q(~xi) = Aj

We write

A ⇒1 B ⇐⇒ there is a one-step reduction of A to B,

A ⇒ B ⇐⇒ B ≡ A or A ⇒1 A1 ⇒1 · · · ⇒1 Ak ≡ B,

so that the reduction relation on programs is the reflexive and transitive clo-
sure of one-step reduction.

Let size(A) be the number of non-immediate terms which occur as ar-
guments of function symbols in the parts of A. A program is irreducible if
size(A) = 0, so that no one-step reduction can be executed on it.

Each one-step reduction lowers size by 1, and so, trivially:

Lemma 7.2. If A ⇒1 A1 ⇒1 · · · ⇒1 Ak is a sequence of one-step reductions

starting with A, then k ≤ size(A); and Ak is irreducible if and only if k =
size(A).

The reduction process clearly preserves the head function variable of A,
and so it preserves its arity. It also (easily) preserves denotations,

A ⇒ B =⇒ [[A]]M = [[B]]M ,

but this would be true even if we removed the all-important immediacy re-
striction in its definition. The idea is that much more is preserved: we will
claim, in fact, that if A ⇒ B, then A and B express the same algorithm in

every algebra.

Caution. This notion of reduction is a syntactic operation on programs,
which models (very abstractly) partial compilation, bringing the mutual re-
cursion expressed by the program to a useful form before the recursion is
implemented without committing to any particular method of implementation

of recursion. No real computation is done by it.

We illustrate the reduction process by constructing a reduction sequence
starting with the explicit term E in (26) and showing on the right the para-
meters we use for each one-step reduction:

Elementary algorithms and their implementations 25

E : p0(x, y) = if (φ1(x) = 0) then y else φ2(φ1(y), x) (p0, 1, q1)

E1 :
p0(x, y) = if (q1(x, y) = 0) then y else φ2(φ1(y), x)
q1(x, y) = φ1(x)

(p0, 3, q2)

E2 :
p0(x, y) = if (q1(x, y) = 0) then y else q2(x, y)
q2(x, y) = φ2(φ1(y), x)
q1(x, y) = φ1(x)

(q2, 1, q3)

E3 :

p0(x, y) = if (q1(x, y) = 0) then y else q2(x, y)
q2(x, y) = φ2(q3(x, y), x)
q3(x, y) = φ1(y)
q1(x, y) = φ1(x)

Now E3 is irreducible, and so the reduction process stops.
We will not take the space here to argue that E3 expresses as a mutual

recursion the same explicit algorithm which is intuitively expressed by E. But
note that the order of the equations in the body of E3 is of no consequence:
Definition 3.3 insures that we can list these in any order without changing
the isomorphism type of the recursor r(E3,M). This reflects our basic un-
derstanding that the intuitive, explicit algorithm expressed by E does not
specify whether the evaluations that are required will be done in parallel, or
in sequence, or in any particular order, except, of course, where the nesting
of subterms forces a specific order for the calls to the primitives—and this is
exactly what is captured by the structure of the irreducible program E3.

To call r(E3,M) “the algorithm expressed by E”, we must show that it is
independent of any particular reduction of E to an irreducible term, and to
do this we must abstract from the specific, fresh variables introduced by the
reduction process and the order in which the new equations are added.

Definition 7.3 (Program congruence). Two programs A and B are con-

gruent if B can be constructed from A by an alphabetic change (renaming) of
the individual and functions variables and a permutation of the equations in
the body of A. This is obviously an equivalence relation on programs which
agrees with the familiar term-congruence on programs with empty body. We
write:

A ≡c B ⇐⇒ A and B are congruent.

It follows directly from this definition and Definition 3.3 that congruent
programs have isomorphic recursors in every algebra M ,

A ≡c B =⇒ r(A,M) = r(B,M).

Theorem 7.4 (Canonical forms).
Every program A is reducible to a unique up to congruence irreducible term

cf(A), its canonical form.

In detail: every program A has a canonical form cf(A) with the following

properties:

26 Yiannis N. Moschovakis and Vasilis Paschalis

(1) cf(A) is an irreducible program.

(2) A ⇒ cf(A).
(3) If A ⇒1 A1 ⇒1 · · · ⇒1 Ak is any sequence of one-step reductions and

k = size(A), then Ak ≡c cf(A).

Part (3) gives a method for computing cf(A) up to congruence, and also
implies the first claim, that it is the unique up to congruence term which
satisfies (1) and (2): because if A ⇒ B and B is irreducible, then A ⇒1 A1 ⇒1

· · · ⇒1 Ak ≡ B with k = size(A) by Lemma 7.2, and hence B ≡c cf(A) by
(3).

Outline of proof. To construct canonical forms, we fix once and for all some
ordering on all the function variables, and starting with A, we execute a
sequence of size(A) one-step reductions, selecting each time the lowest p, j, q
for which a reduction can be executed. The last program of this sequence
satisfies (1) and (2), and so we only need verify (3), for which it suffices to
check that

A ⇒1 B =⇒ cf(A) ≡c cf(B). (28)

For this, the basic fact is that one-step reductions commute, in the following,
simple sense: if we label them by showing their parameters,

A
p

i
,j,q

−−−→ B

⇐⇒ B results by the one-step reduction on A determined by pi, j, q

then:

A
p

i
,j,q

−−−→ B
p

k
,l,r

−−−→ C, =⇒ for some B′, A
p

k
,l,r

−−−→ B′ p
i
,j,q

−−−→ C (29)

The obvious conditions here are that q 6≡ r and that either i 6= k or j 6= l,
so that all four one-step reductions indicated can be executed, but, granting
these, (29) follows immediately by the definitions. Finally, (28) can be verified
using (29) by an easy “permutability” argument which we will skip. ⊓⊔

A more general version of the Canonical Form Theorem 7.4 for functional

structures was established in [4], and there are natural versions of it for many
richer languages, including a suitable formulation of the typed λ-calculus with
recursion (PCF). This version for McCarthy programs is especially simple to
state (and prove), because of the simplicity in this case of the definition of
reduction in Definition 5.1.

Definition 7.5 (Referential intensions). The referential intension of a
McCarthy program A in an algebra M is the recursor of its canonical form,

int(A,M) = r(cf(A),M);

it models the elementary algorithm expressed by A in M .

In this modeling of algorithms then, Theorem 5.3 establishes that every

elementary algorithm int(A,M) expressed by a term A in an algebra M is

implemented by the recursive machine i(cf(A),M) of the canonical form of A.

Elementary algorithms and their implementations 27

8 Appendix

A subset X ⊆ D of a poset D is directed if

x, y ∈ X =⇒ (∃z ∈ X)[x ≤D z & y ≤D z]

and D is complete (a dcpo) if every directed X ⊆ D has a (necessarily unique)
supremum (least upper bound),

sup X = min{z ∈ D | (∀x ∈ X)[x ≤D z]}.

In particular, every complete poset (with this definition) has a least element,

⊥D = sup ∅,

and for each set Y , its bottom liftup

Y⊥ = Y ∪ {⊥}

is the complete flat poset which has just one new element ⊥ /∈ Y put below
all the members of X,

x ≤Y⊥
y ⇐⇒ x = ⊥ ∨ x = y (x, y ∈ Y⊥).

It will also be convenient to view each set X as (trivially) partially ordered
by the identity relation, so that X is a subposet of X⊥.

The (Cartesian) product D = D1 × · · · × Dn of n posets is ordered com-
ponentwise,

x ≤D y ⇐⇒ x1 ≤D1
y1 & · · · & xn ≤Dn

yn (x = (x1, . . . , xn), y = (y1, . . . , yn)),

and it is complete, if D1, . . . , Dn are all complete.
A mapping π : D → E from one poset to another is monotone if

x ≤D y =⇒ π(x) ≤E π(y) (x, y ∈ D),

and continuous if in addition, for every directed, non-empty subset of D and
every w ∈ D,

if w = sup X, then π(w) = sup π[X].

If D and E are complete posets, then this conditions takes the simpler form

π(sup X) = sup π[X] (X directed, non-empty),

but it is convenient to allow D to be arbitrary (for example a product of
complete posets and sets) in the definition.

A poset isomorphism is any bijection π : D֌→D2 which respects the partial
ordering,

d1 ≤D d2 ⇐⇒ π(d1) ≤E π(d2),

and it is automatically monotone and continuous.

28 Yiannis N. Moschovakis and Vasilis Paschalis

Theorem 8.1 (Fixed Point Theorem). Every monotone mapping π : D →
D on a complete poset to itself has a least fixed point

x = (µx ∈ D)[x = π(x)],

characterized by the following two properties:

x = π(x), (∀y)[π(y) ≤D y =⇒ x ≤ y];

in fact, x = xκ for every sufficiently large ordinal number κ, where the trans-

finite sequence {xξ}ξ (of iterates of π) is defined by the recursion

xξ = π(sup{xη | η < ξ}), (30)

and we may take κ = ω if π is continuous.

Moreover, if π : D ×E →D is monotone (respectively continuous) and D
is complete, then the mapping

ρ(y) = (µx ∈ D)[π(x, y) = x] (y ∈ E)

is monotone (respectively continuous), ρ : E → D.

When D = D1 × · · · ×Dn is a product of complete posets, then the Least
Fixed Point Theorem guarantees the existence of canonical (least) solutions

x1 : E → D1 . . . , xn : E → Dn

for each system of monotone, recursive equations with parameters

x1(y) = π1(x1, . . . , xn, y)
x2(y) = π2(x1, . . . , xn, y)

· · ·
xn(y) = πn(x1, . . . , xn, y);

(31)

the solutions are monotone, and if each πi is continuous, then they are con-
tinuous.

For any sets X1, . . . , Xn, Y , a partial function f : X1 × · · · × Xn ⇀ Y is
any mapping

f : X1 × · · · × Xn → Y⊥.

Sometimes we identify f with its obvious liftup

f̂ : X1,⊥ × · · · × Xn,⊥ → Y⊥

which takes the value ⊥ if any one of its arguments is ⊥. The composition of
partial functions is defined using these liftups: for x ∈ X1 × · · · × Xn, w ∈ Y ,

f(g1(x), . . . , gn(x)) = w

⇐⇒ (∃u1, . . . , un)[g1(x) = u1 & · · · & gn(x) = un & f(u1, . . . , un) = w].

Elementary algorithms and their implementations 29

We will use the familiar notations for convergence and divergence of partial
functions,

f(x)↓ ⇐⇒ f(x) 6= ⊥, f(x)↑⇐⇒ f(x) = ⊥.

For any poset D and any complete poset E, the function spaces

Mon(D → E) = {π : D → E | π is monotone},

Cont(D → E) = {π : D → E | π is continuous}

are complete posets with the pointwise partial ordering,

π ≤ ρ ⇐⇒ (∀x ∈ D)[π(x) ≤E π(y)];

this is also true of the partial function spaces

(X1 × · · ·Xn ⇀ Y) = {f : X1 × · · · × Xn ⇀ Y } = Mon(X1 × · · ·Xn → Y⊥),

with which we are primarily concerned in this article. We list here two prop-
erties of them that we will need.

Definition 8.2 (Scott domains). Two points d1, d2 in a poset D are com-

patible if their doubleton {d1, d2} has an upper bound in D; and D has the
Scott property, if any two compatible points d1, d2 ∈ D have a (necessarily
unique) least upper bound:

(∃e)[d1 ≤ e & d2 ≤ e] =⇒ sup{d1, d2} exists.

Proposition 8.3. Every partial function poset (X ⇀ Y) has the Scott prop-

erty; and if D1, . . . , Dn have the Scott property, then their product D1×· · ·×Dn

also has the Scott property.

Proof. For compatible d1, d2 : X ⇀ Y , clearly sup{d1, d2} = d1 ∪ d2, the least
common extension of d1 and d2. The second statement follows by induction on
n, using the obvious fact that D1×· · ·×Dn×Dn+1 and (D1×· · ·×Dn)×Dn+1

are isomorphic. ⊓⊔

The next proposition gives a normal form for all poset isomorphisms be-
tween partial function spaces, which we need in the proof of Theorem 4.2 (and
it may be well-known, but we were unable to find it in the literature).

Proposition 8.4. For any sets S1, S2, Y1, Y2, suppose ρ : S1֌→S2 and for

each s ∈ S1, σs : Y1֌→Y2 are given bijections, and set

π(p)(ρs) = σs(p(s)) (p : S1 ⇀ Y1, π(p) : S2 ⇀ Y2). (32)

Then π is a poset isomorphism, and every poset isomorphism

π : (S1 ⇀ Y1)֌→(S2 ⇀ Y2)

satisfies (32) with suitable ρ, {σs}(s∈S1).

30 Yiannis N. Moschovakis and Vasilis Paschalis

Proof. We skip the easy verification that the map defined by (32) is a poset
isomorphism.

For the converse, fix an isomorphism π : (S1 ⇀ Y1)֌→(S2 ⇀ Y2), and for
each s ∈ S1 and each y ∈ Y1, let

py
s(t) =

{
y, if t = s,

⊥, otherwise,

so that py
s : S1 ⇀ Y1. Each py

s is minimal above ⊥ (atomic) in (S1 ⇀ Y1) and,
in fact, every minimal above ⊥ point of (S1 ⇀ Y1) is py

s for some s and t.
It follows that each π-image π(py

s) : S2 ⇀ Y2 is a minimal (above ⊥) partial
function in (S2 ⇀ Y2) which converges on a single point in S2, and so we have
functions ρ : S1 × Y1 → S2 and σ : S1 × Y1 → Y2 so that

π(py
s)(t) = q

σ(s,y)
ρ(s,y) (t) =

{
σ(s, y), if t = ρ(s, y),

⊥, otherwise.
(33)

(1) For all s, y1, y2, ρ(s, y1) = ρ(s, y2).

Proof. If ρ(s, y1) 6= ρ(s, y2) for some s, y1 6= y2, then the partial functions

q
σ(s,y1)
ρ(s,y1)

and q
σ(s,y2)
ρ(s,y2) are compatible (since they have disjoint domains of con-

vergence) with least upper bound their union

q = q
σ(s,y1)
ρ(s,y1)

∪ q
σ(s,y2)
ρ(s,y2)

;

but then the inverse image π−1(q) is above both py1

s and py2

s , which are in-
compatible, which is absurd. ⊓⊔ (1)

We let ρ(s) = ρ(s, y) for any (and all) y ∈ Y1, and we set σs(y) = σ(s, y),
so that the basic definition (33) becomes

π(py
s) = q

σs(y)
ρ(s) , (ρ : S1 → S2, s ∈ S1, σs : Y1 → Y2, y ∈ Y1). (34)

(2) The map ρ : S1֌→S2 is a bijection.

Proof. To see that ρ is an injection, suppose ρ(s1) = ρ(s2) and fix some y ∈ Y1.

If σs1
(y) = σs2

(y), then q
σs1

(y)

ρ(s1)
= q

σs2
(y)

ρ(s2)
, and so py

s1
= py

s2
, which implies that

s1 = s2, since these two equal partial functions have respective domains of
convergence the singletons {s1} and {s2}; and if σs1

(y) 6= σs2
(y), then the two

partial functions q
σs1

(y)

ρ(s1)
and q

σs2
(y)

ρ(s2)
are incompatible, which means that their

π-preimages py
s1

and py
s2

must also be incompatible—which can only happen
if s1 = s2.

To see that ρ is surjective, suppose t ∈ S2, fix some w ∈ Y2, and set

r(u) =

{
w, if u = t,

⊥, otherwise.
(u ∈ S2).

Elementary algorithms and their implementations 31

This is a minimal point in (S2 ⇀ Y2), so there exist s ∈ S1, y ∈ Y1 such

that π(py
s) = r—which means that q

σs(y)
ρ(s) = r, and hence t = ρ(s), since the

respective domains of convergence of these two partial functions are {ρ(s)}
and {t}. ⊓⊔ (2)

(3) For each s ∈ S1, the map σs : Y1֌→Y2 is a bijection.

Proof. If σs(y1) = σs(y2), then q
σs(y1)
ρ(s) = q

σs(y2)
ρ(s) , so that py1

s = py2

s , which

implies y1 = y2; thus σs is an injection. And finally, for each w ∈ Y2, let

r(t) =

{
w, if t = ρ(s),

⊥, otherwise;

this is a minimal point in (S2 ⇀ Y2), and so there is some s′, y such that

π(py
s′) = q

σ
s′

(y)
ρ(s′) = r;

by considering the domains of convergence of these two points we conclude
as above that ρ(s′) = ρ(s), so that s′ = s by (2), and then considering their
values we get the required t = σs(y). ⊓⊔ (3)

This concludes the proof of the Proposition. ⊓⊔

References

1. P. van Emde Boas. Machine models and simulations. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. A, Algorithms and Complexity,
pages 1–66. Elsevier and MIT Press, 1994.

2. J. McCarthy. A basis for a mathematical theory of computation. In P. Braffort
and D Herschberg, editors, Computer programming and formal systems, pages
33–70. North-Holland, 1963.

3. Yiannis N. Moschovakis. Abstract recursion as a foundation of the theory of
algorithms. In M. M. et. al. Richter, editor, Computation and Proof Theory,
volume 1104, pages 289–364. Springer-Verlag, Berlin, 1984. Lecture Notes in
Mathematics.

4. Yiannis N. Moschovakis. The formal language of recursion. The Journal of

Symbolic Logic, 54:1216–1252, 1989.
5. Yiannis N. Moschovakis. A mathematical modeling of pure, recursive algorithms.

In A. R. Meyer and M. A. Taitslin, editors, Logic at Botik ’89, volume 363, pages
208–229. Springer-Verlag, Berlin, 1989. Lecture Notes in Computer Science.

6. Yiannis N. Moschovakis. On founding the theory of algorithms. In H. G. Dales
and G. Oliveri, editors, Truth in mathematics, pages 71–104. Clarendon Press,
Oxford, 1998.

7. Yiannis N. Moschovakis. What is an algorithm? In B. Engquist and W. Schmid,
editors, Mathematics unlimited – 2001 and beyond, pages 929–936. Springer, 2001.

8. Vasilis Paschalis. Recursive algorithms and implementations, 2006. (M.Sc. Thesis,
in Greek).

